
Low-Depth Witnesses are Easy to Find

Lúıs Antunes

U. Porto

Lance Fortnow

U. Chicago

Alexandre Pinto

U. Porto

André Souto

U.Porto

September 20, 2006

Abstract

Antunes, Fortnow, van Melkebeek and Vinodchandran captured the notion of non-random
information by computational depth, the difference between the polynomial-time-bounded Kol-
mogorov complexity and traditional Kolmogorov complexity We show how to find satisfying
assignments for formulas that have at least one assignment of logarithmic depth. The converse
holds under a standard hardness assumptions though fails if BPP = UP = EXP.

We also show that under standard hardness assumptions one cannot increase the depth of a
string efficiently and that such an assumption is required.

Classification: Computational and structural complexity.

1 Introduction

Kolmogorov (see [LV97]) measures the amount of information in a string by the size of the smallest
program that generates that string. If one chooses a string at random this string will have near
maximum Kolmogorov complexity even though one can easily create other just as useful random
strings using fresh random coins.
To capture non-random information, Bennett [Ben88] defined a notion of logical depth that de-
scribes strings with short programs that take a long time to produce their output. Later Antunes,
Fortnow, van Melkebeek and Vinodchandran [AFMV06] defined a simpler notion by taking the dif-
ference between polynomial-time Kolmogorov complexity and traditional unbounded Kolmogorov
complexity. We have seen a number of results about computational depth such as giving a general-
ization of sparse and random sets [AFMV06] as well as using depth to characterize the worst-case
running time of problems that run quickly on average over all polynomial-time samplable distribu-
tions [AF05].
In this paper we continue the study of depth. Suppose we have a Boolean formula that has a
satisfying assignment of depth d. We show how to probabilistically find an assignment in time
exponential in d. We show that under a standard hardness assumption the converse also holds.
Under the unlikely but open case that BPP=UP=EXP, one can find formulas that have a single
solution of high depth that can be found quickly probabilistically.
We also look at the question of whether one can increase the depth of a string efficiently. We show
that under a standard hardness assumption you cannot significantly increase the depth of a string
in polynomial time. Once again if BPP=EXP we show examples where one can produce a string
of high depth from a string of very low depth.
We also explore the question as to whether a triangle inequality holds for conditional depth.

1

Electronic Colloquium on Computational Complexity, Report No. 125 (2006)

ISSN 1433-8092

2 Preliminaries

All the strings we use are elements of Σ∗ = {0, 1}∗. In what follows, the function log denotes log2

and |.| denotes the length of a string or the cardinality of a set, depending on the context. The
letter ε always means the empty string.

2.1 Kolmogorov Complexity

For a full understanding of Kolmogorov complexity we refer the reader to the book of Li and
Vitányi [LV97]. We give here only the definitions and results we need. Since our results are not
affected by O(log n) factors that actual model of Kolmogorov complexity is not important. For
definition purposes we will use the self-delimiting Kolmogorov complexity. A set of strings A is
prefix-free if there are no strings x and y in A where x is a proper prefix of y.

Definition 2.1. Let U be a fixed Turing machine with a prefix-free domain. For any strings
x, y ∈ {0, 1}∗, the Kolmogorov complexity of x given y is K(x|y) = minp{|p| : U(p, y) = x}.
For any time constructible t, the t-time-bounded Kolmogorov complexity of x given y is Kt(x|y) =
minp{|p| : U(p, y) = x in at most t(|x|) steps}.

The default value for y is the empty string ε, so we typically drop this argument in the notation.
We can fix a universal machine U whose program size |p| is at most a constant additive factor
worse, and the running time t at most a logarithmic multiplicative factor.
Antunes, Fortnow, van Melkebeek and Vinodchandran [AFMV06] propose a notion of Computa-
tional Depth as a measure of nonrandom information in a string. Intuitively strings of high depth
are low Kolmogorov complexity strings (and hence nonrandom), but a resource bounded machine
cannot identify this fact. Indeed, Bennett’s logical depth [Ben88] can be viewed as such a mea-
sure, but its definition is rather technical. Antunes et al. [AFMV06] suggest that the difference
between two Kolmogorov complexity measures captures the intuitive notion of nonrandom infor-
mation. Based on this intuition and with simplicity in mind, in this work we use the following
depth measure.

Definition 2.2. Let t be a constructible time bound. For any string x ∈ {0, 1}∗,

deptht(x) = Kt(x) − K(x)

and more generally
deptht(x|y) = Kt(x|y) − K(x|y).

