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Abstract. A monotone planar circuit (MPC) is a Boolean circuit that can
be embedded in a plane, and that has only AND and OR gates. Yang
showed that the one-input-face monotone planar circuit value problem
(MPCVP) is in NC2, and Limaye et. al. improved the bound to LogCFL.
Barrington et. al. showed that evaluating monotone upward stratified cir-
cuits, a restricted version of the one-input-face MPCVP, is in LogDCFL. In
this paper, we prove that the unrestricted one-input-face MPCVP is also
in LogDCFL. We also show this problem to be L-hard under quantifier free
projections.
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1 Introduction

The problem of evaluating Boolean circuits is a widely studied problem in com-
plexity theory. In [12], the problem of evaluating a Boolean circuit (CVP) was
shown to be P-complete under logspace many-one reductions. Special cases of
CVP, namely, the monotone CVP and the planar CVP, have also been shown to
be P-complete in [9]. However, a special case of both these versions, the planar
monotone CVP (MPCVP), is known to be in NC.

It was shown in [10] that upward stratified MPCVP, a special case of MPCVP

(see Section 2 for definitions), is in NC2. The upper bound for this problem was
subsequently improved to LogCFL in [7], and quite recently to LogDCFL in [5].

A less restrictive case, the layered upward MPCVP, was shown to be in NC3

in [11]. Independently and in parallel, it was shown in [15] and [6] that general

MPCVP is in NC4 and NC3 respectively.

In [15], it was shown that one-input-face MPCVP, a less restricted case than

upward stratified, is in NC2. Recently, it was shown in [13] that one-input-face
MPCVP is in L(PDLP ⊕ LogDCFL) ⊆ LogCFL. (PDLP is the problem of find-
ing the longest path in a planar DAG. Its best known upper and lower bounds
are NL and L, respectively.) The upper bound for general MPCVP was also im-

proved to AC1(LogCFL) = SAC2 in [13].
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Cylindrical and toroidal circuits were also discussed in [13]. Stratified mono-
tone cylindrical circuits were shown to be in LogDCFL, one-input-face mono-
tone cylindrical circuits in L(PDLP ⊕ LogDCFL), and monotone cylindrical cir-

cuits(in full generality) in AC1(LogDCFL). Toroidal circuits were shown to be in

SAC2.
The main result of this paper is that one-input-face MPCVP is in LogDCFL.

Our method is inspired chiefly from the insights about grid graphs and single
source planar graphs developed in [2] and [1]. Our result has been mentioned as
personal communication in [13], and we are grateful to its authors for valuable
discussion.

We also show that L is a lower bound for one-input-face MPCVP, i.e. one-
input-face MPCVP is L-hard under quantifier free projections. As corollary to
the main result of this paper, we infer that one-input-face cylindrical circuits,
can be evaluated in LogDCFL.

The rest of the paper is organized as follows: Section 2 gives some necessary
definitions and basic or known facts, Section 3 gives an overview of the proof
of our main result, while Section 4 presents its details. In Section 5, we show the
L-hardness of one-input-face MPCVP under quantifier free projections, and in
Section 6, we summarize the results. Section 7 provides our conclusion.

2 Definitions and Facts

A Boolean circuit is a circuit with AND, OR and NOT gates, apart from the input
gates. The gates (as vertices) and wires (as edges directed towards the gate for
which it is an input wire) of the circuit form a directed acyclic graph (DAG).
We shall consider Boolean circuits which also have COPY gates of fan-in one: a
COPY gate outputs 1 if and only if its input is 1. Note that the behaviour of a
COPY gate is the same as an AND or OR gate with fan-in one.

Circuit value problem (CVP) is the problem of evaluating a circuit when
values of the input gates are specified. A circuit is called monotone if it does
not have any NOT gate. A circuit is called planar if its underlying DAG has a
planar embedding. MPCVP refers to the restriction of CVP in which the circuit
is monotone as well as planar.

A planar circuit is said to be one-input-face if it has a planar embedding such
that all the input gates are on a single face. The planar embedding need not be
given as part of the input, as the following lemma shows.

Lemma 1. An appropriate planar embedding for a one-input-face circuit can be found
in logspace.

