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Abstract

A ¢ query Locally Decodable Code (LDC) encodesahit message: as anN-bit codewordC'(x), such that
one can probabilistically recover any bit; of the message by querying omfits of the codeword’(x), even
after some constant fraction of codeword bits has been corrupted.

We give new constructions of three query LDCs of vastly shorter lengththizd of previous constructions.
Specifically, given any Mersenne prime= 2! — 1, we design three query LDCs of lenghh = exp (n'/*),

for everyn. Based on the largest known Mersenne prime, this translates to a lentghsothanexp (nloq),

compared t@xp (n1/2) in the previous constructions. It has often been conjectured that therafimitely many
Mersenne primes. Under this conjecture, our constructions yield thmeeydocally decodable codes of length

o(;) L
N =exp [ n \leslen/ | for infinitely manyn.

We also obtain analogous improvements for Private Information Retriev®)(8themes. We give 3-server
PIR schemes with communication complexit@c(fnlo_7) to access am-bit database, compared to the previous

best scheme with complexify(n'/%>2°). Assuming again that there are infinitely many Mersenne primes, we get
1

3-server PIR schemes of communication complex?tgﬁoglog”) for infinitely manyn.

Previous families of LDCs and PIR schemes were based on the prop#rioes-degree multivariate polynomi-

als over finite fields. Our constructions are completely different and lat&irmed by constructing a large number

of vectors in a small dimensional vector space whose inner produetseatricted to lie in an algebraically nice

set.

1 Introduction

Classical error-correcting codes allow one to encode &it string x into in N bit codewordC'(x), in such a
way thatz can still be recovered evendt(z) gets corrupted in a number of coordinates. For instance, codewords
C(z) of lengthN = O(n) already suffice to correct errors in up&® locations ofC'(x) for any constani < 1/2.
The disadvantage of classical error-correction is that one needesaeoall or most of the (corrupted) codeword
to recover anything about Now suppose that one is only interested in recovering one or a few hitsliofsuch
case more efficient schemes are possible. Such schemes are knowallgsdiecodable codes (LDCs). Locally
decodable codes allow reconstruction of an arbitrary:hifrom looking only atq randomly chosen coordinates
of C'(x), whereq can be as small & Locally decodable codes have found numerous applications in complexity
theory and cryptography. See [22], [9] for a survey. Below is a #iighformal definition of LDCs:

A (g, ¢, ¢)-locally decodable code encodedit strings toN-bit codeword<”(x), such that for every € [n],
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the bitx; can be recovered with probability— ¢, by a randomized decoding procedure that makes @qglyeries,
even if the codeword’(x) is corrupted in up t@é NV locations.

One should think 0§ > 0 ande < 1/2 as constants. The main parameters of interest in LDCs are the I1&nhgth
and the query complexity. Ideally we would like to have both of them as small as possible. The notion afyoc
decodable codes was explicitly discussed in various places in the eaflg,188st notably in [2, 21, 18]. Katz and
Trevisan [14] were the first to provide a formal definition of LDCs analvprlower bounds on their length. Further
work on locally decodable codes includes [4, 7, 17, 5, 13, 23]. Thgtheof optimal2 query LDCs was settled
by Kerenidis and de Wolf in [13] and isxp(n). The length of optimas query LDCs is unknown. The best upper
bound prior to our work wasxp (n!/2) due to Beimel and Ishai [4], and the best lower bound(s?) [13, 27].
For general (constan)the best upper bound wasp (nCUosleed/(alos9)) due to Beimel et al. [5] and the best
lower bound i2 (n'*+1/(T2/21=1)) [13, 27].

The current state of knowledge raises a natural question: Is the agi@oofrknown constructions an inherent
property of locally decodable codes? Indeed, Gasarch [9, sectenmd9Goldreich [10, conjecture 4.4] conjecture
that the exponential dependenceran.e. the dependence of the forvi = exp (nQ(l)) , is unavoidable for any
constant number of queries. As our results suggest, such behaviaveiayot be inherent.

