
All Natural NPC Problems Have Average-Case Complete Versions

Noam Livne ∗

January 4, 2007

Abstract

In 1984 Levin put forward a suggestion for a theory of average case complexity. In this theory
a problem, called a distributional problem, is defined as a pair consisting of a decision problem
and a probability distribution over the instances. Introducing adequate notions of ”efficiency-on-
average”, simple distributions and efficiency-on-average preserving reductions, Levin developed
a theory analogous to the theory of NP-completeness. In particular, he showed that there exists
a simple distributional problem that is complete under these reductions. But since then very
few distributional problems were shown to be complete in this sense. In this paper we show a
simple sufficient condition for an NP-complete decision problem to have a distributional version
that is complete under these reductions (and thus to be ”hard on the average” with respect to
some simple probability distribution). Apparently all known NP-complete decision problems
meet this condition.

∗Weizmann institute of science, Rehovot, Israel.

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 122 (2006)

ISSN 1433-8092

1 Introduction

While most of the research in complexity theory concentrates in worst-case complexity, from a
practical point of view, the hardness of problems should be established through average-case com-
plexity. That is, for an adequate probability distribution on the instances, one would usually settle
for an algorithm that performs well on all but a negligible fraction of the instances. This is true
especially when dealing with problems in NP, where one can verify the correctness of an alleged
solution. Thus, average case complexity is concerned with distributional problems, defined as pairs
consisting of some decision problem1 and a probability distribution over all strings. Solving such
a problem means providing an algorithm that solves all instances and, loosely speaking, runs in
expected polynomial time (or, alternatively, that runs in polynomial time and decides the problem
with high probability over the related distribution of the inputs)

The quality of an average-case hardness result can be measured by three parameters. The first,
of course, is the wideness of the class for which the problem is hard; the second, is the ”naturalness”
of the decision problem; and the third is the ”simplicity” of the probability distribution coupled
with the decision problem. We elaborate, focusing on NP . Suppose we want to prove that there
is an NP decision problem that is ”hard on the average”. Then typically we should try to prove
it is hard for any NP decision problem, coupled with any probability distribution taken from a
family as wide as possible. The first parameter will be measured by the wideness of this family.
The second parameter will be measured by the ”naturalness” of the decision problem proved hard:
we would like it to be a ”popular”, or ”canonical” decision problem. The third parameter will be
measured by the ”simplicity” of the probability distribution coupled with the decision problem for
which hardness was proved. We would like it to be ”simply structured”, and maybe also ”close to
uniform” (arguably, such distributions are more likely to emerge in ”real life”: See further discussion
in Section 4.3). In addition, another (fourth) parameter that measures a hardness theory in general,
is the variety of hard problems it produces. We would like a hardness theory to produce as wide
variety of hard problems as possible.

In this paper, we show results that make the theory of average-case NP-completeness strong
with respect to all four parameters discussed above. That is, we show that a very wide family of
NPC problems (apparently all known problems), when coupled with considerably simple probability
distributions, are hard for the problems in NP coupled with a very wide family of probability
distributions.

1.1 Levin’s theory of average-case complexity

The theory of average case complexity was initiated by Levin [9]. As mentioned above, it refers
to the complexity of solving problems with respect to certain probability distributions over their
instances. Levin set the foundations to an average case complexity theory analogous to the theory of
NP-completeness. He first had to define which probability distributions will be of interest. Letting
these probability distributions range over all possible probability distributions would have collapsed
the new theory to classic worst-case complexity (since one can always put all the probability mass
on the worst case). On the other hand, considering only the uniform distribution seems quiet

1The discussion here, although focuses on decision problems, will hold also for search problems. See also Footnote
3.

1

arbitrary and limiting. Levin therefore defined a family of probability distributions, which he
called P-computable. These are probability distributions over all strings, such that the accumulative
probability can be computed in polynomial time (that is, there exists a polynomial time algorithm
that given x outputs the probability that a string smaller or equal lexicographically to x is drawn).
Focusing on these probability distributions, Levin defined:

• The class avgP, which is analogous to P, and consists of the distributional problems that
can be solved ”efficiently on the average”.

• The class distNP, which is analogous to NP , and consists of decision problems in NP paired
with P-computable probability distributions.

• A class of reductions, which we call here AP-reductions, analogous to polynomial-time reduc-
tions (such as Karp or Cook reductions). Such reductions preserve ”easiness on the average”,
that is, if a distributional problem can be AP-reduced to a problem in avgP, then the reduced
problem is also in avgP. Although we did not specify yet what it means to solve a problem on
the average, the crucial point is that these AP-reductions preserve ”easiness on the average”
with respect to various different definitions, including the original ones of Levin. The crucial
aspect in these reductions is that instances that occur with some probability are not mapped
to instances that occur with much smaller probability.

Next, Levin showed that there exists a distNP-complete distributional problem, that is, a
problem in distNP that every problem in distNP can be AP-reduced to it. Thus, this complete
problem is in avgP if and only if distNP ⊆ avgP.

How does Levin’s theory (and the research that followed so far) relate to the four parameters
discussed above? The first parameter (i.e. the ”wideness of hardness”) was settled by Impagliazzo
and Levin [7], who showed that any distributional problem that is hard for distNP is also hard,
via randomized reductions, for the (apparently) much wider class of NP problems coupled with P-
samplable distributions (defined in [1]), which are distributions that can be generated in probabilistic
polynomial time2. The third parameter, i.e. the ”simplicity” of the probability distributions
of the complete problems, was also settled, since it seems reasonable to consider P-computable
distributions as very ”simple”. Moreover, the distributions that were constructed can be considered
as close to uniform (see further discussion in Section 4.3).