Proof. Consider the planar DAG G corresponding to the circuit C. Add a source
vertex s in G, and add edges from s to all the input gates, to obtain a graph
G′. Since C is one-input-face, G′ is also planar. Find a planar embedding of G′,
and delete s to get the required embedding for G. A planar embedding can be

computed by a logspace transducer, since it was shown to be in FLSL in [3], and
it was proved that SL = L in [14]. ut



A planar embedding can be specified by listing the edges incident on each
vertex, in cyclic order around the vertex. Such a specification is called a combi-
natorial embedding. A planar embedding is said to be bimodal if all the incoming
edges at every vertex appear consecutively in the cyclic ordering. For a bimodal
planar embedding, we can define the clockwise-most and anticlockwise-most in-
coming and outgoing edges at every vertex v without any ambiguity. We can,
infact, order all the incoming edges and all the outgoing edges, according to
their cyclic ordering, clockwise or anticlockwise.

v

Anticlockwise−most

incoming edge

Clockwisemost

outgoing edge

Anticlockwise−most

outgoing edge

Clockwise−most

incoming edge

Fig. 1. Bimodality at a vertex v

A planar DAG is called an SSPD if it has a single source (vertex with inde-
gree zero), and a single sink (vertex with outdegree zero). It is well known (e.g.,
see [1],[15]) that any planar embedding of an SSPD is bimodal. A planar DAG
is called an SMPD if it has a single source, but can have multiple sinks.

Similar to planar circuits, one may also consider cylindrical circuits (i.e. em-
beddable on the surface of a cylinder), and toroidal circuits (i.e. embeddable
on the surface of a torus). Please see [13] for definition and properties of such
embeddings.

A circuit is said to be layered if there is a partition of the vertex set V =
V0 ∪ V1 ∪ V2 . . . Vk, such that all the edges go from Vi to Vi+1 for some i. Each
subset of the partition is called a layer. A layered circuit is said to be stratified
if there is such a partition, in which all the input gates (vertices) are in V0. For
layered circuits, it is important that the input provides the layering information;
all the previous results critically use this fact. Finding a layering for general
circuits that can be layered is not known to be in LogDCFL.

A circuit (graph) is said to be upward planar if there is a planar embedding
in which every edge is monotonically increasing in the upward, or any partic-
ular, direction. A circuit (graph) is said to be upward layered (stratified) if it is
layered (stratified), and the layers give an upward planar embedding. Clearly,
an upward stratified circuit is also a one-input-face circuit.

LogCFL and LogDCFL are the classes of languages that are logspace many-
one reducible to non-deterministic and deterministic context-free languages,
respectively. LogDCFL can be alternately described as the class of languages de-
cidable by a logspace Turing machine that is also provided with a stack, which
runs in polynomial time. The following facts are known:

– L ⊆ NL ⊆ LogCFL,



– L ⊆ LogDCFL ⊆ LogCFL, and
– LogCFL = SAC1 ⊆ AC1 ⊆ NC2.

Grid graphs are planar graphs whose vertices are a subset of the integral
points of a finite two-dimensional grid (called grid points), and whose edges are
either from (i, j) to (i + b, j) (horizontal edge), or from (i, j) to (i, j + b) (vertical
edge), where b ∈ {−1, 1}. A grid graph has the naturally defined directions up,
down, left and right, which are synonymous with north, south, west and east,
respectively. We follow the convention that the first coordinate increases right-
ward, and call it the rightward/eastward coordinate, while the second coordinate
increases downward, and we call it the downward/southward coordinate. [1] and
[2] are good references for terminology and facts associated with grid graphs.

A grid graph is said to be 1-forbidden if it has edges only in three of the
four directions. A grid graph is said to be 2-forbidden or layered if it has either
rightward or leftward edges, and has either upward or downward edges. Note
that a layered grid graph is upward layered (view the grid graph diagonally).
Note that a layered grid graph, viewed diagonally, is also an upward layered
graph. Each layer consists of all the vertices that lie on a line parallel to the
diagonal, and the ordering of the layers can be deduced easily in logspace.