Our results

We give new families of locally decodable codes whose length is vastly shbee that of previous con-
structions. We show that every Mersenne primé.e. a prime of the fornp = 2! — 1) yields a family of
three query locally decodable codes of lengip (nl/t). The largest Mersenne prime known currently has
t = 32582657 > 107. Substituting this prime into our theorem we conclude that for evetiere exists a
three query locally decodable code of lengttp (n!/3282657) | |t has often been conjectured that the number of
Mersenne primes is infinite. In fact a much stronger conjecture regattudraensity of Mersenne primes has been
made by Lenstra, Pomerance and Wagstaff [24, 19, 25]. Using onl\sthergtion that the number of Mersenne

1
primes is infinite, our constructions yield three query locally decodablescodengthN = exp <no<10g1°g")>

for infinitely manyn.
1.1 Application to Private Information Retrieval

A ¢ serverprivate information retrievalPIR) scheme allows a user to retrieve thil bit of ann-bit string
x replicated between servers while each server individually learns no information abolihe main parameter
of interest in a PIR scheme is its communication comple&ifyn), namely the number of bits exchanged by the
user and the servers. Below is a brief summary of known bounds,for).

The best upper bound faty(n) is O(n'/3) due to Chor et al. [6]. The best upper bounds for larger values
of g areCy(n) < nOUeelosa/(alogq)) due to Beimel et al. [5]. In particular [5] show th@g(n) < O (n/%%),
Cy(n) < O (nY/787) andCs(n) < O (n!/19-83) . On the lower bounds side the progress has been scarce. We list
the known results for the two server case. The first nontrivial lowenHdaf4 log n is due to Mann [16]. Later
it was improved tot.4 logn by Kerenidis and de Wolf [13]. The current recordidbg n is due to Wehner and
de Wolf [23].

Private information retrieval schemes are closely related to locally detdadbes. In particular, our construc-
tions of LDCs yield three server private information retrieval schemes witillcommunication complexity. We
show that every Mersenne prime= 2! — 1 yieldsC3(n) < O(n!/(+1). Instantiating this with the largest known
Mersenne prime we gets(n) < O(n!/32582658) Assuming that the number of Mersenne primes is infinite our
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bound goes further down too(loglogn) for infinitely many values of.




1.2 Our technique

All previously known constructions of locally decodable codes andapgiinformation retrieval schemes are
(implicitly or explicitly) centered around the idea of representing messalgg an evaluation of a certain low
degree polynomial over a finite field. Our constructions take a completegrelift approach. We start by reducing
the problem of constructing locally decodable codes to the problem ofrdegigertain families of sets with
restricted intersections. We use elementary algebra over finite fields todesilg families.

The heart of our construction is design of aSet IF; for a primep that simultaneously satisfies two properties:
(1) There exist two large sequences of vectors. . ., up, v1, ..., v, In some low dimensional spad", such
that the dot productgu;, v;) = 0 for all i, and the dot products:;, v;) € S for all i # j. We refer to this property
as the combinatorial niceness$f(2) For a small integeg there exists g sparse polynomiap(x) € Fa[z] such
that the common GCD of all polynomials of the fogz®), 3 € S and the polynomiat? — 1 is non-trivial. We
refer to this property as the algebraic nicenesS§.oDur notion of combinatorial niceness is related to the notion
of set families with restricted intersections in [3].

Our construction of locally decodable codes thus comes in three stepswEishow that a se$ exhibiting
both combinatorial and algebraic niceness leads to good locally decodedgls. dn particular the lengthof the
sequencesq, ..., u, anduvy,..., v, corresponds to the number of message bits we can encode, while the length
of the codewords we build i& = p™. So the longer the sequence and the smaller the dimension the better.
The query complexity of our codes is given by the parametieom the definition of algebraic niceness §f
This step of our construction is quite general and applies to veetors., v, and subset§ over any field. It
leads us to the task of identifying good sets that are both combinatorially agloraically nice, and these tasks
narrow our choice of fields. As our second step we focus on combiaktdceness. In general big sets tend to
be “nicer” (allow longer sequences) than small ones. We show that ewdtiplicative subgroup of a prime field
is combinatorially as nice as its cardinality would allow. This still leaves us with ietyaof fields and subsets to
work with. Finally as the last step we attempt to understand the algebraic sscehsets. We focus on the very
narrow case of Mersenne primpsind the subgroup generated by the elementF;. We manage to show that
this subgroup is nice enough to get 3-query locally decodable codddea our final result.

