
Iterative Decoding of Low-Density Parity Check Codes∗

(An Introductory Survey)

Venkatesan Guruswami†

Department of Computer Science and Engineering

University of Washington

Seattle, WA 98195

September 2006

Abstract

Much progress has been made on decoding algorithms for error-correcting codes in the last
decade. In this article, we give an introduction to some fundamental results on iterative,
message-passing algorithms for low-density parity check codes. For certain important stochastic
channels, this line of work has enabled getting very close to Shannon capacity with algorithms
that are extremely efficient (both in theory and practice).

∗This is a survey written for the Computational Complexity Column of the Bulletin of the European Association
for Theoretical Computer Science (EATCS), Issue 90, October 2006.

†Supported in part by NSF CCF-0343672, an Alfred P. Sloan Research Fellowship, and a David and Lucile Packard
Foundation Fellowship.

1

Electronic Colloquium on Computational Complexity, Report No. 123 (2006)

ISSN 1433-8092

Contents

1 Introduction 3

2 Background 4
2.1 Linear and LDPC codes . 4
2.2 Channel models and their capacity . 5
2.3 Spirit of the results . 6

3 Simple concatenated schemes to achieve capacity on BEC and BSC 7

4 Message-passing iterative decoding: An abstract view 8
4.1 Basic Structure . 8
4.2 Symmetry Assumptions . 9

5 Regular LDPC codes and simple iterative decoders 10
5.1 Gallager’s program . 10
5.2 Decoding on the binary erasure channel . 11
5.3 Decoding on the BSC . 13

5.3.1 Gallager’s Algorithm A . 13
5.3.2 Gallager’s Algorithm B . 14
5.3.3 Using Erasures in the Decoder . 15

5.4 Decoding on BIAWGN . 16
5.5 The belief propagation decoder . 16

6 Irregular LDPC codes 18
6.1 Intuitive benefits of irregularity . 18
6.2 The underlying ensembles . 19
6.3 Concentration around average performance . 20
6.4 Analysis of average performance for the BEC . 21
6.5 Capacity achieving distributions for the BEC . 22
6.6 Extensions to channels with errors . 24

7 Linear encoding time and Repeat-Accumulate Codes 25

8 Summary 27

2

1 Introduction

Over the past decade or so, there has been substantial new progress on algorithmic aspects of coding
theory. A (far from exhaustive) list of the themes that have witnessed intense research activity
includes:

1. A resurgence of interest in the long forgotten class of low-density parity check (LDPC) codes
and on iterative, message-passing decoding algorithms for them, which has resulted in codes
with rates extremely close to Shannon capacity together with efficient decoding algorithms.

2. Linear time encodable/decodable error-correcting codes (based on expanders) for worst-case
errors.

3. List decoding algorithms which correct many more worst-case errors beyond the “half-the-
code-distance” bound, and which can achieve capacity even against adversarial noise.1

Of course there are some interrelations between the above directions; in particular, progress on
linear-time encodable/decodable codes is based on expander codes, which are LDPC codes with
additional properties. Also, list decoding algorithms that run in linear time and correct a fraction
ρ of errors for any desired ρ < 1 have been developed using expander-based ideas [12].

Of the above lines of work, the last two have a broader following in the theoretical computer
science community, due to their focus on the combinatorial, worst-case noise model and the ex-
traneous applications of such codes in contexts besides communication (such as pseudorandomness
and average-case complexity). The sister complexity theory column that appears in SIGACT news
featured recent surveys on both these topics [9, 32]. A longer survey on very recent developments
in list decoding of algebraic codes will appear in [10]. A very brief survey featuring couple of
complexity-theoretic uses of list decoding appears in [11]. Applications of coding theory to com-
plexity theory, especially those revolving around sub-linear algorithms, are surveyed in detail in
[34].

We use the opportunity provided by this column to focus on the first line of work on iterative
(also called message-passing or belief propagation) algorithms for decoding LDPC codes. This is in
itself a vast area with numerous technically sophisticated results. For a comprehensive discussion of
this area, we point the reader to the upcoming book by Richardson and Urbanke [25], which is an
excellent resource on this topic. The February 2001 issue of Volume 47 of the IEEE Transactions on
Information Theory is another valuable resource — this was a special issue dedicated to iterative
decoding and in particular contains the series of papers [16, 17, 23, 22]. This sequence of papers
is arguably one of the most important post-Gallager developments in the analysis of iterative
decoding, and it laid down the foundations for much of the recent progress in this field.

Disclaimer: The literature on the subject of LDPC and related codes and belief propagation
algorithms is vast and diverse, and the author, not having worked on the topic himself, is only
aware of a small portion of it. Our aim will be to merely provide a peek into some of the basic
context, results, and methods of the area. We will focus almost exclusively on LDPC codes, and
important related constructions such as LT codes, Raptor codes, Repeat-Accumulate codes, and

1The capacity-achieving part was recently shown for codes over large alphabets, specifically explicit codes of rate
close to 1 − p that can be list decoded in polynomial time from a fraction p of errors were constructed in [14]. For
binary codes, the capacity for decoding a fraction p of errors equals 1 − H(p), but we do not know how to achieve
this constructively.

3

turbo codes are either skipped or only very briefly mentioned. While the article should (hopefully)
be devoid of major technical inaccuracies, we apologize for any inappropriate omissions in credits
and citations (and welcome comments from the reader if any such major omissions are spotted).

Organization: We begin with some basic background information concerning LDPC codes, the
channel models we will study, and the goal of this line of study in Section 2. In Section 3, we
discuss how concatenated codes with an outer code that can correct a small fraction of errors can
be used to approach capacity, albeit with a poor dependence on the gap to capacity. We then turn
to message passing algorithms for LDPC codes and describe their high level structure in Section 4.
With this in place, we develop and analyze some specific message passing algorithms for regular
LDPC codes in Section 5, establishing theoretical thresholds for the binary erasure and binary
symmetric channels. We then turn our focus to irregular LDPC codes in Section 6, and discuss,
among other things, how one can use them to achieve the capacity of the binary erasure channel.
Finally, in Section 7, we discuss how one can achieve linear encoding time for LDPC codes, and also
discuss a variant called Irregular Repeat-Accumulate (IRA) codes that are linear-time encodable
by design and additionally offer improved complexity-vs-performance trade-offs.

2 Background

2.1 Linear and LDPC codes

We will focus exclusively on binary linear codes. A binary linear code C of block length n is a
subspace of F

n
2 where F2 = {0, 1} is the field with two elements. The rate of C, denoted R(C),

equals k/n where k is the dimension of C (as a vector space over F2); such a code is also referred to
as an [n, k] code. Being a linear subspace of dimension k, the code C can be described as the kernel

of a matrix H ∈ F
(n−k)×n
2 , so that C = {c ∈ F

n
2 | Hc = 0} (we treat codewords c as column vectors

for this description). The matrix H is called the parity check matrix of the code C. In general, any
choice of H whose rows form a basis of the dual space C⊥ = {x ∈ F

n
2 | xtc = 0∀c ∈ C} describes

the same code. Of special interest to us here are codes that admit a sparse parity check matrix.
In particular, we will study low-density parity check (LDPC) codes, which were introduced and
studied in Gallager’s amazing work [8] that was way ahead of its time. LDPC codes are described
by a parity check matrix all of whose rows and columns have at most a fixed constant number of
1’s (the constant is independent of n).2

A convenient way to describe an LDPC code is in terms of its factor graph.3 This is a natural
bipartite graph defined as follows. On the left side are n vertices, called variable nodes, one for
each codeword position. On the right are m = n − k vertices, called check nodes, one for each
parity check (row of the parity check matrix). A check node is adjacent to all variable nodes whose
corresponding codeword symbols appear in this parity check. In other words, the parity check
matrix of the code is precisely the bipartite adjacency matrix of the factor graph.

A special class of LDPC codes are regular LDPC codes where the factor graph is both left-regular
and right-regular. Regular LDPC codes were in fact the variant originally studied by Gallager [8],
as well as in the works of Mackay and Neal [18, 19] and Sipser and Spielman [29, 30] that sparked

2We will throughout be interested in a family of codes of increasing block length n with rate k/n held a fixed
constant. For convenience, we don’t spell this out explicitly, but this asymptotic focus should always be kept in mind.

3This graphical representation applies for any linear code. But the resulting graph will be sparse, and hence
amenable to linear time algorithms, only for LDPC codes.

4

the resurgence of interest in LDPC codes after over 30 years since Gallager’s work.4 LDPC codes
based on non-regular graphs, called irregular LDPC codes, rose to prominence beginning in the
work of Luby et al [16, 17] (studying codes based on irregular graphs was one of the big conceptual
leaps made in these works). We will return to this aspect later in the survey. A popular choice of
regular LDPC codes (with a rate of 1/2) are (3, 6)-regular LDPC codes where variable nodes have
degree 3 and check nodes have degree 6.

2.2 Channel models and their capacity

Design of good LDPC codes, together with progress in analyzing natural message-passing algo-
rithms for decoding them, has led to rapid progress towards approaching the capacity of important
stochastic channels. We now review the main noise models that we will be interested in.

Throughout, we deal with binary codes only. We will find it convenient to use {+1,−1} (instead
of {0, 1}) for the binary alphabet, where +1 corresponds to the bit 0 and −1 to the bit 1. Note the
XOR operation becomes multiplication in the ±1 notation.

We will assume the channel’s operation to be memoryless, so that each symbol of the codeword
is distorted independently according to the same channel law. So to specify the noise model, it
suffices to specify how the noise distorts a single input symbol. For us the input symbol will always
be either ±1, and so the channels have as input alphabet X = {1,−1}. Their output alphabet will
be denoted by Y and will be different for the different channels. Upon transmission of a codeword
c ∈ X n, the word y observed by the receiver belongs to Yn. The receiver must then decode y and
hopefully compute the original transmitted codeword c. The challenge is to achieve a vanishingly
small error probability (i.e., the probability of either a decoding failure or an incorrect decoding),
while at the same time operating at a good rate, hopefully close to the capacity of the channel.

We begin with the simplest noise model, the Binary Erasure Channel (BEC). This is parame-
terized by a real number α, 0 ≤ α < 1. The output alphabet is Y = {1,−1, ?}, with ? signifying
an erasure. Upon input x ∈ X , the channel outputs x with probability 1 − α, and outputs ? with
probability α. The value α is called the erasure probability, and we denote by BECα the BEC with
erasure probability α. For large n, the received word consists of about (1 − α)n unerased symbols
with high probability, so the maximum rate at which reliable communication is possible is at most
(1−α) (this holds even if the transmitter and receiver knew in advance which bits will be erased).
It turns out this upper bound can be achieved, and Elias [5], who first introduced the BEC, also
proved that its capacity equals (1 − α).

