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Abstract

A number of recent results have constructed randomnesactaits and pseudorandom generators
(PRGs) directly from certain error-correcting codes. Théarlying construction in these results amounts
to picking a random index into the codeword and outputtingonsecutive symbols (the codeword is
obtained from the weak random source in the case of exta@od from a hard function in the case of
PRGs).

We study this construction applied to general cyclic enorrecting codes, with the goal of under-
standing what pseudorandom objects it can produce. We dhatweverycyclic code with sufficient
distance yields extractors that fool all linear tests. Remtwe show thagverypolynomial code with
sufficient distance yields extractors that fool all low-tEgprediction tests. These are the first results
that apply to univariate (rather than multivariate) polgmal codes, hinting that Reed-Solomon codes
may yield good randomness extractors.

Our proof technique gives rise to a systematic way of pratyanconditionalPRGs against re-
stricted classes of tests. In particular, we obtain PRG$infga@ll linear tests (which amounts to a
construction ot-biased spaces), and we obtain PRGs fooling all low-degesdigiion tests.

1 Introduction

Two of the central objects in the area of derandomisationeateactorsand pseudorandom generators
Extractors use a small number of truly random bits to tramsfaveak” random source into a nearly uniform
one. Thus extractors allow the simulation of randomisedguares using only weak randomness (which,
for example, may be available from a physical source). Intecidto this original motivation, extractors
have been used in numerous other settings including comyplieory [Sip88, NZ96, GZ97], algorithms
[WZ93], hardness of approximation [Zuc96, Uma99, MUO2ktdbuted protocols [Zuc97, RZ01], and
coding theory [TSZ01]. For further discussion see Shatmirvey [Sha02]. Quite good constructions of
extractors are known now (e.g., [RSWO00], [SUO05], [LRVWOQ®)it it remains an open problem to construct
optimal extractors.

Pseudorandom generators (PRGs) use a small number ofandpm bits to transform a hard function
into a small set of strings @iscrepancy s¢twhich cannot be distinguished from the uniform distribatby
an efficient computational procedure. Thus PRGs prove femsl vs. randomness” tradeoffs, which show
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that randomised procedures may be simulated determadigticinder a suitable hardness assumption. A
sequence of works has ultimately produced “optimal” PRGstroictions [Uma03] that fool general ran-
domised procedures. There is a substantial literature dasRRat fool more restricted classes of tests, and
in some instanceanconditionalconstructions (not requiring access to a hard function)asedlable. For
examplee-biased spaces [NN93, AGHP92] are PRGs that fool lineas;tesher constructions fool affine
tests [ABCR97], combinatorial rectangles (see the sur&i00]), and general space-bounded computa-
tion [Nis92, Nis94, NZ96, INW94, SZ99]. Recently, Bogdarnws constructed PRGs that fool low degree
polynomial tests [Bog05].

There is a strong connection between these objects (extsaahd PRGS) andrror-correcting codes
For example, Trevisan’s extractor construction [TreOHsuat its core any good list-decodable code. Sub-
sequent works [TSZS01, SUO05] have constructed extracioestly from Reed-Miuller codes (and in re-
turn, extractors have been used to construct good erroeatorg codes in [TSZ01]). PRGs constructed
in [STVO01, Uma03] have at their core Reed-Milller codes, #risl well-known thate-biased spaces are
equivalent to codes with good distance.

In this paper we study a simple construction suited to anjicyode. Specifically, given any-ary
cyclic error-correcting cod€ : IF’; — IF? and an additional parametet, we define the functioryc ., :

F% x [a] — F" as follows:
fem(@,y) = (C()ly +1],C(2)[y + 21.C(z)[y + 3],...,C(z)[y + m]), 1)

where the symbols of the code are indexed in the cyclic angerOur goal is to understand what deran-
domisation objects are produced by this construction. Thisstruction already has a good “track record”
— for certain specific kinds of codes the results of [SUO5, O&)ahow that

o fc.misa(k,e)-extractor withm = k'~° whenC is a Reed-Mduller code with suitable parameters, and

* fc,.misane-PRG withm = k% whenC is an “augmented” version of a Reed-Miiller code with suéab
parameters, and when we fixto be the truth table of a function that cannot be computed®yis
circuits.

We are interested in the following questions;fts,, a good extractor foeverycyclic codeC with sufficiently
good distance? If so, what parameters does it achieve? Vdhabe said aboufc ,,, whenC is a Reed-
Solomon code? Is it a good extractor? Can it be used to proERg&s against certain restricted classes
of tests? We feel that studying the Reed-Solomon code guestiparticular may illuminate new ways of
arguing about code-based extractor constructions (sirectal-decodability of Reed-Miller codes that is
so heavily relied on in [TSZS01, SUOQ5] is not present in R8etbmon codes).

