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Abstract

A number of recent results have constructed randomness extractors and pseudorandom generators
(PRGs) directly from certain error-correcting codes. The underlying construction in these results amounts
to picking a random index into the codeword and outputtingm consecutive symbols (the codeword is
obtained from the weak random source in the case of extractors, and from a hard function in the case of
PRGs).

We study this construction applied to general cyclic error-correcting codes, with the goal of under-
standing what pseudorandom objects it can produce. We show that everycyclic code with sufficient
distance yields extractors that fool all linear tests. Further, we show thateverypolynomial code with
sufficient distance yields extractors that fool all low-degree prediction tests. These are the first results
that apply to univariate (rather than multivariate) polynomial codes, hinting that Reed-Solomon codes
may yield good randomness extractors.

Our proof technique gives rise to a systematic way of producing unconditionalPRGs against re-
stricted classes of tests. In particular, we obtain PRGs fooling all linear tests (which amounts to a
construction ofε-biased spaces), and we obtain PRGs fooling all low-degree prediction tests.

1 Introduction

Two of the central objects in the area of derandomisation areextractorsand pseudorandom generators.
Extractors use a small number of truly random bits to transform “weak” random source into a nearly uniform
one. Thus extractors allow the simulation of randomised procedures using only weak randomness (which,
for example, may be available from a physical source). In addition to this original motivation, extractors
have been used in numerous other settings including complexity theory [Sip88, NZ96, GZ97], algorithms
[WZ93], hardness of approximation [Zuc96, Uma99, MU02], distributed protocols [Zuc97, RZ01], and
coding theory [TSZ01]. For further discussion see Shaltiel’s survey [Sha02]. Quite good constructions of
extractors are known now (e.g., [RSW00], [SU05], [LRVW03]), but it remains an open problem to construct
optimal extractors.

Pseudorandom generators (PRGs) use a small number of truly random bits to transform a hard function
into a small set of strings (adiscrepancy set) which cannot be distinguished from the uniform distribution by
an efficient computational procedure. Thus PRGs prove “hardness vs. randomness” tradeoffs, which show
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that randomised procedures may be simulated deterministically, under a suitable hardness assumption. A
sequence of works has ultimately produced “optimal” PRG constructions [Uma03] that fool general ran-
domised procedures. There is a substantial literature on PRGs that fool more restricted classes of tests, and
in some instancesunconditionalconstructions (not requiring access to a hard function) areavailable. For
exampleε-biased spaces [NN93, AGHP92] are PRGs that fool linear tests; other constructions fool affine
tests [ABCR97], combinatorial rectangles (see the survey [Sri00]), and general space-bounded computa-
tion [Nis92, Nis94, NZ96, INW94, SZ99]. Recently, Bogdanovhas constructed PRGs that fool low degree
polynomial tests [Bog05].

There is a strong connection between these objects (extractors and PRGs) anderror-correcting codes.
For example, Trevisan’s extractor construction [Tre01] uses at its core any good list-decodable code. Sub-
sequent works [TSZS01, SU05] have constructed extractors directly from Reed-Müller codes (and in re-
turn, extractors have been used to construct good error-correcting codes in [TSZ01]). PRGs constructed
in [STV01, Uma03] have at their core Reed-Müller codes, andit is well-known thatε-biased spaces are
equivalent to codes with good distance.

In this paper we study a simple construction suited to any cyclic code. Specifically, given anyq-ary
cyclic error-correcting codeC : F

k̄
q → F

n̄
q , and an additional parameterm, we define the functionfC,m :

F
k̄
q × [n̄] → F

m
q as follows:

fC,m(x, y) = (C(x)[y + 1], C(x)[y + 2], C(x)[y + 3], . . . , C(x)[y + m]), (1)

where the symbols of the code are indexed in the cyclic ordering. Our goal is to understand what deran-
domisation objects are produced by this construction. Thisconstruction already has a good “track record”
— for certain specific kinds of codes the results of [SU05, Uma03] show that

• fC,m is a(k, ε)-extractor withm = k1−δ whenC is a Reed-Müller code with suitable parameters, and

• fC,m is anε-PRG withm = kδ whenC is an “augmented” version of a Reed-Müller code with suitable
parameters, and when we fixx to be the truth table of a function that cannot be computed by size k
circuits.

We are interested in the following questions: IsfC,m a good extractor foreverycyclic codeC with sufficiently
good distance? If so, what parameters does it achieve? What can be said aboutfC,m whenC is a Reed-
Solomon code? Is it a good extractor? Can it be used to producePRGs against certain restricted classes
of tests? We feel that studying the Reed-Solomon code question in particular may illuminate new ways of
arguing about code-based extractor constructions (since the local-decodability of Reed-Müller codes that is
so heavily relied on in [TSZS01, SU05] is not present in Reed-Solomon codes).

In general these seem to be difficult questions to resolve. Inthis paper we obtain some modest positive
results. Our results are phrased in terms of “fooling” certain classes of tests. Using this terminology,
extractors outputtingm bits fool the class of all functions from{0, 1}m to {0, 1}, while PRGs fool the class
of all functions from{0, 1}m to{0, 1} with small circuits. The proofs for these constructions often transform
these “distinguishing” tests into prediction tests (see Section 2 for formal definitions of distinguishers and
predictors). In this paper we are concerned with predictiontests directly:

Definition 1.1. A degreed prediction test is a degree-d polynomialp : F
m
q → Fq such thatp can be

expressed as
p(x1, . . . , xm) = xi − p′(x1, . . . , xi−1)

for somei.