1.3 Outline

In section 3 we formally define locally decodable codes and introduceircexenbinatorial objects that we
call regular intersecting families. Those objects later serve as our toohstract LDCs. In section 4 we present
a linear algebraic construction of a regular intersecting family that yielddlyodacodable codes with good
(although, not the best known) parameters. The notions of combinadodahlgebraic niceness of sets are used
implicitly in this section. Our main construction in section 5 builds upon the construetisection 4. We formally
introduce combinatorial and algebraic niceness and show how the intbgtlagen these two notions yields new
LDCs. The last subsection of section 5 and section 6 contain our main resuliSCs and private information
retrieval schemes.

2 Notation

We use the following standard mathematical notation:
o [s]={1,...,s}h
o I, is afinite field ofg elements;

e 7 is the multiplicative group of ;;



e dy(x,y) denotes the Hamming distance between binary veatarsdy;
e (u,v) stands for the dot product of vectarandwv.

e For alinear spacé C FJ*, L+ denotes thelual space. ThatisL* = {u € FJ' | Vv € L, (u,v) = 0}.
3 A combinatorial approach to locally decodable codes

In this section we formally define locally decodable codes and introdutaiceombinatorial objects that we
call regular intersecting familiesf sets. We show that regular intersecting families of sets yield LDCs.

Definition 1 A binary codeC : {0,1}" — {0,1}" is said to be(q, 6, ¢)-locally decodable if there exists a
randomized decoding algorithpA such that

1. Forallz € {0,1}",i € [n] andy € {0,1}" such thatdy (C(x),y) < 6N : PrlAY(i) = z;] > 1 —¢}!
where the probability is taken over the random coin tosses of the algorithm

2. A makes at most queries toy.

A locally decodable code is called lineardfis a linear transformation ovét,. Our constructions of locally
decodable codes are linear. They are obtained by viewing the basis &erhére code and the decoding sets of
the code as specifying a set system (where a vector correspondsstet tifecoordinates on which it is non-zero),
with some special intersection properties. We define these propertieslia¢x¥,, R andn be positive integers.
Consider the s€tV]. Fori € [n], r € [R] letT; andQ;,., be subsets giV].

Definition 2 We say that subsef§ and Q;,. form a(q,n, N, R, s) regular intersecting family if the following
conditions are satisfied:

1. ¢ is odd;

2. Foralli € [n], |T;] = s;

3. Foralli € [n] andr € [R], |Qir| = g;

4. Foralli € [n] andr € [R], Qi C Tj;

5. Foralli € [n]andw € T;, |[{r € [R] | w € Qir}| = (Rq)/s, (i.e. T; is uniformly covered by the sef; );
6. Foralli,j € [n] andr € [R] such thati # j, |Qi; NT;| =0 mod (2).

The following proposition shows that regular intersecting families imply localbodable codes.

Proposition 3 A (¢, n, N, R, s) regular intersecting family yields a binary linear code encodinbits to NV bits
thatis (g, 0, dNg/s) locally decodable for alb.

Proof: For a setS C [N] let I(S) € {0,1}" denote its incidence vector. Formally, far € [N] we set
I(S)y = 1if w € S;andI(S),, = 0 otherwise. We define linear codgvia its generator matrig’ € {0, 1}"*V.
Fori € [n], we set thei-th row of G to be the incidence vector of the sEt Below is the description of the
decoding algorithmd. Given oracle access tpand inputi € [n], A

"We remark that many earlier papers about LDCs used the paraiatardifierent way. They required PtY(i) = z;] > 1/2 + ¢,
rather then BAY (i) = z;] > 1 — e. We choose to break with this tradition.



1. picksr € [R] uniformly at random;
2. outputs the dot produ¢y, I (Q;,)) overF,.

