
On Heuristic Time Hierarchies

Preliminary Version

Konstantin Pervyshev ∗

University of California, San Diego

pervyshev@cs.ucsd.edu

Abstract

We study the existence of time hierarchies for heuristic algorithms. We prove that a time
hierarchy exists for heuristics algorithms in such syntactic classes as NP and coNP, and also
in semantic classes AM and MA. Earlier, Fortnow and Santhanam (FOCS’04) proved the
existence of a time hierarchy for heuristics algorithms in BPP. We present an alternative
approach and give a simpler proof.

1 Introduction

There is an interesting phenomenon related to the creation of algorithms. Once having developed
a solution for some problem, one may find more and more efficient solutions for the same problem
later. Everybody can witness that such things happen from time to time. But is it always the
case that one may find better and better solutions for the same problem?

Complexity theory answers this question in the following rigorous way. For any constants c
and d such that 1 ≤ c < d, there exists a language that can be recognized by some deterministic
algorithm in time O(nd) but can be recognized by no deterministic algorithm in time O(nc).
This means that there are problems having certain solutions, such that nobody can come up
with much more efficient solutions for these problems.

The above result, called a deterministic time hierarchy, was proven by Hennie and Stearns
in 1960s [HS66]. One decade later, it was shown that a time hierarchy also exists for non-
deterministic algorithms [Coo73, SFM78, Žák83]. More of that, the developed techniques allow
to prove the existence of a time hierarchy for virtually any syntactic model of computations.
But it still remains unknown whether any purely semantic model of computations has a time
hierarchy.1

Semantic models are opposed to syntactic ones in that the former require that every machine
that belongs to a model satisfies some promise (like a promise of bounded error). Moreover, it
is not possible to computationally recognize whether a given machine satisfies such a promise.
While deterministic and non-deterministic algorithms are the examples of syntactic models,
various kinds of probabilistic algorithms constitute semantic models. In view of the importance
of probabilistic algorithms, it is highly astonishing that they are not known to have a time
hierarchy.

∗The most part of this work was done while the author was at St. Petersburg State University, Russia.
1A time hierarchy is known to exist for IP, a semantic model. However, the computational power of IP is equal

to that of PSPACE, which is a syntactic model. In this sense, IP is not a purely semantic model.

1

Electronic Colloquium on Computational Complexity, Report No. 131 (2006)

ISSN 1433-8092

Notwithstanding, Fortnow and Santhanam [FS04] recently came up with a result on a time
hierarchy for heuristic probabilistic algorithms. We say that some machine (or algorithm) is a
δ(n)-heuristic for some language L, if this machine recognizes L on a fraction δ(n) of inputs of
every length. On other inputs, it may perform arbitrary, in particular, violate a promise of some
semantic model. Fortnow and Santhanam proved that a time hierarchy exists for (1 − 1/na)-
heuristic algorithms in BPP, i.e. (1− 1/na)-heuristic probabilistic algorithms with the promise
of bounded two-sided error. This result raises a number of open questions in regard to time
hierarchies in both semantic and syntactic models.

Our paper makes progress in studying heuristic time hierarchies and answers the two fol-
lowing questions. First, as virtually any syntactic model has a time hierarchy for “traditional”
algorithms, does every syntactic model have a time hierarchy for heuristic algorithms? Second,
as there is a time hierarchy for heuristic algorithms in BPP, are there time hierarchies for
heuristic algorithms in other semantic models?

1.1 Our Results

On the side of syntactic models, we prove that a time hierarchy exists for heuristic non-
deterministic algorithms. Formally, we show that there exists a language that cannot be recog-
nized by (1/2 + 1/na)-heuristic non-deterministic algorithms in time O(nc) but is recognizable
by “traditional” non-deterministic algorithms in some polynomial time2 :

Theorem. For any positive constants a and c,

NP 6⊆ heur1/2+1/naNTIME[nc].

We would like to stress that the above result doesn’t follow immediately neither from a
time hierarchy for “traditional” non-deterministic algorithms, nor from the techniques used for
proving it.

Our approach works not only for heuristic algorithms in NP, but also for heuristic algorithms
in Σk and Πk. Generally, we can show a time hierarchy for heuristic algorithms in any syntac-
tic model that is efficiently closed under taking majority answer of polynomially many machines.

On the side of semantic models, we prove that a time hierarchy exists for heuristic Arthur-
Merlin and Merlin-Arthur games:

Theorem. For any positive constants a and c,

heur1−1/naAM 6⊆ heur1/2+1/naAMTime[nc]

heur1−1/naMA 6⊆ heur1/2+1/naMATime[nc].

Further, we give an alternative proof of a time hierarchy for heuristic probabilistic algorithms
with the promise of bounded two-sided error:

Theorem. For any positive constants a and c,

heur1−1/naBPP 6⊆ heur1/2+1/naBPTime[nc]. (1)

Previously, Fortnow and Santhanam [FS04] proved that for some constant a and for any
b ≥ a,

heur1−1/nbBPP 6⊆ heur1−1/naBPTime[nc]. (2)

Rahul Santhanam pointed out to us that using “slightly” non-uniform amplification by Impagli-
azzo, Jaiswal and Kabanets [IJK06] and proving (2) in “slightly“ non-uniform setting, one can

2One may try to replace “some” polynomial time with O(nd)-time, where d > c.