The problem ORD is defined as reachability from a vertex s to another vertex
t in a directed graph, consisting of n vertices v1, v2 . . . vn and (n − 1) edges
(given in the input as ordered pairs of vertices), such that the graph is a directed
path. Every vertex v has a unique successor S(v). An equivalent definition of
the problem in terms of total orders is given in [8].

It was shown in [8] that ORD is L-complete under quantifier free projections
(qfp’s). For details on these extremely low level reductions please see [8].

3 Overview

In [13], one-input-face MPCVP was reduced to upward stratified MPCVP, by
making oracle calls to the PDLP problem, which finds the longest path in a
planar DAG, and then the LogDCFL algorithm given in [5] was used to solve
the one-input-face MPCVP in L(PDLP⊕ LogDCFL).

We prove that the one-input-face MPCVP is in LogDCFL, by finding a logspace
reduction from one-input-face MPCVP to the upward stratified MPCVP. This
result would have followed trivially from the algorithm in [13] if PDLP were in
LogDCFL, but such a result has not yet been proved, and, for all we know, PDLP

can be NL-hard. We take a completely different approach to bypass the PDLP
problem and obtain a logspace reduction.

3.1 Graph-Circuit Conversion

In this paper, we shall often store a circuit as a DAG G, with vertices corre-
sponding to gates and edges corresponding to wires. For interpreting G as a
circuit, it is required that every vertex carries exactly one of the labels 0, 1, AND,



OR, COPY and SRC. The label SRC shall indicate the dummy vertices, that are
not present in C. The other labels shall indicate the type of the gate correspond-
ing to the vertex. Further, one of the vertices carries a second label of OUTPUT,
which will correspond to the output gate of the circuit. Note that it is possi-
ble for a DAG to have a labelling that cannot be interpreted as a meaningful
Boolean circuit.

We shall use the following conversion algorithm, which, given a DAG G and
a labelling of its vertices, decides if the labelling valid, i.e. whether it can be
interpreted as a meaningful circuit, and also produces the unique circuit corre-
sponding to G, if it is meaningful:

1. If some vertex labelled COPY does not have indegree one, report that the
labelling is not valid.

2. Delete all vertices (and edges incident on them) that should not be there
in the circuit. These include vertices labelled SRC, and also those vertices
v labelled COPY, such that there is a path from another vertex u, labelled
SRC, all whose internal vertices are labelled COPY.

3. Replace the remaining vertices by gates according to the labelling, and the
edges by wires. The gate corresponding to the vertex labelled OUTPUT is
marked as the output gate of the circuit produced.

Since the hardest step in the conversion algorithm involves checking reacha-
bility in graphs by simple paths (paths whose internal vertices have total degree
2 in the graph), the algorithm can be implemented in logspace.

We shall refer to the circuit obtained by the conversion algorithm as the
circuit corresponding to the graph. For any vertex that is not deleted by the
algorithm, the gate corresponding to it will have a value in the evaluation of
the circuit, which we shall refer to as the value at the vertex.

Note that, given a circuit C, it is trivial to construct a graph G, such that the
conversion algorithm applied on G yields C.

3.2 Steps of the reduction

Given a one-input-face MPC C, consider its underlying single-source planar
DAG, with vertices labelled accordingly. We add a source vertex s to the graph,
with edges to all the vertices labelled 0 or 1, and label it as SRC. Let this graph,
which is an SMPD, be G.

The reduction then proceeds sequentially in 5 major steps. Each step takes
the output of the previous step as its input, and uses it to produce some output,
in logspace. Step 1 takes G(with its labelling) as input. Each of steps 1-4 output a
planar DAG (that has certain useful properties) with a valid labelling. We shall
ensure that the value of the circuit corresponding to the output of each step is
the same as that of the input circuit C. Step 5 produces an upward stratified
circuit, hence completing the reduction.

The chief properties of the output of the each step is listed below:

1. An SSPD G1.



2. An SSPD G2 whose total degree at each vertex is bounded by 3, and the
indegree and outdegree by 2.

3. A 1-forbidden grid graph G4, that is also an SMPD.
4. A layered grid graph G5, that is also an SMPD.
5. An upward stratified circuit C′′.

The upward stratified circuit C′′ obtained at the end of step 5 can then be
evaluated in LogDCFL, as described in [5].