Theorem 1. Let C be an [n̄, k̄, δn̄] q-ary cyclic linear code with1n̄ ∈ C. For any k and ρ > 0, fC,m
is a (k, ρ) q-ary extractor for the family of all linear prediction tests, provided thatδ > 1 − ρ/2, and
k > m log q + log(2/ρ).
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WhenC is further restricted to be a Reed-Müller code (importantly, including the univariate case, which
are Reed-Solomon codes), we show:

Theorem 2. Let C be an[n̄, k̄, δn̄] q-ary Reed-M̈uller code with parameters̀, h. For anyk and ρ > 0,
fC,m is a (k, ρ) q-ary extractor for the family of all degreed prediction tests, provided thatρ > 2dh/q, and
k > m log q + log(2/ρ).

Our proofs follow the so-called “reconstruction proof” methodology (see, e.g., [Tre01], [TSZS01],
[SU05]). That is, we argue that if the distribution induced by fC,m has a “next-element” predictor of the
appropriate type (linear or low-degree), then there is a fixed procedure that “reconstructs” many strings in
the weak random source from short advice. This leads to a contradiction, as a source with high min-entropy
cannot have many strings that have short descriptions.

Many extractor and PRG constructions employ this proof methodology. From one viewpoint the crucial
step is transforming a next-element predictor that errs some fraction of the time into a next-element predictor
that iserrorless(here it becomes clear why error-correcting codes play an important role). From an errorless
predictor the remainder of the argument is usually straightforward. From this perspective the main loss
associated with the constructions of [SU05], that preventsthem from being optimal constructions, is in the
conversion from predictors that err to errorless predictors.

Our proofs of Theorem 1 and 2 are noteworthy in that they perform this transformation withno loss, for
awide varietyof codes. Of course the price currently is that we only know how to use this argument to fool
a restricted class of tests. Nevertheless, one motivation for exploring these questions, and this methodology
in particular, is the possibility of exposing new “lighter-weight” proof techniques that may be useful in the
quest to construct optimal extractors.

One consequence of our proof technique is that there is a systematic way to produceunconditionalPRGs
against restricted classes of tests from the above extractor constructions. For example, from the construction
in Theorem 1, we obtain a PRG fooling linear prediction tests:

Theorem 3. Let C be a systematic[n̄, k̄, δn̄] q-ary cyclic linear code with1n̄ ∈ C. Let x be such that
C(x)[1 . . . k̄] = 0k̄−11. ThenS = {fC,k̄−1(x, y) : 1 ≤ y ≤ n̄} is a q-ary pseudorandom set that fools all
linear prediction tests with success probabilityρ, provided thatρ ≥ 1 − δ.

By converting theq-ary pseudorandom sets into binary (using Theorem 5) we getε-biased spaces of size
O(mpolylog(m, 1/ε)/ε3), which are comparable to those one can obtain using the well-known connection
to error-correcting codes. By comparison, [NN93] gives a construction of sizem/εc where4 < c < 5 while
[AGHP92] provides a construction of size(m/ε)2.

Using the same idea, from the construction in Theorem 2, we obtain an unconditional PRG construction
that fools low-degree prediction tests:

Theorem 4. Let C be a systematic[n̄, k̄, δn̄] q-ary cyclic Reed-M̈uller code with with parametersh, `. Let
x be such thatC(x)[1 . . . k̄] = 0k̄−11. ThenS = {fC,k̄−1(x, y) : 1 ≤ y ≤ n̄} is aq-ary ρ-pseudorandom set
for the class of all degreed prediction tests, provided thatρ ≥ dh/q.

This construction may sound like it unconditionally derandomises polynomial identity testing. If “pre-
diction tests” were replaced by “distinguishing tests” that would indeed be the case. Yao’s Lemma [Yao82]
shows how to convert any distinguishing test into a prediction test, but unfortunately it does not preserve
low-degree-ness. However our result does derandomise polynomial identity testing for the restricted class
of tests that can be phrased as degreed prediction tests.

Of course derandomising polynomial identity testing is a major open problem with significant con-
sequences (see [KI04]). Several works have succeeded in derandomising polynomial identity testing for
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restricted classes of polynomials ([DS05], [RS], [LV98]).Our result derandomises polynomial identity test-
ing for degreed prediction tests; in fact it produces a stronger object, ahitting set with density1− ρ (see the
discussion following Definition 2.4). We don’t know of any trivial constructions of hitting sets with density
1 − ρ for even this simple class of polynomials, making it an interesting testbed for new techniques.

Two other works construct hitting sets with density1− ρ for general classes of polynomials: Bogdanov
[Bog05] constructs a hitting set of density1 − ρ against allm-variate polynomials of degreed, of size
mO(d log(d/ρ)). Klivans and Spielman [KS01] construct hitting sets of density 1 − ρ against allm-variate
polynomials of degreed with M monomials, of sizeO(mMd/ρ). Our construction has a much smaller
size,md/ρ, against a particular subclass ofm-variate polynomials of degreed (degreed prediction tests).
For many settings of the parameters, this is an exponential improvement, albeit for a limited class of poly-
nomials. It is in fact surprising that we obtain hitting setsof this size without an explicit constraint on the
size of an arithmetic circuit computing the polynomial.

2 Preliminaries

Two distributionsP andQ over a finite setS are said to beε-close if their̀ 1-distance given by
∑

x∈S|P (x)−
Q(x)| is at most2ε or equivalently ifmaxA⊆S |P (A) − Q(A)| is at mostε. The min-entropy of a random
variableX with distributionP on S is defined asH∞(X) = minx∈S log(1/P (x)). We often useUn as a
uniformly distributed random variable.