However, the other parameters were more problematic. Regarding the second parameter (i.e.
the ”naturalness” of the decision problems), the NPC decision problems that were shown to have
distNP-complete versions were somewhat ”unnatural”, and consisted of Bounded Halting, some
Tiling problems and other ”non-popular” problems. In particular, none of the twenty-one problems
in Karp’s paper [8] (such as SAT, CLIQUE, Hamiltonian Cycle etc.) was shown to have a complete
distributional version. The forth parameter, i.e. the variety of complete problems, was the most
problematic. In fact, to date, only a few distNP-complete problems were found [9, 4, 10, 5].
Improving these two parameters was raised as an open problem in, e.g., [1].

2To be more precise, they have proved that if some NP decision problem cannot be solved efficiently on the
average with respect to some P-samplable distribution, then there exists a distNP problem that cannot be solved
efficiently on the average, where ”efficiently” refers here to probabilistic polynomial time. Thus, they have linked
hardness with respect to P-computable distributions, to hardness with respect to an (apparently) much wider family
of distributions.

2

1.2 Our contribution

In this work we address the aforementioned shortcomings by showing a simple sufficient condition
for an NP-complete decision problem to have a distributional version that is distNP-complete.
Apparently all known NP-complete decision problems meet this condition (this condition refers to
some natural paddability property). Thus, we provide a wide variety of natural distNP-complete
problems. Combined with Impagliazzo and Levin’s result [7], this makes the theory of average-case
completeness strong with respect to all four parameters discussed above3.

Our technique is based on the identification and construction of a restricted type of Karp-
reductions that ”preserve order” in some (natural) sense. If such an order preserving reduction
exists from some (decisional part of a) distNP-complete problem to some problem in NP , then
the later has a probability distribution that when coupled with it, formes a distNP-complete
decision problem. The aforementioned order preserving reduction is related to the paddability
property mentioned in the previous paragraph.

Let us demonstrate, informally, the high-level ideas of our technique on SAT. Assume some
standard encoding for SAT (we will freely identify a formula and its representation). Let (C,µ) be
some distNP-complete distributional problem (so, in particular, C ∈ NP and µ is P-computable),
and let h be a reduction from C to SAT such that |x| ≥ |y| if and only if |h(x)| ≥ |h(y)| (we will
show in Section 3 how to obtain such reductions). We define a new Karp-reduction f such that f(w)
”encodes”, in some explicit form, w itself into the formula h(w). For example, let e0 = (x0 ∨ ¬x0)
and e1 = (x1 ∨¬x1), and assume that the encoding of e1 is lexicographically larger than that of e0

and that the lengths of e0 and e1 are equal. Now define

f(w) = ew1
∧ ew2

∧ . . . ∧ ew|w|
∧ h(w) (1)

where wi is the i-th bit of w. Note that the ”encoding” of w in the left part of the formula ensures
that f has the following properties:

• Invertibility: given f(w) one can compute w.

• Monotonicity: if w′ is lexicographically larger than w′′ then f(w′) is lexicographically larger
than f(w′′).

• Preserving satisfiability: f(w) preserves the truth value of h(w) (since e0 and e1 are tautolo-
gies).

Thus, f is an ”order preserving” reduction of C to SAT.
Let us see how such order preserving reductions (which are defined between standard decision

problems) are related to AP-reductions (which are defined between distributional problems). We
couple SAT with the following probability distribution η:

η(x) =

{

µ(f−1(x)) if x ∈ image(f)
0 otherwise

(2)

3We mention that by a result of Ben-David et al.[1] (and since Impagliazzo and Levin’s aforementioned result [7]
was shown for search problems too), the results mentioned here, although stated in terms of decision problems, imply
similar results for search problems.

3

Then the reduction f is a AP-reduction from (C,µ) to (SAT, η), because it maps each instance of
C to an instance of SAT that occurs with exactly the same probability. Since (C,µ) is distNP-
complete, and AP-reductions are transitive, it follows that (SAT, η) is distNP-hard (under AP-
reductions). Furthermore, because of the special properties of f , and since µ is P-computable, then
so is η. Loosely speaking, since f is monotonous, in order to compute the accumulative probability
of w under η, it suffices to compute the accumulative probability of its inverse under µ; and since
f is invertible, we can compute this inverse. It follows that (SAT, η) is in distNP , and therefore
(SAT, η) is distNP-complete. For more details and a complete proof see Section 3.

We have just demonstrated that since such an ”order preserving” Karp-reduction exists between
(the decisional part of) some distNP-complete problem and SAT, the later has a distributional
version that is distNP-complete. Moreover, we note that the construction of the Karp-reduction
exploited only the properties of the target problem, SAT. More specifically, the construction used
a technique called ”padding”, introduced by Berman and Hartmanis [6], in order to encode w into
h(w). This ”paddability” property is a property of decision problems, rather than of reductions.
Using this paddability property one can prove similar results for other NP-complete problems.