4 Details of the Reduction

In this section, we provide the necessary details about how to implement the
steps, outlined in the overview, in logspace, and also show that the circuit value
is preserved.

4.1 Step 1

Suppose that a vertex u does not have a path to t, the vertex labelled OUTPUT.
Then the value at t is independent of the value at u. So, deleting u does not
affect the circuit value. If we delete all such vertices, then it is easy to see that the
resulting graph has a single source s and a single sink t, i.e. the resulting graph
G1 is an SSPD, and the circuit value remains unchanged. It was shown in [1]
that reachability in single-source planar DAGs is in L, so G1 can be constructed
from G by a logspace transducer.

4.2 Step 2

We compute a planar embedding (combinatorial) of G1. This can be done in
logspace, by Lemma 1. Note that since G1 is an SSPD, the embedding is bi-
modal.

To reduce the degrees of the vertices as required, we replace each vertex v of
G1 by a gadget, to obtain the graph G2. It comprises two directed binary trees,
one with its root as its source, and the other with its root as its sink. We shall re-
fer to the former as outgoing tree, and to the latter as incoming tree (see Figure 2).
There is also an edge from the root of the incoming tree to that of the outgoing
tree. Both the trees have depth at most dlog |V|e, where |V| is the number of
vertices in G1. The number of leaves in the incoming tree (incoming leaves) is
equal to the indegree of v, and the number of leaves in the outgoing tree (out-
going leaves) is equal to the outdegree of v. All the vertices of the outgoing tree
are labelled COPY. If v were labelled AND, OR or SRC, all the vertices of the
incoming tree are labelled AND, OR or SRC, respectively. If v were labelled 0
or 1, then the vertices of the incoming tree, except its root, are labelled COPY,
while its root is labelled 0 or 1. Note that the gadget corresponding to s will
not have an incoming tree, and the gadget corresponding to t will not have an
outgoing tree. For s, the root of the outgoing tree is labelled SRC, and for t, the
root of the incoming tree is labelled OUTPUT.
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Fig. 2. Gadget to replace any vertex v with indegree 3 and outdegree 4

Note that the incoming leaves and the outgoing leaves are arranged in a
bimodal fashion, i.e. the incoming leaves appear consecutively in a cyclic or-
dering. Now, for every edge e = (u, v) in G1, which is the ith outgoing edge of
u and the jth incoming edge of v(unambiguously defined, due to bimodality in
G1), we put an edge in G2 from the ith outgoing leaf of the gadget for u to the
jth incoming leaf of v. Because of bimodality in G1, G2 is planar. Also, G2 is an
SSPD, satisfying the degree constraints. It is easy to see that the value of the
circuit for G2 is the same as that for G1.

Since the gadget for each vertex is dependent only on its indegree and out-
degree, they can be constructed by a logspace transducer. The other edges of G2

can also be added by the same transducer.

4.3 Step 3

This is the most involved step in our reduction. We first convert G2 into an
SMPD G3 with certain advantageous features, that has the same circuit value
as G2, and then embed G3 as a 1-forbidden grid graph G4, by only subdividing
some of the edges (i.e. replacing edges by simple paths) of G3. We shall label
the new vertices created due to the subdividing as COPY, and it is easy to see
that the circuit value will remain unchanged. Note that the degree constraints
achieved in Step 2 are also not violated.

The process of embedding in the grid is similar in spirit to the process given
in [2], where it was shown how to embed a planar graph in a grid using only
logspace, preserving reachability. Here, we have an SSPD to embed instead of
a general planar graph, while we additionally require that the grid graph pro-
duced should be monotone along one axis (we shall ensure that G4 has no west-
ward edge), and also want to preserve circuit value. This is significant, because
reachability is precisely evaluation of circuits with only OR gates, and hence
possibly easier to preserve than values of circuits with both AND and OR gates.

Using the mentioned embedding of G2, we construct a subgraph H, by
deleting all incoming edges except the clockwise-most one at every vertex of
G2 except the source and sink (the clockwise-most edge is unambiguously de-
fined, due to bimodality). Delete all but one (arbitrarily chosen) of the edges



incoming to the sink t. It is easy to see that H is a directed tree spanning all
vertices, with s as its root.

