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Abstract

The perfect matching problem is known to be in P, in randomized NC, and it is hard for NL.
Whether the perfect matching problem is in NC is one of the most prominent open questions
in complexity theory regarding parallel computations.

Grigoriev and Karpinski [GK87] studied the perfect matching problem for bipartite graphs
with polynomially bounded permanent. They showed that for such bipartite graphs the problem
of deciding the existence of a perfect matchings is in NC2, and counting and enumerating all
perfect matchings is in NC3.

In this paper we extend and improve these results. We show that for any graph that has a
polynomially bounded number of perfect matchings, we can construct all perfect matchings in
NC2. We extend the result to weighted graphs.

1 Introduction

Whether there is an NC-algorithm for testing if a given graph contains a perfect matching is
an outstanding open question in complexity theory. The problem of deciding the existence of a
perfect matching in a graph is known to be in P [Edm65], in randomized NC2 [MVV87], and in
nonuniform SPL [ARZ99]. This problem is very fundamental for other computational problems
(see e.g. [KR98]). Another reason why a derandomization of the perfect matching problem would
be very interesting is, that it is a special case of the polynomial identity testing problem.

Since no NC-algorithm is known for testing the existence of perfect matchings in a com-
mon graph, some special cases of the perfect matching problem have been investigated inten-
sively. For example, NC-algorithms have been found the perfect matching problem for regu-
lar bipartite graphs [LPV81], dense graphs [DHK93], strongly chordal graphs [DK86] and planar
graphs [Kas67, Vaz89].

Grigoriev and Karpinski [GK87] considered the perfect matching problem for bipartite graphs
with polynomially bounded number of perfect matchings, i.e. a promise problem. They showed that
the decision version of the perfect matching problem for such graphs is solvable in NC2. Moreover,
they showed that all perfect matchings for such graphs can be constructed in NC3.

We extend the result of Grigoriev and Karpinski [GK87] to arbitrary graphs and improve the
upper bound to NC2. That is, we show that on input of some graph G one can construct all perfect
matchings of G in NC2, if G has a polynomially bounded number of perfect matchings. We show
the result for bipartite graphs in Section 3 and then extend it to general graphs in Section 4. In
Section 5 we generalize our techniques to graphs with polynomially bounded weights.
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When we restrict ourselves to the decision version or the counting version of the problem, we
get logspace counting classes inside NC2 as upper bounds for these problems.

2 Preliminaries

Let G = (V,E) be an undirected graph. A matching in G is a set M ⊆ E, such that no two
edges in M have a vertex in common. A matching M is called perfect if every vertex occurs as an
endpoint of some edge in M . Define

PM (G) = {M | M is a perfect matching in G }.

Bipartite Graphs. Let G be bipartite, that is we can partition the nodes into V = L ∪ R such
that there are no edges in L and in R. We assume w.l.o.g. that |L| = |R = n, otherwise G has no
perfect matching. The bipartite adjacency matrix of G is the n × n matrix A = (ai,j), where

ai,j =

{

1 if (i, j) ∈ E, for i ∈ L and j ∈ R,

0 otherwise.

The bipartite Tutte matrix of G is the n × n matrix T = (ti,j), where

ti,j = ai,j xi,j,

for indeterminates xi,j. The determinant of T is

det(T ) =
∑

π∈Sn

sign(π)
n

∏

i=1

ai,π(i) xi,π(i).

det(T ) is a multi-linear polynomial. Each non-vanishing term sign(π)
n
∏

i=1
xi,π(i) corresponds to one

perfect matching Mπ = { (i, π(i)) | 1 ≤ i ≤ n } ∈ PM (G). In particular we have

Theorem 2.1 (Tutte 1952) Let G be a bipartite graph. G has a perfect matching iff det(T ) 6= 0.