2.2 Pseudo-random generators

Pseudo-random generators are efficiently computable functions which stretch a seed into a long
string so that given a random input the output looks random for any resource-bounded machine.
Using the hardness of the parity function [Has86], Nisan and Wigderson [NW94] create a pseudo-
random generator that looks random to constant depth circuits.

Lemma 2.3 (Nisan-Wigderson). For any fixed non-negative integer d, there exists a family of
generators {G0, G1, . . .} with the following properties:

• Gn maps strings of length u polynomial in log n to strings of length n.

2

• For any circuit D of depth d and size n, we have
∣

∣

∣

∣

Pr
ρ∈{0,1}n

[D(ρ)] − Pr
σ∈{0,1}u

[D(Gn(σ))]

∣

∣

∣

∣

< 1/n.

• Each output bit of Gn is computable in time polynomial in log n.

The existence of this pseudo-random generator has many applications, in particular, concerning
the power of random oracles for classes in PH.
We also use the following result due to Klivans and van Melkebeek [KvM02].

Lemma 2.4 (Klivans-van Melkebeek). Suppose that for some ε > 0, DTIME(2n) is not contained
in DSPACE(2εn) for all n then there is a pseudorandom generator mapping O(log n) bits to n bits
that will fool any circuit of n gates even if the circuit has oracle gates for any PSPACE problem.

When we say assume there is a good pseudorandom generator we mean assume the conclusion of
Lemma 2.4.

3 Finding Low-Depth Witnesses

In this section we study the relation between the depth of a solution for a Boolean formula and
the existence of a probabilistic algorithm to solve the formula. For this section we assume that n
represents the number of variables in the Boolean formula considered.

Proposition 3.1. Let φ be a Boolean formula over n variables. If φ has a satisfying assignment w
with deptht(w|φ) ≤ O(log t+log n) then there exists a probabilistic algorithm that finds a satisfying
assignment of φ in time polynomial in t and n.

Proof. Let m = K(w|φ). Since deptht(w|φ) = Kt(w|φ) − K(w|φ) ≤ c log t + c log n we can write

m′ = Kt(w|φ) ≤ m + c log t + c log n (3.1)

Now consider the following set:

A = {z|φ(z) = True and Kt(z) ≤ m′}

where we have used φ(z) to denote the value of φ for the assignment z. The second condition of
the definition of A says that if z ∈ A, there exists a program p such that |p| ≤ m′ and p generates
z in time t. By construction, given φ and m′, A is a computable set and w ∈ A.
From the fact that w ∈ A, we get m = K(w|φ) ≤ log |A|+ c. Using the inequality 3.1 we can write:

|A| ≥
2m

c′
≥

2m′

poly(n, t)
.

So, the probabilistic algorithm M that produces a satisfiable assignment for φ is the following:

Input: Formula φ; Output: z an assignment for φ;

1. Guess m′;

2. Generate randomly a program p of length at most m′;

3

3. Run the universal Turing machine U with program p for t steps;

4. If z is a satisfiable assignment accept, otherwise reject.

Now, the probability of this algorithm generating an assignment for φ is at least:

1

n + c log t + c log n
×

|A|

2m′
≥

2m′

/poly(n, t)

2m′
=

1

poly(n, t)
.

Consider the converse problem, i.e., if a probabilistic algorithm finds a valid assignment for a
Boolean formula φ in time t, is there a witness w for φ such that deptht(w|φ) ≤ O(log t + log n),
where n is the number of variables occurring in φ?
The answer is false if we assume that BPP = UP = EXP and is true if we assume that good
pseudo-random generators exist. For the rest of this subsection the time limits will be polynomial
in n, i.e., t = poly(n).

Proposition 3.2. If BPP = UP = EXP , then there exists a Boolean formula φ such that for any
of its witnesses w produced by a probabilistic algorithm in time t, deptht(w|φ) > O(log t + log n).

Proof. As BPP = UP = EXP , then strong one way functions do exist. Let f be a 1 − 1 one way
function and consider the formula φ encoding

∃x : f(x) = y.

The string x can be found in exponential time, and by our assumption, this means there exists a
probabilistic polynomial time program that produces a valid x for the formula φ.
Now, by definition of strong one way function, the shortest program that produces x in polynomial
time given φ is “print x”. On the other hand, the shortest program producing x given φ has
constant length, i.e., K(x|φ) = O(1), so as t is polynomial in n,

deptht(x|φ) = n > O(log n + log t).

