
Robust Local Testability of Tensor Products of

LDPC Codes?

Irit Dinur1, Madhu Sudan2, and Avi Wigderson3

1 Hebrew University, Jerusalem, Israel. dinuri@cs.huji.ac.il
2 Massachusetts Institute of Technology, Cambridge, MA. madhu@mit.edu

3 Institute for Advanced Study, Princeton, NJ. avi@ias.edu

Abstract. Given two binary linear codes R and C, their tensor product
R ⊗ C consists of all matrices with rows in R and columns in C. We
analyze the “robustness” of the following test for this code (suggested
by Ben-Sasson and Sudan [6]): Pick a random row (or column) and check
if the received word is in R (or C). Robustness of the test implies that
if a matrix M is far from R ⊗ C, then a significant fraction of the rows
(or columns) of M are far from codewords of R (or C).
We show that this test is robust, provided one of the codes is what we
refer to as smooth. We show that expander codes and locally-testable
codes are smooth. This complements recent examples of P. Valiant [13]
and Coppersmith and Rudra [9] of codes whose tensor product is not
robustly testable.

1 Introduction

A binary linear code is a linear subspace C ⊆ {0, 1}n
. A code is locally testable

if given a word x ∈ {0, 1}n
one can verify whether x ∈ C by reading only few

(randomly chosen) bits from x. More precisely such a code has a tester, which
is a randomized algorithm with oracle access to the received word x. The tester
reads at most q symbols from x and based on this “local view” decides if x ∈ C
or not. It should accept codewords with probability one, and reject words that
are “far” (in Hamming distance) from the code with “noticeable” probability.

Locally testable codes (LTCs) are related to probabilistically checkable proofs
(PCPs). LTCs were first explicitly studied by Goldreich and Sudan [12], who
describe them as the “combinatorial core of PCPs”. They constructed LTCs
relying on some of the PCP machinery [11, 2, 1]. Since locally testable codes are
simpler than PCPs, it seems natural to seek alternative constructions for them,
possibly departing from the PCP framework.

? Most of the research was done while the authors were visiting Microsoft Research
Theory group. Additionally, Irit Dinur’s work was supported in part by ISF grant
984/04, Madhu Sudan’s work was supported in part by NSF Award CCR-0514915,
and Avi Wigderson’s work was supported in part by NSF Award CCR-0324906.

Electronic Colloquium on Computational Complexity, Report No. 118 (2006)

ISSN 1433-8092

One of the most interesting challenges in constructing LTCs, is to come up with
an LTC that has constant relative distance and highest possible (maybe linear?)
rate. Several steps in this direction were made in recent years, see [12, 8, 3, 4, 6,
7, 10].

All known efficient constructions of LTCs rely on some form of “composition” of
two (or more) codes. In this paper we focus on composition by tensor product,
which is an elementary way to compose two codes. Given two binary codes
R ⊆ {0, 1}m

and C ⊆ {0, 1}n
, their tensor product is the code R⊗C consisting

of all binary n×m matrices whose rows belong to R and whose columns belong
to C.

Ben-Sasson and Sudan [6] suggested using the tensor operation for constructing
LTCs. They introduce the notion of robust LTCs: An LTC is called robust if
whenever the received word is far from the code, then with noticeable probability
the local view of the tester is far from an accepting local view. It is very easy to
compose testers for robust LTCs: If it so happens that restriction of the code to
the local view of the tester is itself an LTC, then instead of reading the entire
local view, a tester for the smaller LTC can be invoked thereby saving on the
query complexity of the tester.

Ben-Sasson and Sudan [6] showed that a code obtained by tensoring three or
more codes (i.e. a code of the form C1 ⊗C2 ⊗C3) is robustly testable, and used
this result to construct LTCs. For the tensor product of two codes R and C,
they considered the following natural test, and asked whether it is robust:

Test for R ⊗ C: Pick a random row (or column), accept iff it belongs to R (or
C).

Rather than providing a general definition of robustness (which can be found
in Section 2.2), let us spell out the meaning of robustness for this particular
test. Let x be an n × m matrix. Let δrow(x) denote the expected distance of
a random row of x from R, and let δcol(x) denote the expected distance of a
random column of x from C. Let δR⊗C(x) denote the distance of x from the
tensor product code R ⊗ C. The robustness of the test is the largest value of α
that satisfies

δrow(x) + δcol(x)

2
≥ α · δR⊗C(x)

for every x. We say that the test is robust if its robustness is bounded away from
0.