2

obtain (1/2 + 1/na)-heuristic algorithms on the right side of (2), therefore matching the result
with (1). Thus, a time hierarchy with (1/2 + 1/na)-heuristic algorithms on the side of the less
time seems to be the “right” time hierarchy for heuristic BPP.

In regard to heuristic BPP, the strength of our approach is that it gives the “right” time
hierarchy in a direct way. Also, we think that our approach is simpler than that of [FS04]. In
particular, we don’t make any use of optimal algorithms and complete self-reducible languages
for polynomial space or exponential time. Our belief is that every time hierarchy should have a
simple proof as what we all expect from computational models is that the time resource is easy
to spend.

1.2 Related Work

The study of time hierarchies for heuristic algorithms is not the only line of research on time
hierarchies for semantic models. Recently, there was a number of result on time hierarchies for
“slightly” non-uniform algorithms. In [Bar02], Barak proved a time hierarchy for algorithms
in BPP that are provided with non-uniform advice of length roughly log log n. The amount
of advice that suffices for the existence of the time hierarchy was reduced by Fortnow and
Santhanam [FS04], who proved a time hierarchy for algorithms in BPP that receive only one
bit of advice (see also [GST04]). Further, Fortnow, Santhanam and Trevisan gave a proof of a
time hierarchy for RP with one bit of advice [FST05]. Finally, van Melkebeek and Pervyshev
proved the existence of a time hierarchy for any reasonable semantic model of computations
with one bit of advice [vMP06].

For more details on time hierarchies in semantic models, reader is referred to a recent survey
by Fortnow and Santhanam [FS06].

Related to time hierarchies for heuristic algorithms is the notion of random languages. A
language L is ε(n)-random for some family of algorithms if every algorithm from the family
recognizes L on a fraction at least 1/2 − ε(n) and at most 1/2 + ε(n) of inputs of every length
n. In [Wil83], Wilber proved that for any constants c, d and a, such that 1 ≤ c < d, there is a
language in DTIME[nd] that is 1/na-random for DTIME[nc] (see also [GW00]). This implies
a time hierarchy for deterministic heuristic algorithms:

DTIME[nd] 6⊆ heur1/2+1/naDTIME[nc].

The latter, being weaker than the result of Wilber on random languages, can be proved by a
straightforward diagonalization. Still, we are not aware of any results on random languages for
any computational model other than deterministic algorithms.

2 Our Technique

Somewhat surprisingly, delayed diagonalization appears to be extremely useful for proving time
hierarchies for heuristic algorithms. It helps not only with heuristic algorithms in NP, which
is not known to be closed under complementation, but also in BPP. However, what we use is
not a traditional delayed diagonalization. Our diagonalization has a “statistical” flavor.

Non-deterministic case. Let us explain our method on the example of heuristic NP.
To prove a time hierarchy, we construct a polynomial-time non-deterministic machine N that
disagrees with any O(nc)-time non-deterministic machine Mi on a fraction at least 1/2 − 1/na

of inputs of some length.

3

Let ni be some input length and let n∗
i = 2nc+1

i . We have c + 1 on the top of 2nc+1
i in order

to diagonalize against machines that work in time O(nc), where constant hidden in O-notation
may be arbitrary.

On an input x of length n, machine N performs as follows:

N(x) =

{

majorityy∈{0,1}n+1{Mi(y)} if ni ≤ n < n∗
i

¬majorityy∈{0,1}ni{Mi(y)} if n = n∗
i

(3)

Let v be the most popular answer of machine Mi on inputs of length ni :

v = majority
y∈{0,1}ni

{Mi(y)}. (4)

Let LN be the language recognized by N :

LN = {x : N(x) = 1}. (5)

Assume that Mi recognizes LN on a fraction 1/2 + 1/na of inputs of every length, i.e. Mi is
a (1/2 + 1/na)-heuristic for LN . According to (3), N returns ¬v on every input of length n∗

i .
This implies, by our assumption, that Mi returns ¬v on more than a half of inputs of length
n∗

i . But then, N outputs ¬v on every input of length n∗
i − 1. We can continue reasoning in this

way and obtain that Mi returns ¬v on more than a half of inputs of length ni. This contradicts
to (4), hence Mi is not a (1/2 + ε)-heuristic for LN .

We are almost done with our time hierarchy. It remains to make sure that N can perform
as (3) in polynomial time. Unfortunately, it is not feasible to compute the majority answer of
Mi over inputs of length n + 1 in time that is just polynomial in n.

We overcome this difficulty by making an observation that it is still possible to obtain a
contradiction even if we allow machine N to fail on some small fraction of inputs of length n
to compute the most popular answer of Mi at length n + 1. This “heuristic” computation of
majority, which is good on all but a small fraction of inputs, can be done in polynomial time
using expander graphs.