The Binary Symmetric Channel (BSC) is parameterized by a real number p, 0 ≤ p < 1/2, and
has output alphabet Y = {1,−1}. On input x ∈ X , the channel outputs bx where b = −1 with
probability p and b = 1 with probability 1− p. The value p is called the crossover probability. The
BSC with crossover probability p is denoted by BSCp. The capacity of BSCp is well known to be
1 − H(p), where H(p) = −p lg p − (1 − p) lg(1 − p) is the binary entropy function.

Finally, we mention a channel with continuous output alphabet Y called Binary Input Additive
White Gaussian Noise (BIAWGN). Here Y equals the set of real numbers, and the channel operation
is modeled as y = x + z where x ∈ {±1} is the input and z is a normal variable with mean 0 and

4In the long interim period, LDPC codes went into oblivion, with the exception of two (known to us) works. Zyablov
and Pinsker [35] proved that for random LDPC codes, with high probability over the choice of the code, Gallager’s
algorithm corrected a constant fraction of worst-case errors. Tanner [33] presented an important generalization of
Gallager’s construction and his decoding algorithms, which was later important in the work on linear time decodable
expander codes [29].

5

variance σ2 (i.e., has probability density function p(z) = 1√
2πσ2

e−
z2

2σ2). We denote by BIAWGNσ the

BIAWGN with variance σ2; its capacity is a function of 1/σ2 alone, though there is no elementary
form expression known for the capacity (but it can be expressed as an integral that can be estimated
numerically). For rate 1/2, the largest σ (Shannon limit) for which reliable communication on the
BIAWGN channel is possible is (up to the precision given) σopt = 0.9787.

More generally, if we allow scaling of inputs, the capacity is a function of the “signal-to-noise”
ratio EN/σ2 where EN is the energy expended per channel use. If the inputs to the channel are
not constrained to be ±1, but instead can take arbitrary real values, then it is well known that
the capacity of the AWGN channel equals 1

2 log2

(

1 + EN/σ2
)

bits per channel use. In particular,
in order to achieve reliable communication at a rate of 1/2 over the real-input AWGN channel,
a signal-to-noise ratio of 1, or 0 dB, is required.5 For the BIAWGN channel, this ratio increases
to 1/σ2

opt = 1.044 or 0.187 dB. Accordingly, the yardstick to measure the quality of a decoding
algorithm for an LDPC code of rate 1/2 is how close to this limit it can lead to correct decoding
with probability tending to 1 (over the realization of the BIAWGN channel noise).

The continuous output of a BIAWGN channel can be quantized to yield a discrete approxima-
tion to the original value, which can then be used in decoding. (Of course, this leads to loss in
information, but is often done for considerations of decoding complexity.) A particularly simple
quantization is to decode a signal x into 1 if x ≥ 0 and into −1 if x < 0. This effectively converts an
AWGN channel with variance σ2 into a BSC with crossover probability Q(1/σ) = 1√

2π

∫∞
1/σ e−x2/2dx.

It should not come as a surprise that the capacity of the resulting BSC falls well short of the capacity
of the BIAWGN.

All the above channels have the following output-symmetry property: For each possible channel
output q, p(y = q|x = 1) = p(y = −q|x = −1). (Here p(y|x) denotes the conditional probability
that the channel output equals y given the channel input is x.)

We will focus a good deal of attention on the BEC. Being a very simple channel, it serves as a
good warm-up to develop the central ideas, and at the same time achieving capacity on the BEC
with iterative decoding of LDPC codes is technically non-trivial. The ideas which were originally
developed for erasure codes in [16] have been generalized for more general channels, including the
BSC and BIAWGN, with great success [17, 23, 22]. Yet, to date the BEC is the only channel known
for which one can provably get arbitrarily close to capacity via iterative decoding of (an ensemble
of) LDPC codes. So naturally, given our focus on the theoretical aspects, the BEC is of particular
interest.

2.3 Spirit of the results

The central goal of research in channel coding is the following: given a particular channel, find a
family of codes which have fast (ideally linear-time) encoding algorithms and which can be reliably
decoded in linear time at rates arbitrarily close to channel capacity. This is, of course, also the goal
of the line of work on LDPC codes.

In “practice” one of the things that seems to get people excited are plots of the signal-to-noise
ratio (SNR) vs bit error probability (BER) for finite-length codes found by non-trivial optimization
based on theoretical insights, followed by simulation on, say, the BIAWGN channel. Inspired by the
remarkable success on the BEC [16], this approach was pioneered for LDPC codes in the presence

5In decibel notation, λ > 0 is equivalent to 10 log10 λ dB.

6

of errors in [31, 17], culminating in the demonstration of codes for the BIAWGN channel in [22]
that beat turbo codes and get very close to the Shannon limit.

Since this article is intended for a theory audience, our focus will be on the “worst” channel pa-
rameter (which we call threshold) for which one can prove that the decoding will be successful with
probability approaching 1 in the asymptotic limit as the block length grows to infinity. The rele-
vant channel parameters for the BEC, BSC, and BIAWGN are, respectively, the erasure probability,
crossover probability, and the variance of the Gaussian noise. The threshold is like the random
capacity for a given code (or ensemble of codes) and a particular decoder. Normally for studying
capacity we fix the channel and ask what is the largest rate under which reliable communication
is possible, whereas here we fix the rate and ask for the worst channel under which probability of
miscommunication tends to zero. Of course, the goal is to attain as a large a threshold as possible,
ideally approaching the Shannon limit (for example, 1 − α for BECα and 1 − H(p) for BSCp).

3 Simple concatenated schemes to achieve capacity on BEC and

BSC

We could consider the channel coding problem solved (at least in theory) on a given channel if we
have explicit codes, with efficient algorithms for encoding and reliable decoding at rates within any
desired ε of capacity. Ideally, the run time of the algorithms should be linear in the block length
n, and also depend polynomially on 1/ε. (But as we will see later, for certain channels like the
BEC, we can have a runtime of O(n log(1/ε)), or even better cn with c independent of ε, if we
allow randomization in the construction.) In this section, we discuss some “simple” attacks on this
problem for the BEC and BSC, why they are not satisfactory, and the basic challenges this raises
(some of which are addressed by the line of work on LDPC codes).

For the BEC, once we have the description of the generator matrix of a linear code that achieves
capacity, we can decode in O(n3) time by solving a linear system (the decoding succeeds if the system
has a unique solution). Since a random linear code achieves capacity with high probability [5], we
can sample a random generator matrix, thus getting a code that works with high probability
(together with a cubic time algorithm). However, we do not know any method to certify that the
chosen code indeed achieves capacity. The drawbacks with this solution are the cubic time and
randomized nature of the construction.

A construction using concatenated codes gets around both these shortcomings. The idea origi-
nates in Forney’s work [7] that was the first to present codes approaching capacity with polynomial
time encoding and decoding algorithms.

Let α be the erasure probability of the BEC and say our goal is to construct a code of rate (1−
α− ε) that enables reliable communication on BECα. Let C1 be a linear time encodable/decodable
binary code of rate (1 − ε/2) that can correct a small constant fraction γ = γ(ε) > 0 of worst-case
erasures. Such codes were constructed in [30, 1]. For the concatenated coding, we do the following.
For some parameter b, we block the codeword of C1 into blocks of size b, and then encode each of
these blocks by a suitable inner binary linear code C2 of dimension b and rate (1 − α − ε/2). The
inner code will be picked so that it achieves the capacity of the BECα, and specifically recovers the

correct message with success probability at least 1− γ/2. For b = b(ε, γ) = Ω
(

log(1/γ)
ε2

)

, a random

code meets this goal with high probability, so we can find one by brute-force search (that takes
constant time depending only on ε).

7

The decoding proceeds as one would expect: first each of the inner blocks is decoded, by solving
a linear system, returning either decoding failure or the correct value of the block. (There are no
errors, so when successful, the decoder knows it is correct.) Since the inner blocks are chosen to be
large enough, each inner decoding fails with probability at most γ/2. Since the noise on different
blocks are independent, by a Chernoff bound, except with exponentially small probability, we have
at most a fraction γ of erasures in the outer codeword. These are then handled by the linear-time
erasure decoder for C1.

We conclude that, for the BECα, we can construct codes of rate 1 − α − ε, i.e., within ε of
capacity, that can be encoded and decoded in n/εO(1) time. While this is pretty good, the brute-
force search for the inner code is unsatisfying, and the BEC is simple enough that better runtimes
(such as O(n log(1/ε))) are achieved by certain irregular LDPC codes.

A similar approach can be used for the BSCp. The outer code C1 must be picked so that it can
correct a small fraction of worst-case errors — again, such codes of rate close to 1 with linear time
encoding and decoding are known [30, 13]. Everything works as above, except that the decoding
of the inner codes, where we find the codeword of C2 closest to the received block, requires a
brute-force search and this takes 2b = 2Ω(1/ε2) time. This can be improved to polynomial in 1/ε
by building a look-up table, but then the size of the look-up table, and hence the space complexity
and time for precomputing the table, is exponential in 1/ε.

In summary, for the BSCp, we can construct codes of rate 1−H(p)−ε, i.e., within ε of capacity,

that can be encoded in n/εO(1) time and which can be reliably decoded in n21/εO(1)
time. It

remains an important open question to obtain such a result with decoding complexity n/εO(1), or
even poly(n/ε).6

We also want to point out that recently an alternate method using LP decoding has been used
to obtain polynomial time decoding at rates arbitrarily close to capacity [6]. But this also suffers
from a similar poor dependence on the gap ε to capacity.

4 Message-passing iterative decoding: An abstract view

4.1 Basic Structure

We now discuss the general structure of natural message-passing iterative decoding algorithms, as
discussed, for example, in [23]. In these algorithms, messages are exchanged between the variable
and check nodes in discrete time steps. Initially, each variable node vj , 1 ≤ j ≤ n, has an associated
received value rj , which is a random variable taking values in the channel output alphabet Y. Based
on this, each variable sends a message belong to some message alphabet M. A common choice
for this initial message is simply the received value rj , or perhaps some quantized version of rj

for continuous output channels such as BIAWGN. Now, each check node c processes the messages
it receives from its neighbors, and sends back a suitable message in M to each of its neighboring
variable nodes. Upon receipt of the messages from the check nodes, each variable node vj uses these
together with its own received value rj to produce new messages that are sent to its neighboring
check nodes. This process continues for many time steps, till a certain cap on the number of

6We remark that asymptotically, with ε fixed and n → ∞, the exponential dependence on 1/ε can be absorbed into
an additional factor with a slowly growing dependence on n. However, since in practice one is interested in moderate
block length codes, say n ≤ 106, a target runtime such as O(n/ε) seems like a clean way to pose the underlying
theoretical question.

8

iterations is reached. In the analysis, we are interested in the probability of incorrect decoding,
such as the bit-error probability. For every time step i, i ∈ N, the i’th iteration consists of a round
check-to-variable node messages, followed by the variable nodes responding with their messages to
the check nodes. The 0’th iteration consists of dummy messages from the check nodes, followed by
the variable nodes sending their received values to the check nodes.