In general these seem to be difficult questions to resolvéhisrnpaper we obtain some modest positive
results. Our results are phrased in terms of “fooling” dartdasses of tests. Using this terminology,
extractors outputting bits fool the class of all functions frofD, 1}™ to {0, 1}, while PRGs fool the class
of all functions from{0, 1}" to {0, 1} with small circuits. The proofs for these constructiongoftransform
these “distinguishing” tests into prediction tests (seetiBa 2 for formal definitions of distinguishers and
predictors). In this paper we are concerned with predidigsis directly:

Definition 1.1. A degreed prediction test is a degreed polynomialp : F;* — F, such thatp can be
expressed as

p(x1, .. ) =2 — p(T1,. .., 1)
for somei.
Theorem 1. LetC be an(n, k, §n] g-ary cyclic linear code withl™ € C. For anyk andp > 0, fe.m

is a (k, p) g-ary extractor for the family of all linear prediction testprovided thaty > 1 — p/2, and
k > mlogq + log(2/p).



When( is further restricted to be a Reed-Miiller code (importgniicluding the univariate case, which
are Reed-Solomon codes), we show:

Theorem 2. LetC be an[n, k, 67 g-ary Reed-Miller code with parameterg, h. For anyk andp > 0,
fe.m is a(k, p) g-ary extractor for the family of all degreé prediction tests, provided that> 2dh/q, and
k > mlogq + log(2/p).

Our proofs follow the so-called “reconstruction proof” metlology (see, e.g., [Tre0l], [TSZS01],
[SUO5]). That is, we argue that if the distribution induced f2 ,,, has a “next-element” predictor of the
appropriate type (linear or low-degree), then there is alfpm@cedure that “reconstructs” many strings in
the weak random source from short advice. This leads to aamtiotion, as a source with high min-entropy
cannot have many strings that have short descriptions.

Many extractor and PRG constructions employ this proof wdtlogy. From one viewpoint the crucial
step is transforming a next-element predictor that errsesioatction of the time into a next-element predictor
that iserrorless(here it becomes clear why error-correcting codes play @oitant role). From an errorless
predictor the remainder of the argument is usually stréogiverd. From this perspective the main loss
associated with the constructions of [SUO5], that previrem from being optimal constructions, is in the
conversion from predictors that err to errorless predstor

Our proofs of Theorem 1 and 2 are noteworthy in that they pertbis transformation witimo loss for
awide varietyof codes. Of course the price currently is that we only know tmuse this argument to fool
a restricted class of tests. Nevertheless, one motivatioexploring these questions, and this methodology
in particular, is the possibility of exposing new “lightereight” proof techniques that may be useful in the
quest to construct optimal extractors.

One consequence of our proof technique is that there is @mgsic way to producenconditionalPRGs
against restricted classes of tests from the above extre@tstructions. For example, from the construction
in Theorem 1, we obtain a PRG fooling linear prediction tests

Theorem 3. LetC be a systemati¢n, k, 6] g-ary cyclic linear code withl™ € C. Letz be such that
C(z)[1...k] = 0F11. ThenS = {fc;_,(z,y) : 1 < y < @i} is ag-ary pseudorandom set that fools all
linear prediction tests with success probabilityprovided thatp > 1 — 6.

By converting thej-ary pseudorandom sets into binary (using Theorem 5) we-bietsed spaces of size
O(mpolylog(m, 1/¢)/€®), which are comparable to those one can obtain using thekmeilksn connection
to error-correcting codes. By comparison, [NN93] gives astaiction of sizen/e“ where4 < ¢ < 5 while
[AGHP92] provides a construction of size/e)?.

Using the same idea, from the construction in Theorem 2, wairoln unconditional PRG construction
that fools low-degree prediction tests:

Theorem 4. LetC be a systematifn, k, i) g-ary cyclic Reed-Niller code with with parameters, ¢. Let
z be suchtha€(z)[1... k] = 0"'1. ThenS = {fcz_,(z,y) : 1 <y < n} is ag-ary p-pseudorandom set
for the class of all degreé prediction tests, provided that> dh/q.

This construction may sound like it unconditionally deramises polynomial identity testing. If “pre-
diction tests” were replaced by “distinguishing teststtauld indeed be the case. Yao’'s Lemma [Ya082]
shows how to convert any distinguishing test into a predlictest, but unfortunately it does not preserve
low-degree-ness. However our result does derandomis@&qmiial identity testing for the restricted class
of tests that can be phrased as degteeediction tests.

Of course derandomising polynomial identity testing is gamapen problem with significant con-
sequences (see [KI04]). Several works have succeeded amdtamising polynomial identity testing for



restricted classes of polynomials ([DS05], [RS], [LV98Dur result derandomises polynomial identity test-
ing for degreei prediction tests; in fact it produces a stronger objedbiftang set with density — p (see the
discussion following Definition 2.4). We don’t know of anyial constructions of hitting sets with density
1 — p for even this simple class of polynomials, making it an iegting testbed for new techniques.

