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Abstract

In 1984 Levin put forward a suggestion for a theory ofaverage case com-
plexity. In this theory a problem, called adistributional problem, is defined as
a pair consisting of a decision problem and a probability distribution over the
instances. Introducing adequate notions of simple distributions and average
case preserving reductions, Levin developed a theory analogous to the theory
of NP-completeness. In particular, he showed that there exists a simple dis-
tributional problem that is complete under these reductions. But since then
very few distributional problems were shown to be complete in this sense.
In this paper we show a very simple sufficient condition for anNP-complete
decision problem to have a distributional version that is complete under these
reductions. Apparently all known NP-complete decision problems meet this
condition.

1 Introduction

The theory of average case complexity, initiated by Levin [9], refers to the com-
plexity of solving problems with respect to certain probability distributions on their
instances. Average case complexity, thus, is concerned with distributional prob-
lems, defined as pairs consisting of some decision problem and a probability distri-
bution over all strings. Solving such a problem, means providing an algorithm that
solves all instances and, loosely speaking, runs in expected polynomial time (or,
alternatively, that runs in polynomial time and decides theproblem with high prob-
ability over the related distribution of the inputs). In some sense, one can regard
this complexity measure as measuring the complexity of instances that can ”really
emerge in real life”.
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Levin [9] set the foundations to an average case complexity theory analogous
to the theory of NP-completeness. His first goal was to define what are the ”inter-
esting” probability distributions. Letting these probability distributions range over
all possible probability distributions would have collapsed the new theory to classic
worse-case complexity (since one can always put all the probability mass on the
worse case). On the other hand, considering only the uniformdistribution seems
quiet arbitrary. Levin therefore defined a restricted family of probability distribu-
tions, which he calledP-computable. These are probability distributions over all
strings, such that the accumulative probability can be computed in polynomial time
(that is, there exists a polynomial time algorithm that given x outputs the proba-
bility that a string smaller or equal lexicographically tox is drawn). Focusing on
these probability distributions Levin defined:

• The classavgP, which is analogous toP , and consists of the distributional
problems that can be solved ”efficiently on the average”.

• The classdistNP, which is analogous toNP, and consists of decision prob-
lems in NP paired with P-computable probability distributions.

• A class of reductions, which we call here AP-reductions, analogous to polynomial-
time reductions (such as Karp or Cook reductions). Such reductions preserve
”easiness on the average”, that is, if a distributional problem can be AP-
reduced to a problem inavgP, then the reduced problem is also inavgP.
Although we did not specify yet what it means to solve a problem on the
average, the crucial point is that these AP-reductions preserve ”easiness on
the average” with respect to various different definitions,including the orig-
inal ones of Levin. The crucial aspect in these reductions isthat instances
that occur with some probability are not mapped to instancesthat occur with
much smaller probability.

Next, Levin showed that there exists adistNP-complete distributional prob-
lem, that is, a problem indistNP that every problem indistNP can be AP-reduced
to it .Thus, this complete problem is inavgP if and only if avgP ⊆ distNP.
However, unlike the case of the (standard) theory of NP-completeness, in this new
theory new complete problems were not easily found. In fact,to date, only a few
distNP-complete problems were found [9, 4, 10, 5]. This is probablydue to the
fact that the properties needed from AP-reductions are morecomplex than the ones
needed from the classic reductions.

In this work we show a simple sufficient condition for aNP-complete decision
problem to have a distributional version that isdistNP-complete. Apparently all
knownNP-complete decision problems meet this condition. This condition refers
to some natural paddability property.
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Our technique is based on the identification and construction of a restricted type
of Karp-reductions that ”preserve order” in some (natural)sense. If such an or-
der preserving reduction exists from some (decisional partof a) distNP-complete
problem to some problem inNP , then the later has a probability distribution that
when coupled with it, formes adistNP-complete decision problem. The aforemen-
tioned order preserving reduction is related to the paddability property mentioned
in the previous paragraph.

Let us demonstrate, informally, the high-level ideas of ourtechnique onSAT.
Assume some standard encoding forSAT (we will freely identify a formula and
its representation). Let(C,µ) be somedistNP-complete distributional problem
(so, in particular,C ∈ NP andµ is P-computable), and leth be a reduction from
C to SAT such that|x| ≥ |y| if and only if |h(x)| ≥ |h(y)| (we will show in
Section 3 how to achieve such reductions). We define a new Karp-reductionf

such thatf(w) ”encodes”, in some explicit form,w itself into the formulah(w).
For example, lete0 = (x0 ∨ ¬x0) ande1 = (x1 ∨ ¬x1), and assume the encoding
of e1 is lexicographically larger than that ofe0. Now define

f(w1w2 . . . w|w|) = ew1
∧ ew2

∧ . . . ∧ ew|w|
∧ h(w) (1)

wherewi is thei-th bit of w. Note that the ”encoding” ofw in the left part of the
formula ensures thatf has the following properties:

• Invertibility: givenf(w) one can computew.

• Monotonicity: if w′ is lexicographically larger thanw′′ thenf(w′) is lexico-
graphically larger thanf(w′′).

• Preserving satisfiability:f(w) preserves the truth value ofh(w) (sincee0

ande1 are tautologies).