A very important condition in the determination of the next message based on the messages
received from the neighbors is that message sent by u along an edge e does not depend on the
message just received along edge e. This is important so that only “extrinsic” information is passed
along from a node to its neighbor in each step. It is exactly this restriction that leads to the
independence condition that makes analysis of the decoding possible.

In light of the above restriction, the iterative decoding can be described in terms of the following

message maps: Ψ
(`)
v : Y ×Mdv−1 → M for variable node v with degree dv for the `’th iteration,

` ≥ 1, and Ψ
(`)
c : Mdv−1 → M for check node c with degree dc. Note the message maps can be

different for different iterations, though several powerful choices exist where they remain the same
for all iterations (and we will mostly discuss such decoders). Also, while the message maps can be
different for different variable (and check) nodes, we will use the same map (except for the obvious
dependence on the degree, in case of irregular graphs).

The intuitive interpretation of messages is the following. A message is supposed to be an
estimate or guess of a particular codeword bit. For messages that take ±1 values, the guess on
the bit is simply the message itself. We can also add a third value, say 0, that would signify an
erasure or abstention from guessing the value of the bit. More generally, messages can take values
in a larger discrete domain, or even take continuous values. In these cases the sign of the message
is the estimated value of the codeword bit, and its absolute value is a measure of the reliability or
confidence in the estimated bit value.

4.2 Symmetry Assumptions

We have already discussed the output-symmetry condition of the channels we will be interested in,
i.e., p(y = q|x = 1) = p(y = −q|x = −1). We now mention two reasonable symmetry assumptions
on the message maps, which will be satisfied by the message maps underlying the decoders we
discuss:

• Check node symmetry: Signs factor out of check node message maps, i.e., for all
(b1, . . . , bdc−1) ∈ {1,−1}dc−1

Ψ(`)
c (b1m1, · · · , bdc−1mdc−1) =

(

dc−1
∏

i=1

bi

)

Ψ(`)
c (m1, · · · , mdc−1) .

• Variable node symmetry: If the signs of all messages into a variable node are flipped,
then the sign of its output gets flipped:

Ψ(`)
v (−m0,−m1, · · · ,−mdv−1) = −Ψ(`)

v (m0, m1, · · · , mdc−1) .

When the above symmetry assumptions are fulfilled and the channel is output-symmetric, the
decoding error probability is independent of the actual codeword transmitted. Indeed, it is not
hard (see, for instance [23, Lemma 1]) to show that when a codeword (x1, . . . , xn) is transmitted

9

and (y1, . . . , yn) is received where yi = xizi, the messages to and from the variable node vi are equal
to xi times the corresponding message when the all-ones codeword is transmitted and (z1, . . . , zn)
is received. Therefore, the entire behavior of the decoder can be predicted from its behavior
assuming transmission of the all-ones codeword (recall that we are using {1,−1} notation for the
binary alphabet). So, for the analysis, we will assume that the all-ones codeword was transmitted.

5 Regular LDPC codes and simple iterative decoders

We will begin with regular LDPC codes and a theoretical analysis of simple message-passing algo-
rithms for decoding them.

5.1 Gallager’s program

The story of LDPC codes and iterative decoding begins in Gallager’s remarkable Ph.D. thesis
completed in 1960, and later published in 1963 [8]. Gallager analyzed the behavior of a code
picked randomly from the ensemble of (dv, dc)-regular LDPC codes of a large block length. He
proved that with high probability, as dv and dc increase, the rate vs. minimum distance trade-off
of the code approaches the Gilbert-Varshamov bound. Gallager also analyzed the error probability
of maximum likelihood (ML) decoding of random (dc, dc)-regular LDPC codes, and showed that
LDPC codes are at least as good on the BSC as the optimum code a somewhat higher rate (refer
to [8] for formal details concerning this statement). This demonstrated the promise of LDPC codes
independently of their decoding algorithms (since ML decoding is the optimal decoding algorithm
in terms of minimizing error probability).

To complement this statement, Gallager also proved a “negative” result showing that for each
finite dc, there is a finite gap to capacity on the BSC when using regular LDPC codes with check
node degrees dc More precisely, he proved that the largest rate that can be achieved for BSCp with

error probability going to zero is at most 1− H(p)
H(pdc) where pdc

= 1+(1−2p)dc

2 . This claim holds even

for irregular LDPC codes with dc interpreted as the maximum check node degree. This shows that
the maximum check node degree needs to grow with the gap ε between the rate of the code and
capacity of the BSC.

Since only exponential time solutions to the ML decoding problem are known, Gallager also
developed simple, iterative decoding algorithms for LDPC codes. These form the precursor to
the modern day message-passing algorithms. More generally, he laid down the foundations of the
following program for determining the threshold channel parameter below which a suitable LDPC
code can be used in conjunction with a given iterative decoder for reliable information transmission.

Code construction: Construct a family of (dv, dc)-regular factor graphs with n variable nodes
(for increasing n) with girth greater than 4`(n) = Ω(log n). An explicit construction of such
graphs was also given by Gallager [8, Appendix C].

Analysis of Decoder: Determine the average fraction of incorrect7 messages passed at the i’th
iteration of decoding for i ≤ ` = `(n) (assuming there are no cycles of length at most 4`).
This fraction is usually expressed by a system of recursive equations that depend on dv, dc

and the channel parameter (such as crossover probability, in case of the BSC).

7A message is incorrect if the bit value it estimates is wrong. For transmission of the all-ones codeword, this
means the message has a non-positive value.

10

Threshold computation: Using the above equations, compute (analytically or numerically) the
threshold channel parameter below which the expected fraction of incorrect messages ap-
proaches zero as the number of iterations increases. Conclude that the chosen decoder when
applied to this family of codes with `(n) decoding rounds leads to bit-error probability ap-
proaching zero as long as the channel parameter is below the threshold.

The recent research on (irregular) LDPC codes shares the same essential features of the above
program. The key difference is that the requirement of an explicit code description in Step 1
is relaxed. This is because for irregular graphs with specific requirements on degree distribution,
explicit constructions of large girth graphs seem very hard. Instead, a factor graph chosen randomly
from a suitable ensemble is used. This raises issues such as the concentration of the performance
of a random code around the average behavior of the ensemble. It also calls for justification of
the large girth assumption in the decoding. We will return to these aspects when we begin our
discussion of irregular LDPC codes in Section 6.

We should point out that Gallager himself used random regular LDPC codes for his experiments
with iterative decoders for various channels such as the BSC, the BIAWGN, and the Rayleigh fading
channel. However, if we so desire, for the analytic results, even explicit constructions are possible.
In the rest of this section, we assume an explicit large girth factor graph is used, and focus on the
analysis of some simple and natural iterative decoders. Thus the only randomness involved is the
one realizing the channel noise.

5.2 Decoding on the binary erasure channel

Although Gallager did not explicitly study the BEC, his methods certainly apply to it, and we
begin by studying the BEC. For the BEC, there is essentially a unique choice for a non-trivial
message-passing decoding algorithm. In a variable-to-check message round, a variable whose bit
value is known (either from the channel output or from a check node in a previous round) passes
along its value to the neighboring check nodes, and a variable whose bit value is not yet determined
passes a symbol (say 0) signifying erasure. In the check-to-variable message round, a check node c
passes to a neighbor v an erasure if it receives an erasure from at least one neighbor besides v, and
otherwise passes the bit value b to v where b is the parity of the bits received from neighbors other
than v. Formally, the message maps are given as follows:

Ψ(`)
v (r, m1, . . . , mdv−1) =

{

b if at least one of r, m1, . . . , mdv−1 equals b ∈ {1,−1}
0 if r = m1 = · · · = mdv−1 = 0

(Note that the map is well-defined since the inputs to a variable node will never give conflicting
±1 votes on its value.)

Ψ(`)
c (m1, . . . , mdc−1) =

dc−1
∏

i=1

mi

We note that an implementation of the decoder is possible that uses each edge of the factor
for message passing exactly once. Indeed, once a variable node’s value is known, the bit value is
communicated to its neighboring check nodes, and this node (and edges incident on it) are removed
from the graph. Each check node maintains the parity of the values received from its neighboring
variables so far, and updates this after each round of variable messages (note that it receives each
variable node’s value exactly once). When a check node has degree exactly one (i.e., values of all

11

but one of its variable node neighbors are now known), it communicates the parity value it has
stored to its remaining neighbor, and both the check node and the remaining edge incident on it are
deleted. This version of the iterative decoder has been dubbed the Peeling Decoder. The running
time of the Peeling Decoder is essentially the number of edges in the factor graph, and hence it
performs about dv operations per codeword bit.

Let us analyze this decoding algorithm for ` iterations, where ` is a constant (chosen large
enough to achieve the desired bit-error probability). We will assume that the factor graph does not
have any cycle of length at most 4` (which is certainly true if it has Ω(log n) girth).

The following is crucial to our analysis.

Lemma 1 For each node, the random variables corresponding to the messages received by it in the
i’th iteration are all independent, for i ≤ `.

Let us justify why the above is the case. For this, we crucially use the fact that the message sent
along an edge, say from v to c, does not depend on the message that v receives from c. Therefore,
the information received at a check node c (the situation for variable nodes is identical) from its
neighbors in the i’th iteration is determined by by a computation graph rooted at c, with its dc

variable node neighbors as its children, the dv − 1 neighbors besides c of each these variable nodes
as their children, the dc −1 other neighbors of these check nodes as their children, and so on. Since
the girth of the graph is greater than 4`, the computation graph is in fact a tree. Therefore, the
information received by c from its neighbors in the i’th iteration are all independent.

Take an arbitrary edge (v, c) between variable node v and check node c. Let us compute the
probability pi that the message from v to c in the i’th iteration is an erasure (using induction and
the argument below, one can justify the claim that this probability, which is taken over the channel
noise, will be independent of the edge and only depend on the iteration number, as long as i ≤ `).
For i = 0, p0 = α, the probability that the bit value for v was erased by the BECα. In the (i+1)’st
iteration, v passes an erasure to c iff it was originally erased by the channel, and it received an
erasure from each of its dv − 1 neighbors other than c. Each of these neighboring check nodes c′ in
turn sends an erasure to v iff at least one neighbor of c′ other than v sent an erasure to c′ during
iteration i — due to the independence of the involved messages, this event occurs for node c′ with
probability (1 − (1 − pi)

dc−1). Again, because the messages from various check nodes to v in the
(i + 1)’st round are independent, we have

pi+1 = α · (1 − (1 − pi)
dc−1)dv−1 . (1)

By linearity of expectation, pi is the expected fraction of variable-to-check messages sent in
the i’th iteration that are erasures. We would like to show that lim`→∞ p` = 0, so that the bit-
error probability of the decoding vanishes as the number of iterations grows. The largest erasure
probability α for which this happens is given by the following lemma.