Hence, essentially we ”reduced” the problem of showing that an NP-complete decision problem
has a distNP-complete version to the problem of proving some paddability properties for this
decision problem. Although we do not know whether these paddability properties hold for every
decision problem in NP (and showing that they do is at least as hard as proving P 6= NP), they
are very easy to verify for any known problem. In particular, we have verified that these properties
hold for the famous twenty-one problems treated in Karp’s seminal paper [8]. See further discussion
in Section 4.1

Reflection Let us take a second look at the probability distribution of the complete distributional
version of SAT defined in Equation 2. We claim that this probability distribution has a ”simple”
structure that, in some sense, is close to uniform. We elaborate. The complete problem guaranteed
by Levin [9] has a probability distribution that is ”close to uniform” in a very strong sense. For
simplicity, let us assume we take a complete problem with uniform probability distribution. Com-
bining Equations 1 and 2, the left side of η is uniform over encodings of all strings (under some
simple encoding). Thus, it can be regarded as ”close to uniform”. The right side is determined
by the left, and can be computed in polynomial time from it. Thus, the structure of the resulted
probability distribution is a simple structure. (See further discussion in Section 4.3). Applying our
technique to any other NPC decision problem will result in a similarly structured distribution.

Organization In section 2 we give some definitions that will be used throughout this paper. In
Section 3 we provide a rigorous presentation of our results, by first showing a sufficient condition for
an NP-complete decision problem to have a distributional version that is distNP-complete, and
then, using this sufficient condition to show that some well-known NP-complete decision problems
have distributional versions that are distNP-complete. In Section 4 we discuss some related issues
concerning our results.

4

2 Preliminaries

2.1 Strings and functions over strings

For a string x, we denote by |x| the length of x, and by x1, x2, . . . , x|x| the bits of x. Throughout
this paper, the symbol ”<”, when applied between strings, will denote the standard lexicographical
order over all strings (i.e., |y| = |y′| ⇒ x0y < x1y′, and |x| < |x′| ⇒ x < x′). Given a string x, the
strings x − 1 and x + 1 denote, respectively, the strings preceding and succeeding x.

Given an instance of a decision problem, its characteristic refers to the value of the characteristic
function for this instance (i.e., it equals 1 if the problem contains this instance and 0 otherwise).

Definition 2.1 (P-invertible function) A function f is P-invertible if it is 1-1, and there is
a polynomial-time algorithm that given x returns f−1(x) if it is defined, and a failure symbol ⊥
otherwise.

Definition 2.2 (length-regular function) A function f is length-regular if for every x, y ∈
{0, 1}∗, it holds that |x| ≤ |y| if and only if |f(x)| ≤ |f(y)|.

Note that a function f is length-regular if and only if it satisfies the following two conditions: (1)
|x| = |y| if and only if |f(x)| = |f(y)| and (2) |x| > |y| if and only if |f(x)| > |f(y)|.

Definition 2.3 (semi-monotonous function) A function f is semi-monotonous if for every x, y ∈
{0, 1}∗ such that |x| = |y| it holds that x < y if and only if f(x) < f(y).

While a semi-monotonous function is only monotonous within lengths (that is, the function,
when restricted to each length is monotonous), a function that is semi-monotonous and length-
regular is monotonous over all strings (because in particular, for a length-regular function f , it
holds that |x| > |y| implies |f(x)| > |f(y)|).

2.2 Notions from average case complexity theory

We state here the basic definitions from average case complexity theory that will be used throughout
this paper. These are the original definitions used by Levin in [9]. For a comprehensive survey on
average case complexity, see Goldreich [3].

Definition 2.4 (probability distribution function) A function µ : {0, 1}∗ → [0, 1] is a proba-

bility distribution function if µ(x) ≥ 0 for every x and
∑

x∈{0,1}∗ = 1. The accumulative probability

function associated with µ is denoted µ and defined by µ(x) =
∑

x′≤x µ(x′).

Definition 2.5 (P-computable probability distribution) A probability distribution function
µ is P-computable if there exists a polynomial time algorithm that given x outputs the binary ex-
pansion of µ(x) =

∑

x′≤x µ(x′).

Definition 2.6 (distributional problem) A distributional problem is a pair consisting of a de-
cision problem and a probability distribution function. That is, (L,µ) is the distributional problem
of deciding membership in the set L with respect to the probability distribution µ.

5

Definition 2.7 (distNP) The class distNP consists of all distributional problems (L,µ) such
that L ∈ NP and µ is P-computable.

Definition 2.8 (average-case preserving reduction) A function f is an average-case preserv-

ing reduction (abbreviated AP-reduction) of the distributional problem (S, µ
S
) to the distributional

problem (T, µ
T
) if f is a Karp-reduction (i.e. many-to-one polynomial-time reduction) from S to

T , and in addition there exists a polynomial q such that for every y ∈ {0, 1}∗,

µ
T
(y) ≥

1

q(|y|)
·

∑

x∈f−1(y)

µ
S
(x).

In the special case that f is 1-1, which is the case will be used throughout this paper, the last
expression simplifies to the following: For every x it holds that

µ
T
(f(x)) ≥

µ
S
(x)

q(|x|)
.

Note that we use the fact that |f(x)| is polynomially related to |x|.
AP-reductions preserve ”easiness on the average” with respect to various definitions. The reason

is that the sum of the probabilities of the preimages of every instance (in the range of the reduction),
is not much larger than the probability of the instance itself. Thus, an AP-reduction cannot map
”typical” instances of the original problem to ”rare” instances of the target problem, on which
an ”average-case algorithm” can perform exceptionally bad. We note that AP-reductions are also
transitive.

Definition 2.9 (distNP-complete distributional problem) A distributional problem is distNP-
complete if it is in distNP and every problem in distNP is AP-reducible to it.

For sake of completeness, we state here the definition of avgP. However, our results only refer
to AP-reductions, and not to their particular effect on avgP.