Definition 2.1. A distinguisher with advantageε for a random variableX = (X1,X2, . . . ,Xm) defined
on F

m
q is a functionf : F

m
q → Fq with the property that

|Pr[f(X) = 0] − Pr[f(Um) = 0]| ≥ ε

whereUm is uniformly distributed onFm
q .

Definition 2.2. An ith-element predictor with success probabilityρ for a random variableX = (X1,X2,
. . . ,Xm) defined onFm

q is a functionf : F
i−1
q → Fq such that:

Pr[f(X1, . . . ,Xi−1) = Xi] ≥ ρ

If ρ = 1 we say thatf is errorless.

We will be concerned with linear and low-degree distinguishers and predictors. Note that a linear func-
tion f satisfies the identities (i)f(

∑k
j=1 xj) =

∑k
j=1 f(xj)− (k − 1)f(0) and (ii)f(αx) = αf(x)− (α−

1)f(0) for any scalarα. A homogeneouslinear functionf hasf(0) = 0.

Definition 2.3. A (k, ρ) q-ary extractor for a family of predictors P is a functionE : {0, 1}n ×{0, 1}t →
F

m
q such that for every random variableX with H∞(X) ≥ k, there is noith-element predictorf ∈ P for

E(X,Ut) with success probabilityρ for anyi = 1, . . . m.

In our notation, the usualq-ary extractors (as defined in, e.g., [SU05]) are simplyq-ary extractors for the
family of all predictors. Rather than referring to PRGs directly we prefer to describe the set of strings they
produce.

Definition 2.4. A q-ary ρ-pseudorandom set for a family of predictorsP is a multisetS such that there
is no i-th element predictorf ∈ P with success probabilityρ for the random variable induced by picking
an element uniformly at random fromS.
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In Bogdanov’s terminology [Bog05], aρ-pseudorandom set for a family of predictorsP is called a
hitting set with density1 − ρ for the class of degreed prediction tests1. In fact, it is a simple observation
that aρ-pseudorandom setS for the family of degreed predictors has the property that for every degree
d prediction testg, the distributiong(Z) is ρ-close to the distributiong(X) in the max-norm (whereZ is
a random variable uniformly distributed onS, andX is a uniform random variable). One can also ask
that g(Z) and g(X) be ρ-close in thè 1 norm. This gives rise to genuinely a stronger object, termeda
pseudorandom generator of biasρ in [Bog05].

Definition 2.5. An [n̄, k̄, d̄] q-ary linear code is a subspaceC ⊆ F
n̄
q for which the Hamming distance

between every pairx, y ∈ C is at leastd̄.

Given a stringx, we will often useC(x) to mean thex-th codeword inC (and all of the codes we
consider come equipped with efficient ways to compute this encoding function). A code issystematicif the
message appears as a prefix of every codeword.

Definition 2.6. A codeC is cyclic if it satisfies the following condition:

(x1, x2, . . . , xn̄−1, xn̄) ∈ C ⇒ (xn̄, x1, x2, . . . , xn̄−1) ∈ C.

We always treat the indices into a cyclic code modulon̄.

A specific family ofq-ary codes we will use are the Reed-Müller codes. The codewords of aReed-
Müller code with parameters̀, h are the evaluations of̀-variate polynomials of total degree at mosth, at
the pointsF`

q \ {0}. The special case of̀= 1 gives theReed-Solomon codes. All of these codes are cyclic
(for an appropriate ordering ofF`

q \ {0}) and linear.
Recall that the parity-check matrixH associated with an[n̄, k̄, d̄] q-ary linear codeC satisfiesx ·HT = 0

for x ∈ C. The following result is standard:

Proposition 2.1(Singleton bound). For a linear [n̄, k̄, d̄] codeC, n − k ≥ d − 1.

3 Overview of the results

In this section we describe the high-level ideas behind our results, before giving the technical details and
full proofs in the next section.

3.1 Extractors fooling linear tests

LetC be any cyclic code, and consider the functionfC,m from (1). We show that for fixedx, if the distribution
fC,m(x, y) with y chosen uniformly at random has a linear predictorp, thenx has a short description. In this
casep is a linear function for which:

p(C(x)[y + 1], C(x)[y + 2], . . . , C(x)[y + m − 1]) = C(x)[y + m] (2)

with noticeable probability over the choice ofy.
Our key observation is that ifC has sufficiently good distance, thenf must beerrorless. To prove this

we first select a subsetS of thosey for which (2) holds. IfC has sufficiently good distance, then a given
positionr may be expressed as a linear combination` of the values ofC(x) at the positionsS:

C(x)[r] = `(C(x)[y])y∈S

1A hitting set of densityα for a family of functionsF is a multisetH ⊆ F
m
q such that for every non-zero functionp ∈ F ,

Prx∈H [p(x) 6= 0] > α.
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SinceC is cyclic, this same equation holds foreverycyclic shift; i.e., for alli:

C(x)[r + i] = `(C(x)[y + i])y∈S

These equations together with (2), which holds for ally ∈ S, imply that (2) holds forr. Sincer was
arbitrary, we conclude thatp is indeed errorless.

From here, it is easy to see thatx may be described byC(x)[1 . . . m − 1], since we can usep to obtain
C(x)[m], and again to obtainC(x)[m + 1], and so on, until we haveC(x) in its entirety. Finally decoding
C(x) recoversx.