Lemma 2 The threshold erasure probability αMP(dv, dc) for the BEC below which the message-
passing algorithm results in vanishing bit-erasure probability is given by

αMP(dv, dc) = min
x∈[0,1]

x

(1 − (1 − x)dc−1)dv−1
. (2)

Proof. By definition, αMP(dv, dc) = sup{α ∈ [0, 1] : limi→∞ pi = 0} where pi is as defined recursively
in (1). Define the functions g(x) = x

(1−(1−x)dc−1)dv−1 , and f(α, x) = α(1 − (1 − x)dc−1)dv−1. Also

let α∗ = minx∈[0,1] g(x). We wish to prove that αMP(dv, dc) = α∗.

12

If α < α∗, then for every x ∈ [0, 1], f(α, x) = αx
g(x) ≤ α∗x

g(x) ≤ x, and in fact f(α, x) < x for

x ∈ (0, 1]. Hence it follows that pi+1 = f(α, pi) ≤ pi and since 0 ≤ f(α, x) ≤ α for all x ∈ [0, 1], the
probability converges to a value p∞ ∈ [0, α]. Since f is continuous, we have p∞ = f(α, p∞), which
implies p∞ = 0 (since f(α, x) < x for x > 0). This shows that αMP(dv, dc) ≥ α∗.

Conversely, if α > α∗, then let x0 ∈ [0, 1] be such that α > g(x0). Then α ≥ f(α, x0) =
αx0

g(x0)
> x0, and of course f(α, α) ≤ α. Since f(α, x) is a continuous function of x, we must have

f(α, x∗) = x∗ for some x∗ ∈ (x0, α]. For the recursion (1) with a fixed value of α, it is easy to
see by induction that if p0 ≥ p′0, then pi ≥ p′i for all i ≥ 1. If p′0 = x∗, then we have p′i = x∗ for
all i. Therefore, when p0 = α ≥ x∗, we have pi ≥ x∗ for all i as well. In other words, the error
probability stays bounded below by x∗ irrespective of the number of iterations. This proves that
αMP(dv, dc) ≤ α∗.

Together, we have exactly determined the threshold to be α∗ = minx∈[0,1] g(x).

Remark 3 Using standard calculus, we can determine αMP(dv, dc) to be 1−γ
(1−γdc−1)dv−1 where γ is

the unique positive root of the polynomial p(x) = ((dv − 1)(dc − 1)− 1)xdc−2 −∑dc−3
i=0 xi. Note that

when dv = 2, p(1) = 0, so the threshold equals 0. Thus we must pick dv ≥ 3, and hence dc ≥ 4 (to
have positive rate). For the choice dv = 3 and dc = 4, p(x) is a quadratic and we can analytically
compute αMP(3, 4) ≈ 0.6474; note that capacity for this rate equals 3/4 = 0.75. (The best threshold
one can hope for equals dv/dc since the rate is at least 1−dv/dc.) Closed form analytic expressions
for some other small values of (dv, dc) are given in [2]: for example, αMP(3, 5) ≈ 0.5406 (compare
to capacity of 0.6) and αMP(3, 6) ≈ 0.4294 (compare to capacity of 0.5).

Theorem 4 For integers 3 ≤ dv < dc, there exists an explicit family of binary linear codes of rate
at least 1 − dv

dc
that can be reliably decoded in linear time on BECα provided α < αMP(dv, dc).

8

5.3 Decoding on the BSC

The relatively clean analysis of regular LDPC codes on the BEC is surely encouraging. As men-
tioned earlier, Gallager in fact did not consider the BEC in his work. We now discuss one of his
decoding algorithms for the BSC, that has been dubbed Gallager’s Algorithm A, and some simple
extensions of it.

5.3.1 Gallager’s Algorithm A

The message alphabet of Algorithm A will equal {1,−1}, so the nodes simply pass guesses on
codeword bits. The message maps are time invariant and do not depend on the iteration number,
so we will omit the superscript indicating the iteration number in describing the message maps.
The check nodes send a message to a variable node indicating the parity of the other neighboring
variables, or formally:

Ψc(m1, . . . , mdc−1) =

dc−1
∏

i=1

mi .

8Our analysis showed that the bit-error probability can be made below any desired ε > 0 by picking the number
of iterations to be a large enough constant. A more careful analysis using `(n) = Ω(log n) iterations shows that
bit-error probability is at most exp(−nβ) for some constant β = β(dv, dc). By a union bound, the entire codeword is
thus correctly recovered with high probability.

13

The variable nodes send to a neighboring check node their original received value unless the incoming
messages from the other check nodes unanimously indicate otherwise, in which case it sends the
negative of the received value. Formally,

Ψv(r, m1, . . . , mdv−1) =

{

−r if m1 = · · · = mdv−1 = −r
r otherwise .

As in the case of BEC, we will track the expected fraction of variable-to-check node messages that
are erroneous in the i’th iteration. Since we assume the all-ones codeword was transmitted, this is
simply the expected fraction of messages that equal −1. Let pi be the probability (over the channel
noise) that a particular variable-to-check node message in iteration i equals −1 (as in the case of
the BEC, this is independent of the actual edge for i ≤ `). Note that we have p0 = p, the crossover
probability of the BSC.

It is a routine calculation using the independence of the incoming messages to prove the following
recursive equation [8, Sec. 4.3], [23, Sec III]:

pi+1 = p0 − p0

(

1 + (1 − 2pi)
dc−1

2

)dv−1

+ (1 − p0)

(

1 − (1 − 2pi)
dc−1

2

)dv−1

(3)

For a fixed value of p0, pi+1 is a increasing function of pi, and for a fixed value of pi, pi+1 is an
increasing function of p0. Therefore, by induction pi is an increasing function of p0. Define the
threshold value of this algorithm “A” as pA(dv, dc) = sup{p0 ∈ [0, 1] : lim`→∞ p` = 0}. By the
above argument, if the crossover probability p < pA(dv, dc), then the expected fraction of erroneous
messages in the `’th iteration approaches 0 as ` → ∞.

Regardless of the exact quantitative value, we want to point out that when dv ≥ 3, the threshold
is positive. Indeed, for dv > 2, for small enough p0 > 0, one can see that pi+1 < pi for 0 < pi ≤ p0

and pi+1 = pi for pi = 0, which means that limi→∞ pi = 0.
Exact analytic expressions for the threshold have been computed for some special cases [2].

This is based on the characterization of pA(dv, dc) as the supremum of all p0 > 0 for which

x = p0 − p0

(

1 + (1 − 2x)dc−1

2

)dv−1

+ (1 − p0)

(

1 − (1 − 2x)dc−1

2

)dv−1

does not have a strictly positive solution x with x ≤ p0. Below are some example values of the
threshold (up to the stated precision). Note that the rate of the code is 1− dv/dc and the Shannon
limit is H−1(dv/dc) (where H−1(y) for 0 ≤ y ≤ 1 is defined as the unique value of x ∈ [0, 1/2] such
that H(x) = y).

dv dc pA(dv, dc) Capacity

3 6 0.0395 0.11
4 8 1/21 0.11
5 10 1/36 0.11
4 6 1/15 0.174
3 4 0.106 0.215
3 5 0.0612 0.146

5.3.2 Gallager’s Algorithm B

Gallager proposed an extension to the above algorithm, which is now called Gallager’s Algorithm
B, in which a variable node decides to flip its value in an outgoing message when at least b of the

14

incoming messages suggest that it ought to flip its value. In Algorithm A, we have b = dv − 1. The
threshold b can also depend on the iteration number, and we will denote by bi this value during
the i’th iteration. Formally, the variable message map in the i’th iteration is given by

Ψ(i)
v (r, m1, . . . , mdv−1) =

{

−r if |{j : mj = −r}| ≥ bi

r otherwise .

The check node message maps remain the same. The threshold should be greater than (dv − 1)/2
since intuitively one should flip only when more check nodes suggest a flip than those that suggest
the received value. So when dv = 3, the above algorithm reduces to Algorithm A.

Defining the probability of an incorrect variable-to-check node message in the i’th iteration to
be p̃i, one can show the recurrence [8, Sec. 4.3]:

p̃i+1 = p̃0 − p̃0

dv−1
∑

j=bi+1

(

dv−1
j

)

(

1 + (1 − 2p̃i)
dc−1

2

)j (
1 − (1 − 2p̃i)

dc−1

2

)dv−1−j

+ (1 − p̃0)

dv−1
∑

j=bi+1

(

dv−1
j

)

(

1 + (1 − 2p̃i)
dc−1

2

)dv−1−j (
1 − (1 − 2p̃i)

dc−1

2

)j

The cut-off value bi+1 can then be chosen to minimize this value. The solution to this minimization
is the smallest integer bi+1 for which

1 − p̃0

p̃0
≤
(

1 + (1 − 2p̃i)
dc−1

1 − (1 − 2p̃i)dc−1

)2bi+1−dv+1

.

By the above expression, we see that as p̃i decreases, bi+1 never increases. And, as p̃i is sufficiently
small, bi+1 takes the value dv/2 for even dv and (dv + 1)/2 for odd dv. Therefore, a variable node
flips its value when a majority of the dv − 1 incoming messages suggest that the received value was
an error. We note that this majority criterion for flipping a variable node’s bit value was also used
in decoding of expander codes [29].

Similar to the analysis of Algorithm A, using the above recurrence, one can show that when
dv ≥ 3, for sufficiently small p0 > 0, we have pi+1 < pi when 0 < pi ≤ p0, and of course when
pi = 0, we have pi+1 = 0. Therefore, when dv ≥ 3, for small enough p0 > 0, we have limi→∞ pi = 0
and thus a positive threshold.

The values of the threshold of this algorithm for small pairs (dv, dc) appear in [23]. For the
pairs (4, 8), (4, 6) and (5, 10) the thresholds are about 0.051, 0.074, and 0.041 respectively. For
comparison, for these pairs Algorithm A achieved a threshold of about 0.047, 0.066, and 0.027
respectively.

5.3.3 Using Erasures in the Decoder

In both the above algorithms, each message made up its mind on whether to guess 1 or −1 for a
bit. But it may be judicious to sometimes abstain from guessing, i.e., to send an “erasure” message
(with value 0), if there is no good reason to guess one way or the other. For example, this may
be the appropriate course of action if a variable node receives one-half 1’s and one-half −1’s in the

15

incoming check node messages. This motivates an algorithm with message alphabet {1, 0,−1} and
the following message maps (in iteration `):

Ψ(`)
v (r, m1, m2, . . . , mdv−1) = sgn



w(`)r +

dv−1
∑

j=1

mj





and

Ψ(`)
c (m1, m2, . . . , mdc−1) =

dc−1
∏

j=1

mj .

The weight w(`) dictates the relative importance given to the received value compared to the
suggestions by the check nodes in the `’th iteration. These weights add another dimension of
design choices that one can optimize.