Definition 2.10 (avgP) The class avgP consists of all distributional problems (L,µ) such that
there exists an algorithm A that decides L and a constant λ > 0 such that

∑

x∈{0,1}∗

µ(x) ·
tA(x)λ

|x|
< ∞

where tA(x) denotes the running time of A on input x.

For a discussion on the motivation for this somewhat non-intuitive definition see Goldreich [2].
As mentioned above, it can be shown that if (T, µ

T
) is AP-reducible to (S, µ

S
) and (S, µ

S
) ∈

avgP then (T, µ
T
) ∈ avgP too. Thus, a distNP-complete problem is in avgP if and only if

distNP ⊆ avgP. But, as mentioned above, AP-reductions preserve other definitions of ”easiness
on the average” too.

6

3 Main Results

We show here a sufficient condition for the existence of a distNP-complete version for an NP-
complete decision problem. We then show that some famous NP-complete decision problems meet
this condition. By doing so we wish to claim that all known NP-complete decision problems meet
this condition (or, at least have some reasonable encoding such that they do). For a discussion on
the generality of our results, see Section 4.1

Our sufficient condition will enable us to prove completeness results also with respect to slightly
different definitional variants, like those of Goldreich [3] (which deal with probability ensembles
rather than one probability distribution over all strings). This condition will be very easy to verify
for all known NP-complete decision problems. For more details on these alternative definitions,
see Section 4.2.

3.1 The general technique

Our first technical tool is the following notion of paddability. Its purpose is to transform general
reductions into length-regular ones, by ”padding-up” instances to specified lengths.

Definition 3.1 (regular-padding) A decision problem L is regular-paddable if there exists some
strictly increasing function q and a padding function S : 1∗ × Σ∗ 7→ Σ∗ such that:

• S is polynomial-time computable.

• Preserving characteristic: For every x and every n it holds that S(1n, x) ∈ L if and only
if x ∈ L.

• Length-regular4: For every x and every n such that n ≥ |x|, it holds that |S(1n, x)| = q(n).

We call q the stretch measure of S. The first parameter of S determines the length to which the
string is to be padded. The following holds:

Lemma 3.2 If some decision problem is regular-paddable, then every Karp-reduction to it can be
made length-regular.

Proof: We show this by ”pumping up” the lengths of all mapped strings. Let L be regular-
paddable via S. Given a Karp-reduction f to L, we choose a strictly increasing polynomial r such
that r(|x|) ≥ |f(x)| for every x, and define f ′(x) = S(1r(|x|), f(x)). One can easily verify that f ′ is
length-regular. �

Our main technical tool is the following notion of paddability.

Definition 3.3 (monotonous padding) A decision problem L is monotonously-paddable if there
exists a padding function E : Σ∗ × Σ∗ 7→ Σ∗ and a decoding function D : N × Σ∗ 7→ Σ∗ such that:

• E and D are polynomial-time computable.

4Since this condition indeed resembles Definition 2.2, we allowed ourself this abuse of the term here and in the
following definition.

7

• Preserving characteristic: For every p, x ∈ {0, 1}∗ it holds that E(p, x) ∈ L if and only if
x ∈ L.

• Semi-monotonous: If p < p′, |p| = |p′| and |x| = |x′| then E(p, x) < E(p′, x′).

• Length-regular: If |x| = |x′| and |p| = |p′| then |E(p, x)| = |E(p′, x′)|, and if |x| < |x′| and
|p| ≤ |p′| then |E(p, x)| < |E(p′, x′)|.

• Decoding: For every x, p ∈ {0, 1}∗ it holds that D(|p|, E(p, x)) = p, and D(k,w) = ⊥ if
there is no x and p such that |p| = k and E(p, x) = w.

Loosely speaking, the first parameter for D defines the part of the string to be regarded as the
”padding”. Note that D is well-defined, that is, if D(k,w) 6= ⊥ then there exists a unique p such
that D(k,w) = p (i.e. a unique p ∈ {0, 1}k such that there exists x ∈ {0, 1}∗ such that E(p, x) = w).
Although Definition 3.3 may seem somewhat cumbersome, the following holds:

Fact 3.4 If the function E is defined such that E(p, x) = ep1
ep2

. . . ep|p|g(x), where:

• |e0| = |e1| and e0 < e1.

• The function g(x) is length-regular.

• E(p, x) ∈ L if and only if x ∈ L.

then E is a monotonous padding function for L.

In the example of SAT (used in the introduction), the function g is the identity function, but
generally, the encoding does not necessarily only add some prefix to the string, it can also change
the string in some simple way (for example, in the example of SAT the function g could also change
the indexes of the variables in the original formula).

It is easy to see that famous NP-complete decision problems are both regular-paddable and
monotonously-paddable. For details see Sections 3.2, 3.3 and 3.4.

Theorem 3.5 If L is NP-complete, regular-paddable and monotonously-paddable then there is a
distribution that when coupled with L forms a distNP-complete problem.

Proof: We use the following result of Levin [9]:

Theorem 3.6 There exists a distNP-complete distributional problem.

Let (C,µ) be a distNP-complete distributional problem (where C ∈ NP and µ is P-computable),
let h be a Karp-reduction from C to L, and let E,D be as in Definitions 3.1 and 3.3. In order
for E to ”work properly” (that is, to yield a length-regular, semi-monotonous reduction), it has
to be composed (in the appropriate manner), with a length-regular Karp-reduction. Thus, using
Lemma 3.2, we transform h to a length-regular Karp-reduction h′ of C to L. We then define
f(x) = E(x, h′(x)). We notice that f enjoys the following properties:

• f is a Karp-reduction from C to L (since E preserves characteristic).