Two other works construct hitting sets with densiity- p for general classes of polynomials: Bogdanov
[Bog05] constructs a hitting set of density— p against allm-variate polynomials of degreé of size
mO(dlog(d/p)) - Klivans and Spielman [KS01] construct hitting sets of dgn$ — p against allm-variate
polynomials of degred with A/ monomials, of size)(mMd/p). Our construction has a much smaller
size,md/p, against a particular subclassofvariate polynomials of degreé(degreed prediction tests).
For many settings of the parameters, this is an exponentjglavement, albeit for a limited class of poly-
nomials. It is in fact surprising that we obtain hitting sefghis size without an explicit constraint on the
size of an arithmetic circuit computing the polynomial.

2 Preliminaries

Two distributionsP and@ over a finite sef are said to be-close if their/, -distance given by | P(z)—
Q(z)| is at most2e or equivalently ifmaxacgs |P(A) — Q(A)| is at moste. The min-entropy of a random
variable X with distribution P on S is defined add,(X) = mingeglog(1/P(x)). We often usd’/,, as a
uniformly distributed random variable.

Definition 2.1. A distinguisher with advantage: for a random variableX = (X1, Xs, ..., X,,) defined
onlF;" is a functionf : F* — FF, with the property that

[Prif(X) =0] = Pr(f(Un) =0]] 2 €
whereU,, is uniformly distributed orf;".

Definition 2.2. Ani*"-element predictor with success probability for a random variableX = (X, X,
.., Xm) defined orF}" is a functionf : F,~! — F, such that:

PT[f(Xl, s 7X’i—1) = XZ] > P
If p = 1 we say thaltf is errorless

We will be concerned with linear and low-degree distingarshand predictors. Note that a linear func-
tion f satisfies the identities (i (Y°5_, =;) = SV, f(;) — (k— 1) £(0) and (i) f (az) = of () — (a —
1) f(0) for any scalarx. A homogeneoubnear functionf hasf(0) = 0.

Definition 2.3. A (k, p) g-ary extractor for a family of predictors P is a functionE : {0,1}" x {0,1} —
IFy* such that for every random variabl€ with H,(X) > k, there is noit"-element predictorf € P for
E(X,U,) with success probability for anyi = 1,...m.

In our notation, the usuatary extractors (as defined in, e.g., [SU05]) are simgplry extractors for the
family of all predictors. Rather than referring to PRGs dile we prefer to describe the set of strings they
produce.

Definition 2.4. A g-ary p-pseudorandom set for a family of predictorsP is a multisetS such that there
is noi-th element predictolf € P with success probability for the random variable induced by picking
an element uniformly at random frofh



In Bogdanov’s terminology [Bog05], a-pseudorandom set for a family of predictdpsis called a
hitting set with density — p for the class of degreé prediction tests In fact, it is a simple observation
that ap-pseudorandom sef for the family of degreel predictors has the property that for every degree
d prediction testy, the distributiong(Z) is p-close to the distributiog(X) in the max-norm (where is
a random variable uniformly distributed & and X is a uniform random variable). One can also ask
that g(Z) and g(X) be p-close in the/; norm. This gives rise to genuinely a stronger object, termed
pseudorandom generator of biasn [Bog05].

Definition 2.5. An [7, k,d] g-ary linear code is a subspace& C F/ for which the Hamming distance
between every pait,y € C is at leastd.

Given a stringz, we will often useC'(z) to mean ther-th codeword inC' (and all of the codes we
consider come equipped with efficient ways to compute thi®eimg function). A code isystematiaf the
message appears as a prefix of every codeword.

Definition 2.6. A codeC is cyclic if it satisfies the following condition:
(r1,22,...,T7-1,25) € C = (x7,21,22,...,27-1) € C.
We always treat the indices into a cyclic code modulo

A specific family of g-ary codes we will use are the Reed-Miller codes. The cod¥svof aReed-
Muller code with parameters, h are the evaluations d@fvariate polynomials of total degree at mastat
the pointsIFfI \ {0}. The special case df= 1 gives theReed-Solomon codeAll of these codes are cyclic
(for an appropriate ordering (ﬁfg \ {0}) and linear.

Recall that the parity-check matriX associated with afm, k, d| g-ary linear code satisfiesc- H” = 0
for z € C. The following result is standard:

Proposition 2.1(Singleton bound) For a linear [n, k, d] codeC, n — k > d — 1.

3 Overview of the results

In this section we describe the high-level ideas behind esults, before giving the technical details and
full proofs in the next section.

3.1 Extractors fooling linear tests

LetC be any cyclic code, and consider the functjn,, from (1). We show that for fixed, if the distribution
fe.m(z,y) with y chosen uniformly at random has a linear predigtahenz has a short description. In this
casep is a linear function for which:

pC(@)y +1],C(2)[y +2],...,Cx)[y + m —1]) = C(x)[y + m] (2)

with noticeable probability over the choice of

Our key observation is that & has sufficiently good distance, th¢gmmust beerrorless To prove this
we first select a subsét of thosey for which (2) holds. IfC has sufficiently good distance, then a given
positionr may be expressed as a linear combinatiaf the values of (z) at the positionsS:

C(2)[r] = £(C(x)[y])yes

A hitting set of densityy for a family of functionsF is a multisetd C Fg* such that for every non-zero functipne F,
Preculp(z) # 0] > a.