General Graphs. Let G be a graph with n nodes. W.l.o.g. assume that n is even, otherwise
G has no perfect matchings. Let A = (ai,j) be the n × n adjacency matrix of G. Note that A is
symmetric. The skew-symmetric Tutte matrix of G is the n × n matrix T = (ti,j), where

ti,j =

{

ai,j xi,j, if i ≤ j,

−aj,i xj,i, otherwise,

for indeterminates xi,j. The Pfaffian of T is

pf(T ) =
∑

M∈PM (G)

sign(M) ·
∏

(i, j) ∈ M

i < j

ai,j xi,j .

The sign is defined as follows. Consider perfect matching

M = {(i1, j1), (i2, j2), . . . , (ik, jk)} ∈ PM (G)
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for k = n/2. By convention, we have il < jl for all l. The sign of M is defined as the sign of the
permutation

(

1 2 3 4 · · · n − 1 n
i1 j1 i2 j2 · · · ik jk

)

∈ Sn

It is known that the sign of M does not depend on the order in which the edges are given, i.e. the
sign is well defined.

pf(T ) is a multi-linear polynomial. Each non-vanishing term sign(M) ·
∏

(i, j) ∈ M

i < j

xi,j corresponds

to one perfect matching M ∈ PM (G). The Pfaffian and the determinant of a matrix are known to
be closely related.

Theorem 2.2 det(T ) = pf2(T ).

In particular we have

Theorem 2.3 (Tutte 1952) Graph G has a perfect matching iff det(T ) 6= 0.

Linear Algebra. The following matrix is called a Vandermonde matrix

V =















1 1 · · · 1
a1 a2 · · · an

a2
1 a2

2 · · · a2
n

...
...

...

an−1
1 an−1

2 · · · an−1
n















.

It is known that
det(V ) =

∏

i6=j

(ai − aj).

Hence, in the case when a1, a2, . . . , an are pairwise distinct the matrix V is non-singular. The
inverse can be written as

V −1 =
1

det(V )
adj(V ),

where adj(V ) is the adjoint of V .

Complexity Classes. The classes NCk, for fixed k, consists of families of Boolean circuit with
∧-, ∨-gates of fan-in 2, and ¬ -gates, of depth O(logk n) and of polynomial size. NC = ∪k≥0NCk.

Standard arithmetic operations like addition, subtraction, multiplication and integer division are
known to be in NC1. Many problems from linear algebra like computing powers of a matrix are in
NC2. A break-through result was that the determinant of a matrix is computable in NC2 [Ber84].

For a nondeterministic Turing machine M , we denote the number of accepting and rejecting
computation paths on input x by accM (x) and by rejM (x), respectively. The difference of these
two quantities is gapM , i.e., for all x: gapM (x) = accM (x)− rejM (x). The complexity class GapL
is defined as the set of all functions gapM (x), where M is a nondeterministic logspace bounded
Turing machine. Most notably, we have
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Theorem 2.4 [Dam91, Tod91, Vin91, Val92] The determinant of an integer matrix is complete
for GapL.

And similarly for the Pfaffian we have

Theorem 2.5 [MSV99] The Pfaffian of an integer matrix is complete for GapL

GapL is closed under addition, subtraction, and multiplication. It is not known to be closed
under integer division. In particular, consider the inverse of matrix like in the above example,
V −1 = 1

det(V )
adj(V ). The entries of the adjoint matrix are determinants and can therefore be

computed in GapL. But we don’t know whether the entries of V −1 can be computed in GapL
too because of the division by det(V ). However, with the adjoint matrix we have the entries of
det(V )V −1 in GapL.

The class C=L (Exact Counting in Logspace) is the class of sets A for which there exists a
function f ∈ GapL such that ∀x : x ∈ A ⇐⇒ f(x) = 0. A problem complete for C=L is the
singularity problem, where one has to decide whether the determinant of an integer matrix is zero.
C=L is closed under union and intersection, but is not known to be closed under complement.