Thus,f is an ”order preserving” reduction ofC to SAT.
Let us see how such order preserving reductions (which are defined between

standarddecision problems) are related to AP-reductions (which aredefined be-
tweendistributional problems). We coupleSAT with the following probability
distributionη:

η(x) =

{

µ(f−1(x)) if x ∈ image(f)
0 otherwise

(2)

Then the reductionf is a AP-reduction from(C,µ) to (SAT, η), because it maps
each instance ofC to an instance ofSAT that occurs with exactly the same prob-
ability. Since(C,µ) is distNP-complete, and AP-reductions are transitive, it fol-
lows that(SAT, η) is distNP-hard (under AP-reductions). Furthermore, because
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of the special properties off , and sinceµ is P-computable, then so isη. Loosely
speaking, sincef is monotonous, in order to compute the accumulative probabil-
ity of w underη, it suffices to compute the accumulative probability of its inverse
underµ; and sincef is invertible, we can compute this inverse. It follows that
(SAT, η) is in distNP, and therefore(SAT, η) is distNP-complete. For more de-
tails and a complete proof see Section 3.

We have just demonstrated that since such an ”order preserving” Karp-reduction
exists between (the decisional part of) somedistNP-complete problem andSAT,
the later has a distributional version that isdistNP-complete. Moreover, we note
that the construction of the Karp-reduction exploited onlythe properties of the
target problem,SAT. More specifically, the construction used a technique called
”padding”, introduced by Berman and Hartmanis [6], in orderto encodew into
h(w). This ”paddability” property is a property of decision problems, rather than
of reductions. Using this paddability property one can prove similar results for
otherNP-complete problems.

Hence, essentially we ”reduced” the problem of showing thataNP-complete
decision problem has adistNP-complete version to the problem of proving some
paddability properties for this decision problem. Although we do not know whether
these paddability properties hold for every decision problem inNP (and showing
that they do is at least as hard as provingP 6= NP), they are very easy to verify for
any known problem. In particular, we have verified that theseproperties hold for
the famous twenty-one problems treated in Karp’s seminal paper [8]. See further
discussion in Section 4.1

Reflection Let us take a second look at the probability distribution of the com-
plete distributional version ofSAT defined in Equation 2. We claim that this prob-
ability distribution has a ”simple” structure. We elaborate. All complete problems
that are known to date have probability distributions that are ”close to uniform” in
some sense. For simplicity, let us assume we take a complete problem with uni-
form probability distribution. Combining Equations 1 and 2, the left side ofη is
uniform over all encodings of strings (under some standard encoding). Thus, it can
be regarded as ”close to uniform”. The right side is determined by the left, and it
can be shown that it can also be made close to uniform in some sense. Thus, the
structure of the resulted probability distribution is a simple structure. We elaborate
more in Section 4.3.

Organization In section 2 we give some definitions that will be used through-
out this paper. In Section 3 we provide a rigorous presentation of our results, by
first showing a sufficient condition for an NP-complete decision problem to have a
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distributional version that isdistNP-complete, and then, using this sufficient con-
dition to show that some well-known NP-complete decision problems have distri-
butional versions that aredistNP-complete. In Section 4 we discuss some related
issues: In Section 4.1 we discuss the generality of our results, and why they cannot
be generalized to all problems inNP. In Section 4.2 we discuss some alternative
definitions of notions in average case complexity and show that our results hold
under all of them. Finally, in Section 4.3 we discuss the interpretation of our re-
sults, and show that the resulted distributional problems can be regarded as simple
in some sense.

2 Preliminaries

2.1 Strings and functions over strings

For a stringx, we denote by|x| the length ofx. Throughout this paper, the symbol
”<”, when applied between strings, will denote the standard lexicographical order
over all strings (i.e.,|y| = |y′| ⇒ x1y > x0y′, and|x| > |x′| ⇒ x > x′). Given a
stringx, the stringsx− 1 andx + 1 denote, respectively, the strings preceding and
succeedingx.

Given an instance of a decision problem, itscharacteristicrefers to the value of
the characteristic function for this instance (i.e., it equals 1 if the problem contains
this instance and 0 otherwise).

Definition 2.1 (P-invertible function) A functionf is P-invertible if it is 1-1, and
there is a polynomial-time algorithm that givenx returnsf−1(x) if it is defined,
and a failure symbol⊥ otherwise.

Definition 2.2 (length-regular function) A functionf is length-regular if for ev-
eryx, y ∈ {0, 1}∗, it holds that|x| ≤ |y| if and only if|f(x)| ≤ |f(y)|.

Note that a functionf is length-regular if and only if it satisfies the following two
conditions: (1)|x| = |y| if and only if |f(x)| = |f(y)| and (2)|x| > |y| if and only
if |f(x)| > |f(y)|.

Definition 2.3 (semi-monotonous function)A functionf is semi-monotonous
if for everyx, y ∈ {0, 1}∗ such that|x| = |y| it holds thatx < y if and only if
f(x) < f(y).