SinceC is cyclic, this same equation holds feverycyclic shift; i.e., for alli:
Cla)lr +1i] = L(C(x)[y + 1])yes

These equations together with (2), which holds forialEe S, imply that (2) holds forr. Sincer was
arbitrary, we conclude thatis indeed errorless.

From here, it is easy to see thatnay be described bg(z)[1...m — 1], since we can usg to obtain
C(z)[m], and again to obtaid(z)[m + 1], and so on, until we havé(x) in its entirety. Finally decoding
C(x) recoverse.

Note that “extractors that fool linear tests” are not meghihin the usual setting of simulating ran-
domised procedures using a weak random source. This isdmdanne is only trying to fool linear tests,
one could use-biased spaces to do away with the randomness altogetheveudg we believe that this
setting is a good testbed for refining the “reconstructiomoft technique, and that it may be valuable to
adapt it in the way we do here, to obtain an errorless predetibout relying on local-decodability of the
underlying code. Additionally, our goal is to understand donstruction in (1) in the most general setting
possible, and the fact that an extractor object (albeitresjai restricted class of tests) is produced fiaom
cyclic code is a step toward that goal.

3.2 Extractors fooling low-degree tests

Now suppose further that is a polynomialcyclic code; i.e., a Reed-Muller code, and we have the same
setup except that the predictois now onlylow degree That is, there is a functiop of degreed for which:

pC(@)y +1],C(z)[y +2],...,Cx)[y + m —1]) = C(x)[y + m] ®3)

with noticeable probability over the choice @f The argument used for lineareaks down, but a different
argument works, relying on the fact th@&tx) is now itself a low-degree polynomial. This means that there
is @ mapping between the indgxand values for variableg,, yo, . .., y, for which r,(y1,v2,...,yn) =
C(x)[y], wherer, is a low-degree polynomial depending enThe fact that is cyclic means that for ail
there is a low-degree polynomia} ; for whichr, ;(y1, y2, ..., yn) = C(x)[y + i].

Now, we observe that the left-hand side of (3) is a low-degr@gnomial inyy,ys, ..., yn, as is the
right hand side. However, they agree with noticeable prifibalso for an appropriate choice of parameters,
they must beequal This implies thap is anerrorlesspredictor, since equation (3) holds for all

3.3 Unconditional PRGs fooling linear and low-degree tests

If for a given codeC, one can identify a fixed “goodt for which fc ,,(z, ) fools all efficientpredictors,
then fc (2, -) generates a discrepancy set against all small circuits. staindard that such anyields a
function that is not computable by small circuits, and thuthe absence of strong circuit lower bounds we
can obtain (at best) eonditionalconstruction. When the class of predictors is restricteal different way,
we can pursue the same strategy to produpssesudorandom setgainst all predictors in this class.

One of the surprising side-effects of having transformmeiérom a predictor to an errorless predictor
like the ones we have is that it is easy to produce a “gagdihconditionally This is because we need only
to find a codeword that cannot have an errorless predictdachy any codeword beginning with” 1, will
suffice. If such a codeword has an errorless predjettien that predictor must outpoisince

pC(2)ly +1],C(2)[y +2],...,C(x)[y + m —1]) = C(x)[y + m]

implies p(0,0,0...,0) = 0 (wheny = 0) andp(0,0,0...,0) = 1 (wheny = 1), a contradiction. This
gives a simple construction of pseudorandom sets foolihtinelar tests from any cyclic code with good
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distance. We are also able to conclude that substrings efiEyvee polynomials comprise a pseudorandom
set that fools low-degree prediction tests, giving a deparidation of polynomial identity testing for this
restricted class of tests.

4 Proofs of main results

In this section, we shall provide formal proofs of our maiadrems.

4.1 Extractors fooling linear tests

In this section, we present a construction deary extractors that fool all linear prediction tests. Wegihe
with a crucial property of linear codes:

Lemma 4.1. LetC be an[n, k,d] q-ary linear code. LetS = {t1,...,t,,} C {1,2,...,n} be a set of size
atleastn —d+1, and pickr € {1,2,...n}. Then there exists a homogeneous linear funcfior,” — F,
such that for allz,

C(x)[r] = f(C(@)[ta], - .., C(x)[tm])-

Proof. For the case € 9, this is trivial. We only therefore need to prove the statetrfer u € S. We
choose a basif of n — k vectors in the dual space 6fsuch thattl = [I._;|H'] and for any codeword
C(z) we rearrange its symbols to giv&z)’ such that the firstS| symbols correspond to indices
From Proposition 2.1S| = é7 — 1 < 7 — k. By the properties ofd, for 1 < i < |S| H; - C(z) =

Z H;;C(x)'[j] = 0 whereH; is thei-th row vector inH. But for j € S ,H;; = 6;; whered; = 1 and
5” = 0for j # i. HenceC(x)[i]' = — 3,5 Hi;C(x)[j]" as claimed. O

We now prove that a “reasonably correct” linear predictoerating on a codeword in a suitable code
must in fact be exactly correct.