Here, we would like to suggest a way of looking at our delayed diagonalization. Informally,
what actually is constructed in the delayed diagonalization is a “channel” that allows N to
transfer some value (think of ¬v) from input length n∗

i to input length ni. In our heuristic
setting, this channel is prone to errors. The assumption that a (1/2 + 1/na)-heuristic Mi

recognizes LN implies that Mi may disagree with N on a fraction 1/2− 1/na of inputs of every
length n. Therefore every segment of the “channel” that connects input lengths n and n + 1
may introduce an error with probability up to 1/2 − 1/na. Then the computation of majority
answer of Mi at length n + 1 allows N to reconstruct the one-bit message ¬v being transferred
over the “channel”.

Probabilistic case. The reason for delayed diagonalization works for BPP is more subtle.
As BPP is closed under complementation, it seems we may use a straightforward diagonaliza-
tion: define N so that on an input x it simulates Mi and returns ¬Mi(x). However, this fails
since Mi may violate the promise of bounded two-sided error on a fraction more than 1/2−1/na

of inputs, thus forcing N to violate the promise on the same set of inputs. As the straightforward
solution doesn’t work, let us try our “statistical” diagonalization.

First of all, note that, in the semantic setting, it is not clear what the most “popular” answer
of Mi at some length is. A reason for that is that the answer of Mi may be undefined on a
fraction up to 1/2−1/na of inputs of length n. Nonetheless, the assumption that Mi significantly
agrees with machine N , which we will construct, will imply that Mi either answers 1 on a clear
majority of inputs, or answers 0, also on a clear majority (recall the non-deterministic setting).

4

Then, a good news is that, in probabilistic setting, machine N can compute the most “pop-
ular” answer of Mi at length n + 1 pretty simple: N may just simulate Mi, amplified for some
polynomial number of times, on several randomly selected inputs of length n+1. This will work
fine under assumption that Mi significantly agrees with N . Still, one more step is to be taken
in order to ensure that N satisfies the promise of bounded two-sided error on most of inputs in
case Mi doesn’t agree with N .

In order to do that, we replace the simulation of amplified machine Mi on a randomly chosen
input x of length n + 1 with a more complicated process. A somewhat similar trick may be
traced in [FS04]. Let π be the probability over randomly chosen input y of length n + 1 and
over randomness of amplified machine Mi that the latter accepts y, i.e.

π = Pr
y∈{0,1}n+1

[amplified Mi(y) = 1], (6)

where probability is taken over inputs y of length n+1 and over internal randomness of machine
Mi. Machine N , on an input x of length n, can obtain an estimation π̂ of this probability and
compare it to some threshold θx, which depends on the input given to N . If the obtained
estimation is greater than the threshold, then machine N returns 1; otherwise, N outputs 0.

Our thresholds θx, x ∈ {0, 1}n, are chosen so that they are uniformly distributed on some
interval [1/2 − 1/p1(n), 1/2 + 1/p1(n)] for some polynomial p1(n). One may see that, since the
thresholds are close to 1/2, machine N indeed computes the most “popular” answer of machine
Mi. What is more, machine N satisfies the promise of bounded two-sided error on all but a
small fraction of inputs whatever machine Mi. To see this, we note that for most of inputs x,
it unavoidably holds that |θx − π| > 1/p2(n) for some polynomial p2(n). On such inputs, by
Chernoff bound, machine N either obtains π̂ > θx (and returns 1) with probability 1 − e−Θ(n),
or obtains π̂ < θx (and returns 0), also with probability 1 − e−Θ(n). Therefore N satisfies the
promise of bounded two-sided error on these inputs.

We would like to note that, in some sense, this idea is a “randomization” of that for non-
deterministic case.

A detailed implementation of our ideas is given in the rest of this paper. We start with a
time hierarchy for heuristic algorithms in NP (Section 3). Then, “randomize” this proof and
obtain a time hierarchy for heuristic algorithms in BPP (Section 4). After that, we prove a time
hierarchy for heuristic algorithms in MA (Section 5). In some sense, this proof combines the
proofs for heuristic NP and BPP. Finally, we sketch a proof of a time hierarchy for heuristic
AM (Section 6).

3 Time Hierarchy for Heuristic Algorithms in NP

For a non-deterministic machine M , let VM (x) denote its answer on an input x. In contrast to
semantic models, this value is defined on every input x. Also, we use notation M(x, w) for the
result of execution of M on an input x provided a witness w.

Definition 1. A language L belongs to a class heurδ(n)NTIME[nc] if there exists a non-
deterministic machine M such that for any input length n, it runs in time O(nc), and

|{x : VM (x) = L(x)}| ≥ δ(n) · 2n. (7)

We say that M solves L on a fraction at least δ(n) of inputs of every length n. One may also
define a class heurδ(n)NP.

In our proofs of time hierarchies for heuristic algorithms, it is crucial that machine N is able
to compute majority answer of a machine Mi over all inputs of some length. In case of BPP

5

and MA, this can be done in polynomial time using the power of randomization. But in case
of NP and AM, we have to derandomize the computation of majority using expanders (more
specifically, mixers):

Definition 2. We say that a d-regular on the left bipartite graph G = ([N1], [N2], E) is an
ε-mixer if for every subset B of vertices on the right such that |B| ≤ (1/2 − ε)N2, there are at
most εN1 vertices v on the left such that |Γ(v) ∩ B| ≥ d/2.