Note that “extractors that fool linear tests” are not meaningful in the usual setting of simulating ran-
domised procedures using a weak random source. This is because if one is only trying to fool linear tests,
one could useε-biased spaces to do away with the randomness altogether. However, we believe that this
setting is a good testbed for refining the “reconstruction proof” technique, and that it may be valuable to
adapt it in the way we do here, to obtain an errorless predictor without relying on local-decodability of the
underlying code. Additionally, our goal is to understand the construction in (1) in the most general setting
possible, and the fact that an extractor object (albeit against a restricted class of tests) is produced fromany
cyclic code is a step toward that goal.

3.2 Extractors fooling low-degree tests

Now suppose further thatC is a polynomialcyclic code; i.e., a Reed-Müller code, and we have the same
setup except that the predictorp is now onlylow degree. That is, there is a functionp of degreed for which:

p(C(x)[y + 1], C(x)[y + 2], . . . , C(x)[y + m − 1]) = C(x)[y + m] (3)

with noticeable probability over the choice ofy. The argument used for linearp breaks down, but a different
argument works, relying on the fact thatC(x) is now itself a low-degree polynomial. This means that there
is a mapping between the indexy and values for variablesy1, y2, . . . , yn for which rx(y1, y2, . . . , yn) ≡
C(x)[y], whererx is a low-degree polynomial depending onx. The fact thatC is cyclic means that for alli
there is a low-degree polynomialrx,i for which rx,i(y1, y2, . . . , yn) ≡ C(x)[y + i].

Now, we observe that the left-hand side of (3) is a low-degreepolynomial iny1, y2, . . . , yn, as is the
right hand side. However, they agree with noticeable probability, so for an appropriate choice of parameters,
they must beequal. This implies thatp is anerrorlesspredictor, since equation (3) holds for ally.

3.3 Unconditional PRGs fooling linear and low-degree tests

If for a given codeC, one can identify a fixed “good”x for which fC,m(x, ·) fools all efficientpredictors,
thenfC,m(x, ·) generates a discrepancy set against all small circuits. It is standard that such anx yields a
function that is not computable by small circuits, and thus in the absence of strong circuit lower bounds we
can obtain (at best) aconditionalconstruction. When the class of predictors is restricted ina different way,
we can pursue the same strategy to produce apseudorandom setagainst all predictors in this class.

One of the surprising side-effects of having transformations from a predictor to an errorless predictor
like the ones we have is that it is easy to produce a “good”x, unconditionally. This is because we need only
to find a codeword that cannot have an errorless predictor. Infact, any codeword beginning with0m1, will
suffice. If such a codeword has an errorless predictorp, then that predictor must output0 since

p(C(x)[y + 1], C(x)[y + 2], . . . , C(x)[y + m − 1]) = C(x)[y + m]

implies p(0, 0, 0 . . . , 0) = 0 (wheny = 0) andp(0, 0, 0 . . . , 0) = 1 (wheny = 1), a contradiction. This
gives a simple construction of pseudorandom sets fooling all linear tests from any cyclic code with good
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distance. We are also able to conclude that substrings of low-degree polynomials comprise a pseudorandom
set that fools low-degree prediction tests, giving a derandomisation of polynomial identity testing for this
restricted class of tests.

4 Proofs of main results

In this section, we shall provide formal proofs of our main theorems.

4.1 Extractors fooling linear tests

In this section, we present a construction forq-ary extractors that fool all linear prediction tests. We begin
with a crucial property of linear codes:

Lemma 4.1. Let C be an[n̄, k̄, d̄] q-ary linear code. LetS = {t1, . . . , tm} ⊆ {1, 2, . . . , n} be a set of size
at leastn̄− d̄+1, and pickr ∈ {1, 2, . . . n}. Then there exists a homogeneous linear functionf : Fm

q → Fq

such that for allx,
C(x)[r] = f(C(x)[t1], . . . , C(x)[tm]).

Proof. For the caser ∈ S, this is trivial. We only therefore need to prove the statement for u ∈ S. We
choose a basisH of n̄ − k̄ vectors in the dual space ofC such thatH = [In̄−k̄|H

′] and for any codeword
C(x) we rearrange its symbols to giveC(x)′ such that the first|S̄| symbols correspond to indices in̄S.
From Proposition 2.1|S̄| = δn̄ − 1 ≤ n̄ − k̄. By the properties ofH, for 1 ≤ i ≤ |S̄| Hi · C(x)′ =
∑

j HijC(x)′[j] = 0 whereHi is thei-th row vector inH. But for j ∈ S̄,Hij = δij whereδii = 1 and
δij = 0 for j 6= i. Hence,C(x)[i]′ = −

∑

j∈S HijC(x)[j]′ as claimed.

We now prove that a “reasonably correct” linear predictor operating on a codeword in a suitable code
must in fact be exactly correct.

Lemma 4.2. Let C be an[n̄, k̄, δn̄] q-ary cyclic linear code with1n̄ ∈ C, and fixx. Supposep is a linear
ith-element predictor with success probabilityρ > (1 − δ) for the random variablefC,m(x, y) induced by
pickingy uniformly from{1, 2, . . . , n̄}. Then,p is an errorless linear predictor.

Proof. DefineS to be the set of positions on whichp is correct; i.e.,

S = {s : p(C(x)[s + 1], C(x)[s + 2], . . . , C(x)[s + i − 1]) = C(x)[s + i]}

We know that|S| ≥ (1 − δ)n̄ + 1. Now pick an arbitraryr ∈ {1, 2, . . . , n̄}, and letf =
∑

s∈S αszs be the
linear function guaranteed by Lemma 4.1. We have:

p(C(x)[r + 1], . . . , C(x)[r + i − 1]) = p

(

∑

s∈S

αsC(x)[s + 1], . . . ,
∑

s∈S

αsC(x)[s + i − 1]

)

=
∑

s∈S

αsp(C(x)[s + 1], . . . , C(x)[s + i − 1]) +

(

1 −
∑

s∈S

αs

)

p(0, . . . 0)

=
∑

s∈S

αsp(C(x)[s + 1], . . . , C(x)[s + i − 1]) =
∑

s∈S

αsC(x)[s + i] = C(x)[r + i]

where the second line follows from the fact thatp is linear (using two properties of linear functions noted in
Section 2), and the third line follows because1n̄ ∈ C implies(1 −

∑

s∈S αs) = 0, and from the definition
of S.
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We now prove our first main theorem, showing thatfC,m for cyclic codesC is an extractor foolingq-ary
linear tests.