We can now classify the edges of G2 as tree edges (those present in H) and
non-tree edges. The non-tree edges can be further classified as forward edges
(from a vertex to its descendant in H), and cross edges (between different sub-
trees). Since G2 is a DAG, there is no back edge (from a vertex to its ancestor).
Due to the bounded degree of G2, H is a binary tree. We perform an Euler
traversal (same as a dfs traversal for a tree) of H starting at s, choosing the
anticlockwise-most unexplored edge at every stage (we consider the embed-
ding of H derived from G2). In the beginning, at s, we make an arbitrary choice
of the edge to explore first. We write down the discovery time d[v] and the finish-
ing time f [v] of every vertex v using a logspace transducer.

Before describing the reduction any further, we need the following lemmas.

Lemma 2. Suppose H is drawn as the dfs-tree, mentioned above, in standard fashion,
with the child explored first drawn as the left child at every vertex (see Figure 3). The
combinatorial embedding of H thus obtained is the same as that derived from G2.

s d[s]=0

u right child of sv  =left child of s =
d[u]=1 (explored after

the subtree under
u is finished)

Fig. 3. Standard drawing of a dfstree

Proof (Lemma 2). In the tree embedding, the edge to the left child is the anticlockwise-
most outgoing edge, which is the edge explored first during the dfs. ut

Hence, it is possible to add and embed the non-tree edges to the dfs-tree in
a planar way such that the combinatorial embedding is the same as that of G2

at the end of the previous step. The dfs-tree helps us define the left and right
of every vertex that is not the source or a leaf in H (see Figure 4). There cannot
be any non-tree edge incoming to or outgoing from a vertex u between its left
and right child, due to bimodality and degree constraint, respectively. Hence,
every non-tree edge is incoming to and outgoing from every vertex from either
its left or its right. For leaves, there is no distinction between left and right, and
we shall take the liberty of either.

Lemma 3. Any non-tree edge (u, v), is incoming to v from the left of v.



v w

u

p(u)

right of uleft of u

no edge in
this region

right of u
left of

u u

p(u)

v

Fig. 4. Left and right of a vertex v with i) two children, and ii) one child

Proof (Lemma 3). If v is a leaf, the statement trivially holds. Suppose v is not a
leaf, and (u, v) is a non-tree edge incoming to v from the right. Then, if p(u) is
the parent of u in H, then the edge (p(u), u) is not the clockwise-most incoming
edge at u, which contradicts our method of construction of H. ut

For any two vertices u and v that do not share an ancestor-descendant rela-
tionship, we say that u is to the left of v if the discovery and finishing times of u
is less than that of v, and vice versa otherwise. We say that a cross edge (u, v) is
leftward or rightward, depending on whether u is to the right or left of v, respec-
tively. We say that a forward edge (u, v) is leftward or rightward, depending
on whether the edge is outgoing from the right or left of u, respectively (see
Figure 5).

Notice that Lemma 3 does not imply that there are no leftward edges, since
its quite possible that the origin u of an edge (u, v) is to the left of the terminal
v. It just says that even such edges approach v from the left (see Figure 5).

Leftward forward edge

Leftward cross edge

Rightward forward edge

Rightward
cross edge

Fig. 5. Possible types of non-tree edges

If we neglect the direction of the edges, every non-tree edge (u, v) added
to H produces a unique cycle, consisting of the undirected tree-path between u
and v, and the edge (u, v) itself. We call the curve formed by the edges of this
cycle as the characteristic closed curve of (u, v).

Lemma 4. Suppose (u, v) is a rightward non-tree edge. Then t cannot be strictly in-
side characteristic closed curve of (u, v).



Proof (Lemma 4). Suppose t lies strictly inside the curve. Since G2 is an SSPD,
there must be a path from v to t. Suppose the first edge of this path has its
end-point inside the curve. If v has an outgoing edge outside the curve, this
contradicts bimodality. Otherwise, the tree edge to v is not the clockwise-most
incoming edge at v in G2, thus contradicting the construction criterion of H.
Hence, the first edge of the path must go outside the curve.