Definition 3. We say that a family of d(n)-regular on the left ε(n)-mixers Gn is explicit if for
any vertex v on the left of Gn, Γ(v) is computable in time polynomial in n. In particular, d(n)
is no more than polynomial in n.

These mixers can be obtained from expander graphs (for example, from Margulis construc-
tion [Mar73, GG81]):

Lemma 4. For any positive constant a, there exists an explicit family of regular on the left
1/(2(n + 1)a)-mixers Gn = ([2n], [2n+1], En).

Now, we can proceed to our time hierarchy theorem for heuristic algorithms in NP:

Theorem 5. For any positive constants a and c,

NP 6⊆ heur1/2+1/naNTIME[nc].

Assume {Mi} is an efficient enumeration of nondeterministic machines. Every machine in
this enumeration is restricted to run for no more than mc+1 steps on inputs of length m and can
be simulated with at most polynomial overhead. Furthermore, every machine appears infinitely
often in this enumeration. The latter and c+1 on the top of mc+1 allow us to diagonalize against
O(nc)-time machines, where constant hidden in O-notation may vary for different machines Mi.

To prove our theorem, we construct a non-deterministic machine N that disagrees with any
machine Mi on a fraction more than 1/2−1/na of inputs of some length. Essentially, our proof is
a delayed diagonalization. For each machine Mi, we reserve a set of input lengths Si = [ni : n∗

i],

where n∗
i = 2(ni)

c+1

and ni+1 = n∗
i + 1. We choose n1 big enough so that all the inequalities in

this proof hold for every n ≥ n1.
Given an input x of length n, non-deterministic machine N performs as follows:

find i such that n ∈ Si

if n = n∗
i then

for every y ∈ {0, 1}ni

deterministically compute VMi
(y)

return ¬majorityy∈{0,1}ni{VMi
(y)}

else

interpret x as a vertex on the left of Gn

for every y ∈ Γ(x) ⊆ {0, 1}n+1

guess a witness wy and simulate Mi(y, wy)
return majorityy∈Γ(x){Mi(y, wy)}

Here and later, majority operator in case of a tie between values 0 and 1 gives preference to
1. Note that for n 6= n∗

i , we have VN (x) = majorityy∈Γ(x){VMi
(y)}.

Let a language LN consist of those strings x that are accepted by N , i.e.

LN = {x : VN (x) = 1}. (8)

The following two lemmas establish our theorem.

6

Lemma 6.

LN ∈ NP.

Proof: Recall that the size of any set of neighbors Γ(x) in graph Gn is polynomial in n. Also,
note that N can find index i such that n ∈ Si in polynomial time. This can be done simply
by computing numbers n1, n2, n3, . . . one by one. Then N is apparently a polynomial-time
non-deterministic machine. �

Lemma 7.

LN /∈ heur1/2+1/naNTIME[nc]

Proof: This proof goes by contradiction. Assume that the statement of our lemma is false,
and, consequently, there exists a non-deterministic machine Mi that for any input length n,
agrees with machine N on a fraction at least a 1/2 + 1/na of inputs of that length.

Consider a set Si that corresponds to machine Mi. Let v be the most “popular” answer of
machine Mi at the first input length in this set:

v = majority
x∈{0,1}ni

{VMi
(x)} (9)

We want to show that our assumption that Mi agrees with N on a fraction at least 1/2 + 1/na

of inputs of every input length leads to a “statistical” contradiction. Let

A
(n)
Mi

= {x ∈ {0, 1}n : VMi
(x) = v} (10)

and
A

(n)
N = {x ∈ {0, 1}n : VN (x) = v} (11)

By (9), it holds that |A
(ni)
Mi

| ≥ 1
2 · 2ni . However, under our assumption, the following claim is

true, therefore we obtain a desirable contradiction.

Claim 8. Under our assumption, for every n ∈ Si,

|A
(n)
N | <

1

2na
2n and |A

(n)
Mi

| <
(1

2
−

1

2na

)

2n. (12)

Note that the bound on the size of A
(n)
Mi

follows from our assumption (which implies that
Mi disagrees with N on a fraction less than 1/2 − 1/na of inputs of length n) and from the

bound on the size of A
(n)
N . The latter bound can be proved by induction on n. For input length

n = n∗
i , due to the deterministic simulation, we have A

(n)
N = ∅. Now, let n be any input length

less than n∗
i in our set Si. One may see that

A
(n)
N ⊆ {x ∈ {0, 1}n : |Γ(x) ∩ A

(n+1)
Mi

| ≥ d/2}, (13)

where d is the regularity of Gn on the left (for v = 1, these two sets coincide as majority operator

returns 1 in case of a tie). As Gn is a 1/(2(n + 1)a)-mixer, the upper bound on the size of A
(n)
N

follows:
|A

(n)
N |

2n
≤

1

2(n + 1)a
<

1

2na
. (14)

Hence our claim follows. �

7

4 Time Hierarchy for Heuristic Algorithms in BPP

Definition 9. Assume a machine M . Then

VM (x) =

1 if Pr[M(x) = 1] > 2/3

0 if Pr[M(x) = 0] > 2/3

⊥ otherwise

(15)

We say that M has a bounded two-sided error on input x if VM (x) ∈ {0, 1}.