We now prove that if good pseudo-random generators exist then the converse proposition holds:

Proposition 3.3. Let φ be a Boolean formula over n variables. If good pseudo-random generators
exist and there exists a probabilistic algorithm that produces a witness w of φ in time t(n), then
deptht(w|φ) ≤ O(log n + log t).

Proof. Since there exists a probabilistic algorithm that finds an assignment for φ in time t(n), then
there exists a random string r such that |r| < n and deptht(w|φ, r) = O(1). Now, given a seed of
length log r we can derandomize the algorithm in BPP by using the pseudo-random generator. So
Kt(w|φ) ≤ O(log r) ≤ O(log n) and then deptht(w|φ) ≤ O(log n).

4

4 Depth Cannot Increase Rapidly

In this section we show that if f is an honest polynomial time computable function then it can not
significantly increase the depth of its argument, i.e., deep objects are not quickly produced from
shallow ones. A function f is honest if for some polynomial p, p(|f(x)|) ≥ |x| for all x.
We start showing that it holds for honest efficiently computable functions relative to a random
oracle.

Lemma 4.1. Let f : Σ∗ → Σ∗ be an honest polynomial time computable function and x ∈ Σn. If
y = f(x), then, relative to a random oracle, deptht′(y) ≤ deptht(x) + O(log n), for any polynomial
t(n) and some polynomial t′(n) depending on t(n).

Proof. Consider the following set

Ay = {z : f(z) = y and Kt(z) ≤ Kt(x)}

By construction, x is in Ay and since f is computable in polynomial time, Ay can be computed by
enumerating all programs of size up to Kt(x), running them up to time t and keeping the outputs
z that satisfy f(z) = y. So,

K(x|y) ≤ K(Ay|y) + log |Ay| = log |Ay| + O(log n)

which implies |Ay| ≥ 2K(x|y)+O(log n). By symmetry of information we have:

K(x|y) = K(y|x) + K(x) − K(y) + O(log n) (4.2)

As y = f(x) and f is known, we have that K(y|x) = O(1) and so

K(x|y) = Kt(x) − deptht(x) − K(y) + O(log n)

implying that

|Ay| ≥ 2K(x|y)+O(log n) =
2Kt(x)

2deptht(x)+K(y)+O(log n)
.

So, if we randomly pick a program of size smaller or equal than Kt(x), the probability that it is in
Ay is at least

1

2deptht(x)+K(y)+O(log n)
.

Now, considering the set By defined as:

By = {p : U t(p) = z, f(z) = y, |p| ≤ Kt(x)}

It is easy to see that By is computable and any element of By is a description of length at most
Kt(x) for y. We need to show that for any y there is a program that finds an element of By with
very high probability.

5

Any element of Ay has at least one program generating it in By so |By| ≥ |Ay|. That means that
if we randomly generate a program of length smaller or equal than Kt(x), the probability that it
is in By is at least

|By|/2
Kt(x) ≥ |Ay|/2

Kt(x) ≥
1

2deptht(x)+K(y)+O(log n)

Now let R be a random oracle. We can use R as a function Σk → ΣKt(x) where k = deptht(x) +
K(y) + O(log n) and then

Pr[∃w : R(w) ∈ By] = 1 − Pr[∀w : R(w) 6∈ By]

≥ 1 −
(

1 − 1
2deptht(x)+K(y)+c log n

)2deptht(x)+K(y)+c′ log n

= 1 − e−2c′′ log n

= 1 − e−nc′′

≥ 1 − 2−nc′′

Then
Pr[∀y∃w : R(w) ∈ By] = 1 − Pr[∃y∀wy : R(wy) 6∈ By]

≥ 1 − 2−n2−nc

= 1 − 2−nc+1

So, for all y, Kt′(y) ≤ |wy|+ O(1) = deptht(x)+ K(y)+ O(log n), where t′ is the polynomial of the
running time of the function determined by the random oracle. From this we conclude that

deptht′(y) ≤ deptht(x) + O(log n).

We now improve the previous result to more general terms by using the composition of the pseu-
dorandom generator in Lemma 2.4 with the pseudorandom generator in Lemma 2.3, as done in
[AF05].

Theorem 4.2. Let f : Σ∗ → Σ∗ be a polynomial time computable function and x ∈ Σn. If there
is a good pseudorandom generator and y = f(x) then deptht′(y) ≤ deptht(x) + O(log n) for any
polynomial t(n) and some polynomial t′(n) depending on t(n).