Theorem 1 (restated). Let C be an[n̄, k̄, δn̄] q-ary cyclic linear code with1n̄ ∈ C. For anyk andρ > 0,
fC,m is a (k, ρ) q-ary extractor for the family of all linear prediction tests, provided thatδ > 1 − ρ/2, and
k > m log q + log(2/ρ).

Proof. SupposefC,m is not an extractor with the parameters as claimed. Then there is some random variable
X having distributionD, with min-entropy at leastk, and for somei, a linearith-element predictorp
satisfying

Pr
x←D,y

[p(fC,m(x, y)1,...,i−1) = fC,m(x, y)i] ≥ ρ.

By an averaging argument

Pr
x←D

[Pr
y

[p(fC,m(x, y)1,...,i−1) = fC,m(x, y)i] ≥ ρ/2] ≥ ρ/2. (4)

Now, for everyx for which Pry[p(fC,m(x, y)1,...,i−1) = fC,m(x, y)i] ≥ ρ/2, Lemma 4.2 implies that
Pry[p(fC,m(x, y)1,...,i−1) = fC,m(x, y)i] = 1, sinceρ/2 > 1 − δ. Every suchx can be described with
(i−1) elements ofFq, by simply writing downC(x)[1 . . . , i−1]. From this,p(C(x)[1 . . . , i−1]) = C(x)[i],
and thenp(C(x)[2 . . . , i] = C(x)[i], p(C(x)[3 . . . , i + 1] = C(x)[i + 2], and so on until we obtain all of the
symbols ofC(x), which in turn determinex.

We can define a functionR : F
i−1
q → F

k̄
q that runs this procedure. Using equation (4) above, we get:

Pr
x←D

[∃a ∈ F
i−1
q for whichR(a) = x] ≥ ρ/2.

A given x is sampled with probability at most2−k, and so applying the union bound, the probability above
is bounded above byqi−12−k. Using the fact thati ≤ m, we get a contradiction if2m log q−k < ρ/2,
or equivalentlyk > m log q + log(2/ρ). Our choice ofk thus implies thatfC,m must be the claimed
extractor.

To get a sense of the achievable extractor parameters here, we plug in a Reed-Müller code:

Corollary 4.3. Fix n, k, andρ > 1/kO(1). LetC be a Reed-M̈uller code with parametersh = k, q = 2k/ρ,
and` = log n/ log k. ThenfC,m is a (k, ρ) q-ary extractor for the family of all linear prediction tests, with
seed lengthO(log n) and output lengthm ≥ k/O(log k).

The constructions above can be modified to fool binary lineartests using the following theorem.

Theorem 5. Let X = (X1,X2, . . . ,Xm) be a random variable distributed onFm
q that can be sampled

usingt random bits, and denote byXi(y) the value of thei-th random variable when sampling usingy as
the random bits. LetC be a systematic[n̄, k̄, δn̄] binary linear code with1n̄ ∈ C. DefineB as follows:

B(y, z) = (C(X1(y))[z], C(X2(y))[z], . . . , C(Xm(y))[z]).

If there is ani-th element linear predictorp with success probability1/2+ε for the random variableB(y, z)
induced by pickingy andz uniformly at random, then there exists ani-th element linear predictorp′ with
success probabilityε/2 for the random variableX, provided thatδ > 1/2 − ε/2.
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Proof. We havep for which

Pr
y,z

[p(C(X1(y))[z], . . . , C(Xi−1(y))[z]) = C(Xi(y))[z]] ≥
1

2
+ ε.

By an averaging argument:

Pr
y

[

Pr
z

[p(C(X1(y))[z], . . . , C(Xi−1(y))[z]) = C(Xi(y))[z]] ≥
1

2
+

ε

2

]

≥
ε

2
.

Let us call a valuey for which

Pr
z

[p(C(X1(y))[z], . . . , C(Xi−1(y))[z]) = C(Xi(y))[z]] ≥
1

2
+

ε

2

holds “good.”

Claim 6. For goody,

Pr
z

[p(C(X1(y))[z], . . . , C(Xi−1(y))[z]) = C(Xi(y))[z]] = 1.

Proof (of Claim 6). The proof is similar to the proof of Lemma 4.2. DefineS to be the set of positions on
whichp is correct; i.e.,

S = {s : p(C(X1(y))[s], . . . , C(Xi−1(y))[s]) = C(Xi(y))[s]}

We know that|S| ≥ (1/2 + ε/2)n̄ > (1 − δ)n̄. Now pick an arbitraryr ∈ {1, 2, . . . , n̄}, and letf =
∑

s∈S αszs be the linear function guaranteed by Lemma 4.1. We have:

p(C(X1(y))[r], . . . , C(Xi−1(y))[r]) = p

(

∑

s∈S

αsC(X1(y))[s], . . . ,
∑

s∈S

αsC(Xi−1(y))[s]

)

=
∑

x∈S

αsp(C(X1(y))[s], . . . , C(Xi−1(y))[s]) +

(

1 −
∑

s∈S

αs

)

p(0, . . . 0)

=
∑

s∈S

αsp(C(X1(y))[s], . . . , C(Xi−1(y))[s]) =
∑

s∈S

αsC(Xi(y))[s] = C(Xi(y))[r]

where the second line follows from the fact thatp is linear (using two properties of linear functions noted in
Section 2), and the third line follows because1n̄ ∈ C implies(1 −

∑

s∈S αs) = 0, and from the definition
of S.