While a semi-monotonous function is only monotonous withinlengths (that
is, the function, when restricted to each length is monotonous), a function that is
semi-monotonous and length-regular is monotonous overall strings (because in
particular, for a length-regular functionf , it holds that|x| > |y| implies |f(x)| >

|f(y)|).

5



2.2 Notions from average case complexity theory

We state here the basic definitions from average case complexity theory that will
be used throughout this paper. These are the original definitions used by Levin in
[9]. For a comprehensive survey on average case complexity,see Goldreich [3].

Definition 2.4 (probability distribution function) A functionµ : {0, 1}∗ → [0, 1]
is aprobability distribution function if µ(x) ≥ 0 for everyx and

∑

x∈{0,1}∗ = 1.
Theaccumulative probability function associated withµ is denotedµ and de-
fined byµ(x) =

∑

x′≤x µ(x′).

Definition 2.5 (P-computable probability distribution) Aprobability distribution
functionµ is P-computable if there exists a polynomial time algorithm that given
x outputs the binary expansion ofµ(x) =

∑

x′≤x µ(x′).

Definition 2.6 (distributional problem) A distributional problem is a pair con-
sisting of a decision problem and a probability distribution function. That is,(L,µ)
is the distributional problem of deciding membership in thesetL with respect to
the probability distributionµ.

Definition 2.7 (distNP) The classdistNP consists of all distributional problems
(L,µ) such thatL ∈ NP andµ is P-computable.

Definition 2.8 (average-case preserving reduction)A functionf is anaverage-
case preserving reduction (abbreviated AP-reduction) of the distributional prob-
lem (S, µ

S
) to the distributional problem(T, µ

T
) if f is a Karp-reduction (i.e.

many-to-one polynomial-time reduction) fromS to T , and in addition there exists
a polynomialq such that for everyy ∈ {0, 1}∗,

µ
T
(y) ≥

1

q(|y|)
·

∑

x∈f−1(y)

µ
S
(x).

In the special case thatf is 1-1, which is the case will be used throughout this
paper, the last expression simplifies to the following: For everyx it holds that

µ
T
(f(x)) ≥

µ
S
(x)

q(|x|)
.

Note that we use the fact that|f(x)| is polynomially related to|x|.
AP-reductions preserve ”easiness on on the average” with respect to various

definitions. The reason is that the sum of the probabilities of the preimages of every
instance (in the range of the reduction), is not much larger than the probability of
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the instance itself. Thus, an AP-reduction cannot map ”typical” instances of the
original problem to ”rare” instances of the target problem,on which an ”average-
case algorithm” can perform exceptionally bad.

Definition 2.9 (distNP-complete distributional problem) A distributional prob-
lem is distNP-complete if it is indistNP and every problem indistNP is AP-
reducible to it.

For sake of completeness, we state here the definition ofavgP. However, our
results only refer to AP-reductions, and not to their particular effect onavgP.

Definition 2.10 (avgP) The classavgP consists of all distributional problems(L,µ)
such that there exists an algorithmA that decidesL and a constantλ > 0 such
that

∑

x∈{0,1}∗

µ(x) ·
tA(x)λ

|x|
< ∞

wheretA(x) denotes the running time ofA on inputx.

For a discussion on the motivation for this somewhat non-intuitive definition see
Goldreich [2].

As mentioned above, it can be shown that if(T, µ
T
) is AP-reducible to(S, µ

S
)

and(S, µ
S
) ∈ avgP then(T, µ

T
) ∈ avgP too. Thus, adistNP-complete problem

is in avgP if and only if distNP ⊆ avgP. But, as mentioned above, AP-reductions
preserve other definitions of ”easiness on the average” too.

3 Main Results

We state here a sufficient condition for the existence of adistNP-complete ver-
sion for an NP-complete decision problem. We then show that some famous NP-
complete decision problems meet this condition. By doing sowe wish to claim that
all known NP-complete decision problems meet this condition (or, at least have
some reasonable encoding such that they do). For a discussion on the generality of
our results, see Section 4.1

Our sufficient condition will enable us to prove completeness results also with
respect to slightly different variants, like those of Goldreich [3] (which deal with
probability ensembles rather than one probability distribution over all strings). This
condition will be very easy to verify for all knownNP-complete decision prob-
lems. For more details on these alternative definitions, seeSection 4.2.
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3.1 The general technique

Our first technical tool is the following notion of paddability.

Definition 3.1 (regular-padding) A decision problemL is regular-paddableif there
exists some strictly increasing functionq and a padding functionS : 1∗×Σ∗ 7→ Σ∗

such that:

• S is polynomial-time computable.

• Preserving characteristic: For everyx and everyn it holds thatS(1n, x) ∈
L if and only ifx ∈ L.

• Length-regular1: For everyx and everyn such thatn ≥ |x|, it holds that
|S(1n, x)| = q(n).

We callq thestretch measureof S. The first parameter ofS determines the length
to which the string is to be padded. The following holds:

Lemma 3.2 If some decision problem is regular-paddable, then every Karp-reduction
to it can be made length-regular.

Proof: We show this by ”pumping up” the lengths of all mapped strings. Let L

be regular-paddable viaS. Given a Karp-reductionf to L, we choose a strictly
increasing polynomialr such thatr(|x|) ≥ |f(x)| for everyx, and definef ′(x) =
S(1r(|x|), f(x)). One can easily verify thatf ′ is length-regular. 2

Our main technical tool is the following notion of paddability.

