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Abstract

In 1984 Levin put forward a suggestion for a theoragérage case com-
plexity. In this theory a problem, calleddistributional problemis defined as
a pair consisting of a decision problem and a probabilityritigtion over the
instances. Introducing adequate notions of simple digiobhs and average
case preserving reductions, Levin developed a theory goatoto the theory
of NP-completeness. In particular, he showed that thes®aisimple dis-
tributional problem that is complete under these redustidut since then
very few distributional problems were shown to be complatéhis sense.
In this paper we show a very simple sufficient condition foiNgcomplete
decision problem to have a distributional version that imptete under these
reductions. Apparently all known NP-complete decisionbfems meet this
condition.

1 Introduction

The theory of average case complexity, initiated by Levih [&fers to the com-
plexity of solving problems with respect to certain prothipdistributions on their
instances. Average case complexity, thus, is concerndddigtributional prob-
lems defined as pairs consisting of some decision problem andapility distri-
bution over all strings. Solving such a problem, means plingi an algorithm that
solves all instances and, loosely speaking, runs in exgeuie/nomial time (or,
alternatively, that runs in polynomial time and decidesptablem with high prob-
ability over the related distribution of the inputs). In sesense, one can regard
this complexity measure as measuring the complexity oairests that can "really
emerge in real life”.
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Levin [9] set the foundations to an average case complelépry analogous
to the theory of NP-completeness. His first goal was to definat\are the "inter-
esting” probability distributions. Letting these probapidistributions range over
all possible probability distributions would have collagghe new theory to classic
worse-case complexity (since one can always put all theghitty mass on the
worse case). On the other hand, considering only the unitbstnibution seems
quiet arbitrary. Levin therefore defined a restricted faroil probability distribu-
tions, which he calledP-computable These are probability distributions over all
strings, such that the accumulative probability can be adetbin polynomial time
(that is, there exists a polynomial time algorithm that giweoutputs the proba-
bility that a string smaller or equal lexicographically #ds drawn). Focusing on
these probability distributions Levin defined:

e The classavgP, which is analogous t®, and consists of the distributional
problems that can be solved "efficiently on the average”.

e The classlistNP, which is analogous /P, and consists of decision prob-
lems in NP paired with P-computable probability distribus.

e Aclass of reductions, which we call here AP-reductions|@yaus to polynomial-
time reductions (such as Karp or Cook reductions). Suchctaghs preserve
"easiness on the average”, that is, if a distributional fobcan be AP-
reduced to a problem iavgP, then the reduced problem is alsoangP.
Although we did not specify yet what it means to solve a pnoblen the
average, the crucial point is that these AP-reductionsepves’easiness on
the average” with respect to various different definitidnsluding the orig-
inal ones of Levin. The crucial aspect in these reductiortkas instances
that occur with some probability are not mapped to instatitatsoccur with
much smaller probability.

Next, Levin showed that there existslatNP-complete distributional prob-
lem, that is, a problem idistNP that every problem indistNP can be AP-reduced
to it .Thus, this complete problem is kwvgP if and only if avgP C distNP.
However, unlike the case of the (standard) theory of NP-detapess, in this new
theory new complete problems were not easily found. In factiate, only a few
distNP-complete problems were found [9, 4, 10, 5]. This is probahlg to the
fact that the properties needed from AP-reductions are scmrplex than the ones
needed from the classic reductions.

In this work we show a simple sufficient condition foA&P-complete decision
problem to have a distributional version thatistNP-complete. Apparently all
knownA/P-complete decision problems meet this condition. This d@mrdrefers
to some natural paddability property.



Ourtechnique is based on the identification and constmucti@ restricted type
of Karp-reductions that "preserve order” in some (natusaljise. If such an or-
der preserving reduction exists from some (decisional gfea) distNP-complete
problem to some problem iV, then the later has a probability distribution that
when coupled with it, formesdistNP-complete decision problem. The aforemen-
tioned order preserving reduction is related to the paditiaproperty mentioned
in the previous paragraph.

Let us demonstrate, informally, the high-level ideas of teahnique orbAT.
Assume some standard encoding $&YT (we will freely identify a formula and
its representation). L&tC, 1) be somedistNP-complete distributional problem
(so, in particularC' € NP andyu is P-computable), and létbe a reduction from
C' to SAT such thatjz| > |y| if and only if |h(x)| > |h(y)| (we will show in
Section 3 how to achieve such reductions). We define a new-iealyiction f
such thatf (w) "encodes”, in some explicit formy itself into the formulah(w).
For example, leky = (zg V —zp) ande; = (z1 V —x1), and assume the encoding
of e is lexicographically larger than that ef. Now define

fwiws ... wyy)) = €w, Aew, Ao A ey, Ah(w) (1)

wherew; is thei-th bit of w. Note that the "encoding” ofv in the left part of the
formula ensures that has the following properties:

e Invertibility: given f(w) one can compute.

e Monotonicity: if w’ is lexicographically larger than” then f (w’) is lexico-
graphically larger tharf (w").

e Preserving satisfiability:f (w) preserves the truth value é{w) (sinceeg
ande; are tautologies).