Note that sinceQ;,| = ¢, A needs only; queries intay to compute the dot product. It is easy to verify that the
decoding is correct ifd picksr € [R] such that all bits o&G in locationsh € @;, are not corrupted:

(G, I (Qir)) Z:E] I(Qir)) = 2 (I(T3), I (Qir)) = ;- 1)

The second equality in formula (1) follows from part 6 of definition 2 andlést equality follows from parts
1,3 and 4 of definition 2. Now assume that upst§¥ bits of the encoding:G have been corrupted. Part 5 of
definition 2 implies that there are at mdstV Rq) /s setsQ);, that contain at least one corrupted location. Thus
with probability at least — (6 N¢q)/s A outputs the correct value. [ |

4 Basic construction

In this section we present our basic construction of regular intersea@mdids that yieldsg-query locally
decodable codes of lengtixp (n!/(4=1) for prime values ofy > 3. We choose set$; to be unions of cosets
of certain hyperplanes and séfs, to be lines. We argue the intersection properties based on elementary linear
algebra. Lep be an odd prime anch > p — 1 be an integer.

Lemma4 Letn = (p’g) . There exist two families of vectofs,, .. ., u, } and{vy, ..., v,} in F*, such that
e Foralli € [n], (u;,v;) = 0;
e Forall i,j € [n] suchthat # j, (u;,v;) # 0.

Proof: Lete € Fy be the vector that containss in all the coordinates. We set vectarsto be incidence

vectors of all possible{pﬂ) subsets ofm] of cardinality (p — 1). For everyi € [n] we setv; = e — u;. Itis
straightforward to verify that this family satisfies the condition of the lemma. |

Now we are ready to present our regular intersecting family. et p” andn = (pTl) . Assume some
bijection between the sV | and the spack}. Fori € [n] set

Ty = {x € F)' | (us,z) € Fy}.

SetR =s= (p—1)-p™ L. Foreach € [n] assume some bijection between pointdpand elements ofrz)].
Fori € [n] andr € [R] letw;, be ther-th point of T;. Set

Qir = {wir + vy | A €Fp} .2
Lemmab Fori € [n] andr € [R] setsT; andQ;, form a(p,n, N, R, s) regular intersecting family.

Proof: We simply need to verify that all 6 conditions listed in definition 2 are satisfied.

1. Condition 1 is trivial.

Note that set€);, are not all distinct.



2. Condition 2 is trivial.
3. Condition 3 is trivial.

4. Fixi € [n] andr € [R]. Given that(u;, w;;) € F), let us show that);. C T;. By lemma 4(u;,v;) = 0.
Thus for every\ € F, : (u;, wir + Av;) = (u;, wiy) . Condition 4 follows.

5. Fixi € [n] andw € T;. Note that
{r € [R]l|w € Qir}| = {wir € T5 | IX € Fp,w = wip + Avi}| =
Hwir € T; | 3N € Fp, wir = w — v} = p.
It remains to notice thaRp/s = p. Condition 5 follows.

6. Fixi,j € [n] andr € [R] such that # j. Note that
‘Qir ﬁTj‘ = H)\ S Fp ‘ (’U,j,wir + )\Ui) € F;;}‘ = ‘{/\ S Fp ‘ ((uj,wiT) + /\(Uj,’l)i)) € F;H =p—1.

The last equality follows from the fact that,;,v;) # 0, and therefore the univariate linear function
(uj, wir) + A(uj, v;) takes every value ifi, exactly once. It remains to notice that- 1 is even. Condition
6 follows.

[ |

Combining lemma 5 and proposition 3 we get

Corollary 6 Letp be an odd prime anad» > p — 1 be an integer. There exists a binary linear code encoding
(p’f‘l) bits top™ bits that is(p, 5, 3 /(p — 1)) locally decodable for alb.

It is now easy to convert the above result into a dense family (i.e., onedbat bode for every message length
n, as opposed to infinitely manys) of p-query LDCs of lengthexp (n!/(P~1)).

Theorem 7 Letp be a fixed odd prime. For every positive integethere exists a code of lengtixp (n'/(P~1)
thatis (p, 6, dp*/(p — 1)) locally decodable for alb.