Definition 3.3 (monotonous padding)A decision problemL is monotonously-
paddableif there exists a padding functionE : Σ∗ × Σ∗ 7→ Σ∗ and a decoding
functionD : N × Σ∗ 7→ Σ∗ such that:

• E andD are polynomial-time computable.

• Preserving characteristic: For everyp, x ∈ {0, 1}∗ it holds thatE(p, x) ∈
L if and only ifx ∈ L.

• Semi-monotonous: If |x1| = |x2|, |p1| = |p2|, andp1 < p2 thenE(p1, x1) <

E(p2, x2).

• Length-regular: If |x1| = |x2| and|p1| = |p2| then|E(p1, x1)| = |E(p2, x2)|,
and if |x1| < |x2| and |p1| < |p2| then|E(p1, x1)| < |E(p2, x2)|.

1Since this condition indeed resembles Definition 2.2, we allowed ourself this abuse of the term
here and in the following definition.
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• Decoding: For everyx, p ∈ {0, 1}∗ it holds thatD(|p|, E(p, x)) = p and
D(k,w) = ⊥ if there is nox andp such that|p| = k andE(p, x) = w

Loosely speaking, the first parameter forD defines the part of the string to be
regarded as the ”padding”. Note thatD is well-defined, that is, ifD(k,w) 6= ⊥
then there exist a uniquep such thatD(k,w) = p (i.e. a uniquep ∈ {0, 1}k such
that there existsx ∈ {0, 1}∗ such thatE(p, x) = w). Although Definition 3.3 may
seem somewhat cumbersome, the following holds:

Fact 3.4 If the functionE is defined such thatE(p, x) = E′(p1)E
′(p2) . . . E′(p|p|)g(x),

where:

• E′ : {0, 1} 7→ {0, 1}∗ encodes bits such that|E′(0)| = |E′(1)| andE′(0) <

E′(1)

• The functiong(x) is length-regular

• E(p, x) ∈ L if and only ifx ∈ L

thenE is a monotonous padding function forL.

In the example ofSAT (used in the introduction), the functiong is the identity
function, but generally, the encoding does not necessarilyonly add some prefix to
the string, but can also change the string in some simple way (for example, in the
example ofSAT the functiong could also change the indexes of the variables in
the original formula).

It is easy to see that famousNP-complete decision problems are both regular-
paddable and monotonously-paddable. For details see Sections 3.2, 3.3 and 3.4.

Theorem 3.5 If L isNP-complete, regular-paddable and monotonously-paddable
then there is a distribution that when coupled withL forms adistNP-complete
problem.

Proof: We use the following result of Levin [9]:

Theorem 3.6 There exists adistNP-complete distributional problem.

Let (C,µ) be adistNP-complete distributional problem (whereC ∈ NP and
µ is P-computable), leth be a Karp-reduction fromC to L, and letE,D be as
in Definitions 3.1 and 3.3. In order forE to ”work properly” (that is, to yield
a length-regular, semi-monotonous reduction), it has to becomposed (in the ap-
propriate manner), with a length-regular Karp-reduction.Thus, using Lemma 3.2,
we transformh to a length-regular Karp-reductionh′ of C to L. We then define
f(x) = E(x, h′(x)). We notice thatf enjoys the following properties:
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• f is a Karp-reduction fromC to L (sinceE preserves characteristic).

• f is length-regular (sinceh′ andE are both length-regular).

• f is semi-monotonous (sinceh′ is length-regular andE is semi-monotonous).

• f is P-invertible (see next).

P-invertibility is evidenced by the following algorithm: Given y it first tries to
find a numberk such that|f(0k)| = |y| (this can be done, e.g., by computing
|f(0)|, |f(02)|, . . . , |f(0|y|)|, capitalizing on|f(x)| ≥ |x|, which follows from
length-regularity). If no suchk exists it returns⊥. Else, it computesx = D(k, y).
If x = ⊥, the algorithm also returns⊥. Else, it computesf(x) = E(x, h′(x)). If
the result equalsy it returnsx, else it returns⊥.

Recall that sincef is length-regular and semi-regular,f is monotonous over
all strings. Next, we couple the decision problemL with the following probability
distributionη:

η(y) =

{

µ(f−1(y)) if y ∈ image(f)
0 otherwise

We claim that the reductionf is a AP-reduction from(C,µ) to the distributional
problem(L, η), and thatη is P-computable. Since AP-reductions are transitive,
the theorem follows. The first claim is straightforward, since every instance of
C is mapped to an instance ofL of exactly the same probability (i.e.,µ(x) =
η(f(x))). To see the second claim, recall thatµ is P-computable, and note that the
accumulative probability function induced byη, denotedη, satisfies:

η(y) = µ(x) wherex is the largest string such thatf(x) ≤ y. (3)

whereµ is the accumulative probability function induced byµ. We elaborate. Sup-
pose, as an intermediate step, that we wish to computeη(x) rather thenη(x). Then
we can simply computey = f−1(x) (which can be done sincef is P-invertible),
then if y = ⊥ we output0, otherwise we outputµ(y). Hence, the mere fact that
f is P-invertible is sufficient to computeη(x). Turning to the task of computing
η, we notice that sincef is also monotonous (over all strings), for any stringx in
image(f), it holds thatη(x) = µ(f−1(x)). For any other string, its accumulative
probability is equal to that of the largest string inimage(f) that is smaller than it
(since all strings between them occur with probability0). Equation 3 follows.