Let p′ : F
i−1
q → Fq be the function given by:

p′(x1, x2, . . . , xi−1) = (p(C(x1)[1], C(x2)[1], . . . , C(xi−1)[1]),

p(C(x1)[2], C(x2)[2], . . . , C(xi−1)[2]),

...

p(C(x1)[log q], C(x2)[log q], . . . , C(xi−1)[log q]))

We claim thatp′ is a q-ary linear predictor with success probabilityε/2 for the the random variableX
defined onFm

q .

9



First, using Claim 6, observe that for goody

p′(X1(y),X2(y), . . . ,Xi−1(y)) = Xi(y).

Here we are relying on the fact thatC is systematic, so the firstlog q bits contain the message, which in this
case is an element ofFq. Thusp′ is the promised predictor with success probability at leastε/2, since that
is the probability of choosing a goody.

It only remains to verify thatp′ is indeedFq-linear. Thej-th element output byp′ is an F2-linear
combination thej-th elements of the inputs top′, namelyx1, x2, . . . , xi−1. In fact this linear combination is
determined byp and it is the same for allj = 1, 2, . . . , log q, sinceC is systematic. Thusp′ can be expressed
as:

p′( ~x1, ~x2, . . . , ~xi−1) =
i−1
∑

j=1

βj ~xj + β0~1.

where~1 is the all-ones vector inFq, and theβjs are the coefficients that give the linear function that isp (so
βj ∈ F2 for all j).

4.2 Extractors fooling low-degree tests

We develop our result further to describe constructions of extractors that fool low-degree prediction tests.
While the extractor constructions presented in the previous section can be derived in general from any cyclic,
linear code the following constructions are obtained from Reed-Müller codes (including the special case of
Reed-Solomon codes). Similar to the previous subsection, we present a lemma that says that a “reasonably
good” low-degree predictor is an errorless low-degree predictor.

Lemma 4.4. Let C be an[n̄, k̄, d̄] q-ary Reed-M̈uller code with parameters̀, h, and fixx. Supposep is
a degreed i-th element predictor with success probabilityρ > dh/q for the random variablefC,m(x, y)
induced by pickingy uniformly from{1, 2, . . . , n̄}. Thenp is an errorless predictor.

Proof. Note thatC(x) is an`-variate polynomialrx : F
`
q → Fq with total degreeh, and the symbols ofC(x)

are the evaluation ofrx at pointsy = (y1, . . . , y`) ∈ F
`
q. SinceC is cyclic, for all i there is aǹ -variate

polynomialrx,i : F
`
q → Fq with total degreeh for which rx,i(y) ≡ C(x)[y + i].

Now consider thei-variate polynomialQ(z1, . . . , zi) = zi − p(z1, . . . , zi−1). Q has total degree at
mostd. The polynomialQ′(y1, . . . , y`) = Q(rx,1, rx,2, . . . , rx,i) has total degree at mostdh. Moreover,Q′

vanishes on exactly those pointsy = (y1, . . . , y`) ∈ F
`
q for which

p(C(x)[y + 1], . . . , C(x)[y + i − 1]) = C(x)[y + i]. (5)

By the Schwartz-Zippel lemma [Sch80, Zip79], we know that a non-zero polynomial of total degreedh can
vanish in at most adh/q fraction of points inF

`
q. Sinceρ > dh/q, it must be thatQ′ is identically zero,

which implies that (5) holds for ally. Thusp is errorless, as claimed.

This gives us our second main theorem, showing thatfC,m for Reed-Müller codesC is an extractor
fooling low-degree tests.

Theorem 2 (restated). Let C be an[n̄, k̄, δn̄] q-ary Reed-M̈uller code with parameters̀, h. For anyk
and ρ > 0, fC,m is a (k, ρ) q-ary extractor for the family of all degreed prediction tests, provided that
ρ > 2dh/q, andk > m log q + log(2/ρ).
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Proof. SupposefC,m is not an extractor with the parameters as claimed. Then there is some random variable
X having distributionD, with min-entropy at leastk, and for somei, a linearith-element predictorp
satisfying

Pr
x←D,y

[p(fC,m(x, y)1,...,i−1) = fC,m(x, y)i] ≥ ρ.

As in the proof of Theorem 1, using an averaging argument we assert that

Pr
x←D

[Pr
y

[fP (fC,m(x, y)1,...,i−1) = fC,m(x, y)i] ≥ ρ/2] ≥ ρ/2. (6)

Now, for everyx for which Pry[p(fC,m(x, y)1,...,i−1) = fC,m(x, y)i] ≥ ρ/2, Lemma 4.4 implies that
Pry[p(fC,m(x, y)1,...,i−1) = fC,m(x, y)i] = 1, sinceρ/2 > dh/q.

As in the proof of Theorem 1, thesex are uniquely determinedC(x)[1 . . . , i−1]. Following the argument
in that proof, we arrive at a contradiction ifk > m log q + log(2/ρ). Hence for our choice ofk, fC,m is the
claimed extractor.

The following corollary plugs in Reed-Solomon codes, whichcorrespond tò = 1 in Theorem 2.