Proof. Consider the sets Ay and By defined as in the proof of Lemma 4.1. The language

L = {for all y exists wy such that f(wy) ∈ By}

is computable inside the polynomial-time hierarchy with access to a random oracle R. Let M be the
oracle Turing machine solving L and denote by R the random oracle. Since M runs in polynomial
time, t(n), and has at most 2t(n) different paths, it asks at most O(2poly(n)) questions. We can view
the computation as a constant-depth circuit over the queries to the oracle and using Lemma 2.3
we can replace the random oracle by polynomially-long random seed. Given a good pseudorandom
generator (Lemma 2.4) we can use an O(log n) bit random string to generate the seed for the first
generator. We call the result of the composition of the two pseudorandom genarators G.
Composing this procedure with the procedure of the previous theorem, we have a way to describe
y by the following program for a fixed y:

6

Input: a seed s and a witness wy

Output: y

1. Compute s′ = G(s).

2. Compute h = R(s′) where R is a procedure that computes a function h from the
oracle s′ as per Lemma 4.1. The result is a function that maps a seed of length
deptht(x) + K(y) + O(log n) into a program of size at most m.

3. Compute p = h(wy), giving a program in the set By.

4. Run the universal Turing Machine with program p and call the output z.

5. Compute f(z). (By the construction in the Lemma 4.1, this is y.)

6. Output y.

Since the several constructions are independent of any given instance, we have a description for
y requiring only the description of s and wy that can be computed in time t′(n), a polynomial
depending on running time of the function h, depending on t, and the running time of p, again
depending on t. Therefore,

Kt′(y) ≤ |s| + |wy| + O(1)

= O(log n) + d + K(y)

So, deptht′(y) ≤ deptht(x) + O(log n).

However if BPP = EXP the previous result do not hold.

Theorem 4.3. Assume BPP = EXP. There exists a polynomial-time computable function f such
that for all polynomials t and t′ there exists a polynomial q such that for every natural number n
there exists strings y and x with |y| = n and |x| = q(n) such that

1. y = f(x),

2. deptht(y) ≥ n − O(log n), and

3. deptht′(x) ≤ O(log n).

Proof. Fix n. Let y be the lexicographically least string such that Kt(y) ≥ n. We can compute y
so K(y) ≤ O(log n) and deptht(y) ≥ n − O(log n).
We can find y in time 2O(n) given n and t(n) so by the hypothesis BPP = EXP there is a probabilistic
algorithm A that will efficiently compute y. Note that the running time of A is independent of t′.
Let m = q(n) be the number of random bits used by A. Let f(r) simulate A using r as the random
coins. Let x be Kolmogorov random of length m.
We have f(x) = y since the set of strings that cause f to give the wrong answer will be small and
all such strings will have low Kolmogorov complexity.
Finally we have deptht′(x) ≤ O(log n) because x is random.

7

5 Properties of Conditional Depth

Bennett [Ben88] noted that the impossibility of rapid growth of depth can not be extended to a
transitive law relative to shallowness, i.e., if x is shallow relative to y and y is shallow relative to
z, this does not necessarily imply that x is shallow relative to z. Bennett considered z do be a
Kolmogorov random string of size n, y = 0n and x = z ⊕ d where d is some deep string. Bennett’s
example does not work for computational depth. It is easy to see that K(z ⊕ d|z) is small however
when looking at Kt(z ⊕ d|z) = Kt(d|z), if BPP = EXP we may use z to find d.
We conjecture that the transitive law relative to shallowness does not hold. However, assuming that
pseudo-random generators exist, we show that depth satisfies an analog of a triangular inequality.

Theorem 5.1. Let x, y, z ∈ {0, 1}∗ and n = max(|x|, |y|, |z|). Given a polynomial t(n) and assum-
ing the existence of pseudo-random generators, then there exists a polynomial t′(n) such that

deptht′(y|z) ≤ deptht(x|z) + deptht(y|x, z) + O(log n)

Proof. Define a = Kt(x|z), b = Kt(y|x, z), deptht(x|z) = r and deptht(y|x, z) = s. Then,

K(x|z) = a − r and K(y|x, z) = b − s.

Consider the following set:

A = {w : exists u exists v s.t. |u| ≤ a, U t(u, z) = w, |v| ≤ b and U t(v,w) = y}.

By construction, x is an element of A and A is computable given y and z. Then, K(x|y, z) ≤
log |A| + c, i.e., A has at least 2K(x|y,z)−c elements. By symmetry of information, we have that

K(x|y, z) = K(y|x, z) + K(x|z) − K(y|z) + O(log n)
= b − s + a − r − K(y|z) + O(log n)

Thus

|A| ≥
2a+b+O(log n)

2r+s+K(y|z)+O(log n)
.