Proof: Givenn, choosemn to be the smallest integer such tha& (pTl) . Setn/ = (p’jq) . It is easy to verify

that if n is sufficiently large we have’ < 2n. Given a message of lengthn, we pad it with zeros to length’
and use the code from corollary 6 encodingith a codeword of length™ = exp (n!/P=1)) . |

5 Main construction

In the previous section we presented our basic linear algebraic carmtratregular intersecting families. We
chose setq; to be unions of cosets of certain hyperplanes. We chosgket® be lines. The high-level idea
behind our main construction, is to reduce the number of codeword locatierged by choosing sefg;, to be
proper subsets of linesather than whole lines. Before we proceed to our main construction welirteotwo
central technical concepts of our paper, thatahbinatorialandalgebraic nicenesd.et p be an odd prime.

Definition 8 A setS C [, is called(m, n) combinatorially nice if there exist two families of vectéts, . . . , u, }
and{vy, ..., v, }in ), such that



e Foralli € [n], (u;,v;) = 0;
e Foralli,j € [n] suchthat # j, (uj,v;) € S.
Remark 9 Note that in lemma 4 we established that the $Set F; is <m, (pﬁ)) combinatorially nice for
every integerm > p — 1.
Definition 10 A setS C F; is calledq algebraically nice ifg is odd and there exist two sefg, 51 C ), such that
e Sy is not empty;
o [Si|=g¢;
e ForallaeF,andB € S :|SyN(a+ BS1)] =0 mod (2).
Remark 11 Itis easy to verify that the s&t = I}, is p algebraically nice. Simply pick; = F, andS, = F,.

5.1 Removing points from lines

The next proposition shows how an interplay between combinatorial amtbraig niceness yields regular
intersecting families. It is the core of our construction.

Proposition 12 AssumeS' C F, is simultaneouslym, n) combinatorially nice and; algebraically nice. LetS,
and S; be the sets from the definition of algebraic niceness. Thé s@lds a(g,n,p™, |Solp™ !, [Solp™ )
regular intersecting family.

Proof: Fori € [n] let u;,v; be the vectors from the definition of combinatorial niceness. }set p™ and
R =s=Sy|p™'. Assume a bijection betwed] andF}". For alli € [n] set

T, = {:L‘ GIFZ1 | (u;,x) € Sg}.
For eachi € [n] assume some bijection betweld?] andT;. Let w;, denote the-th point of 7;. Set
Qir = {wir + M | X € S1}.

It remains to verify that all 6 conditions listed in definition 2 are satisfied.

1. Condition 1 is trivial.

2. Condition 2 is trivial.
3. Condition 3 is trivial.
4

. Fixi € [n] andr € [R]. Given that(u;, w;) € Sy let us show that),, C T;. Definition 8 implies that
(u;,v;) = 0. Thus for everyA € S : (u;, wir + Av;) = (u;, w;y) . Condition 4 follows.

5. Fixi € [n] andw € T;. Note that
‘{T’ e [R] ’ w e Q”«}’ = ’{wir eT; ‘ )\ e Sl,w = Wjp —i—)\vi}\ =
\{wir S Ti ’ ) € Sl,wir =w — /\Uz}’ = |Sl‘ =q.

It remains to notice thakq/s = ¢. Condition 5 follows.



6. Fixi,j € [n] andr € [R] such that # j. Note that
Qir NT5| = [{A € S1| (uj, wir + Avi) € So}| =

HA € S| ((uj, wir) + A(uj,v3)) € So}t| = [So N ((wj, wir) + (uj,v)S1)| =0 mod (2).

The last equality follows from the fact that;, v;) € .S, and definition 10. Condition 6 follows.
[ |

Observe that one can derive a regular intersecting family with parametendémma 5 using proposition 12
in combination with remarks 9 and 11.

5.2 On combinatorially nice subsets of,

Forw € F)' and a positive integel; let w® € F;”l denote thd-th tensor power ofv. Coordinates ofv®!
l
are labelled by all possible sequencegirj! andw;‘ffmm = ]_[1 w;;. The goal of this section is to establish the
j:
following

Lemma 13 Letp be an odd prime anan > p — 1 be an integer. Supposg is a subgroup otF;;; then S is
_qyp=l
<<m ;_+|1p5| ) : (p’fl)> combinatorially nice.