Problems that can be expressed as a (unbounded) boolean combination of sets from C=L are
captured by the class AC0(C=L) of sets being AC0-reducible to C=L. Allender, Beals, and
Ogihara [ABO99] defined and studied this class. They show for example that the problem to
decide whether a system of linear equations has a solution is complete for AC0(C=L). We have
the following inclusions.

NL ⊆ C=L ⊆ AC0(C=L) ⊆ NC2.

Cook [Coo85] defined the class DET as the class of sets that are NC1-reducible to the deter-
minant. Since the determinant is complete for GapL, we denote DET by NC1(GapL). We have
NC1(GapL) ⊆ NC2.

3 Bipartite Graphs

In this section we prove the following theorem.

Theorem 3.1 All perfect matchings of a bipartite graph with a polynomially bounded number of
perfect matchings can be constructed in NC2.

Let G = (V,E) be a bipartite graph with |V | = 2n nodes and let A = (ai,j) be the bipartite
adjacency matrix of G. Let p be a polynomial and assume that G has at most p(n) perfect
matchings. Define

b
(m)
i,j (x) = ai,j pi,j xmni+j mod r,

where pi,j are pairwise different primes, x is an indeterminate, r is a prime such that r > n2p2(n),
and 0 ≤ m < r. We can choose max{ pi,j | 1 ≤ i, j ≤ n } = O(n3) by the Prime Number Theorem.
For 1 ≤ m < r define matrices

Bm(x) =
(

b
(m)
i,j (x)

)

.
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The determinant of Bm(x) is a polynomial dm(x), where

dm(x) = det(Bm(x)) =
∑

π∈Sn

sign(π)

n
∏

i=1

ai,π(i) pi,π(i) xmni+π(i) mod r

=
∑

π∈Sn

sign(π)(
n

∏

i=1

ai,π(i) pi,π(i)) xem(π),

where em(π) =
∑n

i=1(m
ni+π(i) mod r) are the exponents of x in dm(x).

The crucial point here is, that the summands of em(π) are taken modulo r. Therefore the
degree of polynomial dm(x) is bounded by D = n(r − 1), which is in polynomial n. Without the
mod r we would have exponential degree. On the other hand, without the mod r, for any π ∈ Sn

the exponent of x is unique. We show in the following that this also holds modulo r, at least for
some m.

Lemma 3.2 Let π1, . . . , πt ∈ Sn for some t ≤ p(n). Then there exists an m < r such that
em(πi) 6= em(πj), for all i 6= j.

Proof . The values em(πi) can be seen as evaluations modulo r of polynomials in the following way.
Define

qπ(z) =

n
∑

i=1

zni+π(i).

Then we have em(πi) ≡ qπ(m) (mod r), for any m. To prove the lemma, we have to show that
qπi

(m) 6≡ qπj
(m) (mod r), for some m < r and for all i 6= j.

Notice first that qπi
6= qπj

, for any i 6= j. Now the degree of the q-polynomials is bounded by
n2 + n ≤ 2n2. Hence any two of them can agree on at most 2n2 points. Thus in any domain of
size at least

(

t
2

)

2n2 we have a point where all polynomials qπi
pairwise differ modulo r. Note that

(

t
2

)

2n2 ≤ t2n2 ≤ p2(n)n2 < r. �

It follows that if G has t perfect matchings for some t ≤ p(n), then there exists an m < r such
that polynomial dm(x) has precisely t terms. That is,

dm(x) =

D
∑

k=0

c
(m)
k xk,

where precisely t of the coefficients c
(m)
k are non-zero. Moreover, the non-zero coefficients are of the

form

c
(m)
k = sign(π)

n
∏

i=1

pi,π(i)

for some π ∈ Sn such that k = em(π). We want to compute these coefficients.
Define the Vandermonde matrix V = (vi,j) by vi,j = ij , for 0 ≤ i, j ≤ D. Define vectors

dm = (dm(0) dm(1) · · · dm(D))T

cm = (c
(m)
0 c

(m)
1 · · · c

(m)
D )T
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The evaluation of polynomial dm(x) at points 0, . . . ,D can now be written as

dm = V cm.