Definition 10. A language L belongs to a class heurδ(n)BPTime[nc] if there exists a machine
M(x, r) such that for any input length n, it runs in time O(nc), and

|{x : VM (x) = L(x)}| ≥ δ(n) · 2n. (16)

We say that M solves L on a fraction at least δ(n) of inputs of every length n. One may also
define a class heurδ(n)BPP in a straightforward way.

Theorem 11. For any positive constants a and c,

heur1−1/naBPP 6⊆ heur1/2+1/naBPTime[nc].

The proof of this theorem may be seen as a “randomization” of the proof of a time hierarchy
for heuristic MA.

Assume {Mi} is an efficient enumeration of probabilistic machines. Every machine in this
enumeration is restricted to run for no more than mc+1 steps on inputs of length m and can be
efficiently simulated. Furthermore, every machine appears infinitely often in the enumeration.

The two procedures below help to estimate the majority answer of machine Mi over inputs
of length n + 1:

Estimate-Over-Inputs (Mi, 1
n+1)

for (n + 1)4a+1 times
choose x ∈ {0, 1}n+1 uniformly at random
run Amplify-Over-Randomness (Mi, x)

return π̂ = the fraction of positive answers

Amplify-Over-Randomness (Mi, x) /* |x| = n + 1 */
for n + 1 times

simulate Mi(x) with new randomness
return majority answer

Let
π = Pr

x∈{0,1}n+1
[Amplify-Over-Randomness (Mi, x) = 1] , (17)

Very roughly speaking, we have π ≈ Prx∈{0,1}n+1 [VMi
(x) = 1]. However, one should remember

the following: 1) for some inputs x, it may hold that VMi
(x) is undefined, i.e. VMi

(x) = ⊥, and
2) even if VMi

(x) = v, machine Mi may output ¬v with some probability (which is less than
1/3).

Proposition 12 (Chernoff-Hoefding). Given X1, X2, . . . , Xn identically and independently
distributed, such that Xi ∈ [0, 1] and E[Xi] = µ, then

Pr[|

∑n
i=1 Xi

n
− µ| ≥ ε] ≤ e−

ε
2

n

2 .

8

Chernoff bound guarantees that π̂ estimates π good enough:

Pr

[

|π̂ − π| ≥
1

2(n + 1)2a

]

< e−
(n+1)

8 . (18)

To decide whether the most “popular” answer of machine Mi at length n + 1 is 1 or 0, our
machine N , which we are going to construct, obtains estimation π̂ and compares it to some
threshold θx. This threshold depends on input provided to machine N . We define threshold θx

so that it is uniformly spread over some interval centered at 1/2:

θx = 1/2 +
x − 1/2

(n + 1)a
, (19)

where x in the enumerator is interpreted as a binary number. Clearly,

1/2 −
1

2(n + 1)a
≤ θx ≤ 1/2 +

1

2(n + 1)a
. (20)

Given an input x of length n, machine N performs as follows:

find i such that n ∈ Si

if n = n∗
i then

for every input y ∈ {0, 1}ni

deterministically compute VMi
(y)

return ¬majorityy∈{0,1}ni{VMi
(y) : VMi

(y) 6= ⊥}
else

let π̂ = Estimate-Over-Inputs (Mi, 1
n+1)

if π̂ > θx return 1 else return 0

Let a language LN consists of those strings x that N accepts, i.e.

LN = {x : VN (x) = 1}. (21)

Complement of LN consists of those strings x such that VN (x) is either 0 or ⊥. The two following
lemmas establish our theorem.

Lemma 13.

LN ∈ heur1−1/naBPP.

Proof: Obviously, N is a polynomial-time probabilistic machine. Also, it is clear that machine
N satisfies the promise of bounded two-sided error on all inputs of length n∗

i . Now assume that
n < n∗

i and let us prove that N satisfies the promise on a fraction at least 1− 1/na of inputs of
length n. Let

X1 =

{

x ∈ {0, 1}n : θx ≤ θ −
1

2(n + 1)2a

}

X0 =

{

x ∈ {0, 1}n : θ +
1

2(n + 1)2a
≤ θx

}

(22)

X⊥ =

{

x ∈ {0, 1}n : θ −
1

2(n + 1)2a
< θx < θ +

1

2(n + 1)2a

}

(23)

By (18), for any input x ∈ X1, N obtains π̂ > θx (and outputs 1) with probability at least
1 − e−Θ(n). Also, for any input x ∈ X0, N obtains π̂ < θx (and outputs 0) with probability at
least 1 − e−Θ(n).