The stringmax({x|f(x) ≤ y}) can be computed in polynomial time, since
the reductionf is monotonous. An algorithm for computing this string can first
computex = f−1(y). If x 6= ⊥ it outputsx, else it performs a binary search to
find the stringx′ such thatf(x′) < y andf(x′ + 1) > y, and outputsx′. 2
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Using Theorem 3.5 we now turn to prove that someNP-complete decision
problems havedistNP-complete distributional versions. We have verified that all
twenty-oneNP-complete decision problems that are treated in Karp’s paper [8]
do meet the sufficient condition of Theorem 3.5. In the rest ofthis section we
describe three of them. The first one isSAT, which we chose since it is the most
canonicalNP-complete decision problem. We then show thatCLIQUE meets
this condition, as an example of a typical graph problem. Finally we provide a
proof that the same is true forHAM, the problem of Hamiltonian cycle, since this
proof is a little less straightforward than the other problems in Karp’s paper. We
believe that these three examples in particular, and the fact that same results hold
for all NP-complete decision problems in Karp’s paper, givestrong evidence that
the results hold for all knownNP-complete decision problems.

3.2 SAT, revisited

The following theorem can be proved using Theorem 3.5.

Theorem 3.7 SAT has a distributional version that isdistNP-complete.

To show thatSAT meets the hypotheses of Theorem 3.5 one can use similar
ideas to those presented in the introduction. We just have toassume some assump-
tions on the standard encoding ofSAT (e.g. that the encoding acts on each clause,
and each variable in the clause, in a context-free manner).

We choose two stringse0, e1 such that both are encodings of CNF clauses such
that:

1. Both clauses are satisfiable.

2. e0 < e1

3. |e0| = |e1|

We first sketch the ideas used to showSAT is regular-paddable. In order to
”stretch” some formulaφ we ”pad-up”φ by prefixing it with a series ofe0’s. We
then ”shift” the variables in the originalφ by raising their index, such that the vari-
ables inφ are disjoint to the ones in the added prefix. Since the added clauses are
satisfiable, and consists of disjoint variables to the initial φ, the padding function
does not affect the characteristic ofφ.2

2There are various small technicalities to be concerned, like assuring that|e0| divides the differ-
ence between the desired length and the length of the initialformula. However, there are various
ways of coping with such difficulties, e.g., by using variouse0’s with different lengths, and by ”nor-
malizing” the lengths of the variables inφ (see next).
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Following the ideas in the introduction, by usinge0 ande1 to encode 0’s and
1’s, one can show thatSAT is also monotonously-paddable. If it is required that
instances ofSAT do not have multiple occurrences of the same clause, then this
requirement can be met by allocating sufficient amount of variables for the padding
(i.e., using for the padding variables that are disjoint to the ones used in the original
formula), and using different variables for each clause in the padding.

We did not define here rigorously the encoding ofSAT (e.g., how is a variable
encoded, how is a clause encoded, etc). Different encodingswill yield different
padding functions. However, Theorem 3.7 can be proved underany reasonable
encoding ofSAT.

In the following, we demonstrate our technique on two graph problems, given
in matrix representation. For these problems the encoding will be defined rigor-
ously, thus we will give a rigorous proof of our results.

3.3 Clique

We consider theCLIQUE decision problem, consisting of all pairs of an undirected
graphG and a natural numberk such that there exists a complete induced subgraph
of G of sizek. We assume the graph is given as an incidence matrix (which can
either be symmetric, or upper-triangular), that the first row of the matrix is encoded
by the leftmost bits, and thatk is represented as adlog(n)e-bit number to the right
of the matrix.

Theorem 3.8 CLIQUE has a distributional version that isdistNP-complete.

Proof: It is straightforward to see thatCLIQUE is regular-paddable. We simply
add ”dummy” nodes with degree0 and leavek as is. Thus we can transform any
input of sizen2 + dlog(n)e to an input of sizem2 + dlog(m)e for any m ≥ n,
and thus we can achieve a regular-padding function with stretch measureq(n) =
n2 + dlog ne.

We now show thatCLIQUE is monotonously-paddable. The idea is as follows.
Given a graphG = (V,E) whereV =

{

v1, v2, . . . , v|V |

}

, we first ”shift” all
vertices by raising their index by the number of bits we wish to encode (and of
course change the edges accordingly). This ”frees” the vertices indexed lower or
equal to the length of the string we wish to encode. We then encode the bits by
edges connected tov1, such that each bit is encoded by the edge indexed as the
bit’s position, and such that the edge will appear if and onlyif the bit value is 1.
Thus, these edges will result in 0’s and 1’s in the first row of the incidence matrix
of the graph. This will add a star-shaped subgraph (rooted atv1) to the original
graph. We will ensure that this will not change the characteristic of the instance.
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Formally, forM , an 0-1-matrix of sizen×n we defineE(p, (M,k)) = (M ′, k)
whereM ′ is an 0-1-matrix of size(n+|p|)×(n+|p|), such thatM ′

i+|p|,j+|p| = Mi,j

for 1 ≤ i, j ≤ n, andM ′
1,j = pj for 1 ≤ j ≤ |p| (wherepj is thej-th bit of p).