Paul Valiant [13] showed a surprising example of two linear codes R and C for
which the test above is not robust, by exhibiting a word x that is far from R⊗C
but such that the rows of x are very close to being in R (i.e. δrow(x) is small) and
the columns of x are very close to being in C (i.e. δcol(x) is small). An additional
example of [9] gives a code whose tensor product with itself is not robust, and a
similar result is shown for some non-linear code.

Results. Despite these examples, in this paper we show that the test above is
robust for two important classes of Low Density Parity Check (LDPC) codes:
Expander codes, and LTCs (see Proposition 1). We note that these are almost
disjoint classes, as [5] prove that random expander LDPC codes are not locally
testable.

We do this by introducing smooth codes which are a class of low density parity
check codes. The smoothness property captures how badly the code is affected
if some of the parity checks are removed from it.

We first show that if either R or C are smooth, then R ⊗ C has the following
property. Any given word x that has small δrow(x) and small δcol(x), must have
a large sub-matrix that completely agrees with some word in R⊗C (so x is close
to R ⊗ C). This implies that R ⊗ C is robust. We then argue that both LTCs
and expander codes are smooth.

2 Notation, Definitions, and Results

All codes we consider will be binary linear codes. A binary linear code is a linear
subspace C ⊆ {0, 1}n

, whose dimension is denoted by dim(C). Every member of
C is called a codeword.

We define the distance between two words x, y ∈ {0, 1}n
to be δ(x, y) = Pri[xi 6=

yi]. We also define the weight of a string to be wt(x) = δ(x,0). The distance of
a code is denoted δ(C), and defined to be the minimal value of δ(x, y) for two
distinct codewords x, y ∈ C. Clearly the distance of a linear code is equal to
weight of the minimal-weight non-zero codeword.

Let In = {0, 1}n
denote the trivial code. For x ∈ In and C ⊆ In, let δC(x) =

min{y∈C}{δ(x, y)} denote the distance of x from the code C.

2.1 Tensor Products of Codes

For x ∈ Im and y ∈ In we let x ⊗ y denote the tensor product of x and y (i.e.,
the n × m matrix xyT).

Let R ⊆ Im and C ⊆ In be linear codes. We define the tensor product code
R ⊗ C to be the linear subspace spanned by words r ⊗ c ∈ {0, 1}n×m

for r ∈ R
and c ∈ C. The following facts are immediate:

– The code R ⊗ C consists of all n × m matrices whose rows belong to R and
whose columns belong to C.

– dim(R ⊗ C) = dim(R) · dim(C)
– δ(R ⊗ C) = δ(R) · δ(C).

Fix R ⊆ Im and C ⊆ In of distance δR and δC respectively for the rest of the
manuscript.

Let M ∈ Im ⊗ In and let δ(M) = δR⊗C(M). Let δrow(M) = δR⊗In
(M) denote

its distance from the space of matrices whose rows are codewords of R. This
is the expected distance of a random row in x from R. Similarly let δcol(M) =
δIm⊗C(M).

2.2 Robust Locally Testable Codes

Locally testable codes, as described in the introduction, are codes for which one
can test whether a given word x is in the code by reading only few (randomly
chosen) symbols from x. We discuss here only non adaptive and bi-regular testers.
Non adaptive means that which queries are read is determined before any query
is made, and bi-regular means that every test queries the same number of bits,
and every bit is queried by the same number of tests. It would be interesting to
extend our result for locally testable codes without these restrictions.

Definition 1 ((Non adaptive, bi-regular) Locally Testable Code). We
say that a code C ⊆ In is (d, δ, ε, ρ)-locally-testable if δ(C) ≥ δ and there is a
randomized algorithm (called a tester) T , which selects d indices from [n], and
for any given word x ∈ In, T reads the bits of x in these locations, satisfying:

– If x ∈ C then Pr[T x accepts] = 1.
– If δC(x) ≥ ρ then Pr[T x rejects] > ε.

Moreover, the probability that a given index is chosen to be read by T is the same
for all indices in [n].

A somewhat stronger notion of LTCs is that of robust-LTCs. Such a code has a
stronger soundness requirement: Whenever x 6∈ C the local view of the tester is
far (in expectation) from an accepting view. For a formal definition let us intro-
duce a little notation. The tester algorithm T has two inputs: the random string
r, and the word x that is being tested. The tester reads the string r and computes
a predicate Tr and a d-tuple of indices i1, . . . , id in which it queries the word x.