Proof: Letn = (pﬁ) . Fori € [n] let vectorsu} andv;’ in IF;* be the same as vectos, v; in the proof of

lemma 4, i.e. vectors! are incidence vectors of all possible subsetg:gfof cardinality (p — 1) and vectors)
are their complements. Recall that

e Foralli € [n], (u/,v}) = 0;
e Foralli,j € [n] such that # j, (uj,v;) # 0.

Let! be a positive integer and v be vectors ir¥;’. Observe that

(#1508 E[m]t \J=1

(2
!
> (H uijv¢j> = < > Ui1Ui1> < > Uile‘l) = (u,v).
(@1,081) €[m]t \T=1 i1€[m] i1€[m]

Letl = (p —1)/|S]. Fori € [n] setu] = u/* andv] = v/®. Formula (2) and cyclicity oF}; yield

W) = 3 (ﬁ H) _
7j=1

e Foralli € [n], (u},v)) = 0;
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e Foralli,j € [n] such that # j, (u},v;) € S.

—1
Note that vectors:, andv] are m 15T long. Therefore at this point we have already shown that the5'set

-1
(mP\T\, (pTl)) combinatorially nice.
Letw be an arbitrary vector ifi;;*. Note that the value Oifuff’” depends on thenulti-set{iy, ..., } rather

than the sequencs, .. .,4;. Thus many coordinates af®! contain identical (and therefore redundant) values.



We are going to reduce the length of vectefsandv, using this observation. Let(m,[) denote the family of
all multi-subsets ofm] of cardinalityl. Note that|F'(m, )| = (m‘ll“) . For a multi-setv € F(m,1) let ¢(o)

denote the number of sequencegir) that represent. Now we are ready to define vectarsandw; in IFLF("L’Z)‘.
Coordinates of vectors; andv; are labelled by multi-sets € F(m, ). For all: € [n] ando € F(m,[) we set

/ /

(ui)o = C(U)(uz‘)cr and (v;)o = (Ui)O'

It is easy to verify that for alf, j € [n], (u;,v;) = <u3,v§) . Combining this observation with the properties of

. . . —142L .
vectorsu; andv] that were established earlier, we conclude that th€$et<<m p:'S‘ > , (pm1)> combinato-

_ _ I5]
rially nice.

5.3 On algebraically nice subsets df,

In this section we construct 3-algebraically nice subsel;ofor primesp that have the fornp = 2t —1. Such
primes are known allersenngprimes. Consider a natural one to one correspondence betweersstibeelF,
and polynomials)g, (z) in the ringFy[x] /(2P — 1) :

bs, (z) = Z z°.

seST

Itis immediate to verify that for all setS; C F,, and alle, 3 € IF,,, such that3 # 0 :
batps, () = 2%pg, (a°). 3)

Lemma 14 Letp = 2! — 1 be a Mersenne prime. The set= {1,2,4,8,...,2/711 C IF;, is three algebraically
nice.

Proof: Observe that the polynomial — 1 = 22 ~! — 1 splits into distinct linear factors in the finite fiekl:.
Clearly, every non-zero element Bf: is a root ofz? — 1. Let g be a primitive element of,:. Fix v such that
1+g+¢”=0.SetS; ={0,1,~}.

Let o be a variable ranging ovél, and3 be a variable ranging oveft. We are going to argue the existence of a
setSy that has even intersections with all sets of the farm3.51, by showing that all polynomials, . 35, belong
to a certain linear spade € F»[z]/(zP — 1) of dimension less thap In this case any nonempty SEtC F,, such
that¢r € Lt can be used as the s§. Let 7(z) = GCD(zP — 1, ¢g,(z)). Note thatr(x) # 1 sinceg is a
common root oft? — 1 and1 + = + 7. Let L be the space of polynomials Fy[x]/(zP — 1) that are multiples
of 7(x). Clearly,dim L = p — deg 7. Fix somea € I, andj € S. Let us prove thab,gs, (z) isin L :

ba+pS: (33) = xa¢51 (lﬁ) = xa(gf)gl (x))ﬁ

The last identity above follows from the fact that for any polynonfiak Fo[z] and any integei : f ($2¢) =
(f(z))? and our choice of the sét |

Parameters of a regular intersecting family that one gets by applying fliopds2 to a certain (nice) set
depend on the size of the s®f from the definition of algebraic niceness®fThe next lemma shows that one can
always pick the se$j to be large.