This, of course, adds to the graph cliques of size2 (but does not add larger cliques).
If k = 2 and the graph did not have a clique of size2 (i.e., the graph was edgeless),
this could be a problem. To fix this, the padding function can check (in polynomial
time) if indeedk = 2 and the graph is edgeless. If this is the case, it simply changes
k to 3 and we are done.

This transformation preserves the characteristic of the instance. Moreover, we
havep encoded in the most trivial manner, i.e. bit-by-bit, as a prefix of the string
E(p, x). It is straightforward to see thatE meets all the conditions of a monotonous
padding function.3 2

3.4 Hamiltonian Cycle

We consider the Hamiltonian Cycle decision problem, denoted HAM. The Hamil-
tonian Cycle decision problem consists of all undirected graphs that have a simple
cycle that contains all nodes of the graph. We assume the graph is given as an
incidence matrix (which can either be symmetric, or upper-triangular), and that the
first row of the matrix is encoded at the beginning of the string.

Theorem 3.9 HAM has a distributional version that isdistNP-complete.

Proof: We first show thatHAM is regular-paddable. We do this by showing
that any graph overn nodes can be transformed in polynomial time into a graph
over n + k nodes for anyk ≥ 2 such that preserves Hamiltonianicity. Given a
graphG = (V,E) where|V | = n, andk ≥ 2 we defineG′ = (V ′, E′) where
|V ′| = n + k. Intuitively, what we are going to do is to ”split”vn (an arbitrary
choice) intok+1 nodes, denotedvn, vn+1, . . . , vn+k, and ”force” any Hamiltonian
cycle to regard them as one node, that is, any Hamiltonian cycle in the new graph
will have to contain the sub-pathvn, vn+1, . . . , vn+k or its reverse. The idea is as
follows: after adding the mentioned nodes to the graph, we connect all of them to

3We note that any other reasonable encoding can be shown do yield the same result. For example,
if k was encoded to the left of the matrix, the constructed reduction here would not be monotonous,
since the ”encoding row” would not be added at the beginning of the string. To fix this, the function
E could fix k for every length ofx, thus disabling its effect on the lexicographical order: Given an
input (M, k) whereM is ann × n matrix, the reduction would transform it to a matrixM ′ of size
2n × 2n , then add a clique of sizen − k to the original graph, using the added nodes, and connect
all nodes of the added clique to all nodes of the original graph. The reduction would then generate
the instance(M ′, n), which has the same characteristic as(M, k).
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form the path mentioned above. We then connect the last node,vn+k, to all the
nodes connected tovn. Formally:

E′ = E ∪ {(vn+i, vn+i+1)|0 ≤ i ≤ k − 1} ∪ {(u, vn+k)|(u, vn) ∈ E} .

We show that this transformation preserves Hamiltonianicity. For every Hamilto-
nian cyclex, vn, y in G (wherex andy are sub-paths), the pathx, vn, vn+1, . . . , vn+k, y

is a Hamiltonian cycle inG′. On the other hand, for any Hamiltonian cycle in
G′, in order to reach the nodesvn+1, vn+2, . . . , vn+k−1, it has to be of the form
x, vn, vn+1, . . . , vn+k, y or of the formx, vn+k, vn+k−1, . . . , vn, y, and in both
cases this yields thatx, vn, y is a Hamiltonian cycle inG.

We now show thatHAM is monotonously-paddable. The idea is similar to
the regular-padding described above. In addition to the added path, we encode
bits by adding edges within the path. We do it such that the path will still have
to be taken in the natural order of the nodes, and such that theadded edges will
encode the desired padding in the prefix, i.e. first row, of theincidence matrix. In
order to achieve the later goal, we ”shift” the nodes of the graph by raising their
index, thus the added nodes posses the smallest indexes, andthen replacev1 by
the pathv1, v2, . . . , v|p|+3, similarly to the construction of the regular-padding. We
then encode the bits of the padding such that the edge(v1, v3) encodes the first
bit, the edge(v1, v4) encodes the second bit and so on. We skip(v1, v2) since this
edge must anyway exist in order for the mentioned path to exist. This construction
ensures that the added path will still have to be taken in its natural order in any
Hamiltonian cycle. We describe the construction formally.