Thus, f is an "order preserving” reduction 6f to SAT.

Let us see how such order preserving reductions (which dneedebetween
standarddecision problems) are related to AP-reductions (whichdafined be-
tweendistributional problems). We coupl&AT with the following probability
distributionn: X

_ | n(f7 (@) ifz € image(f)
nw) = { 0 otherwise @)
Then the reductiorf is a AP-reduction fron{C, i) to (SAT, n), because it maps
each instance af’ to an instance oS AT that occurs with exactly the same prob-
ability. Since(C, u1) is distNP-complete, and AP-reductions are transitive, it fol-
lows that(SAT, n) is distNP-hard (under AP-reductions). Furthermore, because



of the special properties gf, and sinceu is P-computable, then sois Loosely
speaking, sincg is monotonous, in order to compute the accumulative prdbabi
ity of w undern, it suffices to compute the accumulative probability of igarse
under u; and sincef is invertible, we can compute this inverse. It follows that
(SAT, n) is in distNP, and therefor¢SAT, n) is distNP-complete. For more de-
tails and a complete proof see Section 3.

We have just demonstrated that since such an "order pregéiarp-reduction
exists between (the decisional part of) sodieNP-complete problem angAT,
the later has a distributional version thatlistNP-complete. Moreover, we note
that the construction of the Karp-reduction exploited othlg properties of the
target problemSAT. More specifically, the construction used a technique dalle
"padding”, introduced by Berman and Hartmanis [6], in ortierencodew into
h(w). This "paddability” property is a property of decision pleims, rather than
of reductions. Using this paddability property one can preimilar results for
other N"P-complete problems.

Hence, essentially we "reduced” the problem of showing &h&tP-complete
decision problem has @istNP-complete version to the problem of proving some
paddability properties for this decision problem. Althbwge do not know whether
these paddability properties hold for every decision moblin A/P (and showing
that they do is at least as hard as proving: N'P), they are very easy to verify for
any known problem. In particular, we have verified that thesgerties hold for
the famous twenty-one problems treated in Karp’s seminpépB]. See further
discussion in Section 4.1

Reflection Let us take a second look at the probability distributionta tom-
plete distributional version GfAT defined in Equation 2. We claim that this prob-
ability distribution has a "simple” structure. We elab@.afll complete problems
that are known to date have probability distributions thiat"alose to uniform” in
some sense. For simplicity, let us assume we take a complgibdepn with uni-
form probability distribution. Combining Equations 1 angdtRe left side ofy is
uniform over all encodings of strings (under some standacdding). Thus, it can
be regarded as “close to uniform”. The right side is deteediby the left, and it
can be shown that it can also be made close to uniform in sons=s& hus, the
structure of the resulted probability distribution is a pleistructure. We elaborate
more in Section 4.3.

Organization In section 2 we give some definitions that will be used threugh
out this paper. In Section 3 we provide a rigorous presamtaif our results, by
first showing a sufficient condition for an NP-complete diecigproblem to have a



distributional version that idistNP-complete, and then, using this sufficient con-
dition to show that some well-known NP-complete decisioobfgms have distri-
butional versions that ardistNP-complete. In Section 4 we discuss some related
issues: In Section 4.1 we discuss the generality of ourtesarid why they cannot
be generalized to all problems xi’P. In Section 4.2 we discuss some alternative
definitions of notions in average case complexity and shaw dlr results hold
under all of them. Finally, in Section 4.3 we discuss therpitation of our re-
sults, and show that the resulted distributional probleamstie regarded as simple
in some sense.

2 Preliminaries

2.1 Strings and functions over strings

For a stringr, we denote byz| the length ofz. Throughout this paper, the symbol
" <", when applied between strings, will denote the standaritdgraphical order
over all strings (i.e.ly| = |¢/| = 21y > 20y/, and|z| > |2/| = = > 2’). Given a
string x, the stringse — 1 andx + 1 denote, respectively, the strings preceding and
succeeding:.

Given an instance of a decision problem dtgracteristicrefers to the value of
the characteristic function for this instance (i.e., it&gul if the problem contains
this instance and 0 otherwise).

Definition 2.1 (P-invertible function) A functionf is P-invertible ifitis 1-1, and
there is a polynomial-time algorithm that givenreturns f~!(z) if it is defined,
and a failure symboll otherwise.