Lemma 4.2. LetC be an[n, k, 6n] g-ary cyclic linear code with”™ € C, and fixz. Suppose is a linear
it"-element predictor with success probability> (1 — §) for the random variablefc ., (z, y) induced by
pickingy uniformly from{1,2,...,n}. Then;p is an errorless linear predictor.

Proof. Define S to be the set of positions on whighs correct; i.e.,
S ={s:p(C(x)[s +1],C(x)[s +2,...,C(x)[s +i — 1]) = C(z)[s + ]}

We know that S| > (1 — é)n + 1. Now pick an arbitrary- € {1,2,...,n}, and letf = > __q sz be the
linear function guaranteed by Lemma 4.1. We have:

p(C(x)[r +1],...,C(x)[r +1i—1]) (Zas Zas 8—|—’L—1]>

ses ses

=3 ap(Cla)s + ..., Cla)[s +i—1]) + (1 - Zas> (0, ...0)

ses ses

:Zasp(C(a:)[s+1],...,C( Vs +1i—1]) Zas )[s +i] =C(x)[r + 1]

ses seS

where the second line follows from the fact thpds linear (using two properties of linear functions noted in
Section 2), and the third line follows becausee C implies (1 — ", ¢ as) = 0, and from the definition
of S. O



We now prove our first main theorem, showing tifat,, for cyclic code<C is an extractor fooling-ary
linear tests.

Theorem 1 (restated). LetC be an[n, k, dn] g-ary cyclic linear code with™ € C. For anyk andp > 0,
fe.m 1s a(k, p) g-ary extractor for the family of all linear prediction testsrovided thaty > 1 — p/2, and
kE > mlogq+ log(2/p).

Proof. Supposefc ., is not an extractor with the parameters as claimed. Thee tesome random variable
X having distributionD, with min-entropy at leask, and for somei, a linear:**-element predictop
satisfying

PLI; (fem(,y)1,..i-1) = fem(z,9)i] > p.
z—D.y

By an averaging argument

Lo Prp(fem(@y)1....i-1) = fem(@,y)il = p/2] 2 p/2. (4)
Now, for everyz for which Pry[p(fe.m(z,y)1,..i-1) = fem(z,y)i] > p/2, Lemma 4.2 implies that
Pry[p(fem(x,y)1,..i-1) = fem(z,y)i] = 1, sincep/2 > 1 — 4. Every suchr can be described with
(t—1) elements oF;, by simply writing downC(xz)[1...,i—1]. From thisp(C(z)[1...,i—1]) = C(z)[d],
and therp(C(z)[2...,i] = C(x)[i], p(C(z)[3...,i + 1] = C(z)[i + 2], and so on until we obtain all of the
symbols ofC(x), which in turn determine.
We can define a functioR : Fg—l — IE"; that runs this procedure. Using equation (4) above, we get:

x(lirD[EIa € Fz_l for which R(a) = z] > p/2.

A given z is sampled with probability at mo&t*, and so applying the union bound, the probability above
is bounded above by'~'27*. Using the fact thai < m, we get a contradiction i"°89-%F < p/2,

or equivalentlyk > mlogq + log(2/p). Our choice ofk thus implies thatfc ,,, must be the claimed
extractor. O

To get a sense of the achievable extractor parameters he@ug in a Reed-Miller code:

Corollary 4.3. Fixn, k, andp > 1/k:0(1). LetC be a Reed-Mller code with parameters = k, ¢ = 2k/p,
and? = logn/log k. Thenfc ,,, is a(k, p) g-ary extractor for the family of all linear prediction testwith
seed lengtlO(log n) and output lengthn > k/O(log k).

The constructions above can be modified to fool binary linests using the following theorem.

Theorem 5. Let X = (X1, X3,..., X,,) be a random variable distributed dfy" that can be sampled
usingt random bits, and denote bXZZ-(y)_the value of the-th random variable when sampling usiggas
the random bits. Lef be a systematif, k, 6n] binary linear code withi™ € C. DefineB as follows:

By, z) = (C(X1(y))[2], C(Xa(y))[2], - . ., C(Xm(y))[2])-

If there is ani-th element linear predictop with success probability/2+ ¢ for the random variable3(y, z)
induced by picking; and z uniformly at random, then there exists &th element linear predictop’ with
success probability /2 for the random variableX, provided that > 1/2 — ¢/2.



Proof. We havep for which

PripC(Xiw))le, -, C(XimaW))le]) = C(XiW))[e]] 2 5 + e

By an averaging argument:

Pr Prlp(CXW)E] - COW)E]) = COIEl) 2 5 + 5| 2 5.
Let us call a value for which
PHp(CX () [ -G ()]E]) = CCG ) > 5+ 5

holds “good.”
Claim 6. For goody,

Prip(C(X1(y))[2], - -, C(Xima())[2]) = C(Xi(y)[z]] = 1.