Therefore we obtain the coefficient vector by the equation

cm = V −1dm.

By the latter equation, cm can be computed in NC2.

Lemma 3.3 cm ∈ NC2.

Proof . The matrices V and Bm(x) can be computed in NC1 for any x ≤ D. Vector dm can be
computed by computing the determinant of matrix Bm(x) for different values of x, which is in NC2

by Theorem 2.4. Also, V −1 can be computed in NC2. �

The final step is to determine the prime factors pi,j of the non-zero coefficients in cm, because

these factors define perfect matchings as explained above. Given a non-zero c
(m)
k , we can test in

NC1 whether c
(m)
k ≡ 0 (mod pi,j) since all pi,j are O(n3). In summary, we can construct all perfect

matchings of G in NC2 if we have the right value of m.
To find the right value for m, we compute cm for all m ∈ {1, . . . , r−1} in parallel. We can take

any m such that cm has a maximum number of non-zero entries. The procedure remains in NC2.
In fact, we get a slightly better upper bound. Note first that the entries of all vectors det(V )cm =

adj(V )dm can be computed in GapL. Having all these values, the remaining computation can be
done in NC1. Recall in particular that integer division is in NC1 [CDL01].

Suppose we want to know only whether there exists some perfect matching (decision problem)
or count the number of perfect matchings (counting problem). For the decision problem it suffices
to determine whether cm is non-zero for some m. Note that this is equivalent to det(V )cm being
non-zero. For the counting problem we have to count the number of non-zero entries of cm, for
an m such that cm has a maximum number of non-zero entries.

Corollary 3.4 For bipartite graphs with a polynomially bounded number of perfect matchings

1. the decision problem is in coC=L,

2. the counting problem is in AC0(C=L),

3. the construction problem is in NC1(GapL).

4 General Graphs

In this section we extend Theorem 3.1 to non-bipartite graphs.

Theorem 4.1 All perfect matchings of a graph with a polynomially bounded number of perfect
matchings can be constructed in NC2.
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Let G = (V,E) be an undirected graph with |V | = n nodes. We assume that n is even, otherwise
G has no perfect matchings. Let A = (ai,j) be the adjacency matrix of G. Let p be a polynomial

and assume that G has at most p(n) perfect matchings. We define matrices Bm(x) =
(

b
(m)
i,j (x)

)

in

a similar fashion as before. The definition is now according to the Tutte matrix of G:

b
(m)
i,j (x) =

{

ai,j pi,j xmni+j mod r, if i ≤ j,

−aj,i pj,i xmnj+i mod r, otherwise,

for pairwise different primes pi,j of size O(n3), an indeterminate x, a prime r such that r > n2p2(n),
and 1 ≤ m < r.

The Pfaffian of Bm(x) is a polynomial pm(x), where

pm(x) = pf(Bm(x)) =
∑

M∈PM (G)

sign(M) ·
∏

(i, j) ∈ M

i < j

ai,j pi,j xmni+j mod r

=
∑

M∈PM (G)

sign(M) · (
∏

(i, j) ∈ M

i < j

ai,j pi,j) xem(M),

where
em(M) =

∑

(i, j) ∈ M

i < j

(mni+j mod r)

are the exponents of x in pm(x). Similar as in Lemma 3.2 we have that there is some m < r where
the exponents em(M) pairwise differ.

Note that em(M) ≤ (r − 1)n/2. Let D = (r − 1)n/2. Then we can write

pm(x) =
D

∑

k=0

c
(m)
k xk.

Define the Vandermonde matrix V = (vi,j) by vi,j = ij , for 0 ≤ i, j ≤ D. Define vectors

pm = (pm(0) pm(1) · · · pm(D))T

cm = (c
(m)
0 c

(m)
1 · · · c

(m)
D )T

As in the bipartite case we have pm = V cm, from which we get cm = V −1pm. By Theorem 2.5,
cm can be computed in NC2.