Lemmals5 LetS C F), be aq algebraically nice set. Le$y, S; C F, be sets from the definition of algebraic
niceness ob. One can always redefine the sgtto satisfy|Sy| > [p/2].



Proof: LetL C Fylz]/(«P — 1) be the linear space spanned by polynomials of the fosmzs, (z), for a € F),
andf € S. Clearly, the spacd. is closed under cyclic shifts. This implies that the spéceis also closed
under cyclic shifts. Note that" has positive dimension sinegs, (z) € L. The last two observations imply
that L+ hasfull support,i.e. for every coordinate there exists a vectap € L+ such thaip; # 0. It is easy to
verify that any linear subspace B that has full support contains a vector of Hamming weight at Iga&t]. Let
ér(z) € L+ be such a vector. Redefining the $gtto be the sef” we conclude the proof. |

5.4 Results

Letp = 2! — 1 be a Mersenne prime. Note that the Set {1,2,4,8,...,2!"1} is a multiplicative subgroup
of IF;,. Combining proposition 12 with lemmas 13, 14 and 15 we conclude

Lemma 16 Letp = 2! — 1 be a Mersenne prime and > p — 1 be an integer. Letn’ = (m_éf(ﬁﬁ)/t) . For
some integet > [p/2] there exists a regular intersecting family with parameters

<3, ( " ) ™™ me/1> :
p—1
Combining lemma 16 with proposition 3 we obtain the key lemma of the paper

(p—1)/t
exists a binary linear code encodimg= (p’fl) bits top™ bits that is(3, d,60) locally decodable code for afl.

Lemma 17 Letp = 2! — 1 be a Mersenne prime and > p — 1 be an integer. Letn’ = (m—1+(p—1)/t) . There

For every fixed Mersenne prime= 2! — 1 we get a family of 3-query LDCs of lengtxp (nl/t) . We omit
the proof since its essentially identical to the proof of theorem 7.

Theorem 18 Letp = 2! — 1 be a fixed Mersenne prime. For every positive integérere exists a code of length
exp (n'/t) thatis(3, 4, 65) locally decodable for alb.

Mersenne primes have been a popular object of study in number thaottyeftast few centuries. It is still
unknown whether the number of Mersenne primes is infinite. There hassbkeege amount of effort and com-
putational power invested in search for large Mersenne primes [2@]largest currently known Mersenne prime
isp = 232582657 _ 1 |t was discovered by C. Cooper and S. Boone [8] on September 4, ZIQggingp into
theorem 18 we get

Theorem 19 For every positive integen there exists a code of lengtxp (n!/32°82657) that is (3, 6, 66) locally
decodable for alb.

We are not aware of who was the first to conjecture that the number cfeviee primes is infinite. Lenstra,
Pomerance, and Wagstaff have made a much stronger conjecturel4]2b]. Their conjecture claims that not
only are there infinitely many Mersenne primes, but that the number of Meegarimes with exponent less than

t is asymptotically approximated by log,(¢), where~ is the Euler-Mascheroni constant. In case the number of
Mersenne primes is infinite we get three query locally decodable codeb-@abgponential length.

Theorem 20 Suppose that the number of Mersenne primes is infinite; then for infinitely redues of: there
1
exists a code of lengtéxp <n0<10g1°gn)> that is (3, 0, 60) locally decodable for alb.

Proof: Given a Mersenne primg, setm = 2P. Substitutingm andp into lemma 17 and making some basic
manipulations we conclude that there exist8a3, 65) locally decodable code encodimg= m®{°e™) bits to

logm

N =exp (mo(log log m>> bits. An observation thdbg log n = ©(loglogm) completes the proof. |



6 Application to Private Information Retrieval

We start with a formal definition of a three server PIR protocol. et {0, 1}" be the database.