Proof (of Claim 6). The proof is similar to the proof of Lemma 4.2. Defifeo be the set of positions on
whichp is correct; i.e.,

S ={s:p(C(X1(y))ls],...,C(Xi-1(y))[s]) = C(Xi(y))[s]}

We know that|S| > (1/2 + ¢/2)n > (1 — d)n. Now pick an arbitraryr € {1,2,...,n}, and letf =
> scs Qszs be the linear function guaranteed by Lemma 4.1. We have:

pC(Xa()lr], - C(Xia(W)Ir]) = p <Z aC(Xi())ls] -0 ) asC(Xi_l(y))[S]>

seS seS

=Y apCXi W)l .. C(Xima(v)[s]) + (1 - Zas) p(0,...0)

seS

= 3 ap(CXiG)ls) - ., CXimr W)ls]) = 3 asC(Xily))ls] = CXi(y)Ir]

seS seS

where the second line follows from the fact thpds linear (using two properties of linear functions noted in
Section 2), and the third line follows becausee C implies (1 — Y~ ¢ as) = 0, and from the definition
of S. O

Letp' : Fi~' — FF, be the function given by:

e, xe,. . xic1) = (p(Clx)[1],C(z2)[], ..., Clzi1)[1]),
p(C(z1)[2],C(z2)[2]; ..., C(xi-1)[2]),

p(C(z1)[log q],C(x2)[logq],...,C(xi-1)[logq]))

We claim thatp’ is a g-ary linear predictor with success probability2 for the the random variablé&
defined oriFy".



First, using Claim 6, observe that for gogd

P (X1(y), Xa(y), ..., Xi—1(y) = Xi(y).

Here we are relying on the fact th@ts systematic, so the firébg ¢ bits contain the message, which in this
case is an element @,. Thusp’ is the promised predictor with success probability at leAt since that
is the probability of choosing a goad

It only remains to verify thap’ is indeedF,-linear. Thej-th element output by’ is anFs-linear

combination theg-th elements of the inputs {8, namelyz1, z», . .., z;_1. In fact this linear combination is
determined by and itis the same for ajl = 1, 2, ..., log ¢, sinceC is systematic. Thug’ can be expressed
as:

i—1
(&, 2, .. Eic1) = D Bid; + Fol.
j=1

wherel is the all-ones vector iff,, and thes;s are the coefficients that give the linear function that (so
B € Fa forall 7). O

4.2 Extractors fooling low-degree tests

We develop our result further to describe constructionsxtfetors that fool low-degree prediction tests.
While the extractor constructions presented in the prevsmgction can be derived in general from any cyclic,
linear code the following constructions are obtained froee®&Mdller codes (including the special case of
Reed-Solomon codes). Similar to the previous subsectierpresent a lemma that says that a “reasonably
good” low-degree predictor is an errorless low-degreeipted

Lemma 4.4. LetC be an[n, k, d] q-ary Reed-Miller code with parameterg, i, and fixx. Suppose is
a degreed i-th element predictor with success probability> dh/q for the random variablefc ,,,(x, y)
induced by picking uniformly from{1,2,...,#n}. Thenp is an errorless predictor.

Proof. Note thatC(x) is an¢-variate polynomiak, : Ffl — [, with total degree:, and the symbols af(z)

are the evaluation of, at pointsy = (y1,...,y¢) € Ffl SinceC is cyclic, for all i there is ar¢-variate
polynomialr ; : Ff; — [, with total degreé: for whichr, ;(y) = C(z)[y + i].

Now consider the-variate polynomialQ(z1,...,2;) = 2z — p(z1,...,2i—1). @ has total degree at
mostd. The polynomialQ’(y1,...,vy¢) = Q(rz1,722, .. ,74,:) has total degree at maogk. Moreover,Q’
vanishes on exactly those points= (y1,...,y¢) € Ffl for which

pC)ly +1],....C(x)[y +i—1]) =C(z)[y + i]. (5)

By the Schwartz-Zippel lemma [Sch80, Zip79], we know thaba-zero polynomial of total degre& can
vanish in at most @h/q fraction of points inIE‘f;. Sincep > dh/q, it must be that)’ is identically zero,
which implies that (5) holds for al}. Thusp is errorless, as claimed. O

This gives us our second main theorem, showing ffaaf, for Reed-Muller codeg is an extractor
fooling low-degree tests.

Theorem 2 (restated). LetC be an[n, k, 6n] g-ary Reed-Miller code with parameterg, h. For any k
andp > 0, fe.m is a(k,p) g-ary extractor for the family of all degreé prediction tests, provided that
p > 2dh/q, andk > mlog q + log(2/p).
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Proof. Supposefc ., is not an extractor with the parameters as claimed. Thee tesome random variable
X having distributionD, with min-entropy at leask, and for somei, a linear:**-element predictop
satisfying

P}; (fem(,y)1,..i-1) = fem(z,9)i] > p.
z—D,y

As in the proof of Theorem 1, using an averaging argument werathat

xﬁ%[gr[fP(fC,m(way)L...,z’—l) = fem(z,y)i) > p/2] > p/2. (6)

Now, for everyz for which Pry[p(fe.m(z,y)1,..i-1) = fem(z,y)i] > p/2, Lemma 4.4 implies that
Pry[p(fc,m(may)l,...,i—l) = fC,m(x>y)i] =1, SinCEp/2 > dh/q

As in the proof of Theorem 1, theseare uniquely determine€i(z)[1 ... ,i—1]. Following the argument
in that proof, we arrive at a contradictionkf> m log g + log(2/p). Hence for our choice d, f¢ ,, is the
claimed extractor. O

The following corollary plugs in Reed-Solomon codes, wtiohrespond td = 1 in Theorem 2.