Corollary 4.5. Fix n, k, d and ρ > 1/kO(1). Let C be aq-ary Reed-Solomon code with parametersq =
2dn/ρ andh = n. ThenfC,m is a (k, ρ) q-ary extractor for the family of all degreed prediction tests, with
seed lengthO(log n) and output lengthm ≥ k/O(log dn).

5 Pseudorandom sets for linear and low-degree tests

In this section we obtain unconditional PRGs by using a special feature of our proof methodology.

5.1 Pseudorandom sets for linear tests

Using Lemma 4.2 we can prove the following theorem giving a construction of a pseudorandom set for
linear prediction tests:

Theorem 3 (restated). LetC be a systematic[n̄, k̄, δn̄] q-ary cyclic linear code with1n̄ ∈ C. Letx be such
that C(x)[1 . . . k̄] = 0k̄−11. ThenS = {fC,k̄−1(x, y) : 1 ≤ y ≤ n̄} is a q-ary ρ-pseudorandom set for the
class of all linear prediction tests, provided thatρ > 1 − δ.

Proof. The fact thatC is systematic implies that there exists a codewordC(x) with the desired prop-
erties. Now suppose for the purpose of contradiction there exists anith-element linear predictorp for
the uniform distribution onS. Then by Lemma 4.2,p is an errorless linear predictor. In particular,
p(C(x)[k − i], . . . , C(x)[k − 2]) = C(x)[k − 1], andp(C(x)[k − i + 1], . . . , C(x)[k − 1]) = C(x)[k].
However by our choice ofC(x),

p(C(x)[k − i], . . . , C(x)[k − 2]) = p(C(x)[k − i + 1], . . . , C(x)[k − 1]) = p(0, . . . , 0)

and yet0 = C(x)[k − 1] 6= C(x)[k] = 1, which gives a contradiction.

Corollary 5.1. Fix m,ρ. LetC be a systematic Reed-Solomon code with parametersh, q satisfyingq = h/ρ.
The setS described in Theorem 3 is aq-ary ρ-pseudorandom set inFm

q of sizeh/ρ for the class of all linear
prediction tests.

Using the following proposition, we can fool lineardistinguishingtests to give us Corollary 5.3.
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Proposition 5.2. Let f : F
m
q → Fq be aq-ary linear distinguisher for a distributionD with advantageε.

Then, there exists ani and aq-ary linear next-element predictor forD f ′ such that for a random variablex
defined overFm

q ,

Pr
x←D

[f ′(x1, . . . , xi−1) = xi] ≥
1

q
+

ε

q − 1

and for the case1q ≤ ε ≤ 1 − 1
q , Prx←D[f ′(x1, . . . , xi−1) = xi] ≥

1
q + ε.

Proof. Sincef is a linear distinguisher, wlog we may assume that it is of theform f(x1, . . . , xm) = −xm +
∑m−1

i=1 Cixi + C0. By definition,

∣

∣

∣

∣

Pr
x←D

[f(x1, . . . , xm) = 0] − Pr
x

[f(x1, . . . , xm) = 0]

∣

∣

∣

∣

≥ ε

Note thatPrx[f(x1, . . . , xm) = 0] = 1/q. Two cases arise:Prx←D[f(x1, . . . , xm) = 0] ≥ 1/q + ε or
Prx←D[f(x1, . . . , xm) = 0] ≤ 1/q − ε. In the former,f ′(x1, . . . , xm−1) = C0 +

∑m−1
i=1 Cixi is anmth-

element predictor with success probability1
q + ε. In the latter, using a simple pigeonhole argument there

exists somev ∈ Fq; v 6= 0 for which

Pr
x←D

[f(x1, . . . , xm) = v] ≥
1

q − 1
·

(

1 −
1

q
+ ε

)

=
1

q
+

ε

q − 1

Choosingf ′(x1, . . . , xm−1) = C0 +
∑m−1

i=1 Cixi whereC ′0 = C0−v gets us anmth-element predictor with
success probability1q + ε

q−1 . For the special case when1q ≤ ε ≤ 1 − 1
q , we note thatPrx[f(x1, . . . , xm) =

0] = 1
q ≤ ε and hence the distinguisher property implies that only the first case is possible.

Corollary 5.3. LetC andS be as defined above in Theorem 3. For everyv ∈ F
m
q ,

∣

∣

∣

∣

Pr
s∈S

[s · v = 0] − Pr
x

[x · v = 0]

∣

∣

∣

∣

≤

(

ρ −
1

q

)

(q − 1).

Pseudorandom sets for binary linear distinguishing tests are calledε-biased sample spaces. Using our
constructions from above and combining them with good binary codes we can construct goodε-biased
sample spaces.

Definition 5.1. A multisetT ⊆ {0, 1}m is anε-biased sample spaceif for every~v ∈ {0, 1}m

∣

∣

∣

∣

Pr
x∈T

[x · v = 0] − Pr
x∈T

[x · v = 1]

∣

∣

∣

∣

≤ ε.

Theorem 7. Let C1 be an [n̄1, k̄1, δ1n̄1] q-ary cyclic code, andC2 be an [n̄2, k̄2 = log q, δ2n̄2] binary
systematic code, and setm = k̄1 − 1. DefineS = {fC1,m(x, y) : 1 ≤ y ≤ n̄1} and define

T = {(C2(s1)[z], C2(s2)[z], . . . , C2(sm)[z]) : (s1, s2, . . . , sm) ∈ S, z ∈ {1, 2, . . . , n̄2}}

The setT is a4ε-biased sample space, providedδ1 > 1 − ε, andδ2 > 1/2 − ε.