For the n × n incidence matrixM of the graphG = (V,E), we define
E(p,M) = M ′ whereM ′ is the incidence matrix of size(n+|p|+2)×(n+|p|+2)
of the graphG′ = (V ′, E′) where|V ′| = |V | + |p| + 2 and

E′ =
{

(vi+|p|+2, vj+|p|+2)|(vi, vj) ∈ E
}

∪
{

(v1, vi+|p|+2)|(v1, vi) ∈ E
}

∪

{(vi, vi+1)|1 ≤ i ≤ |p| + 2} ∪ {(v1, vi+2)|pi = 1}

(wherepi is the i-th bit of p). The first set in the union above is the original
graph, with its nodes ”shifted” by raising their index by|p| + 2. The second set
connectsv1 to the nodesv|p|+3 is connected to (which are the nodesv1 in the
original graph was connected to, with their index ”shifted”), the third set forms
the pathv1, v2, . . . , v|p|+3. Finally, the last set encodesp by edges connected tov1

(thus the bits representing them will be encoded in the first row of the matrix).
We have that every node that was connected in the original graph tov1 is now

connected both tov1 and tov|p|+3 , and thatv1, v2, . . . , v|p|+3 is a rout in the new
graph. Assuming the diagonal is all zeros4, the resulted encoding ofM ′ starts

4The bits in the diagonal are meaningless.
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with ’01’, followed by the bits ofp. Using similar argument to the one used to
prove that the regular-padding preserves Hamiltonianicity, one can verify that in-
deed such transformation preserves Hamiltonianicity too (in particular, note that
any Hamiltonian cycle inG′, in order to meetv|p|+2, has to contain the sequence
v1, v2, . . . , v|p|+3 or its reverse). Again, it is straightforward to see thatE meets all
the conditions of a monotonous padding function. 2

We note that the similar decision problem of Parameterized Hamiltonian Cycle,
which consists of all couples of a graph and a natural numberk such that there is
a simple cycle overk nodes in the graph, is easier to be shown to have adistNP-
complete version. The same is true for the similar decision problem overdirected
graphs.

4 Conclusions

We note that by the result of Impagliazzo and Levin [7], everydistNP-complete
problem is also complete5 for the wider class ofNP problems coupled with P-
sampleable distributions (introduced in [1]).

4.1 On the generality of our results

A natural question arises regarding our results. Since apparently, for all known
NP-complete decision problems we can provide a proof that our result hold, can
we expect to prove, using our techniques, that our result holds forall NP-complete
decision problems? Apparently the answer is negative. Recall that in order to prove
that someNP-complete decision problem has a distributional version which is
distNP-complete, our technique involves proving that this problem is paddable in
some particular manner. However, proving that allNP-complete problems are
paddabale, in particular, involves proving that allNP-complete problems are in-
finite. But such a proof would implyP 6= NP (because ifP = NP then any
non-empty finite set isNP-complete). For this reason we cannot hope to do better
than prove these results for allknownNP-complete decision problems using our
techniques.

The same phenomena occurs with respect to theisomorphism conjectureof
Berman and Hartmanis [6]. This conjecture states that everytwo NP-complete de-
cision problems are related via a 1-1, onto, polynomial-time, and polynomial-time
invertible Karp-reduction. Berman and Hartmanis showed that every two decision
problems that are paddable in some simple manner, are related via such a reduction.

5In some relaxed notion. See proof of theorem 10.24 in [3].
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They observed that the paddability condition holds for numerousNP-complete de-
cision problems and concluded that these problems are pairwise isomorphic. They
conjectured that the same is true forall NP-complete decision problems. Thus,
both their result and ours build on some paddability properties that are very easy to
verify for givenNP-complete decision problems, but that are very hard to gener-
alize forall NP-complete decision problems.

The paddability condition required for Berman and Hartmanis’s result is slightly
weaker than ours. Loosely speaking, they do not require monotonicity. However,
typically their padding functions, as ours, encode bit by bit. Ensuring that the
padding is added at the beginning of the string, and that the encoding of 1 is larger
than the encoding of 0, results in a monotonous padding function. We mention that
to date, no counter-example to Berman and Hartmanis’s isomorphism conjecture
was found. Furthermore, one can show, that their paddability condition is not only
sufficient, but is also necessary6. That is: If a decision problem is isomorphic to
SAT, then it is paddable in the sense they define. Thus, the fact that no counter-
example to Berman and Hartmanis’s isomorphism conjecture was found, implies
that no non-paddable decision problem was found. We believe, although our con-
dition is slightly stronger than Berman and Hartmanis’s notion of paddability, that
this gives a strong evidence that all knownNPC problems meet our condition too.

4.2 The extension of our results to different definitions

An alternative to the definition of P-computable probability distribution is the
simple probability ensembledefined by Goldreich [3]. A probability ensemble
{Xn}n∈N is a sequence of random variables such thatXn ranges over{0, 1}n.
Such an ensemble issimpleif there exists a polynomial-time algorithm such that for
everyn and everyx ∈ {0, 1}n it outputs the value

∑

x′∈{0,1}n,x′≤x Pr(Xn = x′).
That is, the condition refers to a sequence of finite probability distributions, rather
than on one infinite probability distribution. The classavgP can then be defined
analogously using such probability ensembles, and the classdistNP can be defined
analogously using simple probability ensembles rather then P-computable proba-
bility distributions. Under these definitions our results hold too. The reason is
that any reductionf that is constructed using our technique is length-regular,and

6Let f be a 1-1, onto, polynomial-time, and polynomial-time invertible Karp-reduction ofL ∈
NPC to SAT. Then in order to pad the instancex of the problemL with p, we first padf(x) with
p using the padding function ofSAT. Denote the result byw. We then computef−1(w) to obtain
the padded instance. In order to retrieve the padding from some stringy, the decoding function first
computesf(y), and then uses the decoding function of the padding functionof SAT to retrieve the
padding fromf(y). To conclude, one has to show that this padding function is also length-increasing.
This can be achieved, e.g., by modifying the padding function of SAT to pad, instead ofp, a longer
string, such asp concatenated to itself a polynomial number of times.
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therefore meets the condition|x| = |y| if and only if |f(x)| = |f(y)|, and is also
semi-monotonous.