Corollary 4.5. Fix n,k,d andp > 1/k°(1. LetC be ag-ary Reed-Solomon code with parameters-
2dn/p andh = n. Thenfc , is a(k, p) g-ary extractor for the family of all degreé prediction tests, with
seed lengtlO(log n) and output lengthn > k/O(log dn).

5 Pseudorandom sets for linear and low-degree tests

In this section we obtain unconditional PRGs by using a sppéeature of our proof methodology.

5.1 Pseudorandom sets for linear tests

Using Lemma 4.2 we can prove the following theorem giving astauction of a pseudorandom set for
linear prediction tests:

Theorem 3 (restated). LetC be a systematifn, k, 6n] g-ary cyclic linear code with™ € C. Letx be such
thatC(z)[1... k] = 0"'1. ThenS = {f;_,(z.y) : 1 < y < a} is ag-ary p-pseudorandom set for the
class of all linear prediction tests, provided that> 1 — §.

Proof. The fact thatC is systematic implies that there exists a codew@(d) with the desired prop-
erties. Now suppose for the purpose of contradiction the&rstseanit-element linear predictop for
the uniform distribution onS. Then by Lemma 4.2p is an errorless linear predictor. In particular,
p(C(x)[k —il,...,C(x)[k — 2]) = C(x)[k — 1], andp(C(x)[k — i + 1],...,C(x)[k — 1]) = C(x)[k].
However by our choice af(z),

p(C(z)[k —1il,...,Clx)k —2]) =p(C(x)[k —i+1],...,C(x)[k — 1]) = p(0,...,0)
and yetd = C(x)[k — 1] # C(z)[k] = 1, which gives a contradiction. O

Corollary 5.1. Fix m, p. LetC be a systematic Reed-Solomon code with paramétersatisfyingg = h/p.
The setS described in Theorem 3 isgaary p-pseudorandom set i of sizeh /p for the class of all linear
prediction tests.

Using the following proposition, we can fool linedistinguishingtests to give us Corollary 5.3.
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Proposition 5.2. Let f : F;' — F, be ag-ary linear distinguisher for a distributiorD with advantager.
Then, there exists anand ag-ary linear next-element predictor fdp f’ such that for a random variable
defined ovefty",

1 €
Pr [f'(z1,...,2i—1) = a5] > =
m<—rD[f (‘Tla , Ly l) xl] = q + q— 1
and for the caséqt <e<l-— % Prop[f'(x1,...,xi 1) = 2] > % +e.
Proof. Sincef is a linear distinguisher, wlog we may assume that it is ofohe f(z1,...,2,) = —z;, +

S Ciarg + Co. By definition,

Pr [f(r,. o am) = 0] = Prf (a1, am) = 01' > €
Note thatPr,[f(x1,...,2m) = 0] = 1/¢q. Two cases arisePr,p[f(z1,...,2m) = 0] > 1/q + € or
Prycplf(z1,...,2m) = 0] < 1/q — €. Inthe former,f/(x1,...,2m—1) = Co + Z:l_ll C;xz; is anmth-
element predictor with success probabil?y—% e. In the latter, using a simple pigeonhole argument there
exists some < F ;v # 0 for which

1 1 1 €
P =y]>—"(1-= ==
Choosingf’(z1, ..., xm-1) = Co+ Z;’i‘ll Cyz; whereC), = Cy — v gets us amn'"-element predictor with
success probability + <. For the special case whedn< ¢ < 1 — ¢, we note thaPr,[f(z1,...,zn) =
0] = % < e and hence the distinguisher property implies that only tis¢ ¢ase is possible. O

Corollary 5.3. LetC and S be as defined above in Theorem 3. For every F7”,

slgrs[s-vzm—gr[x-v:m\g (r=7) @

Pseudorandom sets for binary linear distinguishing tegisallede-biased sample spaces. Using our
constructions from above and combining them with good biredes we can construct goeebiased
sample spaces.

Definition 5.1. A multisetZ C {0,1}™ is ane-biased sample spac# for everyv € {0,1}™

Priz-v=0]—- Prlz-v=1]| <e.
zeT €T

Theorem 7. Let C; be an[ny, ki, 8171] g-ary cyclic code, and’; be an[ng, ky = log q, 6270 binary
systematic code, and set= k; — 1. DefineS = {fc, m(x,y) : 1 <y <} and define

T ={(Ca(s1)[2],Ca(s2)[2], - - -, C2(sm)[2]) : (S1,82,--,8m) €S,z €{1,2,...,n2}}
The setl is a4e-biased sample space, providéd> 1 — ¢, andd, > 1/2 — .