Exact expressions for the probabilities p
(−1)
i and p

(0)
i) that a variable-to-check message is an error

(equals −1) and an erasure (equals 0) respectively in the i’th iteration can be written down [23].
These can be used to pick appropriate weights w(i). For the (3, 6)-regular code, w(1) = 2 and
w(i) = 1 for i ≥ 2 is reported as the optimum choice in [23], and using this choice the resulting
algorithm has a threshold of about 0.07, which is a good improvement over the 0.04 achieved by
Algorithm A. More impressively, this is close to the threshold of 0.084 achieves by the “optimal”
belief propagation decoder. A heuristic to pick the weights w(i) is suggested in [23] and the threshold
of the resulting algorithm is computed for small values of (dv, dc).

5.4 Decoding on BIAWGN

We now briefly turn to the BIAWGN channel. We discussed the most obvious quantization of the
channel output which converts the channel to a BSC with crossover probability Q(1/σ). There is a
natural way to incorporate erasures into the quantization. We pick a threshold τ around zero, and
quantize the AWGN channel output r into −1, 0 (which corresponds to erasure), or 1 depending on
whether r ≤ −τ , −τ < r < τ , or r ≥ τ , respectively. We can then run exactly the above message-
passing algorithm (the one using erasures). More generally, we can pick a separate threshold τi for
each iteration i — the choice of τi and w(i) can be optimized using some heuristic criteria. Using
this approach, a threshold of σ∗ = 0.743 is reported for communication using a (3, 6)-regular LDPC
code on the BIAWGN channel. This corresponds to a raw bit-error probability of Q(1/σ∗) = 0.089,
which is almost 2% greater than the threshold crossover probability of about 0.07 achieved on the
BSC. So even with a ternary message alphabet, providing soft information (instead of quantized
hard bit decisions) at the input to the decoder can be lead to a good performance gain. The belief
propagation algorithm we discuss next uses a much large message alphabet and yields further
substantial improvements for the BIAWGN.

5.5 The belief propagation decoder

So far we have discussed decoders with quantized, discrete messages taking on very few values.
Naturally, we can expect more powerful decoders if more detailed information, such as real values
quantifying the likelihood of a bit being ±1, are passed in each iteration. We now describe the
“belief propagation” (BP) decoder which is an instance of such a decoder (using a continuous
message alphabet). We follow the description in [23, Sec. III-B]. In belief propagation, the messages

16

sent along an edge e represent the posterior conditional distribution on the bit associated with the
variable node incident on e. This distribution corresponds to a pair of nonnegative reals p1, p−1

satisfying p1 +p−1 = 1. This pair can be encoded as a single real number (including ±∞) using the
log-likelihood ratio log p1

p−1
, and the messages used by the BP decoder will follow this representation.

Each node acts under the assumption that each message communicated to it in a given round
is a conditional distribution on the associated bit, and further each such message is conditionally
independent of the others. Upon receiving the messages, a node transmits to each neighbor the
conditional distribution of the bit conditioned on all information except the information from that
neighbor (i.e., only extrinsic information is used in computing a message). If the graph has large
enough girth compared to the number of iterations, this assumption is indeed met, and the mes-
sages at each iteration reflect the true log-likelihood ratio given the observed values in the tree
neighborhood of appropriate depth.

If l1, l2, . . . , lk are the likelihood ratios of the conditional distribution of a bit conditioned on
independent random variables, then the likelihood ratio of the bit value conditioned on all of the
random variables equals

∏k
i=1 li. Therefore, log-likelihoods of independent messages add up, and

this leads to the variable message map (which is independent of the iteration number):

Ψv(m0, m1, . . . , mdv−1) =

dv−1
∑

i=0

mi

where m0 is the log-likelihood ratio of the bit based on the received value (eg., for the BSCp,
m0 = r log 1−p

p where r ∈ {1,−1} is the received value).
The performance of the decoder is analyzed by tracking the evolution of the probability density

of the log-likelihood ratios (hence the name “density evolution” for this style of analysis). By the
above, given densities P0, P1, . . . , Pdv−1 on the real quantities m0, m1, . . . , mdv−1, the density of
Ψv(m0, m1, . . . , mdv−1) is the convolution P0 ⊗ P1 ⊗ · · · ⊗ Pdv−1 over the reals of those densities.
In the computation, one has P1 = P2 = · · · = Pdv−1 and the densities will be quantized, and the
convolution can be efficiently computed using the FFT.

Let us now turn to the situation for check nodes. Given bits bi, 1 ≤ i ≤ k, with independent
probability distributions (pi

1, p
i
−1), what is the distribution (p1, p−1) of the bit b =

∏k
i=1 bi? We

have the expectation

E[b] = E[
∏

i

bi] =
∏

i

E[bi] =
∏

i

(pi
1 − pi

−1) .

Therefore we have p1 − p−1 =
∏k

i=1(p
i
1 − pi

−1). Now if m is the log-likelihood ratio log p1

p−1
, then

p1 − p−1 = em−1
em+1 = tanh(m/2). Conversely, if p1 − p−1 = q, then log p1

p−1
= log 1+q

1−q . These
calculations lead to the following check node map for the log-likelihood ratio:

Ψc(m1, m2, . . . , mdc−1) = log

(

1 +
∏dc−1

i=1 tanh(mi/2)

1 −∏dc−1
i=1 tanh(mi/2)

)

.

It seems complicated to track the density of Ψc(m1, m2, . . . , mdc−1) based on those of the mi’s.
However, as shown in [23], this can be also be realized via a Fourier transform, albeit with a slight
change in representation of the conditional probabilities (p1, p−1). We skip the details and instead
point the reader to [23, Sec. III-B].

Using these ideas, we have an effective algorithm to recursively compute, to any desired degree
of accuracy, the probability density P (`) of the log-likelihood ratio of the variable-to-check node

17

messages in the `-th iteration, starting with an explicit description of the initial density P (0).
The initial density is simply the density of the log-likelihood ratio of the received value, assuming
transmission of the all-ones codeword; for example, for BSCp, the initial density P (0) is given by

P (0)(x) = pδ

(

x − log
p

1 − p

)

+ (1 − p)δ

(

x − log
1 − p

p

)

,

where δ(x) is the Dirac delta function.
The threshold crossover probability for the BSC and the threshold variance for the BIAWGN

under belief propagation decoding for various small values of (dv, dc) are computed by this method
and reported in [23]. For the (3, 6) LDPC code, these thresholds are respectively p∗ = 0.084
(compare with Shannon limit of 0.11) and σ∗ = 0.88 (compare with Shannon limit of 0.9787).

The above numerical procedure for tracking the evolution of densities for belief propagation
and computing the associated threshold to any desired degree of accuracy has since been applied
with great success. In [22], the authors apply this method to irregular LDPC codes with optimized
structure and achieve a threshold of σ∗ = 0.9718 with rate 1/2 for the BIAWGN, which is a mere
0.06 dB way from the Shannon capacity limit.9

6 Irregular LDPC codes

Interest in LDPC codes surged following the seminal paper [16] that initiated the study of irregular
LDPC codes, and proved their potential by achieving the capacity on the BEC. Soon, it was realized
that the benefits of irregular LDPC codes extend to more powerful channels, and this led to a flurry
of activity. In this section, we describe some of the key elements of the analytic approach used to
to study message-passing decoding algorithms for irregular LDPC codes.

6.1 Intuitive benefits of irregularity

We begin with some intuition on why one might expect improved performance by using irregular
graphs. In terms of iterative decoding, from the variable node perspective, it seems better to
have high degree, since the more information it gets from check nodes, the more accurately it
can guess its correct value. On the other hand, from the check node perspective, the lower its
degree, the more valuable the information it can transmit back to its neighbors. (The XOR of
several mildly unpredictable bits has a much larger unpredictability.) But in order to have good
rate, there should be far fewer check nodes than variable nodes, and therefore meeting the above
competing requirements is challenging. Irregular graphs provide significantly more flexibility in
balancing the above incompatible degree requirements. It seems reasonable to believe that a wide
spread of degrees for variable nodes could be useful. This is because one might expect that variable
nodes with high degree will converge to their correct value quickly. They can then provide good
information to the neighboring check nodes, which in turn provide better information to lower
degree variable nodes, and so on leading to a cascaded wave effect.

The big challenge is to leap from this intuition to the design of appropriate irregular graphs
where this phenomenon provably occurs, and to provide analytic bounds on the performance of
natural iterative decoders on such irregular graphs.

9The threshold signal-to-noise ratio 1/(σ∗)2 = 0.2487 dB, and the Shannon limit for rate 1/2 is 0.187 dB.

18

Compared to the regular case, there are additional technical issues revolving around how irreg-
ular graphs are parameterized, how they are constructed (sampled), and how one deals with the
lack of explicit large-girth constructions. We discuss these issues in the next two subsections.

6.2 The underlying ensembles

We now describe how irregular LDPC codes can be parameterized and constructed (or rather
sampled). Assume we have an LDPC code with n variable nodes with Λi variable nodes of degree
i and Pi check nodes of degree i. We have

∑

i Λi = n, and
∑

i iΛi =
∑

i iPi as both these equal the
number of edges in the graph. Also

∑

i Pi = n(1 − r) where r is the designed rate of the code. It
is convenient to capture this information in the compact polynomial notation:

Λ(x) =

dmax
v
∑

i=2

Λix
i , P (x) =

dmax
c
∑

i=1

Pix
i .

We call the polynomials Λ and P the variable and check degree distributions from a node per-
spective. Note that Λ(1) is the number of variable nodes, P (1) the number of check nodes, and
Λ′(1) = P ′(1) the number of edges.

Given such a degree distribution pair (Λ, P), let LDPC(Λ, P) denote the “standard” ensemble
of bipartite (multi)graphs with Λ(1) variable nodes and P (1) check nodes, with Λi variable nodes
and Pi check nodes of degree i. This ensemble is defined by taking Λ′(1) = P ′(1) “sockets” on
each side, allocating i sockets to a node of degree i in some arbitrary manner, and then picking a
random matching between the sockets.

To each member of LDPC(Λ, P), we associate the code of which it is the factor graph. A
slight technicality: since we are dealing with multigraphs, in the parity check matrix, we place a
non-zero entry at row i and column j iff the ith check node is connected to the jth variable node
an odd number of times. Therefore, we can think of the above as an ensemble of codes, and by
abuse of notation also refer to it as LDPC(Λ, P). (Note that the graphs have a uniform probability
distribution, but the induced codes need not.) In the sequel, our LDPC codes will be obtained by
drawing a random element from the ensemble LDPC(Λ, P).

To construct a family of codes, one can imagine using a normalized degree distribution giving
the fraction of nodes of a certain degree, and then considering an increasing number of nodes. For
purposes of analysis, it ends up being convenient to use normalized degree distributions from the
edge perspective. Let λi and ρi denote the fraction of edges incident to variable nodes and check
nodes of degree i respectively. That is, λi (resp. ρi) is the probability that a randomly chosen edge
is connected to a variable (resp. check) node of degree i. These distributions can be compactly
written in terms of the power series defined below:

λ(x) =
∑

i

λix
i−1 , ρ(x) =

∑

i

ρix
i−1 .