It accepts iff Tr(x[i1], . . . , x[id]) = 1. Let acc(Tr) =
{

w ∈ {0, 1}d
∣

∣

∣
Tr(w) = 1

}

be the set of local-views on which the tester accepts. Define the robustness of T
on x to be

ρT (x) = Er[δ((x[i1], . . . , x[id]) , acc(Tr))] ,

which is the expected distance of the local view from an accepting one. The
robustness of T is the minimal ratio between the robustness of T on x, and the
distance of x from the code:

ρT = min
x6∈C

ρT (x)

δC(x)
.

Definition 2 (Robust Code). We say that a code C ⊆ In is α-robust if there
is a tester T that accepts every word in C with probability 1, such that ρT ≥ α.

2.3 Low Density Parity Check (LDPC) Codes

A bipartite graph ([n], [m], E) is a parity check graph for a code C ⊆ In if the
following holds (let Γ (j) denote the neighbors of j in the graph):

x ∈ C ⇐⇒ ∀j ∈ [m]
∑

i∈Γ (j)

xi = 0 mod 2

In other words, every right-hand-side vertex j ∈ [m] corresponds to a parity
constraint, and a word is in the code if and only if it satisfies all of the constraints.

A code is referred to as an LDPC code if it has a “low-density” parity check
graph, e.g. a graph with constant4 average degree.

We first remark that LTCs are low density parity check codes, since a parity
check graph can be constructed from the tester algorithm. Moreover, since our
LTCs are bi-regular, so is their parity check graph.

Proposition 1. Every (d, δ, ε, ρ)-LTC C with ρ < δ has a parity check graph
with right degree d and such that for every word x, if δC(x) ≥ ρ then it violates
at least ε fraction of the parity checks.

Proof. Let T be a tester for C. The predicates computed by T are parity checks
(perhaps redundant) of C, since the code is linear. The construction of a parity
graph (L,R,E) from T is immediate, with the nodes of R corresponding to the
enumeration of the random strings of T .

Another important class of LDPC codes is that of expander codes.

Definition 3 ((c, d)-regular (γ, δ)-expander). Let c, d ∈ N and let γ, δ ∈
(0, 1). Define a (c, d)-regular (γ, δ)-expander to be a bipartite graph (L,R,E)
with vertex sets L,R such that all vertices in L have degree c, and all vertices in
R have degree d; and the additional property that every set of vertices L′ ⊂ L,
such that |L′| ≤ δ |L|, has at least (1 − γ)c |L′| neighbors.

We say that a code C is an (c, d, γ, δ)-expander code if it has a parity check
graph that is a (c, d)-regular (γ, δ)-expander.

The following is an important (and straightforward) property of expander codes,

Proposition 2. If C is a (c, d, γ, δ)-expander code and γ < 1
2 , then δ(C) ≥ δ.

4 Implicit throughout this manuscript is the notion that we are working with infinite
families of codes/graphs, where the parameters such as the distance or the degree
do not change with the length of the code/graph etc.

Proof. We prove that every non-zero word in C must have weight more than δn.
Indeed let (L,R,E) be a parity check graph of C that is a (c, d)-regular (γ, δ)-
expander. The proposition follows by examining the unique neighbor structure
of the graph. Let x ∈ C be a non-zero codeword, and let L′ ⊆ L be the set of
indices in which x is 1. If |L′| ≤ δn then L′ has at least (1 − γ)c |L′| > c

2 |L
′|

neighbors in R. At least one of these sees only one element of L′, so the parity
of its neighbors is one, violating the corresponding constraint and contradicting
x ∈ C.

2.4 Results

Let R,C be codes. We study the robustness of the following test (described also
in the introduction) for a given word M ∈ Im ⊗ In.

Test T for R ⊗ C:

1. Select b ∈ {0, 1} at random.
2. If b = 0 select i ∈ [n] at random, and accept iff the i-th row of M is in R.
3. If b = 1 select j ∈ [m] at random, and accept iff the j-th column of M is in

C.

Obviously, T accepts every word of R⊗C with probability 1. We are interested
in studying the robustness of T which we sometimes refer to as ρ instead of ρT .

Recall our notation δ(M) = δR⊗C(M) and our definition of δrow(M) = δR⊗In
(M)

and δcol(M) = δIm⊗C(M). In other words δrow(M) equals the average distance
of a row of M from R, and similarly δcol(M) equals the average distance of a
column of M from C. The following proposition is immediate:

Proposition 3. The robustness of T on input M is ρ(M) = δrow(M)+δcol(M)
2 .

ut

In order to establish robustness for T , say ρT ≥ α > 0, we must be able to prove

for all M that (δrow(M)+δcol(M))/2
δ(M) ≥ α.