Consider the first vertex w on the path from v to t that intersects the curve.
This vertex must either be an ancestor of u or v(or both). In both cases, the
existence of a directed cycle follows, since there is a path from every ancestor
of u and v to v, hence contradicting that G2 is a DAG. ut

Lemma 5. Suppose (u, v) is a leftward non-tree edge. Then t cannot be strictly outside
the characteristic closed curve of (u, v).

Proof (Lemma 5). Suppose t lies strictly outside the curve. Then, there must be
a path from v to t. Again, there cannot be an edge outgoing from v whose end-
point is outside the curve, due to bimodality and the construction criterion of
H. So, if t is not inside the curve, there must be a vertex at which the path from
v to t intersects the curve. Since v is reachable from all ancestors of u and v, this
contradicts that G2 is a DAG. ut

We shall now construct a graph G3 with an analogous tree H′, such that
there is no leftward non-tree edge, and the circuit value remains unchanged.
Suppose there are k leftward non-tree edges. To construct G3, we make k + 1 dis-
joint copies of G2 without the leftward edges, and label the copies 1, 2 . . . k, k +
1. For every leftward edge (u, v) in G2 and ∀i, 1 ≤ i ≤ k, add an edge between
u of the ith copy and v of the (i + 1)th copy of G2. Finally, we add a new source
s′, and add edges from s′ to all the k + 1 copies of s (see Figure 6). Expectedly,
we label s′ as SRC. H′ consists of the copies of H, plus s′ and its outgoing edges.

s’

Fig. 6. Construction of G3

We claim that G3 is planar. To show this, we observe that from lemma 5 and
planarity, it follows that the leftward edges in G2 are nested, i.e. if e1 and e2 are
two leftward edges, either E1 is contained in the characteristic closed curve of
e2, or vice versa. Thus the cross edges between the copies do not intersect, and,
infact, those between any two consecutive copies are also nested. Further, no



such edge is nested within a rightward edge, for that would contradict lemma
4. So, these edges between copies do not intersect any other edge.

Note that G3 is no longer an SSPD, but an SMPD, hence there is no clear
choice for the output gate (vertex) of the circuit (graph). For every vertex v of
G2, we say that the ith copy of v in G3 gets the correct value if its circuit value in
G3 is the same as that of v in G2, otherwise we say that it gets the wrong value.
We claim that the (k + 1)th copy of t has the correct value, and hence we shall
label it as the output gate in G3.

Suppose the k leftward edges in G2 are (u1, v1), (u2, v2) . . . (uk, vk), with
(u2, v2) nested inside (u1, v1), (u3, v3) nested inside (u2, v2), and so on, (uk, vk)
being the innermost leftward non-tree edge. Note that, due to degree constraints,
v1, v2 . . . vk are all distinct vertices. To prove our claim, we shall use the follow-
ing lemmas:

Lemma 6. A vertex in G3, that is not in the first copy of G2, can get the wrong value
only if at least one of the vertices, whose values are fed into it, get the wrong value.

Proof (Lemma 6). Easy. ut

Lemma 7. There is no path from vi to u j or from vi to v j, if i 6= j, in G2, ∀1 ≤ j ≤
i ≤ k.

Proof (Lemma 7). Suppose a path from vi to u j exists. The path must move right-
wards, and end up to the right of ui. From Lemma 4, it follows that the path
cannot pass ui from below. Hence the path must go through an ancestor of ui,
contradicting that G2 is a DAG. Similar reasons along with lemma 5 show that
there cannot be a path from vi to v j either. ut

We say that the ith copy of a vertex v has primitive error if it gets the wrong
value, but all the vertices in the ith copy, that have an edge to it in G3, get the
correct value.

Lemma 8. 1. If the ith copy of a vertex v gets the wrong value, it must be reachable
from a vertex of the ith copy that has primitive error.

2. Also, no vertex, other than v1, v2 . . . vk, can have primitive error in any of its copy.
3. A vertex v j can have a primitive error in the ith copy only if u j gets a wrong value

in the (i − 1)th copy.

Proof (Lemma 8). Easy. ut

We shall prove the following statement using induction:

Lemma 9. In the ith copy, u j and v j get the correct value, and hence do not have a
primitive error, ∀0 < j < i ≤ (k + 1).