Definition 2.2 (length-regular function) A functionf islength-regular if for ev-
eryz,y € {0,1}", it holds that|z| < |y| if and only if|f(z)]| < |f(y)]-

Note that a functiory is length-regular if and only if it satisfies the following aw
conditions: (1)z| = |y| ifand only if | f(z)| = | f(y)| and (2)|z| > |y| if and only
it [f(x)] > |f(y)l.

Definition 2.3 (semi-monotonous function)A function f is semi-monotonous
if for everyz,y € {0,1}" such that|z| = |y| it holds thatz < y if and only if

flz) < f(y).

While a semi-monotonous function is only monotonous witlengths (that
is, the function, when restricted to each length is monatsjoa function that is
semi-monotonous and length-regular is monotonous allestrings (because in
particular, for a length-regular functiofy it holds thatjx| > |y| implies|f(z)| >

[FW)D-



2.2 Notions from average case complexity theory

We state here the basic definitions from average case coiyplegory that will
be used throughout this paper. These are the original defigitsed by Levin in
[9]. For a comprehensive survey on average case compleggyoldreich [3].

Definition 2.4 (probability distribution function) A functiony : {0,1}* — [0, 1]
is aprobability distribution function if x(z) > 0 for everyz and} 3 = 1.
Theaccumulative probability function associated with: is denotedz and de-

fined byzi(z) = 3, <, p(z').

Definition 2.5 (P-computable probability distribution) A probability distribution
function i is P-computable if there exists a polynomial time algorithm that given
x outputs the binary expansion fz) = ., pu(z').

Definition 2.6 (distributional problem) A distributional problem is a pair con-
sisting of a decision problem and a probability distributifunction. Thatis(L, )
is the distributional problem of deciding membership in se¢L with respect to
the probability distributiony..

Definition 2.7 (distNP) The classlistNP consists of all distributional problems
(L, u) such thatL € AP and i is P-computable.

Definition 2.8 (average-case preserving reductionA functionf is anaverage-
case preserving reduction (abbreviated AP-reduction) of the distributional prob-
lem (S, iy ) to the distributional problem(T, 1) if f is a Karp-reduction (i.e.
many-to-one polynomial-time reduction) fra$rto 7', and in addition there exists
a polynomialg such that for every € {0,1}",

@) > —— S ().

IR

In the special case thatis 1-1, which is the case will be used throughout this
paper, the last expression simplifies to the following: Rargx it holds that

Note that we use the fact thgt(z)| is polynomially related toz|.

AP-reductions preserve "easiness on on the average” wsirert to various
definitions. The reason is that the sum of the probabilitidb@preimages of every
instance (in the range of the reduction), is not much largen the probability of
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the instance itself. Thus, an AP-reduction cannot map &lpiinstances of the
original problem to "rare” instances of the target problem,which an "average-
case algorithm” can perform exceptionally bad.

Definition 2.9 (distNP-complete distributional problem) A distributional prob-
lem is distNP-complete if it is indistNP and every problem irlistNP is AP-
reducible to it.

For sake of completeness, we state here the definitiangi?. However, our
results only refer to AP-reductions, and not to their patéc effect onavgP.

Definition 2.10 (avgP) The clasawgP consists of all distributional problemd., 1)
such that there exists an algorithi that decidesl. and a constant\ > 0 such
that

Z u(m)-M<oo

ze{0,1}* ‘.Z"

wheret 4 (x) denotes the running time &f on inputz.

For a discussion on the motivation for this somewhat noaiime definition see
Goldreich [2].

As mentioned above, it can be shown thafif 11,.) is AP-reducible tq S, p)
and(S, ug) € avgP then(T, p1,) € avgP too. Thus, alistNP-complete problem
is inavgP if and only if distNP C avgP. But, as mentioned above, AP-reductions
preserve other definitions of "easiness on the average” too.

3 Main Results

We state here a sufficient condition for the existence dfsaNP-complete ver-
sion for an NP-complete decision problem. We then show thiatesfamous NP-
complete decision problems meet this condition. By doingisevish to claim that
all known NP-complete decision problems meet this conditian dbleast have
some reasonable encoding such that they do). For a disnussithe generality of
our results, see Section 4.1

Our sufficient condition will enable us to prove completenessults also with
respect to slightly different variants, like those of Geidh [3] (which deal with
probability ensembles rather than one probability digtidn over all strings). This
condition will be very easy to verify for all knowA/P-complete decision prob-
lems. For more details on these alternative definitionsSsetion 4.2.