A different notion of solvability can also be considered. While in our definition
of avgP we require that the algorithm solves the decision problem for all instances,
one can consider a relaxation such that the algorithm runs inpolynomial time, but
solves ”almost all instances”, that is, for every polynomial p and for everyn the
probability that given an input of lengthn the algorithm errs on it is upper bounded
by 1

p(n) . (Note that in the former definition, the algorithm, although is permitted
to run in super-polynomial time for a negligible fraction ofthe instances, has to be
correct on all instances.) Since AP-reductions preserve ”easiness on the average”
also under this definition of solvability, our results, which refer to AP-reductions,
are relevant also to this definition.

4.3 The interpretation of our results

One can argue that our results, although addressing the challenge of providing a va-
riety of distNP-complete distributional problems, raise some questions about the
adequateness of the definitions, specifically about the definition of P-computable
probability distributions, since the probability distributions of our complete prob-
lems are rather ”unnatural”.

We argue, however, that the resulted probability distributions of the complete
problems constructed by our technique can be viewed, in somesense, as ”quasi-
uniform”, and thus are not that easy to discard from a theory that aims at average-
case with respect to various simple distributions. We elaborate. Typically our
distribution can be partitioned into two parts: the right side is determined by the
initial reduction we take, and the left side is the padding (of both types). This holds,
for example, for the three problems mentioned in this paper.

Since the distribution of thedistNP-complete problem provided by Theorem
3.6 is close to uniform, the left side can be regarded too as close to uniform, because
it is a 1-1 simple encoding of quasi-uniform distributed instances. The right side is
determined by the left (and can be computed in polynomial time from it), and can
be regarded as a ”parity check” of the left side. We mention, that using Berman and
Hartmanis’s isomorphism conjecture (see Section 4.1), andusing the fact that this
conjecture also holds for all known NP-complete decision problems, we can make
the right side also close to uniform in some sense, by taking the initial reduction to
be as guaranteed by their results.

Thus, typically our probability distributions have a simple structure and are
”close to uniform” in some sense. Moreover, we argue that themere existence of
any kind of distribution that makes some problemdistNP-complete, may imply
that simpler, more ”natural” distributional versions exist as well.

17



Acknowledgements

Deep thanks to my advisor, Oded Goldreich, for many helpful discussions, for his
advice in presenting the ideas in this paper, and for his clear surveys and lectures
that presented me the topics treated in this paper.

References

[1] S. Ben-David, B. Chor, and O. Goldreich. On the theory of average case
complexity. InSTOC ’89: Proceedings of the twenty-first annual ACM sym-
posium on Theory of computing, pages 204–216, New York, NY, USA, 1989.
ACM Press.

[2] O. Goldreich. Notes on levin’s theory of average-case complexity. Technical
Report TR97-058, ECCC, 1997.

[3] O. Goldreich. Computational complexity: A conceptual perspec-
tive, draft of a book, 2006. Unpublished manuscript, available from
http://www.wisdom.weizmann.ac.il/∼oded/cc-book.html.

[4] Y. Gurevich. Complete and incomplete randomized NP problems. InPro-
ceedings of IEEE FOCS’87, pages 111–117, 1987.

[5] Y. Gurevich. Matrix decomposition problem is complete for the average case.
In In Proc. of the 31st IEEE Annual Syrup. on Foundation of Computer Sci-
ence, pages 802–811, 1990.

[6] J. Hartmanis and L. Berman. On isomorphisms and density of NP and other
complete sets. InSTOC ’76: Proceedings of the eighth annual ACM sym-
posium on Theory of computing, pages 30–40, New York, NY, USA, 1976.
ACM Press.

[7] R. Impagliazzo and L.A. Levin. No better ways to generatehard NP instances
than picking uniformly at random. InProc. of the 31st IEEE Symp. on Foun-
dation of Computer Science, pages 812–821, 1990.

[8] Richard M. Karp. Reducibility among combinatorial problems. In Ray-
mond E. Miller and James W. Thatcher, editors,Complexity of Computer
Computations, pages 85–103. Plenum Press, 1972.

[9] Leonid A Levin. Average case complete problems.SIAM J. Comput.,
15(1):285–286, 1986.

18



[10] Ramarathnam Venkatesan and Leonid Levin. Random instances of a graph
coloring problem are hard. InSTOC ’88: Proceedings of the twentieth annual
ACM symposium on Theory of computing, pages 217–222, New York, NY,
USA, 1988. ACM Press.

19

 
http://eccc.hpi-web.de/
 
ECCC
 ISSN 1433-8092