Proof (Lemma 9). For i = 1, the statement is trivially true. Suppose we have
proved the statement for the ith copy, i ≤ k. Then, from Lemma 8 (2), it fol-
lows that the only vertices that might have primitive error, in the ith copy, are
vi, vi+1 . . . vk. u1, u2 . . . ui are reachable from none of them, by lemma 7, and so
gets the correct value in the ith copy, by lemma 8 (1). By lemma 8 (3), v1, v2 . . . vi

do not have primitive error in the (i + 1)th copy. ut



Putting i = k + 1 in the Lemma 9, we get that the (k + 1)th copy does not
have any vertex with primitive error, and hence, by lemma 8 (1), no vertex in
the (k + 1)th gets the wrong value. Hence our claim is proved.

Note that our construction has ensured that G3 consists of the tree edges
of H′ and rightward non-tree edges only. Also note that a rightward non-tree
edge can start from the left of a vertex, go leftwards, and then go rightwards to
end at a vertex to the right of its starting vertex. But, for embedding in a grid
in a 1-forbidden fashion, we demand that every cross edge should always be
rightwards in direction. In precise terms, we demand the following:

– Every non-tree edge should be a cross edge.
– Every such cross-edge should be rightward.
– Every such cross-edge should start from the right of a vertex and ends at

the left of a vertex.

By Lemma 3, our construction has ensured that every non-tree edge ends at the
left of its end-point. For every non-tree edge (u, v) that starts from the left of u,
we divide (u, v) into two edges, (u, w) and (w, v), and add (u, w) to H′, so that
w becomes the left child of u. The non-tree edge (w, v) starts from a leaf, and so
trivially satisfies the condition. Clearly, the degree constraints are not violated.
Since the forward edges present in G3 must be rightward, and hence start from
the left of a vertex, this process gets rid of all forward edges (see Figure 7).

u

v

u’

v’

u

w
v

u’

v’

w’

Fig. 7. Subdividing non-tree edges that start from the left of a vertex

For simplicity, we continue to call the modified graph as G3, and the tree as
H′. The new vertices generated due to the subdivisions are labelled as COPY,
clearly the circuit value remains unchanged.

To complete the step, we now embed G3 in a grid, by only subdividing its
edges. The vertices formed due to subdividing are labelled COPY, and, clearly,
the circuit value is preserved. This part of the step is almost identical to the
process of embedding any planar graph in a grid, given in [2].

In the embedding, each edge of G3 corresponds to a grid path in the grid
graph G4 thus produced, and every vertex of G3 correspond to a grid point
in G4. If we view these grid paths as the curved edges of G3 drawn on the
plane, the embedding process ensures that the combinatorial embedding of G3

remains unchanged. This fact, coupled with the carefully chosen parameters



in the process, ensure that no two grid paths, that represent two edges of G3,
intersect. The nature of the non-tree edges of G3 ensures that G4 is 1-forbidden.

4.4 Step 4

Barrington ([4]) gave a logspace conversion from a 1-forbidden grid graph to
a layered grid graph, preserving reachability. We present the procedure for the
sake of completeness.

We first embed the tree edges(i.e. edges of H′). Let h(v) be the height of
a vertex v in the tree H′, defined as the number of proper ancestors of v. Let
w(v) denote the number of vertices in H′ that lie to the left of v. (We, of course,
perform yet another Euler traversal of the modified H′.) We assign vertex v to
the grid point (h(v), w(v)). Thus, s is assigned to (0, 0), the top left corner of the
grid. If v has a left child x (assigned to (h(v)+ 1, w(v)), since w(v) = w(x)), then
we embed the edge (v, x) as a southward path between these two grid points.
If v has a right child y (assigned to (h(v) + 1, w(y)), where w(y) > w(v)), then
we embed the edge (v, y) as an eastward path from (h(v), w(v)) to (h(v), w(y)),
followed by a southward path from (h(v), w(y)) to (h(v) + 1, w(y)). It can be
observed that no two grid paths, that represent two edges of H′, intersect.

To embed the cross edges we make the grid finer, so that there is a 2m × 2m
subgrid of the finer grid in every 1 × 1 square of the course grid, where m is the
number of cross edges in G3. Thus, a course grid point (i, j) corresponds to the
fine grid point 2mi, 2m j.