It is easily seen that λ(x) = Λ′(x)
Λ′(1) and ρ(x) = P ′(x)

P ′(1) . If M is the total number of edges, then

the number of variable nodes of degree i equals Mλi/i, and thus the total number of variable
nodes is M

∑

i λi/i. It follows that that the average variable node degree equals 1
P

i λi/i = 1
R 1
0 λ(z)dz

.

Likewise, the average check node degree equals 1
R 1
0 ρ(z)dz

. It follows that the designed rate can be

19

expressed in terms of λ, ρ as

r = r(λ, ρ) = 1 −
∫ 1
0 ρ(z)dz
∫ 1
0 λ(z)dz

. (4)

We also have the inverse relationships

Λ(x)

n
=

∫ x
0 λ(z)dz
∫ 1
0 λ(z)dz

,
P (x)

n(1 − r)
=

∫ x
0 ρ(z)dz
∫ 1
0 ρ(z)dz

. (5)

Therefore, (Λ, P) and (n, λ, ρ) carry the same information (in the sense we can obtain each from
the other). For the asymptotic analysis we use (n, λ, ρ) to refer to the LDPC code ensemble. There
is a slight technicality that for some n, the (Λ, P) corresponding to (n, λ, ρ) may not be integral. In
this case, rounding the individual node distributions to the closest integer has negligible effect on
the asymptotic performance of decoder or the rate, and so this annoyance may be safely ignored.

The degree distributions λ, ρ play a prominent role in the line of work, and the performance of
the decoder is analyzed and quantified in terms of these.

6.3 Concentration around average performance

Given a degree distribution pair (λ, ρ) and a block length n, the goal is to mimic Gallager’s program
(outlined in Section 5.1), using a factor graph with degree distribution (λ, ρ) in place of a (dv, dc)-
regular factor graph. However, the task of constructing explicit large girth graphs obeying precise
irregular degree distributions seems extremely difficult. Therefore, a key difference is to give up
on explicitness, and rather sample an element from the ensemble LDPC(n, λ, ρ), which can be done
easily as mentioned above.

It is not very difficult to show that a random code drawn from the ensemble will have the needed
girth (and thus be tree-like in a local neighborhood of every edge/vertex) with high probability;
see for instance [23, Appendix A]. A more delicate issue is the following: For the irregular case
the neighborhood trees out of different nodes have a variety of different possible structures, and
thus analyzing the behavior of the decoder on a specific factor graph (after it has been sampled,
even conditioning on it having large girth) seems hopeless. What is feasible, however, is to analyze

the average behavior of the decoder (such as the expected fraction, say P
(λ,ρ)
n (`), of erroneous

variable-to-check messages in the `’th iteration) taken over all instances of the code drawn from the
ensemble LDPC(n, λ, ρ) and the realization of the channel noise. It can be shown that, as n → ∞,

P
(λ,ρ)
n (`) converges to a certain quantity P

(λ,ρ)
T (`), which is defined as the probability (taken over

both choice of the graph and the noise) that an incorrect message is sent in the `’th iteration along
an edge (v, c) assuming that the depth 2` neighborhood out of v is a tree.

In order to define the probability P
(λ,ρ)
T (`) more precisely, one uses a “tree ensemble” T`(λ, ρ)

defined inductively as follows. T0(λ, ρ) consists of the trivial tree consisting of just a root variable
node. For ` ≥ 1, to sample from T`(λ, ρ), first sample an element from T`−1(λ, ρ). Next for each
variable leaf node (independently), with probability λi+1 attach i check node children. Finally, for
each of the new check leaf nodes, independently attach i variable node children with probability

ρi+1. The quantity P
(λ,ρ)
T (`) is then formally defined as the probability that the outgoing message

from the root node of a sample T from T`(λ, ρ) is incorrect, assuming the variable nodes are initially
labeled with 1 and then the channel noise acts on them independently (the probability is thus both
over the channel noise and the choice of the sample T from T`(λ, ρ)).

20

The convergence of P
(λ,ρ)
n (`) to P

(λ,ρ)
T (`) is a simple consequence of the fact that, for a random

choice of the factor graph from LDPC(n, λ, ρ), the depth 2` neighborhood of an edge is tree-like
with probability tending to 1 as n gets larger (for more details, see [23, Thm. 2]).

The quantity P
(λ,ρ)
T (`) for the case of trees is easily computed, similar to the case of regular

graphs, by a recursive procedure. One can then determine the threshold channel parameter for

which P
(λ,ρ)
T (`) → 0 as ` → ∞.

However, this only analyzed the average behavior of the ensemble of codes. What we would like
is for a random code drawn from the ensemble LDPC(n, λ, ρ) to concentrate around the average
behavior with high probability. This would mean that almost all codes behave alike and thus the
individual behavior of almost all codes is characterized by the average behavior of the ensemble
(which can be computed as outlined above). A major success of this theory is that such a concen-
tration phenomenon indeed holds, as shown in [17] and later extended to a large class of channels
in [23]. The proof uses martingale arguments where the edges of the factor graph and then the
inputs to the decoder are revealed one by one. We refrain from presenting the details here and
point the reader to [17, Thm. 1] and [23, Thm. 2] (the result is proved for regular ensembles in
these works but extends to irregular ensembles as long as the degrees in the graph are bounded).

In summary, it suffices to analyze and bound P
(λ,ρ)
T (`), and if this tends to 0 as ` → ∞, then in

the limit of a large number of decoding iterations, for almost all codes in the ensemble, the actual
bit error probability of the decoder tends to zero for large enough block lengths.

Order of limits: A remark on the order of the limits might be in order. The proposed style of anal-

ysis aims to determine the threshold channel parameter for which lim`→∞ limn→∞ E[P
(λ,ρ)
n (`)] = 0.

That is, we first fix the number of iterations and determine the limiting performance of an ensemble
as the block length tends to infinity, and then let the number of iterations tend to infinity. Ex-

changing the order of limits gives us the quantity lim`→∞ limn→∞ E[P
(λ,ρ)
n (`)]. It is this limit that

corresponds to the more typical scenario in practice where for each fixed block length, we let the
iterative decoder run until no further progress is achieved. We are then interested in the limiting
performance as the block length tends to infinity. For the BEC, it has been shown that for both the
orders of taking limits, we get the same threshold [25, Sec. 2.9.8]. Based on empirical observations,
the same has been conjectured for channels such as the BSC, but a proof of this seems to be out
of sight.

6.4 Analysis of average performance for the BEC

We now turn to analyzing the average behavior of the ensemble LDPC(n, λ, ρ) under message-passing
decoding on the BEC. (The algorithm for regular codes from Section 5.2 extends to irregular codes
in the obvious fashion — the message maps are the same except the maps at different nodes will
have different number of arguments.)

Lemma 5 (Performance of tree ensemble channel on BEC) Consider a degree distribution
pair (λ, ρ) and a real number 0 < α < 1. Define x0 = α and for ` ≥ 1,

x` = αλ(1 − ρ(1 − x`−1)) . (6)

Then, for the BEC with erasure probability α, for every ` ≥ 1, we have P
(λ,ρ)
T (`) = x`.

Proof. The proof follows along the lines of the recursion (1) that we established for the regular case.
The case ` = 0 is clear since the initial variable-to-check message equals the received value which

21

equals an erasure with probability α. Assume that for 0 ≤ i < `, P
(λ,ρ)
T (i) = xi. In the `’th iteration,

a check-to-variable node message sent by a degree i check node is the erasure message if any of the
(i − 1) incoming messages is an erasure, an event that occurs with probability 1 − (1 − x`−1)

i−1

(since the incoming messages are independent and each is an erasure with probability x`−1 by
induction). Since the edge has probability ρi to be connected to a check node of degree i, the
erasure probability of a check-to-variable message in the `’th iteration for a randomly chosen edge
is equal to

∑

i ρi(1 − (1 − x`−1)
i−1) = 1 − ρ(1 − x`−1). Now consider a variable-to-check message

in the `’th iteration sent by a variable node of degree i. This is an erasure iff the node was
originally erased and each of the (i − 1) incoming messages are erasures. Thus it is an erasure
with probability α(1 − ρ(1 − x`−1))

i−1. Averaging over the edge degree distribution λ(·), we have

P
(λ,ρ)
T (`) = αλ(1 − ρ(1 − x`−1)) = x`.

The following lemma yields the threshold erasure probability for a given degree distribution
pair (λ, ρ). The proof is identical to Lemma 2 — we simply use the recursion (6) in place of (1).
Note that Lemma 2 is a special case when λ(z) = zdv−1 and ρ(z) = zdc−1.

Lemma 6 For the BEC, the threshold erasure probability αMP(λ, ρ) below which the above iterative
message passing algorithm leads to vanishing bit-erasure probability as the number of iterations
grows is given by

αMP(λ, ρ) = min
x∈[0,1]

x

λ(1 − ρ(1 − x))
. (7)

6.5 Capacity achieving distributions for the BEC

Having analyzed the performance possible on the BEC for a given degree distribution pair (λ, ρ),
we now turn to the question of what pairs (λ, ρ), if any, have a threshold approaching capacity.

Recalling the designed rate from (4), the goal is to find (λ, ρ) for which αMP(λ, ρ) ≈
R 1
0 ρ(z)dz

R 1
0 λ(z)dz

.

We now discuss a recipe for constructing such degree distributions, as discussed in [20] and
[25, Sec. 2.9.11] (we follow the latter description closely). In the following we use parameters
θ > 0 and a positive integer N that will be fixed later. Let D be the space of non-zero functions
h : [0, 1) → R

+ which are analytic around zero with a Taylor series expansion comprising of
non-negative coefficients. Pick functions λ̂θ(x) ∈ D and ρθ(x) ∈ D that satisfy ρθ(1) = 1 and

λ̂θ(1 − ρθ(1 − x)) = x , ∀x ∈ [0, 1) . (8)

Here are two example choices of such functions:

1. Heavy-Tail Poisson Distribution [16], dubbed “Tornado sequence” in the literature. Here we
take

λ̂θ(x) =
− ln(1 − x)

θ
=

1

θ

∞
∑

i=1

xi

i
, and

ρθ(x) = eθ(x−1) = e−θ
∞
∑

i=0

θixi

i!
.

22

2. Check-concentrated degree distribution [28]. Here for θ ∈ (0, 1) so that 1/θ is an integer, we
take

λ̂θ(x) = 1 − (1 − x)θ =
∞
∑

i=1

(

θ

i

)

(−1)i−1xi , and

ρθ(x) = x1/θ .