8

• f is length-regular (since h′ and E are both length-regular).

• f is semi-monotonous (since h′ is length-regular and E is semi-monotonous).

• f is P-invertible (see next).

P-invertibility is evidenced by the following algorithm: Given y it first tries to find a number k

such that |f(0k)| = |y| (this can be done, e.g., by computing |f(0)|, |f(02)|, . . . , |f(0|y|)|, capitalizing
on |f(x)| ≥ |x|, which follows from length-regularity). If no such k exists it returns ⊥. Else, it
computes x = D(k, y). If x = ⊥, the algorithm also returns ⊥. Otherwise, it computes f(x). If the
result equals y it returns x, else it returns ⊥.

Note that since f is length-regular and semi-monotonous, f is monotonous over all strings.
Next, we couple the decision problem L with the following probability distribution η:

η(y) =

{

µ(f−1(y)) if y ∈ image(f)
0 otherwise

It is straightforward that indeed η is a probability distribution function. We claim that the reduction
f is a AP-reduction from (C,µ) to the distributional problem (L, η), and that η is P-computable.
Since AP-reductions are transitive, the theorem follows. The first claim is straightforward, since
every instance of C is mapped to an instance of L of exactly the same probability (i.e., µ(x) =
η(f(x))). To see the second claim, recall that µ is P-computable, and note that the accumulative
probability function induced by η, denoted η, satisfies:

η(y) = µ(x) where x is the largest string such that f(x) ≤ y. (3)

where µ is the accumulative probability function induced by µ. We elaborate. Suppose, as an
intermediate step, that we wish to compute η(x) rather then η(x). Then we can simply compute
y = f−1(x) (which can be done since f is P-invertible), then if y = ⊥ we output 0, otherwise we
output µ(y). Hence, the mere fact that f is P-invertible is sufficient to compute η(x). Turning to
the task of computing η, we notice that since f is also monotonous (over all strings), for any string
x in image(f), it holds that η(x) = µ(f−1(x)). For any other string, its accumulative probability
is equal to that of the largest string in image(f) that is smaller than it (since all strings between
them occur with probability 0). Equation 3 follows.

The string max({x|f(x) ≤ y}) can be computed in polynomial time, since the reduction f is
monotonous. An algorithm for computing this string can first compute x = f−1(y). If x 6= ⊥ it
outputs x, else it performs a binary search to find the string x′ such that f(x′) < y and f(x′+1) > y,
and outputs x′. �

Using Theorem 3.5 we now turn to prove that some NP-complete decision problems have
distNP-complete distributional versions. We have verified that all twenty-one NP-complete de-
cision problems that are treated in Karp’s paper [8] do meet the sufficient condition of Theorem
3.5. In the rest of this section we describe three of them. The first one is SAT, which we chose
since it is the most canonical NP-complete decision problem. We then show that CLIQUE meets
this condition, as an example of a typical graph problem. Finally we provide a proof that the same
is true for HAM, the problem of Hamiltonian cycle, since this proof is a little less straightforward
than the other problems in Karp’s paper. We believe that these three examples in particular, and

9

the fact that same results hold for all NP-complete decision problems in Karp’s paper, give strong
evidence that the results hold for all known NP-complete decision problems (see further discussion
in Section 4.1, as well as further evidence for our claim).

3.2 SAT, revisited

The following theorem can be proved using Theorem 3.5.

Theorem 3.7 SAT has a distributional version that is distNP-complete.

To show that SAT meets the hypotheses of Theorem 3.5 one can use similar ideas to those
presented in the introduction. We just have to assume some assumptions on the standard encoding
of SAT (e.g. that the encoding acts on each clause, and each variable in the clause, in a context-free
manner).

We choose two strings e0, e1 such that both are encodings of CNF clauses such that:

1. Both clauses are satisfiable.

2. e0 < e1.

3. |e0| = |e1|.

We first sketch the ideas used to show SAT is regular-paddable. In order to ”stretch” some
formula φ we ”pad-up” φ by prefixing it with a series of e0’s. We then ”shift” the variables in the
original φ by raising their index, such that the variables in φ are disjoint to the ones in the added
prefix. Since the added clauses are satisfiable, and consists of disjoint variables to the initial φ, the
padding function does not affect the characteristic of φ.5

Following the ideas in the introduction, by using e0 and e1 to encode 0’s and 1’s, one can
show that SAT is also monotonously-paddable. If it is required that instances of SAT do not have
multiple occurrences of the same clause, then this requirement can be met by allocating sufficient
amount of variables for the padding (i.e., using for the padding variables that are disjoint to the
ones used in the original formula), and using different variables for each clause in the padding.

We did not define here rigorously the encoding of SAT (e.g., how is a variable encoded, how is a
clause encoded, etc). Different encodings will yield different padding functions. However, Theorem
3.7 can be proved under any reasonable encoding of SAT.

3.3 Clique

We consider the CLIQUE decision problem, consisting of all pairs of an undirected graph G and a
natural number k such that there exists a complete induced subgraph of G of size k. We assume
the graph is given as an incidence matrix (which can either be symmetric, or upper-triangular),
that the first row of the matrix is encoded by the leftmost bits, and that k is represented as a
dlog(n)e-bit number to the right of the matrix.

5There are some small technicalities to be concerned, like assuring that |e0| divides the difference between the
desired length and the length of the initial formula. However, there are various ways of coping with such difficulties,
e.g., by using various e0’s with different lengths, and by ”normalizing” the lengths of the variables in φ (see next).