3.1 The general technique
Ouir first technical tool is the following notion of paddatyili

Definition 3.1 (regular-padding) A decision problent is regular-paddablé there
exists some strictly increasing functigmnd a padding functioy : 1* x X* — »*
such that:

e S is polynomial-time computable.

e Preserving characteristic: For everyz and everyn it holds thatS (1™, z) €
Lifand only ifx € L.

e Length-regular!: For everyz and everyn such thatn > |z|, it holds that
151", z)| = q(n).

We callq the stretch measuref S. The first parameter o determines the length
to which the string is to be padded. The following holds:

Lemma 3.2 If some decision problem is regular-paddable, then evempKaduction
to it can be made length-regular.

Proof: We show this by "pumping up” the lengths of all mapped stringst L
be regular-paddable vid. Given a Karp-reductiory to L, we choose a strictly
increasing polynomiat such that-(|z|) > |f(x)| for everyz, and definef’(z) =
S(17(=D, f(x)). One can easily verify that’ is length-regular. O

Our main technical tool is the following notion of paddatlyili

Definition 3.3 (monotonous padding)A decision problemL is monotonously-
paddableif there exists a padding functiof : ¥* x ¥* — X* and a decoding
functionD : N x ¥* — X* such that:

e [/ and D are polynomial-time computable.

e Preserving characteristic: For everyp,x € {0,1}" it holds thatE(p, x) €
Lifand only ifx € L.

e Semi-monotonous: If |z1| = |z2|, |p1| = |p2|, andp; < pathenE(p,z1) <
E(pa, x2).

° Length-regular: If |l‘1| = |l’2| and|p1| = |p2| then|E(p1,3:1)| = |E(p2,33‘2)|,
and if |z1]| < |z2] and|p1| < |p2| then|E(p1, x1)| < |E(p2, x2)|.

!Since this condition indeed resembles Definition 2.2, waval ourself this abuse of the term
here and in the following definition.



e Decoding: For everyz,p € {0,1}" it holds thatD(|p|, E(p,z)) = p and
D(k,w) = L if there is noz andp such thalp| = kand E(p,z) = w

Loosely speaking, the first parameter fOrdefines the part of the string to be
regarded as the "padding”. Note th&tis well-defined, that is, iD(k,w) # L
then there exist a uniquesuch thatD(k,w) = p (i.e. a uniquep € {0, 1}’“ such
that there exists € {0, 1} such thatF(p, z) = w). Although Definition 3.3 may
seem somewhat cumbersome, the following holds:

Fact 3.4 If the functionZ is defined such thdf (p, x) = E'(p1)E' (pz2) - - - ' (p|p)9(),
where:

e £':{0,1} — {0,1}" encodes bits such that’(0)| = |E’(1)] and E'(0) <
E'(1)

e The functiory(z) is length-regular
e E(p,z) € Lifandonlyifx € L

thenE' is a monotonous padding function for

In the example oSAT (used in the introduction), the functignis the identity
function, but generally, the encoding does not necessanily add some prefix to
the string, but can also change the string in some simple feayxample, in the
example ofSAT the functiong could also change the indexes of the variables in
the original formula).

It is easy to see that famoéP-complete decision problems are both regular-
paddable and monotonously-paddable. For details seeoBe@&i2, 3.3 and 3.4.

Theorem 3.5 If L is N"P-complete, regular-paddable and monotonously-paddable
then there is a distribution that when coupled withforms adistNP-complete
problem.

Proof: We use the following result of Levin [9]:
Theorem 3.6 There exists aistNP-complete distributional problem.

Let (C, ) be adistNP-complete distributional problem (whe@ € NP and
1 is P-computable), lek be a Karp-reduction fron® to L, and letE, D be as
in Definitions 3.1 and 3.3. In order faf to "work properly” (that is, to yield
a length-regular, semi-monotonous reduction), it has tadyaposed (in the ap-
propriate manner), with a length-regular Karp-reductidhus, using Lemma 3.2,
we transformi to a length-regular Karp-reductioil of C' to L. We then define
f(z) = E(x, W (z)). We notice thaff enjoys the following properties:

9



e fis aKarp-reduction fron’ to L (sinceE preserves characteristic).

e fislength-regular (sincé’ and E are both length-regular).

e fissemi-monotonous (sinééis length-regular and’ is semi-monotonous).
e fis P-invertible (see next).

P-invertibility is evidenced by the following algorithm: ig&n y it first tries to
find a numberk such that|f(0*)| = |y| (this can be done, e.g., by computing
|F(O)],|£(0%)],...,|f(0l¥))], capitalizing on|f(z)] > |z|, which follows from
length-regularity). If no suck exists it returnsL. Else, it computes = D(k,y).
If z = L, the algorithm also returns. Else, it computeg (z) = E(x,h/(z)). If
the result equalg it returnsz, else it returnsl..