Proof. Suppose otherwise. Then by definition, there exists=a{0, 1} such that

Priz-v=0]— Prlz-v=1] > 4e.
zeT zeT
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This means that

Priz-v=0]— Prlz-0=1] >4eor Prjz-v=1]— Prlz-v=0] > 4e.
zeT zeT
Combining this with

Prlz-7=0]+ Prlz-0=1] =1,
zeT zeT

we get

Priz-7=0]>1/242¢co0r Pr(z-7=0] <1/2— 2e.
zeT zeT

Note thatPr,[z - ¥ = 0] = 1/2 and thereforej describes a homogeneous linear distinguisher with
advantage; i.e.

Prlz-uv=0] —Prlz-7=0]| > 2e.
zeT T

By Proposition 5.2, there exists a prediciowith success probability /2 + 2¢ for the random variables

Y = (Y1,Y3,...,Y,,) induced by choosing an element Bfuniformly at random. By Theorem 5 there
exists a predictop’ with success probability for the random variabl& = (X7, X, ..., X,,) induced by
choosing an elements éfuniformly at random. But this contradicts Theorem 3, asdidates thatS does
not fool all linear predictors with success probabikty- 1 — ¢, . O

By choosing appropriate codes tor andC, we obtain Corollary 5.4 and, in particular by using a better
binary code foiC, (Reed-Solomon concatenated with Hadamard) we obtain @ord.5.

Corollary 5.4. Fix m. LetC; be alg,m + 1,q — m] Reed-Solomon code with> m/e and letC, be an
[q,10g ¢, q/2] binary Hadamard code. Then the sBtdefined above is ate-biased sample space of size
O(m?/e?).

Corollary 5.5. Fix m. LetC; be alg,m + 1,q — m] Reed-Solomon code with> m/e and letC, be an
[ = O(log? q/€?),log q, (1/2 — €)7] binary code. Then the st defined above is afe-biased sample
space of siz& (mpolylog(m, 1/¢)/€®).

5.2 Pseudorandom sets for low-degree tests

We extend the previous discussion to pseudorandom setsviedégree tests derived from Reed-Miller
codes.

Theorem 4 (restated). LetC be a systematifn, k, 671 g-ary cyclic Reed-Nller code with with parameters
h,0. Letz be such thaC(z)[1...k] = 0*7'1. ThenS = {fe; ,(z,y) : 1 < y < n}is ag-ary
p-pseudorandom set for the class of all deg#garediction tests, provided that> dh/q.

Proof. The proof is nearly identical to the proof of Theorem 3. Thet thatC is systematic implies that
there exists a codeword(z) with the desired properties. Now suppose for the purposewfradiction
there exists aif”-element degreé predictorp for the uniform distribution or5. Then by Lemma 4.4, is
an errorless predictor. In particular,

pC)k —il,...,Clx)k —2]) = C(z)[k — 1],

and
p(C(x)[k —i+1],...,C(x)[k —1]) = C(x)[k].

13



However by our choice af(z),
p(C(x)[k —1i],...,C(x)[k —2]) =p(C(x)[k —i+1],...,C(x)[k —1])

and yet
0=C(x)[k — 1] # C(z)[k] =1,

which gives a contradiction. O

Corollary 5.6. Fix m, p. LetC be a systematic Reed-Solomon code with paramétersatisfyingg =
dh/p. The setS described in Theorem 4 is@ary p-pseudorandom set ifi;* of sizehd/p for the class of
all degreed prediction tests.

Equivalently, we have an explicit construction of a hittisef with densityl — p against degre€ pre-
diction tests, with sizend/p. As discussed in the introduction this is somewhat surmisiEven for this
simple class of polynomials, there does not seem to be altcenstruction of a hitting set with density
1 — p, making Theorem 4 another example where the generic ofjegtyields a non-trivial pseudorandom
construction.

6 Concluding remarks

There are many questions raised by these results. For exampt possible to enlarge the class of tests
fooled by the extractors and pseudorandom sets constrérciedarbitrary cyclic linear codes? Similarly,
is it possible to fool more general prediction tests usirigtaary polynomial codes? The results of [SUO5]
show that it is in the particular case of Reed-Miiller codesh(certain parameters), but it is possible that
something more general is true depending, e.g., only onith@nde of the code.

We feel that one of the nicest questions of this type is thetipreof whetherfc ,, is a extractor (fooling
all prediction tests), whe@ is a Reed-Solomon code.

Regarding pseudorandom sets for low-degree polynomiasyender if there is a nontrivial conversion
of distinguishers to predictors (probably relying on thetidguisher being presented as a small arithmetic
circuit) that preserves low-degree-ness. This would pizy lead to a non-trivial derandomisation of
polynomial identity testing, because it would imply thag thseudorandom sets of Theorem 4 would in fact
fool low-degree distinguishing tests with small circuits.

Acknowledgements We thank Eli Ben-Sasson for helpful discussions and Andogjd&nov for sharing
a draft of [Bog05] with us.
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