10

Theorem 3.8 CLIQUE has a distributional version that is distNP-complete.

Proof: It is straightforward to see that CLIQUE is regular-paddable. We simply add ”dummy”
nodes with degree 0 and leave k as is. Thus we can transform any input of size n2 + dlog(n)e to
an input of size m2 + dlog(m)e for any m ≥ n, and thus we can achieve a regular-padding function
with stretch measure q(n) = n2 + dlog ne.

We now show that CLIQUE is monotonously-paddable. The idea is as follows. Given a graph
G = (V,E) where V =

{

v1, v2, . . . , v|V |

}

to be padded with p, we first ”shift” all vertices by
raising their index by |p|, the number of bits we wish to encode (and of course change the edges
accordingly). This ”frees” the vertices indexed lower or equal to |p|. We then encode the bits of p

by edges connected to v1, such that each bit is encoded by the edge indexed as the bit’s position,
and such that the edge will appear if and only if the bit value is 1 (that is, the edge (v1, vi) will
appear if and only if pi = 1). Thus, these edges will result in 0’s and 1’s in the first row of the
incidence matrix of the graph. This will add a star-shaped subgraph (rooted at v1) to the original
graph. We will ensure that this will not change the characteristic of the instance.

Formally, for M , an 0-1-matrix of size n × n we define E(p, (M,k)) = (M ′, k) where M ′ is an
0-1-matrix of size (n + |p|)× (n + |p|), such that M ′

i+|p|,j+|p| = Mi,j for 1 ≤ i, j ≤ n, and M ′
1,j = pj

for 1 ≤ j ≤ |p| (where pj is the j-th bit of p). This, of course, may add to the graph cliques of size
2 (but does not add larger cliques). If k = 2 and the graph did not have a clique of size 2 (i.e.,
the graph was edgeless), this could be a problem. To fix this, the padding function can check (in
polynomial time) if indeed k = 2 and the graph is edgeless. If this is the case, it simply changes k

to 3 and we are done.
This transformation preserves the characteristic of the instance. Moreover, we have p encoded

in the most trivial manner, i.e. bit-by-bit, as a prefix of the string E(p, x). It is straightforward to
see that E meets all the conditions of a monotonous padding function.6 �

3.4 Hamiltonian Cycle

We consider the Hamiltonian Cycle decision problem, denoted HAM. The Hamiltonian Cycle
decision problem consists of all undirected graphs that have a simple cycle that contains all nodes
of the graph. We assume the graph is given as an incidence matrix (which can either be symmetric,
or upper-triangular), and that the first row of the matrix is encoded at the beginning of the string.

Theorem 3.9 HAM has a distributional version that is distNP-complete.

Proof: We first show that HAM is regular-paddable. We do so by showing that any graph over n

nodes can be transformed in polynomial time into a graph over n+k nodes for any k ≥ 2 such that
preserves Hamiltonianicity (thus achieving regular-padding with stretch measure (n+2)2). Given a

6We note that any other reasonable encoding can be shown do yield the same result. For example, if k was
encoded to the left of the matrix, the constructed reduction here would not be monotonous, since the ”encoding row”
would not be added at the beginning of the string. To fix this, the function E could fix k for every length of x, thus
disabling its effect on the lexicographical order: Given an input (M, k) where M is an n × n matrix, the reduction
would transform it to a matrix M ′ of size 2n × 2n , then add a clique of size n − k to the original graph, using the
added nodes, and connect all nodes of the added clique to all nodes of the original graph. The reduction would then
generate the instance (M ′, n), which has the same characteristic as (M, k).

11

graph G = (V,E) where |V | = n, and k ≥ 2 we define G′ = (V ′, E′) where |V ′| = n+k. Intuitively,
we are going to ”split” vn (an arbitrary choice) into k + 1 nodes, denoted vn, vn+1, . . . , vn+k, and
”force” any Hamiltonian cycle to regard them as one node, that is, any Hamiltonian cycle in the
new graph will have to contain the sub-path7 vn, vn+1, . . . , vn+k. The idea is as follows: after adding
the mentioned nodes to the graph, we connect them such as to form the path mentioned above.
We then connect the last node, vn+k, to all the nodes connected to vn. Formally:

E′ = E ∪ {(vn+i, vn+i+1)|0 ≤ i ≤ k − 1} ∪ {(u, vn+k)|(u, vn) ∈ E} .

We show that indeed this transformation preserves Hamiltonianicity. For every Hamiltonian cycle
x, vn, y in G (where x and y are sub-paths), the path x, vn, vn+1, . . . , vn+k, y is a Hamiltonian
cycle in G′. On the other hand, for any Hamiltonian cycle in G′, in order to reach the nodes
vn+1, vn+2, . . . , vn+k−1, it has to be of the form x, vn, vn+1, . . . , vn+k, y, which implies that x, vn, y

is a Hamiltonian cycle in G.
We turn to show that HAM is monotonously-paddable. The idea is similar to the regular-

padding described above. In order to pad some (incidence matrix of a) graph with the string p,
we first add a path of length roughly |p| to the graph, similarly to the regular-padding described
above. We then encode the bits of p by adding edges within the path. We do so such that the
path will still have to be taken in the natural order of the nodes, and such that the added edges
will be encoded in the prefix, i.e. first row, of the incidence matrix. In order to achieve the later
goal, we ”shift” the nodes of the graph by raising their indexes, thus enabling the added nodes
to posses the smallest indexes, and then replace v1 by the path v1, v2, . . . , v|p|+3, similarly to the
construction of the regular-padding. We then encode the bits of the padding such that the edge
(v1, v3) encodes the first bit, the edge (v1, v4) encodes the second bit and so on. We skip (v1, v2)
since this edge is necessary in order for the mentioned path to exist. This construction ensures
that the added path will still have to be taken in its natural order in any Hamiltonian cycle. We
describe the construction formally.