Recall that sincef is length-regular and semi-regulgf,is monotonous over
all strings. Next, we couple the decision problénwith the following probability
distributionn:

n(y) = { g(f_l(y)) if y € image(f)

otherwise

We claim that the reductioif is a AP-reduction from{C, 1) to the distributional
problem(L,7), and thaty is P-computable. Since AP-reductions are transitive,
the theorem follows. The first claim is straightforward, ceirevery instance of
C' is mapped to an instance @f of exactly the same probability (i.eu(x) =
n(f(x))). To see the second claim, recall thais P-computable, and note that the
accumulative probability function induced lpy denotedy, satisfies:

7(y) = m(x) wherez is the largest string such th#tz) < y. 3)

wherep is the accumulative probability function induced joyWe elaborate. Sup-
pose, as an intermediate step, that we wish to computerather themj(z). Then
we can simply computg = f~!(z) (which can be done sincgis P-invertible),
then ify = L we output0, otherwise we output(y). Hence, the mere fact that
f is P-invertible is sufficient to computg(z). Turning to the task of computing
77, we notice that sinc¢ is also monotonous (over all strings), for any strin@n
image(f), it holds thatij(x) = (f~'(x)). For any other string, its accumulative
probability is equal to that of the largest stringiinage( f) that is smaller than it
(since all strings between them occur with probabiliyy Equation 3 follows.

The stringmax({z|f(x) < y}) can be computed in polynomial time, since
the reductionf is monotonous. An algorithm for computing this string castfir
computer = f~1(y). If z # L it outputsz, else it performs a binary search to
find the stringz’ such thatf (') < y andf (2’ + 1) > y, and outputs:’. O
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Using Theorem 3.5 we now turn to prove that soié-complete decision
problems havelistNP-complete distributional versions. We have verified thht al
twenty-one/NP-complete decision problems that are treated in Karp’s pggie
do meet the sufficient condition of Theorem 3.5. In the resthid section we
describe three of them. The first oneSIAT, which we chose since it is the most
canonical V'P-complete decision problem. We then show thatfIQUE meets
this condition, as an example of a typical graph problem.aliinve provide a
proof that the same is true fé6tAM, the problem of Hamiltonian cycle, since this
proof is a little less straightforward than the other profidein Karp’s paper. We
believe that these three examples in particular, and thighlat same results hold
for all NP-complete decision problems in Karp’s paper, gitteng evidence that
the results hold for all known/P-complete decision problems.

3.2 SAT, revisited

The following theorem can be proved using Theorem 3.5.
Theorem 3.7 SAT has a distributional version that igist NP-complete.

To show thatSAT meets the hypotheses of Theorem 3.5 one can use similar
ideas to those presented in the introduction. We just hagsgome some assump-
tions on the standard encoding®AT (e.g. that the encoding acts on each clause,
and each variable in the clause, in a context-free manner).

We choose two strings, e; such that both are encodings of CNF clauses such
that:

1. Both clauses are satisfiable.
2. ey < ey
3. leo| = le1]

We first sketch the ideas used to shewWT is regular-paddable. In order to
"stretch” some formulay we "pad-up”¢ by prefixing it with a series ofy’s. We
then "shift” the variables in the original by raising their index, such that the vari-
ables ing are disjoint to the ones in the added prefix. Since the addedes are
satisfiable, and consists of disjoint variables to theahifi, the padding function
does not affect the characteristicgaf

2There are various small technicalities to be concerned,d#suring thak, | divides the differ-
ence between the desired length and the length of the ifdtiedula. However, there are various
ways of coping with such difficulties, e.g., by using varieys with different lengths, and by "nor-
malizing” the lengths of the variables in(see next).
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Following the ideas in the introduction, by usiagande; to encode 0’s and
1's, one can show th&AT is also monotonously-paddable. If it is required that
instances oBAT do not have multiple occurrences of the same clause, then thi
requirement can be met by allocating sufficient amount agates for the padding
(i.e., using for the padding variables that are disjoinhdnes used in the original
formula), and using different variables for each clauséégadding.

We did not define here rigorously the encodind3&fT' (e.g., how is a variable
encoded, how is a clause encoded, etc). Different encodiilggield different
padding functions. However, Theorem 3.7 can be proved uadgmreasonable
encoding ofSAT.

In the following, we demonstrate our technigue on two gramiblems, given
in matrix representation. For these problems the encoditidoesdefined rigor-
ously, thus we will give a rigorous proof of our results.

3.3 Clique

We consider th€ LIQUE decision problem, consisting of all pairs of an undirected
graphG and a natural numbédrsuch that there exists a complete induced subgraph
of G of sizek. We assume the graph is given as an incidence matrix (which ca
either be symmetric, or upper-triangular), that the first of the matrix is encoded

by the leftmost bits, and thatis represented as[&g(n)]|-bit number to the right

of the matrix.