Proof. Suppose otherwise. Then by definition, there exists a~v ∈ {0, 1}m such that
∣

∣

∣

∣

Pr
x∈T

[x · v = 0] − Pr
x∈T

[x · v = 1]

∣

∣

∣

∣

> 4ε.
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This means that

Pr
x∈T

[x · ~v = 0] − Pr
x∈T

[x · ~v = 1] > 4ε or Pr
x∈T

[x · ~v = 1] − Pr
x∈T

[x · ~v = 0] > 4ε.

Combining this with
Pr
x∈T

[x · ~v = 0] + Pr
x∈T

[x · ~v = 1] = 1,

we get
Pr
x∈T

[x · ~v = 0] > 1/2 + 2ε or Pr
x∈T

[x · ~v = 0] < 1/2 − 2ε.

Note thatPrx[x · ~v = 0] = 1/2 and therefore~v describes a homogeneous linear distinguisher with
advantageε; i.e.

∣

∣

∣

∣

Pr
x∈T

[x · ~v = 0] − Pr
x

[x · ~v = 0]

∣

∣

∣

∣

≥ 2ε.

By Proposition 5.2, there exists a predictorp with success probability1/2 + 2ε for the random variables
Y = (Y1, Y2, . . . , Ym) induced by choosing an element ofT uniformly at random. By Theorem 5 there
exists a predictorp′ with success probabilityε for the random variableX = (X1,X2, . . . ,Xm) induced by
choosing an elements ofS uniformly at random. But this contradicts Theorem 3, as it indicates thatS does
not fool all linear predictors with success probabilityε > 1 − δ1.

By choosing appropriate codes forC1 andC2 we obtain Corollary 5.4 and, in particular by using a better
binary code forC2 (Reed-Solomon concatenated with Hadamard) we obtain Corollary 5.5.

Corollary 5.4. Fix m. LetC1 be a[q,m + 1, q − m] Reed-Solomon code withq > m/ε and letC2 be an
[q, log q, q/2] binary Hadamard code. Then the setT defined above is an4ε-biased sample space of size
O(m2/ε2).

Corollary 5.5. Fix m. LetC1 be a[q,m + 1, q − m] Reed-Solomon code withq > m/ε and letC2 be an
[n̄ = O(log2 q/ε2), log q, (1/2 − ε)n̄] binary code. Then the setT defined above is an4ε-biased sample
space of sizeO(mpolylog(m, 1/ε)/ε3).

5.2 Pseudorandom sets for low-degree tests

We extend the previous discussion to pseudorandom sets for low-degree tests derived from Reed-Müller
codes.

Theorem 4 (restated). LetC be a systematic[n̄, k̄, δn̄] q-ary cyclic Reed-M̈uller code with with parameters
h, `. Let x be such thatC(x)[1 . . . k̄] = 0k̄−11. ThenS = {fC,k̄−1(x, y) : 1 ≤ y ≤ n̄} is a q-ary
ρ-pseudorandom set for the class of all degreed prediction tests, provided thatρ ≥ dh/q.

Proof. The proof is nearly identical to the proof of Theorem 3. The fact thatC is systematic implies that
there exists a codewordC(x) with the desired properties. Now suppose for the purpose of contradiction
there exists anith-element degreed predictorp for the uniform distribution onS. Then by Lemma 4.4,p is
an errorless predictor. In particular,

p(C(x)[k − i], . . . , C(x)[k − 2]) = C(x)[k − 1],

and
p(C(x)[k − i + 1], . . . , C(x)[k − 1]) = C(x)[k].
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However by our choice ofC(x),

p(C(x)[k − i], . . . , C(x)[k − 2]) = p(C(x)[k − i + 1], . . . , C(x)[k − 1])

and yet
0 = C(x)[k − 1] 6= C(x)[k] = 1,

which gives a contradiction.

Corollary 5.6. Fix m,ρ. Let C be a systematic Reed-Solomon code with parametersh, q satisfyingq =
dh/ρ. The setS described in Theorem 4 is aq-ary ρ-pseudorandom set inFm

q of sizehd/ρ for the class of
all degreed prediction tests.

Equivalently, we have an explicit construction of a hittingset with density1 − ρ against degreed pre-
diction tests, with sizemd/ρ. As discussed in the introduction this is somewhat surprising. Even for this
simple class of polynomials, there does not seem to be a trivial construction of a hitting set with density
1−ρ, making Theorem 4 another example where the generic objectfC,m yields a non-trivial pseudorandom
construction.

6 Concluding remarks

There are many questions raised by these results. For example, is it possible to enlarge the class of tests
fooled by the extractors and pseudorandom sets constructedfrom arbitrary cyclic linear codes? Similarly,
is it possible to fool more general prediction tests using arbitrary polynomial codes? The results of [SU05]
show that it is in the particular case of Reed-Müller codes (with certain parameters), but it is possible that
something more general is true depending, e.g., only on the distance of the code.

We feel that one of the nicest questions of this type is the question of whetherfC,m is a extractor (fooling
all prediction tests), whenC is a Reed-Solomon code.

Regarding pseudorandom sets for low-degree polynomials, we wonder if there is a nontrivial conversion
of distinguishers to predictors (probably relying on the distinguisher being presented as a small arithmetic
circuit) that preserves low-degree-ness. This would potentially lead to a non-trivial derandomisation of
polynomial identity testing, because it would imply that the pseudorandom sets of Theorem 4 would in fact
fool low-degree distinguishing tests with small circuits.

Acknowledgements.We thank Eli Ben-Sasson for helpful discussions and Andrej Bogdanov for sharing
a draft of [Bog05] with us.
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