Corollary 4.2 For graphs with a polynomially bounded number of perfect matchings,

1. the decision problem is in coC=L,

2. the counting problem is in AC0(C=L),

3. the construction problem are in NC1(GapL).
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5 Weighted Graphs

In this section we extend Theorem 4.1 to graphs with small weights. Let G = (V,E) be an
undirected graph with |V | = n nodes. Let A = (ai,j) be the adjacency matrix of G and W = (wi,j)
be the symmetric matrix that gives weight wi,j to edge (i, j), where all weights are polynomially
bounded in n.

There are several variants of problems we might consider: the minimal perfect matching problem
asks for a perfect matching of minimum weight. In its promise version, we assume that there are at
most polynomially many perfect matching of minimum weight. Analogously, there is the maximum
perfect matching problem. But actually, we can solve a more general problem. It suffices that for
some weight w there are at most polynomially many perfect matching of weight w.

Theorem 5.1 Let G be a weighted graph with polynomially bounded weights such that G has a
polynomially bounded number of perfect matchings of some weight w. Then all perfect matchings
of G of weight w can be constructed in NC2.

Define matrices Bm(x, y) =
(

b
(m)
i,j (x, y)

)

in two variables x and y that incorporate the weights

of G:

b
(m)
i,j (x, y) =

{

ai,j pi,j ywi,j xmni+j mod r, if i ≤ j,

−aj,i pj,i ywj,i xmnj+i mod r, otherwise,

for pairwise different primes pi,j of size O(n3), indeterminates x and y, a prime r such that r >
n2p2(n), and 1 ≤ m < r.

The Pfaffian of Bm(x, y) is a polynomial pm(x, y), where

pm(x, y) = pf(Bm(x, y)) =
∑

M∈PM (G)

sign(M) ·
∏

(i, j) ∈ M

i < j

ai,j pi,j ywi,j xmni+j mod r

=
∑

M∈PM (G)

sign(M) · (
∏

(i, j) ∈ M

i < j

ai,j pi,j) yw(M) xem(M)

where em(M) =
∑

(i, j) ∈ M

i < j

(mni+j mod r). By a similar argument as in Lemma 3.2 we have that

there is some m < r where the exponents em(M) pairwise differ.
The degree of x in pm(x, y) is bounded by (r−1)n/2. Let d = (r−1)n/2+1, so that the degree

of x in pm(x, y) is strictly less than d. We transform pm(x, y) into polynomial Pm(x) with just one
variable by setting

Pm(x) = pm(x, xd).

Then we have
Pm(x) =

∑

M∈PM (G)

sign(M) · (
∏

(i, j) ∈ M

i < j

ai,j pi,j) xdw(M)+em(M)

By our choice of d we have d > em(M). Let w be any fixed weight and consider a perfect matching M
of weight w. Then we have

dw < dw + em(M) < d(w + 1).
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That is, the degrees of x in Pm(x) for perfect matchings of different weights w are in disjoint
intervals of the form (dw, d(w + 1)). Let D be the degree of Pm(x). We have D ≤ dwmax, where
wmax is the maximum weight of any matching. Note that wmax ≤ max{wi,j | 1 ≤ i, j ≤ n }n/2.
Let

Pm(x) =
D

∑

k=0

c
(m)
k xk.

We have seen in Section 4 how to determine the coefficients c
(m)
k and how to get the perfect match-

ings from these coefficients in NC2. Note that the perfect matchings of weight w are represented

by the coefficients c
(m)
k for dw < k < d(w + 1).

Now, if there are at most p(n) perfect matchings of weight w, then all of these will be listed by
our NC2-circuit. Note however that we might list perfect matchings of other weights as well. In
this case we cannot tell which is the weight w, for which we have computed all perfect matchings.
This changes if the promise is for the minimum (or maximum) weight perfect matching.
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