Then, the probability of a random program p, of size smaller than a + b + O(log n), generating y is

at least
1

2r+s+K(y|z)+O(log n)
. Using a similar construction of Theorem 4.2 we can find a seed of size

r + s + K(y|z) + O(log n) that generates a program producing y within polynomial time t′. So,

Kt′(y|z) ≤ K(y|z) + r + s + O(log n)

and then
deptht′(y|z) ≤ r + s + O(log n).

There is an easy consequence of this theorem showing that the computational depth is independent
of its environment. Formally we have:

Corollary 5.2. Let x, y ∈ {0, 1}∗, n = max(|x|, |y|), deptht(x) = r and deptht(y|x) = s for
some polynomial t(n). Then, assuming the existence of pseudo-random generators there exists a
polynomial t′(n) such that

deptht′(y) ≤ r + s + O(log n).

8

However if we replace the pseudo-random generators assumption by the assumption BPP = EXP
the previous results do not hold.

Theorem 5.3. If BPP = EXP, then there exist x, y ∈ {0, 1}∗ such that deptht(x) and deptht(y|x)
are small but deptht(y) is big, with n = max(|x|, |y|) and t a polynomial in n.

Proof. Let x be a Kolmogorov random string, and y the least lexicographic string with high Kt(y).
Since all random strings are shallow, deptht(x) is small.
The string y can be computed by the following procedure: enumerate all binary strings in lexi-
cographic order and for each string w, compute Kt(w). If this number is bigger than a certain
threshold, then output w and stop. Then, K(y) = O(1). On the other hand, by construction Kt(y)
is high, so deptht(y) is large.
Now we address deptht(y|x). Since K(y) is small, then K(y|x) is also small. Define L as the
language consisting exactly of the string y. The program for y given above enumerates at most 2|y|

strings before outputting a result, and for each of them it executes up to a polynomial number of
steps no more than 2K(y) ≤ 2|y| programs. Thus, L ∈ EXP. Since by assumption BPP = EXP,
there is a probabilistic algorithm that takes a certain random input, runs in polynomial time and
outputs y. We let this random input be x. Taking the size of the probabilistic algorithm to be a
constant, Kt(y) = O(1) and thus deptht(y|x) = O(1).

Acknowledgments

We thank Harry Buhrman and Adam Harrow for helpful discussions.

References

[AFV01] L. Antunes and L. Fortnow. Sophistication Revisited. Proceedings of the 30th Interna-
tional Colloquium on Automata, Languages and Programming, volume 2719 of Lecture Notes in
Computer Science, pages 267-277. Springer, 2003.

[AF05] L. Antunes and L. Fortnow. Time-bounded universal distributions. Technical Report TR05-
144, Electronic Colloquium on Computational Complexity, 2005.

[AFMV06] L. Antunes and L. Fortnow and D. van Melkebeek and N. V. Vinodchandran. Compu-
tational depth: concept and applications. Theor. Comput. Sci., 354 (3): 391–404, 2006.

[Ben88] Bennett,C. Logical Depth and Physical Complexity The Universal Turing Machine, A
Half-Century Survey, pages: 227-257. Oxford University Press, 1988.

[Cha66] G. J. Chaitin. On the length of programs for computing finite binary sequences. Journal
of the ACM, 13(4):145–149, 1966.

[Has86] J. Hastad. Computational limitations of small-depth circuits. Ph. D. Thesis, MIT Press,
1986.

[KvM02] A. Klivans and D. van Melkebeek. Graph Nonisomorphism Has Subexponential Size
Proofs Unless The Polynomial-Time Hierarchy Collapses. SIAM Journal on Computing, 31:
1501-1526, 2002.

9

[Kol65] A. N. Kolmogorov. Three approaches to the quantitative definition of information. Prob-
lems Inform. Transmission, 1(1):1–7, 1965.

[LV97] Ming Li and Paul M. B. Vitányi. An introduction to Kolmogorov complexity and its appli-
cations. Springer Verlag, 2nd edition, 1997.

[NW94] N. Nisan and A. Wigderson. Hardness vs. randomness J. Comput. Syst. Sci, 49 (2):149–
167, 1994

[Sip83] M. Sipser. A complexity theoretic approach to randomness. In Proceedings of the 15th
ACM Symposium on the Theory of Computing, pages 330–335, 1983.

[Sol64] R. Solomonoff. A formal theory of inductive inference, part I. Information and Control,
7(1):1–22, 1964.

10

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