Let h′ be the maximum height of any vertex in H′. Let e = (u, v) be any
cross edge. Let x be the rightmost descendant of u, and let y be the leftmost
descendant of v, in H′. Let l(e) be the number of cross edges enclosed by the
characteristic closed curve of e. All these values can be computed in logspace.
We embed e as an eastward grid path from the grid point corresponding to u till
the eastward coordinate 2m w(x) + l(e) + 1, followed by a southward path till
the southward coordinate 2mh′ + l(e) + 1, followed again by an eastward path
till the eastward coordinate 2m(w(y)− 1) + l(e) + 1, followed by a northward
path till the southward coordinate 2mh(v), finally followed by an eastward path
to the grid point corresponding to v (see Figure 8).

Observe that the reduction, with an easy-to-compute labelling, preserves
circuit value as well.

4.5 Step 5

We apply the conversion algorithm on G5 to obtain a circuit C′. Since G5 is
a layered grid graph, C′ is upward layered (since G5 had only northeast and
southeast edges, each layer consists of the vertices on a particular north-south
grid line). Moreover, since G5 is an SMPD, C′ is a one-input-face circuit, with
the inputs appearing on the external face.

We convert C′ into an upward stratified circuit C′′(thus completing the re-
duction), as follows: For each input gate that is on a layer Vi for some i > 0,
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Fig. 8. Embedding of a typical cross-edge (u, v), after embedding the tree edges

add a copy of it to V0, label the original gate as COPY, introduce a COPY gate
at all intermediate layers V1, V2 . . . Vi−1, and connect the new gate to the orig-
inal gate through all these new gates. Again, this operation can be performed
in logspace. Since the entire reduction consisted of a constant number of steps,
each of which is in logspace, so the entire reduction is in logspace.

5 L-Hardness

In this section, we show that one-input-face MPCVP is L-hard under qfp’s, by
reducing ORD to it via qfp’s.

Given an instance of ORD, we map it to the following instance of one-input-
face MPCVP: there is an OR gate for every vertex vi, which takes as input the
gate corresponding to the vertex S(vi) and a constant gate (the single vertex
that has no successor has only a constant gate as input). The constant input is 1
for t and 0 for all other vertices. The gate corresponding to s is made the output
gate. Notice that the circuit thus constructed outputs 1 if and only if s precedes t
in the ordering induced by S, i.e. the problem instance belongs to ORD. Clearly,
the circuit is planar, and all constant gates(inputs) appear on the external face.

6 Results

Hence, we have proved that

Theorem 1. One-input-face MPCVP is in LogDCFL, but is L-hard under quantifier
free projections.

It was shown in [13] that monotone stratified cylindrical circuits can be
evaluated in LogDCFL, by reducing it to monotone upward stratified circuits
in logspace, and then using the algorithm given in [5]. It was also shown in [13]
that monotone one-input-face cylindrical circuits are in L(PDLP ⊕ LogDCFL),
by reducing it to monotone stratified cylindrical circuits using oracle calls to



PDLP. Since one-input-face cylindrical circuits also have a one-input-face pla-
nar embedding (see [13]), so Theorem 1 trivially implies that both these prob-
lems are in LogDCFL.

Corollary 1. One-input-face monotone cylindrical circuits (and hence monotone strat-
ified cylindrical circuits) can be evaluated in LogDCFL.

7 Conclusion

A close inspection of the logspace reduction, that we have described in Sections
3 and 4, reveals that it does not use the fact that the circuit is monotone, not even
the fact that the circuit is Boolean. In other words, given any one-input-face
planar circuit (need not be Boolean, i.e. gates and wires can take more than two
values) with any kind of gates, we can produce an equivalent upward stratified
circuit in logspace, provided we are allowed to use COPY gates. Hence, the
reduction in this paper can be applied to much more general situations.

The exact complexity of one-input-face MPCVP remains open. In other words,
is the problem solvable in L? Or is it hard for LogDCFL? General MPCVP has a
larger gap between its lower and upper bounds. It is known to be hard only for
L, while the best known upper bound is LogCFL.
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