Theorem 3.8 CLIQUE has a distributional version that i¢istNP-complete.

Proof: It is straightforward to see th&LIQUE is regular-paddable. We simply
add "dummy” nodes with degre@and leave: as is. Thus we can transform any
input of sizen? + [log(n)] to an input of sizen? + [log(m)] for anym > n,
and thus we can achieve a regular-padding function withcstrmeasure(n) =

n? + [logn].

We now show thaCL.IQUE is monotonously-paddable. The idea is as follows.
Given a graphG = (V,E) whereV = {vi,vs,..., vy}, we first "shift” all
vertices by raising their index by the number of bits we wislehcode (and of
course change the edges accordingly). This "frees” thecesrindexed lower or
equal to the length of the string we wish to encode. We thewdmnthe bits by
edges connected tg, such that each bit is encoded by the edge indexed as the
bit's position, and such that the edge will appear if and ohthe bit value is 1.
Thus, these edges will result in 0's and 1's in the first rowhaf incidence matrix
of the graph. This will add a star-shaped subgraph (rooted)ab the original
graph. We will ensure that this will not change the charastierof the instance.
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Formally, for M/, an 0-1-matrix of sizev x n we defineE (p, (M, k)) = (M’ k)
whereM’ is an 0-1-matrix of sizén+|p|) x (n+|pl), such thaMZ.’Hp‘,ij‘ =M, ;
for 1 <i,j <n,andMj; = p; for 1 < j < [p| (wherep; is thej-th bit of p).
This, of course, adds to the graph cliques of giflbut does not add larger cliques).
If £ = 2 and the graph did not have a clique of skzg.e., the graph was edgeless),
this could be a problem. To fix this, the padding function daeck (in polynomial
time) ifindeedk = 2 and the graph is edgeless. If this is the case, it simply ad®gmng
k to 3 and we are done.

This transformation preserves the characteristic of te@ncte. Moreover, we
havep encoded in the most trivial manner, i.e. bit-by-bit, as dipref the string
E(p,x). Itis straightforward to see th&t meets all the conditions of a monotonous
padding functior?. O

3.4 Hamiltonian Cycle

We consider the Hamiltonian Cycle decision problem, daesh&itdM. The Hamil-
tonian Cycle decision problem consists of all undirecteabgs that have a simple
cycle that contains all nodes of the graph. We assume théngsagiven as an
incidence matrix (which can either be symmetric, or upp@ngular), and that the
first row of the matrix is encoded at the beginning of the gtrin

Theorem 3.9 HAM has a distributional version that igistNP-complete.

Proof: We first show thatHAM is regular-paddable. We do this by showing
that any graph oven nodes can be transformed in polynomial time into a graph
overn + k nodes for anyk > 2 such that preserves Hamiltonianicity. Given a
graphG = (V, E) where|V| = n, andk > 2 we defineG’ = (V', E’) where
|[V'| = n + k. Intuitively, what we are going to do is to "split,, (an arbitrary

choice) intok 41 nodes, denoted,, v, 11, - - . , vn 1k, @nd "force” any Hamiltonian
cycle to regard them as one node, that is, any Hamiltoniale égche new graph
will have to contain the sub-path),, v,+1,..., v, Or its reverse. The idea is as

follows: after adding the mentioned nodes to the graph, waeadt all of them to

3We note that any other reasonable encoding can be shownlddtyéesame result. For example,
if k was encoded to the left of the matrix, the constructed réatuétere would not be monotonous,
since the "encoding row” would not be added at the beginnfrthestring. To fix this, the function
E could fix k for every length ofr, thus disabling its effect on the lexicographical ordervesian
input (M, k) whereM is ann x n matrix, the reduction would transform it to a matiix’ of size
2n x 2n , then add a clique of size — k to the original graph, using the added nodes, and connect
all nodes of the added clique to all nodes of the original lgraphe reduction would then generate
the instancé€ M’, n), which has the same characteristiq a$, k).
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form the path mentioned above. We then connect the last ngade, to all the
nodes connected tg,. Formally:

E' = U {(vnsi vntis1)|0 < § <k — 1} U{(t, 00|, 00) € E}.

We show that this transformation preserves Hamiltoni&nidtor every Hamilto-
nian cycler, v,, y in G (wherex andy are sub-paths), the pathv,,, vp+1, . - -, Unak, ¥
is a Hamiltonian cycle inG’. On the other hand, for any Hamiltonian cycle in
G’, in order to reach the nodes§, 1, v,49,...,v,1%_1, it has to be of the form
Xy Uny Untly-- - Untk,y OF Of the formz, vk, vpak—1,-..,0n,y, and in both
cases this yields that v,,, y is a Hamiltonian cycle irGz.