These are only inputs in X⊥ on which N may violate the promise. Fortunately, such inputs
constitute a fraction less than 1/na of inputs of length n:

|X⊥|

2n
<

1

(n + 1)2a
:

1

(n + 1)a
+

1

2n
<

1

na
. (24)

9

The first inequality follows from (23), and also (19) and (20). �

Lemma 14.

LN /∈ heur1/2+1/naBPTime[nc]

Proof: This proof goes by contradiction. Assume for some machine Mi, for any input length
n, on a fraction at least 1/2 + 1/na of inputs x of this length, VMi

(x) = LN(x).
Consider a set Si of input lengths that corresponds to machine Mi. Let v be the most

“popular” answer other than ⊥ of machine Mi at the first input length in the set:

v = majority
x∈{0,1}ni

{VMi
(x) : VMi

(x) 6= ⊥}. (25)

We want to show that our assumption that Mi computes LN on a large fraction of inputs
of every input length leads to a “statistical” contradiction. For this purpose, let

A
(n)
Mi

= {x ∈ {0, 1}n : VMi
(x) ∈ {v,⊥}} (26)

A
(n)
N = {x ∈ {0, 1}n : VN (x) ∈ {v,⊥}}. (27)

By (25), |A
(ni)
Mi

| ≥ 1
2 · 2

ni . However, under our assumption, the following claim is true, therefore
we obtain a desirable contradiction.

Claim 15. Under our assumption, for every n ∈ Si,

A
(n)
N = ∅ and |A

(n)
Mi

| ≤ (1/2 − 1/na) · 2n.

First, note that the bound on the size of A
(n)
Mi

follows from our assumption that Mi recognizes

LN on a fraction at least 1/2+1/na of inputs of every length n and from the emptiness of A
(n)
N .

To prove that A
(n)
N = ∅, we proceed by induction on n. For input length n = n∗

i , due to the

deterministic simulation, we have A
(n)
N = ∅.

Now, let n be any input length less than n∗
i in our set Si. By the induction hypothesis,

|A
(n+1)
Mi

| ≤ (1/2− 1/(n + 1)a) · 2n+1. In case v = 1, we have π < 1/2− 1/(n + 1)a + e−Θ(n) (see
(17)), and, since θx ≥ 1/2 − 1/(2(n + a)a), it holds that VN (x) = 0 = ¬v for every x of length
n. The term e−Θ(n) originates from Amplification-Over-Randomness. In case v = 0, we have
π > 1/2 + 1/(n + 1)a − e−Θ(n) and VN (x) = 1 = ¬v for every x of length n. �

5 Time Hierarchy for Heuristic Algorithms in MA

Definition 16 (Merlin-Arthur Games). Assume a machine M . Let

VM (x) =

1 if ∃w Prr[M(x, w, r) = 1] > 2/3

0 if ∀w Prr[M(x, w, r) = 1] < 1/3

⊥ otherwise

(28)

We say that M is a correct Merlin-Arthur game on an input x if its result VM (x) is not equal
to ⊥.

Definition 17. A language L belongs to a class heurδ(n)MATime[nc] if there exists a machine
M(x, w, r) such that for any input length n, it runs in time O(nc), and

|{x : VM (x) = L(x)}| ≥ δ(n) · 2n. (29)

We say that M solves L on a fraction at least δ(n) of inputs of every length n. One may also
define a class heurδ(n)MA in a straightforward way.

10

Theorem 18. For any positive constants a and c,

heur1−1/naMA 6⊆ heur1/2+1/naMATime[nc].

For the purpose of proving this theorem, we need a little bit more elaborated family of mixers
than the one from Lemma 4. In what follows, we need a family of mixers that “saves” ad log n e
bits on inputs of length n that constitute the left party of a mixer. These bits, denoted with
k, are used by N to select a threshold θk which is used for deciding whether answer of Mi on
input x′ ◦ k is 0 or 1.

The mixers that we need can be obtained from expander graphs (for example, from Margulis
construction [Mar73, GG81]):

Lemma 19. There exists an explicit family of 1/(2(n+1)a)-mixers Gn = ([2n−ad log n e], [2n+1], En).
The regularity of Gn is at most polynomial in n.

Let πy(w) be the probability of y being accepted by machine Mi provided a witness w, i.e.

πy(w) = Pr
r

[Mi(y, w, r) = 1]. (30)

This probability can be estimated in a straightforward way:

Estimate-Over-Randomness (Mi, y, wy) /* |y| = n + 1 */
for n2a+1 times

simulate Mi on input y with witness wy

return π̂y(w) = the fraction of positive answers

Let us choose an integer K so that 1/K is roughly equal to 1/na:

K = 2ad log n e. (31)

Chernoff bound (Proposition 12) guarantees that π̂ estimates π good enough:

Pr

[

|π̂y(w) − πy(w)| <
1

10K

]

> 1 − e−n/(200·22a). (32)

To decide whether Mi accepts y provided a witness w, machine N computes π̂y(w) and compares
it to one of K different thresholds θk, 0 ≤ k ≤ K − 1. Which one of the thresholds machine N
uses depends on its input. We define these thresholds so that they are uniformly spread over
interval ranging from 2/5 to 3/5:

θk = 2/5 +
k

5K
. (33)

Given an input x of length n, machine N provided a witness W performs as follows:

find i such that n ∈ Si

if n = n∗
i then

for every y ∈ {0, 1}ni

deterministically compute VMi
(y)

return ¬majorityy∈{0,1}ni{VMi
(y) : VMi

(y) 6= ⊥}
else

let n′ = n − ad logn e
let x = x′ ◦ k so that |x′| = n′ /* then 0 ≤ k < K */
interpret x′ as a vertex on the left of Gn

interpret W as a set of witnesses {wy}y∈Γ(x′)

for every y ∈ Γ(x′) ⊆ {0, 1}n+1

let π̂y(wy) = Estimate-Over-Randomness(Mi, y, wy)
if π̂y(wy) > θk then let ry = 1 else let ry = 0

return majorityy∈Γ(x′){ry}

11

Let a language LN consists of those strings x that N accepts, i.e.

LN = {x : VN (x) = 1}. (34)

Note that the complement of LN consists of x such that VN (x) is either 0 or ⊥. Our theorem
follows from the two lemmas given below.

Lemma 20.

LN ∈ heur1−1/naMA.

Proof: Apparently, witness W = {wy}y∈Γ(x′) is provided to N without seeing its coins. There-
fore N is a one-round Merlin-Arthur game. Furthermore, one can see that N runs in polynomial-
time. It remains to verify that N is a correct Merlin-Arthur game on a fraction at least 1−1/K
of inputs x of every length n. Then our lemma follows as 1 − 1/K ≥ 1 − 1/na.

Since behavior of N at input length n = n∗
i is deterministic, we have to consider only the

case n 6= n∗
i when proving the correctness of N . Fix any x′ ∈ {0, 1}n−ad log n e. Let kx′ be the

greatest k, 0 ≤ k < K, with the following property: exists advice W = {wy}y∈Γ(x′) such that

for at least a half of y in Γ(x′), it holds that πy(wy) > θk −
1

10K . If no such k exists, let kx′ = 0.
We claim that any input x′ ◦k such that 0 ≤ k < kx′ is accepted by N provided some witness

W with probability at least 1 − e−Θ(n). Further, any input x′ ◦ k such that kx′ < k < K is
rejected by N whatever witness W with probability at least 1 − e−Θ(n). We do not make any
claim about the case k = kx′ .

Let us justify the above statements. In case k < kx′ , there exists W such that for at least a
half of y in Γ(x′), we have

πy(wy) > θk
x′
−

1

10K
≥ θk +

1

10K
. (35)

Therefore, for at least a half of y in Γ(x′), machine N provided advice W obtains π̂y(wy) > θk

(and ry = 1) with probability at least 1 − e−Θ(n) (recall bound (32)). Consequently, by union

bound, majorityy∈Γ(x′){ry} = 1 with probability at least 1 − |Γ(x′)|
2 · e−Θ(n) = 1 − e−Θ(n) over

randomness of N . The latter equality holds since the regularity on the left of Gn is at most
polynomial in n.

In another case, when kx′ < k, whatever witness W = {wy}y∈Γ(x′) is provided, for more
than a half of y in Γ(x′), we have

πy(wy) ≤ θk
x′
−

1

10K
< θk −

1

10K
. (36)

Therefore, whatever W , for more than a half of y in Γ(x′), machine N obtains π̂y(wy) < θk (and
ry = 0) with probability at least 1 − e−Θ(n). Again, by union bound and the regularity of Gn,
majorityy∈Γ(x′){ry} = 0 with probability at least 1 − e−Θ(n) over randomness of N .

Let us summarize the both cases. For any input x = x′ ◦ k such that k 6= kx′ (kx′ depends
on x′),

either ∃W Pr
r

[N(x, W, r) = 1] > 1 − e−Θ(n) or ∀W Pr
r

[N(x, W, r) = 1] < e−Θ(n). (37)

Consequently, N is correct on a fraction at least 1 − 1/K ≥ 1 − 1/na of inputs x of length n.
Hence our claim and lemma follow. �

Lemma 21.

LN /∈ heur1/2+1/naMATime[nc].

12

Proof: The proof goes by contradiction. Assume that the statement of our lemma is false,
and, consequently, there exists a machine Mi such that for any input length n, for a fraction at
least 1/2 + 1/na of inputs x of that length, we have VMi

(x) = LN(x).
Consider a set Si that corresponds to machine Mi. Let v be the most “popular” answer of

machine Mi at the first input length in the set:

v = majority
x∈{0,1}ni

{VMi
(x) : VMi

(x) 6= ⊥} (38)

We want to show that our assumption that Mi computes LN on a large fraction of inputs of
every input length leads to what we call a “statistical” contradiction. Let

A
(n)
Mi

= {x ∈ {0, 1}n : VMi
(x) ∈ {v,⊥}} (39)

and
A

(n)
N = {x ∈ {0, 1}n : VN (x) ∈ {v,⊥}} (40)

By (38), it holds that |A
(ni)
Mi

| ≥ 1
2 · 2ni . However, under our assumption, the following claim is

true, therefore we obtain a desirable contradiction.