Definition 21 A three server PIR protocol is a triplet of non-uniform algorithis= (Q, A4, C). We assume that
each algorithm is givem as an advice. At the beginning of the protocol, the ugeosses random coins and
obtains a random string. Nextl/ invokesQ(i, ) to generate a triple of querie§ue;, quea, ques). For i € [3],

U sendsjue; to S;. Each serverS; responds with an answemns; = A(j, z, que;). (We can assume without loss
of generality that servers are deterministic; hence, each answer iscidmof a query and a database.) Finally,
U computes its output by applying the reconstruction algorithians,, anss, anss,i,r). A protocol as above
should satisfy the following requirements:

e Correctness :For anyn, x € {0,1}" and: € [n], the user outputs the correct valueaafwith probability
1 (where the probability is over the random strings

e Privacy : Each server individually learns no information abauffo formalize this le©Q; denote thej-th
output ofQ. We require that forj = 1, 2,3 and anyn, iy, i € [n] the distributionsQ; (i1, ) and Q;(i2, 1)
are identical.

There are known generic procedures [14] to congeytiery LDCs intog server PIR schemes. However a simple
application of such a procedure to our LDCs will either yield a PIR protedth perfect privacy, but small
probability of error, or a PIR protocol with perfect correctness anmdesslight privacy leakage. Fortunately, it is
possible to achieve both perfect privacy and perfect correctirasstaneously via a specially designed reduction.
We sketch the idea behind such a reduction.

The servers encode the databasgith a three query locally decodable co@erom lemma 17. We are going
to use the notation from that lemma. Recall the the coordinatédof are in one to one correspondence with
points inF;"’. In order to decode; the user has to query three locatidns + \v; | A € S;} for somew € T;,

whereT; is the union of certain cosets of the hyperpl{@ee IF;"’ | (ui,y) = ()} . Unlike the LDC setup in the

PIR setup the user can not pieke T; uniformly at random and then query locatiofis + Av; | A € S;} from
three different servers, since in such case the servers wouldveliberuniform distribution off; rather than the
uniform distribution oriF;”’. Here is our way to go around this problem.

Lete € IF;”' be the all-ones vector. Assume# 0 mod (p). The definition of vectors; in lemma 13 implies
that in such a casg, u;) # 0 for all i € [n]. Thus for everyi € [n] and everyw € ng' there is some € I, such
thatw + ye € T;. The user picksy € }F‘g@/ uniformly at random and (simultaneously) agk#iples of queries
of the from{w + ve + Av; | A € S, } for all v € F,. For every triple the first query always goes to server 1, the
second to server 2 and the last to server 3. It is easy to verify thatincase each server individually observes a
uniform distribution independent @f while the user always successfully reconstrugtrom one of the triples.
Our argument yields

Lemma 22 Letp = 2! — 1 be a Mersenne prime and > p — 1 be an integer such that: # 0 mod (p). Let
n = p’fl) andm’ = mf(i%?ztl)/t) . There exists a three server PIR protocol with questions of lemgtHog p
and answers of lengththat allows private retrieval of bits from databases of length

The next theorem captures the asymptotic behavior of our PIR schengfiXed Mersenne primg.

Theorem 23 Letp = 2! — 1 be a fixed Mersenne prime. For every positive integénere exists a three server
PIR protocol with questions of length (n'/t) and answers of length.



Combing theorem 23 with a standard balancing technique from [6] and pggithe value of the largest

known Mersenne prime, we conclude

Theorem 24 For every positive integet there exists a three server PIR protocol with communication complexity

of O (n1/32582658) .

Finally, under the assumption that the number of Mersenne primes is infinitetwe g

Theorem 25 Suppose that the number of Mersenne primes is infinite; then for infinitely reues of, there

1
exists a three server PIR protocol with communication complexivtzyoéfog log").

7 Conclusion

We presented a novel approach to constructing locally decodable andesibstantially improved the known

upper bounds. However the gap between the upper and lower baumddEs still remains very large. It might
be the case the technique proposed in this paper has not yet beed pugsdmit and further improvements will
be obtained in this way. In particular, proposition 12 generalizes to anpfirdte fields (rather than just prime
fields), and even finite commutative rings It may happen that a clever choice of a riRgand a subset C R
that is simultaneously combinatorially and algebraically nice will yield shorter $DC
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