We now show thalHAM is monotonously-paddable. The idea is similar to
the regular-padding described above. In addition to thee@guhth, we encode
bits by adding edges within the path. We do it such that thh palt still have
to be taken in the natural order of the nodes, and such thatdtied edges will
encode the desired padding in the prefix, i.e. first row, ofitic@lence matrix. In
order to achieve the later goal, we "shift” the nodes of theprby raising their
index, thus the added nodes posses the smallest indexetheandeplacey; by
the pathvy, va, . . ., vy 4.3, Similarly to the construction of the regular-padding. We
then encode the bits of the padding such that the ¢dges;) encodes the first
bit, the edggv;, v4) encodes the second bit and so on. We gkipvs) since this
edge must anyway exist in order for the mentioned path td.ekigs construction
ensures that the added path will still have to be taken indtsral order in any
Hamiltonian cycle. We describe the construction formally.

For then x n incidence matrixM of the graphG = (V, E), we define
E(p, M) = M’ whereM' is the incidence matrix of siz@+ |p| +2) x (n+]|p|+2)
of the graphG’ = (V', E’) where|V'| = |V'| + |p| + 2 and

E' = {(vigip|12, Vit ip+2)|(vi,v5) € E} U {(v1, vippp12)|(v1,v5) € E} U

{(vi,vit1)[1 < i < |p| 4+ 2} U {(v1, vigo)[pi = 1}

(where p; is thei-th bit of p). The first set in the union above is the original
graph, with its nodes "shifted” by raising their index [ + 2. The second set
connectsuv; to the nodes, ;3 is connected to (which are the nodesin the
original graph was connected to, with their index "shiffedhe third set forms
the pathvy, ve, . .., vy 13- Finally, the last set encodesby edges connected tq
(thus the bits representing them will be encoded in the finstaf the matrix).

We have that every node that was connected in the originphgiaw; is now
connected both to; and tov, 43 , and thaty, va, . .., vy 13 IS @ rout in the new
graph. Assuming the diagonal is all zetpshe resulted encoding af/’ starts

“The bits in the diagonal are meaningless.
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with '01’, followed by the bits ofp. Using similar argument to the one used to
prove that the regular-padding preserves Hamiltonianiole can verify that in-
deed such transformation preserves Hamiltonianicity togérticular, note that
any Hamiltonian cycle irG’, in order to meety, .., has to contain the sequence
V1, V2, ..., Up|43 O its reverse). Again, it is straightforward to see thaneets all
the conditions of a monotonous padding function. O

We note that the similar decision problem of Parameterizahifonian Cycle,
which consists of all couples of a graph and a natural nuratserch that there is
a simple cycle ovek nodes in the graph, is easier to be shown to had&@P-
complete version. The same is true for the similar decisiablpm overdirected
graphs.

4 Conclusions

We note that by the result of Impagliazzo and Levin [7], evéistNP-complete
problem is also completefor the wider class of\V’P problems coupled with P-
sampleable distributions (introduced in [1]).

4.1 On the generality of our results

A natural question arises regarding our results. Sincerappg, for all known
NP-complete decision problems we can provide a proof that esult hold, can
we expect to prove, using our techniques, that our resutistorall NP-complete
decision problems? Apparently the answer is negative. IRbe&in order to prove
that someNP-complete decision problem has a distributional versiorictvlis
distNP-complete, our technique involves proving that this proble paddable in
some particular manner. However, proving that/dlP-complete problems are
paddabale, in particular, involves proving that.&li°-complete problems are in-
finite. But such a proof would implyp # NP (because ifP = NP then any
non-empty finite set i&/P-complete). For this reason we cannot hope to do better
than prove these results for &hownNP-complete decision problems using our
techniques.

The same phenomena occurs with respect toidbhmorphism conjecturef
Berman and Hartmanis [6]. This conjecture states that @avesyNP-complete de-
cision problems are related via a 1-1, onto, polynomiaktimnd polynomial-time
invertible Karp-reduction. Berman and Hartmanis showed évery two decision
problems that are paddable in some simple manner, aredefateuch a reduction.

5In some relaxed notion. See proof of theorem 10.24 in [3].
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They observed that the paddability condition holds for nroug\/ P-complete de-
cision problems and concluded that these problems areigaifsomorphic. They
conjectured that the same is true fdk NP-complete decision problems. Thus,
both their result and ours build on some paddability prapgthat are very easy to
verify for given N’P-complete decision problems, but that are very hard to gener
alize forall N"P-complete decision problems.