For the n × n incidence matrix M of the graph G = (V,E), we define E(p,M) = M ′ where
M ′ is the incidence matrix of size (n + |p| + 2) × (n + |p| + 2) of the graph G′ = (V ′, E′) where
|V ′| = |V | + |p| + 2 and

E′ =
{

(vi+|p|+2, vj+|p|+2)|(vi, vj) ∈ E
}

∪
{

(v1, vi+|p|+2)|(v1, vi) ∈ E
}

∪

{(vi, vi+1)|1 ≤ i ≤ |p| + 2} ∪ {(v1, vi+2)|pi = 1}

(where pi is the i-th bit of p). The first set in the union above is the original graph, with its nodes
”shifted” by raising their indexes by |p| + 2. The second set connects v1 to all the nodes v|p|+3 is
connected to (which are the nodes v1 of the original graph was connected to, with their indexes
”shifted”). The third set forms the path v1, v2, . . . , v|p|+3. Finally, the last set encodes p by edges
connected to v1 (thus the bits representing them will be encoded in the first row of the matrix).

We observe that every node that was connected in the original graph to v1 is now connected
to both v1 and v|p|+3, and that v1, v2, . . . , v|p|+3 is a path in the new graph. Setting the bits in the
diagonal all to zeros8, the resulted encoding of M ′ starts with ’01’, followed by the bits of p. Using

7Or its reverse. Since the graph is undirected, we regard the cycles as undirected too.
8The bits in the diagonal are meaningless.

12

similar argument to the one used to prove that the regular-padding preserves Hamiltonianicity, one
can verify that indeed such transformation preserves Hamiltonianicity too (in particular, note that
any Hamiltonian cycle in G′, in order to meet v|p|+2, has to contain the sequence v1, v2, . . . , v|p|+3

or its reverse). Again, it is straightforward to see that E meets all the conditions of a monotonous
padding function. �

We note that the similar decision problem of Parameterized Hamiltonian Cycle, which consists
of all couples of a graph and a natural number k such that there is a simple cycle over k nodes
in the graph, is easier to be shown to have a distNP-complete version. The same is true for the
similar decision problem over directed graphs.

4 Conclusions

We discuss three issues related to the results presented in this work. In Section 4.1 we discuss the
possibility of generalizing our results to all decision problems in NP , and show that it seems that
this cannot be achieved using our techniques. On the other hand, we provide further evidence to
our claim that all known NPC problems have distributional versions which are distNP-complete.
In Section 4.2 we show that our results hold also with respect to alternative definitions. In par-
ticular, we show that the results hold when replacing the P-computable distributions with simple
probability ensembles (defined by Goldreich [3]). Finally, in Section 4.3 we discuss the structure
of the probability distributions underlying our complete problems, and suggest some directions for
improving our results.

4.1 On the generality of our results

A natural question arises regarding our results. Since apparently, for all known NP-complete de-
cision problems we can prove that our result hold, can we expect to prove (using our techniques)
that our result holds for all NP-complete decision problems? Apparently the answer is negative.
Recall that in order to prove that some NP-complete decision problem has a distributional version
that is distNP-complete, our technique involves proving that this problem is paddable in some
natural sense. However, proving that all NP-complete problems are paddabale involves, in partic-
ular, proving that all NP-complete problems are infinite. But such a proof would imply P 6= NP
(because if P = NP then any non-empty finite set is NP-complete). For this reason we cannot
hope to do better than prove these results for all known NP-complete decision problems.

The same phenomena occurs with respect to the isomorphism conjecture of Berman and Hart-
manis [6]. This conjecture states that every two NP-complete decision problems are related via
a 1-1, onto, polynomial-time, and polynomial-time invertible Karp-reduction. Berman and Hart-
manis showed that every two NP-complete decision problems that are paddable in some simple
manner, are related via such a reduction. They observed that the paddability condition holds for
numerous NP-complete decision problems and concluded that these problems are pairwise isomor-
phic. They conjectured that the same is true for all NP-complete decision problems. Thus, both
their result and ours build on some paddability properties that are very easy to verify for given
NP-complete decision problems, but that are very hard to prove for all NP-complete decision
problems.

13

The paddability condition required for Berman and Hartmanis’s result is slightly weaker than
ours. Loosely speaking, they do not require monotonicity. However, typically their padding func-
tions, as ours, encode bit by bit. Thus, ensuring that the padding is added at the beginning of the
string, and that the encoding of 1 is larger than the encoding of 0, results in a monotonous padding
function. We mention that to date, no counter-example to Berman and Hartmanis’s isomorphism
conjecture was found. Furthermore, one can show that their paddability condition is not only suffi-
cient, but is also necessary. That is: If a decision problem is isomorphic to SAT, then it is paddable
in the sense they define9. Thus, the fact that no counter-example to Berman and Hartmanis’s
isomorphism conjecture was found, implies that no non-paddable decision problem was found. We
believe that, although our condition is slightly stronger than Berman and Hartmanis’s notion of
paddability, this gives a strong evidence that all known NPC problems meet our condition too.