As already mentioned in the introduction, for general codes R and C this is false.
Paul Valiant [13] described a pair of codes R and C and a word M that is very
far from R ⊗ C, yet both δrow(M) and δcol(M) are very small.

Nevertheless, we observe that if C (or R) is somewhat “nice”, then such a bound
can be proven.

Theorem 1 (Tensoring Expander-codes). Let R ⊂ Im be a code of distance
at least δR > 0. Let C ⊂ In be a (c, d, γ, δ)-expander code for some c, d ∈ N, δ > 0,
and 0 < γ < 1/6. Then

ρT ≥
(1
3 − 2γ)δδR

4d
.

Theorem 2 (Tensoring LTCs). Let R ⊂ Im and C ⊂ In be codes of relative
distance at least δR, δC respectively. Furthermore, let C be a (d, δC , ε, ρ)-LTC,
with ρ ≤ δC

16 . Then,

ρT ≥ min

{

εδR

2d2
,
δRδC

16

}

.

3 Smooth codes

We prove the two theorems by a common technique, where we show that the
tensor product has nice testing properties if the underlying codes are nice in a
certain sense that we refer to as “smooth”. To motivate this notion, consider a
code C ⊆ In given by a (possibly redundant5) parity check graph B = (L,R,E),
where every vertex of R has degree d.

We consider how badly the code is affected if we remove some constraints R0 ⊆
R. Let C(R0) denote the resulting code. C(R0) clearly contains C, but may now
contain codewords of lesser weight. For instance we may remove all the neighbors
of some vertex u ∈ L (for the vertex u of minimum degree, this only requires us to
remove a d/|L| fraction of the right vertices), and now u is unconstrained, leading
to a code of distance one. However if we delete the uth coordinate of C(R0) one
may hope that the resulting code still has large distance. More generally, we may
hope that the negative effect of deleting some subset R0 of the constraints may
be recovered by dropping some subset L0 of the coordinate vertices. If a code
exhibits such a property, we call it smooth, defined quantitatively below.

For a set S ⊂ [n] we always denote S = [n] − S. For a code C ⊆ In and
L0 ⊆ L = [n] let C|L0

be the projection of the codewords of C to the coordinates
of L0. (Such a code is called a punctured code. For reasons that will be evident
later, it is nicer to highlight the set of coordinates that are being deleted.)

For a code C defined by a bipartite graph B = (L,R,E), let C(R0) denote
the “supercode” given by the parity check graph B′ = (L = [n], R − R0, E

′ =
E ∩ (L × (R − R0))).

Definition 4 (Smooth Code). A code C ⊆ In is (d, α, β, δ)-smooth if it has
a parity check graph B = (L,R,E) where all the right vertices R have degree d,
the left vertices have degree c = d|R|/|L|, and for every set R0 ⊆ R such that
|R0| ≤ α|R|, there exists a set L0 ⊆ L, |L0| ≤ β|L| such that the code C(R0)|L0

has distance at least δ.

We next turn to prove that the test T described in the previous section is robust
when one of the codes being tensored is smooth. More specifically we prove
that for any word M , if ρ(M) = (δrow(M) + δcol(M))/2 is small then δ(M) is
proportionally small.

5 A parity check graph is redundant if removing a node from the right still results in
a parity check graph for the same code.

Lemma 1 (Main Lemma). Let R ⊆ Im and C ⊆ In be codes of distance
δR and δC . Let C be (d, α, δC

2 , δC

2)-smooth, and let M ∈ Im ⊗ In. If ρ(M) ≤

min
{

α δR

2d2 , δRδC

8

}

then δ(M) ≤ 8ρ(M).

Proof. For row i ∈ [n], let ri ∈ R denote the codeword of R closest to the ith
row of M . For column j ∈ [m], let c(j) ∈ C denote the codeword of C closest to
the jth column of M . Let MR denote the n×m matrix whose ith row is ri, and
let MC denote the matrix whose jth column is c(j). Let E = MR − MC .

In what follows the matrices MR,MC and (especially) E will be the central
objects of attention. We refer to E as the error matrix. Note that δ(M,MR) =
δrow(M) and δ(M,MC) = δcol(M) and so

wt(E) = δ(MR,MC) ≤ δ(M,MR) + δ(M,MC) = δrow(M) + δcol(M) = 2ρ(M) .
(1)

Our proof strategy is to show that the error matrix E is actually very struc-
tured. We do this in two steps. First we show (Proposition 4) that its columns
satisfy most constraints of the column code. Then we show (Proposition 5) that
E contains a large submatrix which is all zeroes. Finally using this structure of
E we show (Proposition 6) that M is close to some codeword of R ⊗ C. Propo-
sition 4 is the crux of our analysis (while Proposition 5 follows more or less in
a straightforward way from the definition of smoothness, and Proposition 6 is a
standard property of tensor product codes).