The paddability condition required for Berman and Hartraamesult is slightly
weaker than ours. Loosely speaking, they do not require toarety. However,
typically their padding functions, as ours, encode bit by lEnsuring that the
padding is added at the beginning of the string, and thatribeding of 1 is larger
than the encoding of 0, results in a monotonous paddingifumctVe mention that
to date, no counter-example to Berman and Hartmanis’s igaimsm conjecture
was found. Furthermore, one can show, that their paddabiihdition is not only
sufficient, but is also necesséryThat is: If a decision problem is isomorphic to
SAT, then it is paddable in the sense they define. Thus, the faththcounter-
example to Berman and Hartmanis’s isomorphism conjecta® faund, implies
that no non-paddable decision problem was found. We belattough our con-
dition is slightly stronger than Berman and Hartmanis’sarobf paddability, that
this gives a strong evidence that all knowfPC problems meet our condition too.

4.2 The extension of our results to different definitions

An alternative to the definition of P-computable probaildistribution is the
simple probability ensembldefined by Goldreich [3]. A probability ensemble
{X,}nen is a sequence of random variables such tkigtranges ovef0,1}".
Such an ensemble sgmpleif there exists a polynomial-time algorithm such that for
everyn and everyr € {0,1}" it outputs the valug_ (g 1y <, Pr(X, = o).
That is, the condition refers to a sequence of finite probghilstributions, rather
than on one infinite probability distribution. The clasgP can then be defined
analogously using such probability ensembles, and the ¢isisNP can be defined
analogously using simple probability ensembles rathem freomputable proba-
bility distributions. Under these definitions our resul@dctoo. The reason is
that any reductiory that is constructed using our technique is length-regalad,

SLet f be a 1-1, onto, polynomial-time, and polynomial-time iril#e Karp-reduction ofl, €
NPC to SAT. Then in order to pad the instangeof the problemL with p, we first padf(x) with
p using the padding function GFAT. Denote the result bw. We then computg ~* (w) to obtain
the padded instance. In order to retrieve the padding framessiringy, the decoding function first
computesf(y), and then uses the decoding function of the padding functiGT to retrieve the
padding fromf(y). To conclude, one has to show that this padding functiorsislahgth-increasing.
This can be achieved, e.g., by modifying the padding functfbSAT to pad, instead gb, a longer
string, such ag concatenated to itself a polynomial number of times.
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therefore meets the conditidnm| = |y| if and only if | f(x)| = |f(y)|, and is also
semi-monotonous.

A different notion of solvability can also be considered. iW&Im our definition
of avgP we require that the algorithm solves the decision problemalffanstances,
one can consider a relaxation such that the algorithm rupslimomial time, but
solves "almost all instances”, that is, for every polyndmiand for everyn the
probability that given an input of lengththe algorithm errs on it is upper bounded
by ﬁ. (Note that in the former definition, the algorithm, althbug permitted
to run in super-polynomial time for a negligible fractiontb& instances, has to be
correct on all instances.) Since AP-reductions preserasitiess on the average”
also under this definition of solvability, our results, whiefer to AP-reductions,
are relevant also to this definition.

4.3 The interpretation of our results

One can argue that our results, although addressing thergalof providing a va-
riety of distNP-complete distributional problems, raise some questidmusiathe
adequateness of the definitions, specifically about the idefirof P-computable
probability distributions, since the probability diswiiions of our complete prob-
lems are rather "unnatural”.

We argue, however, that the resulted probability distrimg of the complete
problems constructed by our technique can be viewed, in sEmse, as "quasi-
uniform”, and thus are not that easy to discard from a theloay aims at average-
case with respect to various simple distributions. We alaieo Typically our
distribution can be partitioned into two parts: the righdesis determined by the
initial reduction we take, and the left side is the paddirfdo@h types). This holds,
for example, for the three problems mentioned in this paper.

Since the distribution of thdistNP-complete problem provided by Theorem
3.6 is close to uniform, the left side can be regarded tooms®db uniform, because
itis a 1-1 simple encoding of quasi-uniform distributedtamees. The right side is
determined by the left (and can be computed in polynomiat firam it), and can
be regarded as a "parity check” of the left side. We mentioat, ising Berman and
Hartmanis'’s isomorphism conjecture (see Section 4.1) usitty the fact that this
conjecture also holds for all known NP-complete decisiarbf@ms, we can make
the right side also close to uniform in some sense, by takiagrtitial reduction to
be as guaranteed by their results.

Thus, typically our probability distributions have a simmtructure and are
"close to uniform” in some sense. Moreover, we argue thatkeee existence of
any kind of distribution that makes some probletistNP-complete, may imply
that simpler, more "natural” distributional versions dxs well.
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