4.2 The extension of our results to different definitions

An alternative to the definition of P-computable probability distributions is the notion of sim-
ple probability ensembles defined by Goldreich [3]. A probability ensemble {Xn}n∈N is a se-
quence of random variables such that Xn ranges over {0, 1}n. Such an ensemble is simple if there
exists a polynomial-time algorithm that for every n and every x ∈ {0, 1}n outputs the value
∑

x′∈{0,1}n,x′≤x Pr(Xn = x′). That is, the condition refers to a sequence of finite probability distri-
butions, rather than to one infinite probability distribution. The class avgP can then be defined
analogously using such probability ensembles, and the class distNP can be defined analogously us-
ing simple probability ensembles rather than P-computable probability distributions. Under these
definitions our results hold too. The reason is that any reduction f that is constructed using our
technique is length-regular (and therefore, in particular, meets the condition |x| = |y| if and only
if |f(x)| = |f(y)|), and is also semi-monotonous.

A different notion of solvability can also be considered. While in our definition of avgP we
require that the algorithm solves the decision problem for all instances, one can consider a relaxation
such that the algorithm runs in polynomial time, but solves ”almost all instances”, that is, for every
polynomial p and for every n the probability that given an input of length n the algorithm errs on it
is upper bounded by 1

p(n) . (Note that in the former definition, the algorithm, although is permitted
to run in super-polynomial time for a negligible fraction of the instances, has to be correct on all
instances.) Since AP-reductions preserve ”easiness on the average” also under this definition of
solvability, our results, which refer to AP-reductions, hold also under this definition.

4.3 On the simplicity of probability distributions

As stated in the introduction, we claim that average-case hardness results are of interest only
when shown with respect to ”simple” probability distributions. Firstly, such distributions are more

9Let f be a 1-1, onto, polynomial-time, and polynomial-time invertible Karp-reduction of L ∈ NPC to SAT.
Then in order to pad the instance x of the problem L with p, we first pad f(x) with p using the padding function
of SAT. Denote the result by w. We then compute f−1(w) to obtain the padded instance. In order to retrieve the
padding from some string y, the decoding function first computes f(y), and then uses the decoding function of the
padding function of SAT to retrieve the padding from f(y). Finally, one has to show that this padding function is
also length-increasing. This can be achieved, e.g., by modifying the padding function of SAT to pad, instead of p, a
longer string, such as p concatenated to itself a polynomial number of times.

14

likely to occur in ”real life”. Secondly, such distributions indicate that hard instances are not hard
to generate, and therefore that the hardness of the complete problem is not a property of some
”esoteric” instances, but rather is ”inherent in the decision problem at large”. The last claim
becomes stronger when ”simple” is regarded also as ”close to uniform”.

We believe that P-computable probability distributions can be regarded as fairly simple, since
the definition of P-computable distributions is very restrictive, and impose an easily computable
structure on the distribution. As indicated in the introduction, we argue that our distributions
have simple structures beyond being P-computable, and can be viewed, in some sense, as ”quasi-
uniform”. However, these are still not as simple as the (strictly) uniform distribution. A natural
question that arises, is the following: Can one show similar results, but where the probability
distributions constructed for the complete problems are taken from an even simpler family of
distributions, and in particular, distributions that are ”closer” to the uniform (such as the left
side of our construction)? Such result will show hardness on the average with respect to ”strictly
simpler” probability distributions.

Acknowledgements

Deep thanks to my advisor, Oded Goldreich, for many helpful discussions, for his advice in pre-
senting the ideas in this paper, and for his clear surveys and lectures that presented me the topics
treated in this paper.

References

[1] S. Ben-David, B. Chor, O. Goldreich and M. Luby. On the theory of average case complexity.
In STOC ’89: Proceedings of the twenty-first annual ACM symposium on Theory of computing,
pages 204–216, New York, NY, USA, 1989. ACM Press.

[2] O. Goldreich. Notes on levin’s theory of average-case complexity. Technical Report TR97-058,
ECCC, 1997.

[3] O. Goldreich. Computational complexity: A conceptual perspec-
tive, draft of a book, 2006. Unpublished manuscript, available from
http://www.wisdom.weizmann.ac.il/∼oded/cc-book.html.

[4] Y. Gurevich. Complete and incomplete randomized np problems. In Proceedings of IEEE
FOCS’87, pages 111–117, 1987.

[5] Y. Gurevich. Matrix decomposition problem is complete for the average case. In In Proc. of
the 31st IEEE Annual Syrup. on Foundation of Computer Science, pages 802–811, 1990.

[6] J. Hartmanis and L. Berman. On isomorphisms and density of np and other complete sets. In
STOC ’76: Proceedings of the eighth annual ACM symposium on Theory of computing, pages
30–40, New York, NY, USA, 1976. ACM Press.

15

[7] R. Impagliazzo and L.A. Levin. No better ways to generate hard np instances than picking
uniformly at random. In Proc. of the 31st IEEE Symp. on Foundation of Computer Science,
pages 812–821, 1990.

[8] Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller and
James W. Thatcher, editors, Complexity of Computer Computations, pages 85–103. Plenum
Press, 1972.

[9] Leonid A Levin. Average case complete problems. SIAM J. Comput., 15(1):285–286, 1986.

[10] Ramarathnam Venkatesan and Leonid Levin. Random instances of a graph coloring problem
are hard. In STOC ’88: Proceedings of the twentieth annual ACM symposium on Theory of
computing, pages 217–222, New York, NY, USA, 1988. ACM Press.

16

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