Proposition 4. Let {i1, . . . , id} be a constraint of C (i.e., every codeword of
y ∈ C satisfies yi1 + . . . + yid

= 0). Let ei denote the ith row of E. Suppose
wt(eij

) < δR/d for every j ∈ [d]. Then ei1 + · · · + eid
= 0.

Proof. Let ci denote the i-th row of the matrix MC . (Recall that these rows are
not necessarily codewords of any nice code - it is only the columns of MC that
are codewords of C). For every column j, we have (ci1)j + · · ·+(cid

)j = 0 (since
the columns of MC are codewords of C). Thus we conclude that ci1 +· · ·+cid

= 0
as a vector.

Now consider ri1 + · · ·+ rid
(recall that ri is the i-th row of MR). Since each one

of the ri’s is a codeword of R, we have ri1 + · · · + rid
∈ R. But this implies

ei1+· · ·+eid
= (ri1−ci1)+· · ·+(rid

−cid
) = (ri1+· · ·+rid

)−(ci1+· · ·+cid
) = (ri1+· · ·+rid

)−0 ∈ R

Now we use the fact that the eis have small weight. This implies that wt(ei1 +
· · · + eid

) ≤
∑

j wt(eij
) < δR. But R is an error-correcting code of minimum

distance δR so the only word of weight less than δR in it is the zero codeword,
yielding ei1 + · · · + eid

= 0.

Combined with the smoothness of C, the above proposition gives us sufficient
structure to show that E has a large clean submatrix. We argue this below.

Proposition 5. There exist subsets U ⊆ [m] and V ⊆ [n] with |U |/m < δR/2
and |V |/n < δC/2 such that E(i, j) 6= 0 implies i ∈ V or j ∈ U .

Proof. First, we consider the rows of E that have weight above δR/d. Let

V1 = {i ∈ [n] | wt(ei) ≥ δR/d} .

We use δrow(M) ≤ 2ρ(M) ≤ αδR

d2 and Markov’s inequality to deduce |V1|/n ≤
2ρ(M)
δR/d ≤ α

d .

Next, we consider every constraint of C that involves an index in V1. Recall that
the code C is (d, α, δC

2 , δC

2)-smooth, and let B = ([n], [`], F) be the corresponding

parity check graph of C (with right degree d and left degree c = d`
n). Viewing V1

as a subset of the left vertices of B, let W ⊆ [`] be the set of neighbors of V1 in
B. First notice that |W | ≤ c |V1| ≤ c ·αn/d = α`. Next, observe that constraints
in [`] − W touch only indices outside V1, i.e., indices j with w(ej) < δR/d. By
Proposition 4, such constraints are satisfied by the rows of E. It is clear that if
an equality holds for row-vectors, it also holds for each column separately. Thus,
every column of the error matrix E, denoted e(j), is contained in the code C(W).

Now we use the smoothness of C to define the sets V and U . Since |W | ≤ α`,
there must be a set V ⊆ [n] of cardinality at most δC

2 n such that the code

C(W)|V has distance at least δC

2 n. Let U be the set of indices corresponding to

columns of E that have δC

2 n or more non-zero elements in the rows outside V .

This means that for every j, e(j) is either all zero on V or has at least δC

2 n non-

zero values on V . If also j 6∈ U then e(j) must be zero outside V . We conclude
that if we throw away from the matrix E all the rows corresponding to V and
all the columns corresponding to U , we are left with the zero matrix.

The fraction of rows thrown away is at most |V |
n ≤ δC/2. The fraction of columns

thrown away is at most δcol(M)
δC/2 ≤ 4ρ(M)

δC
≤ δR/2, where we used Markov’s

inequality and δcol(M) ≤ 2ρ(M) ≤ δCδR

4 .

We now use a standard property of tensor products to claim MR (and MC

and M) is close to a codeword of R × C. Recall that M ∈ {0, 1}n×m and that
δ(MC ,MR) ≤ 2ρ(M).

Proposition 6. Assume there exist sets U ⊆ [m] and V ⊆ [n], |U |/m ≤ δR/2
and |V |/n ≤ δC/2 such that MR(i, j) 6= MC(i, j) implies j ∈ U or i ∈ V . Then
δ(M) ≤ 8ρ(M).