Let λ̂
(N)
θ (x) be the function consisting of the first N terms (up to the xN−1 term) of the

Taylor series expansion of λ̂θ(x) around zero, and define the normalized function λ
(N)
θ (x) =

λ̂
(N)
θ

(x)

λ̂
(N)
θ

(1)

(for large enough N , λ̂
(N)
θ (1) > 0, and so this polynomial has positive coefficients). For suitable

parameters N, θ, the pair (λ
(N)
θ , ρθ) will be our candidate degree distribution pair.10 The non-

negativity of the Taylor series coefficients of λ̂θ(x) implies that for x ∈ [0, 1], λ̂θ(x) ≥ λ
(N)
θ (x),

which together with (8) gives

x = λ̂θ(1 − ρθ(1 − x)) ≥ λ̂
(N)
θ (1 − ρθ(1 − x)) = λ̂

(N)
θ (1)λ

(N)
θ (1 − ρθ(1 − x)) .

By the characterization of the threshold in Lemma 6, it follows that αMP(λ
(N)
θ , ρθ) ≥ λ̂

(N)
θ (1). Note

that the designed rate equals

r = r(λ
(N)
θ , ρθ) = 1 −

∫ 1
0 ρθ(z)dz

∫ 1
0 λ

(N)
θ (z)dz

= 1 − λ̂
(N)
θ (1)

∫ 1
0 ρθ(z)dz

∫ 1
0 λ̂

(N)
θ (z)dz

.

Therefore, given a target erasure probability α, to communicate at rates close to capacity 1−α,

the functions λ̂
(N)
θ and ρθ must satisfy

λ̂
(N)
θ (1) ≈ α and

∫ 1
0 ρθ(z)dz

∫ 1
0 λ̂

(N)
θ (z)dz

→ 1 as N → ∞ . (9)

For example, for the Tornado sequence, λ̂
(N)
θ (1) = 1

θ

∑N−1
i=1

1
i = H(N−1)

θ where H(m) is the

Harmonic function. Hence, picking θ = H(N−1)
α ensures that the threshold is at least α. We

have
∫ 1
0 λ̂

(N)
θ (z)dz = 1

θ

∑N−1
i=1

1
i(i+1) = N−1

θN , and
∫ 1
0 ρθ(z)dz = 1−e−θ

θ . Therefore,
R 1
0 ρθ(z)dz

R 1
0 λ̂

(N)
θ

(z)dz
=

(1 − e−H(N−1)/α)(1 − 1/N) → 1 as N → ∞, as desired. Thus the degree distribution pair is
explicitly given by

λ(N)(x) =
1

H(N − 1)

N−1
∑

i=1

xi

i
, ρ(N)(x) = e

H(N−1)
α

(x−1) .

Note that picking N ≈ 1/ε yields a rate (1 − ε)α for reliable communication on BECα. The
average variable node degree equals 1

R 1
0 λ(N)(z)dz

≈ H(N − 1) ≈ lnN . Therefore, we conclude

10If the power series expansion of ρθ(x) is infinite, one can truncate it at a sufficiently high term and claimed bound
on threshold still applies. Of course for the check-concentrated distribution, this is not an issue!

23

that we achieve a rate within a multiplicative factor (1 − ε) of capacity with decoding complexity
O(n log(1/ε)).

For the check-concentrated distribution, if we want to achieve αMP(λ
(N)
θ , ρθ) ≥ α and a rate

r ≥ (1− ε)α, then it turns out that the choice N ≈ 1/ε and 1/θ = d ln N
− ln(1−α)e works. In particular,

this means that the factor graph has at most O(n log(1/ε)) edges, and hence the “Peeling decoder”
will again run in O(n log(1/ε)) time.

One might wonder that among the various capacity achieving degree distributions that might
exist for the BEC, which one is the “best” choice? It turns out that in order to achieve a fraction
(1 − ε) of capacity, the average degree of the factor graph has to be Ω(ln(1/ε)). This is shown
in [26] using a variant of Gallager’s argument for lower bounding the gap to capacity of LDPC
codes. In fact, rather precise lower bounds on the sparsity of the factor graph are known, and the
check-concentrated distribution is optimal in the sense that it matches these bounds very closely;
see [26] for the detailed calculations.

In light of the above, it might seem that check-concentrated distributions are the final word in
terms of the performance-complexity trade-off. While this is true in this framework of decoding
LDPC codes, it turns out by using more complicated graph based codes, called Irregular Repeat-
Accumulate Codes, even better trade-offs are possible [21]. We will briefly return to this aspect in
Section 7.

6.6 Extensions to channels with errors

Spurred by the remarkable success of [16] in achieving capacity of the BEC, Luby et al [17] inves-
tigated the performance of irregular LDPC codes for the BSC.

In particular, they considered the natural extension of Gallager’s Algorithm B to irregular
graphs, where in iteration i, a variable node of degree j uses a threshold bi,j for flipping its value.
Applying essentially the same arguments as in Section 5.3.2, but accounting for the degree distri-
butions, one gets the following recurrence for the expected fraction p` of incorrect variable-to-check
messages in the `’th iteration:

pi+1 = p0 − p0

dmax
v
∑

j=1

j
∑

t=bi+1,j

(

j−1
t

)

(

1 + ρ(1 − 2pi)

2

)t(1 − ρ(1 − 2pi)

2

)j−1−t

+ (1 − p0)

dmax
v
∑

j=1

j
∑

t=bi+1,j

(

j−1
t

)

(

1 + ρ(1 − 2pi)

2

)j−1−t(1 − ρ(1 − 2pi)

2

)t

As with the regular case, the cut-off value bi+1,j can then be chosen to minimize the value of pi+1,
which is given by the smallest integer for which

1 − p0

p0
≤
(

1 + ρ(1 − 2pi)

1 − ρ(1 − 2pi)

)2bi+1,j−j+1

.

Note that 2bi+1,j −j +1 = bi+1,j − (j−1−bi+1,j) equals the difference between the number of check
nodes that agree in the majority and the number that agree in the minority. Therefore, a variable
node’s decision in each iteration depends on whether this difference is above a certain threshold,
regardless of its degree.

24

Based on this, the authors of [17] develop a linear programming approach to find a good λ
given a distribution ρ, and use this to construct some good degree distributions. Then using
the above recurrence they estimate the theoretically achievable threshold crossover probability.
Following the development of the density evolution algorithm to track the performance of belief
propagation decoding [23], the authors of [22] used optimization techniques to find good irregular
degree distributions for belief propagation decoding. The BIAWGN channel was the primary focus
in [22], but the authors also list a few examples that demonstrate the promise of the techniques
for other channels. In particular, for the BSC with rate 1/2, they report a degree distribution pair
with maximum variable node degree 75 and check-node distribution ρ(x) = 0.25x9 + 0.75x10 for
which the computed threshold is 0.106, which is quite close to the Shannon capacity limit 0.11.
The techniques were further refined and codes with rate 1/2 and a threshold of σ∗ ≈ 0.9781 (whose
SNR is within 0.0045 dB of capacity) were reported for the BIAWGN in [3] — these codes use only
two different check node degrees j, j + 1 for some integer j ≥ 2.

7 Linear encoding time and Repeat-Accumulate Codes

The linear decoding complexity of LDPC codes is one of their attractive features. Being linear
codes, they generically admit quadratic time encoding. In this section, we briefly discuss how the
encoding complexity can be improved, and give pointers to where results in this vein can be found
in more detail.

The original Tornado codes paper [16] achieved linear time encoding using a cascade of several
low-density generator matrix (LDGM) codes. In LDGM codes, the “factor” graph is actually used
to compute actual check bits from the k message bits (instead of specifying parity checks that the
codeword bits must obey). Due to the sparse nature of the graph, the check bits can be computed
in linear time. These check bits are then used as message bits for the next layer, and so on, till the
number of check bits becomes O(

√
k). These final set of check bits are encoded using a quadratic

time encodable linear code.

We now mention an alternate approach to achieve linear time encoding for LDPC codes them-
selves (and not a cascaded variant as in [16]), based on finding a sparse parity check matrix with
additional nice properties. Let H ∈ F

m×n
2 be the parity check matrix of an LDPC code of dimen-

sion n − m. By means of row and column operations, we can convert H into a form H̃ where
the last m columns are linearly independent, and moreover the m × m submatrix consisting of
the last m columns is lower triangular (with 1’s on the diagonal). Using H̃, it is a simple matter
of “back-substitution” to compute the m parity bits corresponding to the n − m information bits
(the encoding is systematic). The complexity of this encoding is governed by the number of 1’s
in H̃. In general, however, when we begin with a sparse H, the resulting matrix H̃ is no longer
sparse. In a beautiful paper [24], Richardson and Urbanke propose finding an “approximate” lower
triangulation of the parity check matrix that is still sparse. The idea is to make the top right
(m − g) × (m − g) corner of the matrix lower triangular for some small “gap” parameter g. The
encoding can be done in O(n + g2) time, which is linear if g = O(

√
n). Remarkably, for several

distribution pairs (λ, ρ), including all the optimized ones listed in [22], it is shown in [24] that, with
high probability over the choice of the code from the ensemble LDPC(n, λ, ρ), a gap of O(

√
n) can

in fact be achieved, thus leading to linear encoding complexity!

Yet another approach to achieve linear encoding complexity that we would like to focus on (as it
has some additional applications), is to use Irregular Repeat-Accumulate (IRA) codes. IRA codes

25

were introduced by Jin, Khandekar and McEliece in [15], by generalizing the notion of Repeat-
Accumulate codes from [4] in conjunction with ideas from the study of irregular LDPC codes.

IRA codes are defined as follows. Let (λ, ρ) be a degree distribution pair. Pick a random
bipartite graph G with k information nodes on left (with a fraction λi of the edges being incident
on information nodes of degree i), and n > k check nodes on the right (with a fraction ρi of the
edges incident being incident on check nodes of degree i). Actually, it turns out that one can pick
the graph to be regular on the check node side and still achieve capacity, so we can even restrict
ourselves to check-degree distributions given by ρa = 1 for some integer a. Using G, the encoding
of the IRA code (of dimension k and block length n) proceeds as follows:

• Place the k message bits on the k information nodes.

• For 1 ≤ i ≤ n, at the i’th check node, compute the bit vi ∈ {1,−1} which equals the parity
(i.e., product, in ±1 notation) of the message bits placed on its neighbors.

• (Accumulation step) Output the codeword (w1, w2, . . . , wn) where wj =
∏j

i=1 vi. In other
words, we accumulate the parities of the prefixes of the bit sequence (v1, v2, . . . , vn).

Note that the encoding takes O(n) time. Each of the check nodes has constant degree, and
thus the vi’s can be computed in linear time. The accumulation step can then be performed using
additional O(n) operations.

It is not hard to show that the rate of the IRA code corresponding to a pair (λ, ρ) as defined

above equals
R 1
0 λ(z)dz

R 1
0 ρ(z)dz

.