Proof. This is a standard proposition. First we note that there exists a matrix
N ∈ R⊗C that agrees with MR and MC on V ×U (See [6, Proposition 3]6). Recall

6 Erase from the matrix MR entries in rows V or columns U . Observe that decoding
from erasures first each row and then each column, must result in the same matrix
as decoding first each column and then each row (due to the distances of the codes).

also that δ(M,MR) = δrow(M) ≤ 2ρ(M). So it suffices to show δ(MR, N) ≤
6ρ(M). We do so in two steps. First we show that δ(MR, N) ≤ 2ρ(MR). We
then show that ρ(MR) ≤ 3ρ(M) concluding the proof.

For the first part we start by noting that MR and N agree on every row in V .
This is the case since both rows are codewords of R which may disagree only
on entries from the columns of U , but the number of such columns is less that
δRm/2. Next we claim that for every column j ∈ [m] the closest codeword of C
to the MR(·, j), the jth column of MR, is N(·, j), the jth column of N . This is
true since MR(i, j) 6= N(i, j) implies i ∈ V and so the number of such i is less
than δCn/2. Thus for every j, we have N(·, j) is the (unique) decoding of the
jth column of MR. Averaging over j, we get that δcol(MR) = δ(MR, N). In turn
this yields ρ(MR) ≥ δcol(MR)/2 = δ(MR, N)/2. This yields the first of the two
desired inequalities.

Now to bound ρ(MR), note that for any pair of matrices M1 and M2 we have
ρ(M1) ≤ ρ(M2) + δ(M1,M2). Indeed it is the case that δrow(M1) ≤ δrow(M2) +
δ(M1,M2) and δcol(M1) ≤ δcol(M2)+δ(M1,M2). To see the former, for instance,
note that if the ith row of M2 is within ρi of some codeword of R, then the
ith row of M1 is within ρi + δ(M1(i, ·),M2(i, ·)) of the same codeword of R.
Averaging over i yields δrow(M1) ≤ δrow(M2) + δ(M1,M2). A similar argument
yields δcol(M1) ≤ δcol(M2) + δ(M1,M2), when combined the two yield ρ(M1) ≤
ρ(M2) + δ(M1,M2). Applying this inequality to M1 = MR and M2 = M we
get ρ(MR) ≤ ρ(M)+ δ(MR,M) ≤ 3ρ(M). This yields the second inequality and
thus the proof of the proposition as well as Lemma 1.

In what follows we will show that expander codes, as well as LTCs are smooth.

4 Expander codes are smooth

Lemma 2. Every (c, d, γ, δ)-expander code C is (d, α, β, δ)-smooth, provided γ <
1
6 , α < (1

3 − 2γ)δd and β = α
(1

3
−2γ)d

.

Proof. Let B = (L,R,E) be the (c, d) regular (γ, δ)-expanding parity check
graph of the code C. Let R0 ⊆ R of size |R0| ≤ α · |R| be given. We will construct
sets L′, R′ satisfying L′ ⊆ L, |L′| ≤ β|L| and R0 ⊆ R′ ⊆ R such that every
subset of L−L′ of size at most δn expands sufficiently in the induced subgraph
on (L − L′) ∪ (R − R′). This will suffice to prove that C(R0)|L′ ⊆ C(R′)|L′ has
distance at least δn.

We construct the sets L′ and R′ iteratively. Initially we set L′ = ∅ and R′ = R0.
We then iterate as follows: While there exists a vertex u ∈ L − L′ such that u
has more than 1

3c neighbors in R′, we add u′ to L′ and add all the neighbors of
u′ to R′. We prove below that this process stops in t ≤ βn steps, and that the
induced graph on (L − L′) ∪ (R − R′) is a (good) expander.

We claim that this process must stop after at most βn steps. To see this, we count
the number of unique neighbors of the set L′ in the graph B. Initially this number
is at most |R0|. At each iteration this number goes up by at most 2

3c. Assume we
have completed some t ≤ δn iterations (and recall βn < δn). We have |L′| = t.
Denote Γunique(L

′) the set of vertices in R that have exactly one neighbor in
L′. So |Γunique(L

′)| ≤ |R0| + 2
3ct. Observe that |Γunique(L

′)| ≥ (1 − 2γ)c|L′|,
otherwise L′ couldn’t have (1 − γ)c |L′| distinct neighbors (here we use t ≤ δn).
Putting these inequalities together we have

(1 − 2γ −
2

3
)ct ≤ |Γunique(L

′)| −
2

3
ct ≤ |R0|

and so t ≤ 1
(1

3
−2γ)c

|R0| ≤
α

(1

3
−2γ)c

|R| = α
(1

3
−2γ)d

|L| = βn.

Now we claim that the induced subgraph on (L−L′)∪(R−R′) is an expander. For
this part consider any set S ⊆ L−L′ with |S| ≤ δn. Let T be the neighborhood
of S in the graph B. Then |T | ≥ (1 − γ)c|S|. Now each vertex of S may have
upto 1

3c neighbors in R′. Even allowing for these neighborhoods to be disjoint,
we get |T ∩ (R − R′)| ≥ (1 − γ)c|S| − 1

3c|S| = (2
3 − γ)c|S|. Since 2

3 − γ > 1
2 , we

have that the induced subgraph on (L − L′) ∪ (R − R′) has the property that
every set of size at most δn expands by more than a factor of c/2, thus implying
that C(R′)|L′ is a code of minimum distance at least δn (see Proposition 2).
This concludes the proof.

Proof (Theorem 1). Note that C is a code of distance at least δ (by Proposi-
tion 2). By Lemma 2 it follows that C is (d, α, β, δ)-smooth for any α ≤ (1

3−2γ)dδ
and β = α

(1

3
−2γ)d

. Set α = (1
3 − 2γ)dδ/2, and so β = α

(1

3
−2γ)d

= δ/2. The code is

certainly (d, α, δ
2 , δ

2)-smooth.

Fix any M 6∈ R ⊗ C, and let us lower bound ρ(M)
δ(M) . Set ρ0 = min

{

α δR

2d2 , δRδ
8

}

.

If ρ(M) ≥ ρ0 then surely ρ(M)
δ(M) ≥ ρ0. Otherwise, we note that the conditions

necessary for the application of Lemma 1 are satisfied, and we get δ(M) ≤
8ρ(M). All in all, we have proven that

ρT = min
M 6∈R⊗C

ρ(M)

δ(M)
≥ min

{

ρ0,
1

8

}

= ρ0 =
(1
3 − 2γ)δδR

4d

where the last equality follows by plugging the value for α into ρ0 and assuming
d ≥ 2.

5 LTCs are smooth

Lemma 3. Every (d, δ, ε, ρ)-LTC code C is (d, ε, δ′, δ′)-smooth, provided ρ ≤
δ′/4 and δ′ ≤ δ/4.

Proof. Let B = (L,R,E) be a parity check graph for C whose right-hand-side
corresponds to the tests of a tester for C (Proposition 1). Fix R0 ⊆ R of size
|R0| ≤ ε · |R| and consider the code C(R0). If all the non-zero words in C(R0)
have weight at least δ′ then setting L0 = ∅ satisfies the definition of smoothness
and so we have nothing to prove. So we assume C(R0) has some non-zero words
of weight at most δ′. Let {c1, . . . , cm} be the set of all codewords of C(R0) whose
weight is at most 2δ′. Let Si be the set of coordinates where ci is non-zero, and
let L0 = ∪iSi.

If |L0| ≤ δ′n, we claim that C(R0)|L0
has distance at least δ′n as needed. This

is true since every codeword of C(R0) of weight less than 2δ′n is non-zero only
on some subset of L0 and so projects to the zero codeword in C(R0)|L0

. On the
other hand, codewords of weight greater than 2δ′n in C(R0) project to words
of weight at least δ′n when we delete the δ′n coordinates corresponding to L0.
Thus C(R0)|L0

is a code of weight at least δ′n. Thus it remains to show below
that |L0| ≤ δ′n.

Assume for contradiction that |L0| > δ′n. We show first that C(R0) must have

a codeword of weight between δ′

4 n and 2δ′n. We then show that this violates the
local testability of C.

For the first part, note that if one of the ci’s has weight between δ′

2 n and 2δ′n,

then we are already done. So we may assume each ci has weight less than δ′

2 n.

Now pick a subset {c1, . . . , cj} of the low weight codewords so that δ′

2 n ≤ | ∪j
i=1

Si| ≤ δ′n. This is obviously possible since the cardinality of this union starts

at 0, as j varies from 0 to m, ends at |L0| > δ′n and goes up by at most δ′

2 n

in each step. For this setting of j, consider words of the form
∑j

i=1 xici where
xi ∈ {0, 1}. For every choice of xi’s we get a codeword of C(R0) of weight at
most | ∪j

i=1 Si| ≤ δ′n. The expected weight of such a word, when xi ∈ {0, 1} are

chosen uniformly and independently is 1
2 | ∪

j
i=1 Si| ≥

δ′

4 n. Thus the maximum

weight codeword in this set has weight between δ′

4 n and δ′n, as desired.