A natural iterative decoding algorithm for IRA codes is presented and analyzed in [4] (a de-
scription also appears in [21]). The iterative algorithm uses a graphical model for message passing
that includes the above bipartite graph G connecting information nodes to check nodes, juxtaposed
with another bipartite graph connecting the check nodes to n code nodes labeled x1, x2, . . . , xn. In
this graph, which is intended to reflect the accumulation process, code node xi for 1 ≤ i < n is
connected to the i’th and (i + 1)’th check nodes (ones where vi, vi+1 are computed), and node xn

is connected to the check node where vn is computed.
It is proved (see [21, Sec. 2]) that for the above non-systematic IRA codes, the iterative decoding

on BECα converges to vanishing bit-erasure probability as the block length n → ∞, provided

λ

(

1 −
[

1 − α

1 − αR(1 − x)

]2

ρ(1 − x)

)

< x ∀x ∈ (0, 1] . (10)

In the above R(x) =
∑∞

i=1 Rix
i is the power series whose coefficient Ri equals the fraction of check

nodes that are connected to i information nodes in G. Recalling (5), we have R(x) =
R x

0 ρ(z)dz
R 1
0 ρ(z)dz

.

Using the above characterization, degree distribution pairs (λ, ρ) for IRA codes that achieve
the capacity of the BEC have been found in [4, 27].11 In particular, we want to draw attention
to the construction in [21] with ρ(x) = x2 that can achieve a rate of (1 − ε)(1 − α), i.e., within a

11Actually, these papers work with a systematic version of IRA where the codeword includes the message bits in

addition to the accumulated check bits x1, . . . , xn. Such systematic codes have rate equal to
“

1 +
R

1

0
ρ(z)dz

R

1

0
λ(z)dz

”−1

, and

the decoding success condition (10) for them is slightly different, with a factor α multiplying the λ(·) term on the
left hand side.

26

(1 − ε) multiplicative factor of the capacity of the BEC, for α ∈ [0, 0.95].12 Since ρ(x) = x2, all
check nodes are connected to exactly 3 information nodes. Together with the two code nodes they
are connected to, each check node has degree 5 in the graphical model used for iterative decoding.
The total number of edges in graphical model is thus 5n, and this means that the complexity of
the encoder as well as the “Peeling” implementation of the decoder is at most 5n. In other words,
the complexity per codeword bit of encoding and decoding is bounded by an absolute constant,
independent of the gap ε to capacity.

8 Summary

We have seen that LDPC codes together with natural message-passing algorithms constitute a pow-
erful approach for the channel coding problem and to approach the capacity of a variety of channels.
For the particularly simple binary erasure channel, irregular LDPC codes with carefully tailored
degree distributions can be used to communicate at rates arbitrarily close to Shannon capacity.
Despite the impressive strides in the asymptotic analysis of iterative decoding of irregular LDPC
codes, for all nontrivial channels except for the BEC, it is still unknown if there exist sequences
of degree distributions that can get arbitrarily close to the Shannon limit. By optimizing degree
distributions numerically and then computing their threshold (either using explicit recurrences or
using the density evolution algorithm), various rather excellent bounds on thresholds are known
for the BSC and BIAWGN. These, however, still do not come close to answering the big theoretical
open question on whether there are capacity-achieving ensembles of irregular LDPC codes (say for
the BSC), nor do they provide much insight into their structure.

For irregular LDPC codes, we have explicit sequences of ensembles of codes that achieve the
capacity of the BEC (and come pretty close for the BSC and the BIAWGN channel). The codes
themselves are not fully explicit, but rather sampled from the ensemble. While the concentration
bounds guarantee that almost all codes from the ensemble are likely to be good, it may still be
nice to have an explicit family of codes (rather than ensembles) with these properties. Even for
achieving capacity of the BEC, the only known “explicit” codes require a brute-force search for
a rather large constant sized code, and the dependence of the decoding complexity on the gap ε
to capacity is not as good as for irregular LDPC ensembles. For the case of errors, achieving a
polynomial dependence on the gap ε to capacity remains an important challenge.

References

[1] N. Alon and M. Luby. A linear time erasure-resilient code with nearly optimal recovery. IEEE
Transactions on Information Theory, 42(6):1732–1736, 1996.

[2] L. Bazzi, T. J. Richardson, and R. L. Urbanke. Exact thresholds and optimal codes for
the binary-symmetric channel and Gallager’s decoding algorithm A. IEEE Transactions on
Information Theory, 50(9):2010–2021, 2004.

[3] S. Chung, J. G. D. Forney, T. Richardson, and R. Urbanke. On the design of low-density
parity-check codes within 0.0045 dB of the shannon limit. IEEE Communications Letters,
5:58–60, February 2001.

12The claim is conjectured to hold also for α ∈ (0.95, 1).

27

[4] D. Divsalar, H. Jin, and R. J. McEliece. Coding theorems for ’turbo-like’ codes. In Proc. of the
36th Allerton Conference on Communication, Control, and Computing, pages 201–210, 1998.

[5] P. Elias. Coding for two noisy channels. Information Theory, Third London Symposium, pages
61–76, September 1955.

[6] J. Feldman and C. Stein. LP decoding achieves capacity. In Proceedings of the 16th Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 460–469, 2005.

[7] G. D. Forney. Concatenated Codes. MIT Press, Cambridge, MA, 1966.

[8] R. G. Gallager. Low-Density Parity-Check Codes. MIT Press, 1963.

[9] V. Guruswami. Error-correcting codes and expander graphs. SIGACT News, 35(3):25–41,
September 2004.

[10] V. Guruswami. List Decoding: Achieving Capacity for Worst-Case Errors. Foundations and
Trends in Theoretical Computer Science (FnT-TCS). NOW publishers, 2006.

[11] V. Guruswami. List decoding in pseudorandomness and average-case complexity. In Proceed-
ings of the IEEE Information Theory Workshop, pages 32–36, March 2006.

[12] V. Guruswami and P. Indyk. Linear-time encodable and list decodable codes. In Proceedings
of the 35th Annual ACM Symposium on Theory of Computing (STOC), pages 126–135, June
2003.

[13] V. Guruswami and P. Indyk. Linear-time encodable/decodable codes with near-optimal rate.
IEEE Transactions on Information Theory, 51(10):3393–3400, October 2005.

[14] V. Guruswami and A. Rudra. Explicit capacity-achieving list-decodable codes. In Proceedings
of the 38th Annual ACM Symposium on Theory of Computing (STOC), pages 1–10, May 2006.

[15] H. Jin, A. Khandekar, and R. J. McEliece. Irregular Repeat-Accumulate codes. In Proceddings
of the 2nd International Conference on Turbo Codes and Related Topics, pages 1–8, September
2000.

[16] M. Luby, M. Mitzenmacher, A. Shokrollahi, and D. Spielman. Efficient erasure correcting
codes. IEEE Transactions on Information Theory, 47(2):569–584, 2001.

[17] M. Luby, M. Mitzenmacher, A. Shokrollahi, and D. Spielman. Improved low-density parity-
check codes using irregular graphs. IEEE Transactions on Information Theory, 47(2):585–598,
2001.

[18] D. MacKay. Good error correcting codes based on very sparse matrices. IEEE Transactions
on Information Theory, 45(2):399–431, 1999.

[19] D. MacKay and R. Neal. Near shannon limit performance of low density parity check codes.
Electronic Letters, 32:1645–1646, 1996.

[20] P. Oswald and A. Shokrollahi. Capacity-achieving sequences for the erasure channel. IEEE
Transactions on Information Theory, 48(12):3017–3028, 2002.

28

[21] H. D. Pfister, I. Sason, and R. L. Urbanke. Capacity-achieving ensembles for the binary erasure
channel with bounded complexity. IEEE Transactions on Information Theory, 51(7):2352–
2379, 2005.

[22] T. Richardson, A. Shokrollahi, and R. Urbanke. Design of capacity-approaching irregular
low-density parity-check codes. IEEE Trans. Inform. Theory, 47:619–637, February 2001.

[23] T. Richardson and R. Urbanke. The capacity of low-density parity check codes under message-
passing decoding. IEEE Trans. Inform. Theory, 47:599–618, February 2001.

[24] T. Richardson and R. Urbanke. Efficient encoding of low-density parity-check codes. IEEE
Trans. Inform. Theory, 47:638–656, February 2001.

[25] T. Richardson and R. Urbanke. Modern Coding Theory.
http://lthcwww.epfl.ch/mct/index.php, 2006.

[26] I. Sason and R. L. Urbanke. Parity-check density versus performance of binary linear block
codes over memoryless symmetric channels. IEEE Transactions on Information Theory,
49(7):1611–1635, 2003.

[27] I. Sason and R. L. Urbanke. Complexity versus performance of capacity-achieving irregular
repeat-accumulate codes on the binary erasure channel. IEEE Transactions on Information
Theory, 50(6):1247–1256, 2004.

[28] M. A. Shokrollahi. New sequences of linear time erasure codes approaching the channel ca-
pacity. In Proceesings of the 13th International Symposium on Applied Algebra, Algebraic
Algorithms and Error-Correcting Codes (AAECC), pages 65–76, 1999.

[29] M. Sipser and D. Spielman. Expander codes. IEEE Transactions on Information Theory,
42(6):1710–1722, 1996.

[30] D. Spielman. Linear-time encodable and decodable error-correcting codes. IEEE Transactions
on Information Theory, 42(6):1723–1732, 1996.

[31] D. Spielman. Finding good LDPC codes. In Proceedings of the 36th Annual Allerton Conference
on Communication, Control, and Computing, 1998.

[32] M. Sudan. List decoding: Algorithms and applications. SIGACT News, 31:16–27, 2000.

[33] R. M. Tanner. A recursive approach to low complexity codes. IEEE Transactions on Infor-
mation Theory, 27(5):533–547, 1981.

[34] L. Trevisan. Some applications of coding theory in computational complexity. Quaderni di
Matematica, 13:347–424, 2004.

[35] V. V. Zyablov and M. S. Pinsker. Estimation of the error-correction complexity of gallger
low-density codes. Problems of Information Transmission, 11(1):18–28, 1976.

29

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

	Introduction
	Background
	Linear and LDPC codes
	Channel models and their capacity
	Spirit of the results

	Simple concatenated schemes to achieve capacity on BEC and BSC
	Message-passing iterative decoding: An abstract view
	Basic Structure
	Symmetry Assumptions

	Regular LDPC codes and simple iterative decoders
	Gallager's program
	Decoding on the binary erasure channel
	Decoding on the BSC
	Gallager's Algorithm A
	Gallager's Algorithm B
	Using Erasures in the Decoder

	Decoding on BIAWGN
	The belief propagation decoder

	Irregular LDPC codes
	Intuitive benefits of irregularity
	The underlying ensembles
	Concentration around average performance
	Analysis of average performance for the BEC
	Capacity achieving distributions for the BEC
	Extensions to channels with errors

	Linear encoding time and Repeat-Accumulate Codes
	Summary