Now let c1 ∈ C(R0) be a codeword of weight between δ′

4 n and 2δ′n. Since
2δ′ < δ/2 we have that c1 is a word at distance more than δ′n ≥ ρn from C but
is rejected only by the tests in R0 which form at most ε fraction of all parity
checks in B, contradicting the assumption that C is a (d, δ, ε, ρ)-LTC.

Theorem 2 follows from Lemma 3 analogous to the way Theorem 1 followed from
Lemma 2.

Proof (Theorem 2). The code C is a (d, δC , ε, ρ)-LTC, with ρ ≤ δC/16. By
Lemma 3, it must be (d, ε, δC

4 , δC

4)-smooth. Fix any M 6∈ R ⊗ C, and let us

lower bound ρ(M)
δ(M) .

Set ρ0 = min{ εδR

2d2 , δRδC

16 }. If ρ(M) ≥ ρ0 then surely ρ(M)
δ(M) ≥ ρ0. Otherwise, we ap-

ply Lemma 1 and deduce that ρ(M) < ρ0 implies that δ(M) ≤ 6
max{δR,δC/2}ρ(M).

All in all, we have proven that

ρT = min
M 6∈R⊗C

ρ(M)

δ(M)
≥ min

{

ρ0,
1

8

}

= min

{

εδR

2d2
,
δRδ

16

}

.

6 Conclusions

In conclusion, we have seen that robust LTCs can be obtained by tensoring two
codes. In light of counterexamples, it seems that something like our smoothness
property is essential for such a product to work. Fortunately, we have seen that
many known codes are smooth, such as bi-regular LTCs and expander codes.
We feel that the bi-regular condition is unessential and hope it can be removed.

The most important question in this line of work is whether one can construct
asymptotically good LTCs. More specifically, we wonder whether one can ef-
ficiently compose robust LTCs (say without having the robustness or distance
parameters deteriorate). This may lead the way to efficient constructions of LTCs
that are non-algebraic, an interesting goal in itself. Finally, we wonder whether
there are other applications for smooth codes.

References

1. Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.
Proof verification and the hardness of approximation problems. Journal of the

ACM, 45(3):501–555, May 1998.
2. Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new charac-

terization of NP. Journal of the ACM, 45(1):70–122, January 1998.
3. Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vad-

han. Robust PCPs of proximity, shorter PCPs and applications to coding. In
Proceedings of the 36th Annual ACM Symposium on Theory of Computing, page
(to appear), 2004.

4. Eli Ben-Sasson, Oded Goldriech, Prahladh Harsha, Madhu Sudan, and Salil Vad-
han. Short PCPs verifiable in polylogarithmic time. In Proceedings of the Twelfth

Annual IEEE Conference on Computational Complexity, pages 120–134, June 12–
15 2005.

5. E. Ben-Sasson and P. Harsha and S. Raskhodnikova, Some 3CNF properties are
hard to test. In SIAM Journal on Computing, 35(1):1-21.

6. E. Ben-Sasson and M. Sudan. Robust locally testable codes and products of codes.
In Proc. RANDOM: International Workshop on Randomization and Approxima-

tion Techniques in Computer Science, pages 286–297, 2004.
7. Eli Ben-Sasson and Madhu Sudan. Short PCPs with poly-log rate and query

complexity. In Proceedings of the 37th Annual ACM Symposium on Theory of

Computing, pages 266–275, 2005.
8. Eli Ben-Sasson, Madhu Sudan, Salil Vadhan, and Avi Wigderson. Randomness

efficient low-degree tests and short PCPs via ε-biased sets. In Proceedings of the

35th Annual ACM Symposium on Theory of Computing, pages 612–621, 2003.

9. D. Coppersmith and A. Rudra. On the robust testability of product of codes.
ECCC TR05-104, 2005.

10. Irit Dinur. The PCP theorem by gap amplification. In Proceedings of the 38th

Annual ACM Symposium on Theory of Computing, pages 241–250, 2006.
11. Uriel Feige, Shafi Goldwasser, Laszlo Lovasz, Shmuel Safra, and Mario Szegedy.

Interactive proofs and the hardness of approximating cliques. Journal of the ACM,
43(2):268–292, 1996.

12. O. Goldreich and M. Sudan. Locally testable codes and PCPs of almost-linear
length. In Proc. 43rd IEEE Symp. on Foundations of Computer Science, pages
13–22, 2002.

13. P. Valiant. The tensor product of two codes is not necessarily robustly testable.
In APPROX-RANDOM, pages 472–481, 2005.

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