Claim 22. Under our assumption, for every n ∈ Si,

|A
(n)
N | <

1

2na
2n and |A

(n)
Mi

| <
(1

2
−

1

2na

)

2n. (41)

Note that the bound on the size of A
(n)
Mi

follows from our assumption and the bound on the

size of A
(n)
N . The latter bound can be proved by induction on n. For input length n = n∗

i , due

to the deterministic simulation, we have A
(n)
N = ∅. Next, let n be any input length less than n∗

i

in our set Si. Let
C = {x′ ∈ {0, 1}n′

: |Γ(x′) ∩ A
(n+1)
Mi

| < d/2}, (42)

where d is the regularity of Gn on the left. As Gn is a 1/(2(n+1)a)-mixer, we get a lower bound
on the size of C:

|C|

2n′
≥ 1 −

1

2(n + 1)a
> 1 −

1

2na
. (43)

We want to prove that for any x = x′ ◦ k such that x′ ∈ C, it holds that VN (x′ ◦ k) = ¬v.
Assume that v = 0. Let W = {wy}y∈Γ(x′) be chosen as follows. If VMi

(y) = 1, then let wy

be such that πy(wy) > 2/3. Otherwise let wy be chosen arbitrary. By (42), for more than a half
of y ∈ Γ(x′), it holds that VMi

(y) = ¬v = 1. Therefore, by our choice of W and bound (32), for
more than a half of y in Γ(x′), N obtains π̂y(wy) > 2/3 − 1

10K > θk with probability at least

1 − e−Θ(n). By union bound, N accepts x = x′ ◦ k with probability at least 1 − e−Θ(n). This
means that VN (x) = 1 = ¬v.

Now we assume that v = 1. For more than a half of y ∈ Γ(x′), it holds that VMi
(y) = 0.

Thus, whatever W , for more than a half of y ∈ Γ(x′), N obtains π̂y(wy) < 1/3+ 1
10K < θk with

probability at least 1 − e−Θ(n). By union bound, N rejects x = x′ ◦ k with probability at least
1 − e−Θ(n). Thus VN (x) = 0 = ¬v.

Summing up, for any x = x′ ◦ k such that x′ ∈ C, we have VN (x′ ◦ k) = ¬v. This implies

that
|A

(n)
N

|

2n ≤ (1 − |C|

2n′) < 1
2na . Hence our lemma follows. �

13

6 More Time Hierarchies for Heuristic Algorithms

Theorem 23. For any positive integer k, for any positive constants a and c,

Σk 6⊆ heur1/2+1/naΣkTime[nc]

Πk 6⊆ heur1/2+1/naΠkTime[nc].

Proof: This theorem can be proven similarly to Theorem 5, a time hierarchy for heuristic
algorithms in NP. Just note that Σk and Πk are closed under taking majority answer of
polynomially many machines. �

Definition 24 (Arthur-Merlin Games). Assume a machine M . Let

VM (x) =

1 if Prr[∃w : M(x, w, r) = 1] > 2/3

0 if Prr[∃w : M(x, w, r) = 1] < 1/3

⊥ otherwise

(44)

We say that M is a correct Arthur-Merlin game on x if VM (x) ∈ {0, 1}.

Theorem 25. For any positive constants a and c,

heur1−1/naAM 6⊆ heur1/2+1/naAMTime[nc].

Proof: This proof is a simplification of the proof of Theorem 18, a time hierarchy for heuristic
algorithms in MA. Though, one change in the algorithm of N has to be done. Machine N
now receives a witness for every run of machine Mi in Estimate-Over-Randomness. This is
needed because, in case of AM, there is no single good witness that make Mi accept x with
high probability; good witness depends on the random coins of Mi.

Estimate-Over-Randomness (Mi, y) /* |y| = n + 1 */
for n2a+1 times

generate a new randomness r for Mi

receive a witness wr for a run of Mi with randomness r
simulate Mi on input y with witness w and randomness r

return π̂y = the fraction of positive answers

One may see that Merlin is able to provide the set of witnesses W = {wr} once it learns all
the random coins of Arthur.

Let πy be the probability of y having a witness that makes Mi accept y (cf. (30)), i.e.

πy = Pr
r

[∃wMi(y, w, r) = 1] (45)

Then, by Chernoff bound,

Pr

[

|π̂y − πy | <
1

10K

]

> 1 − e−n/(200·22a). (46)

We make two claims. First, we claim that LN = {x : VN (x) = 1} belongs to heur1−1/naAM.
Second, we claim that LN doesn’t belong to heur1/2+1/naAMTime[nc].

We can justify the first claim following the lines of Lemma 20. Indeed, N is a polynomial-
time Arthur-Merlin game. To prove that N is correct on a fraction at least 1 − 1/na of inputs
of every length, let kx′ be the greatest k, 0 ≤ k ≤ K, such that for at least a half of y in Γ(x′),
it holds that πy > θk − 1

10K . If no such k exists, let kx′ = 0. In case k < kx′ , for at least a half

14

of y in Γ(x′), we have πy > θk + 1
10K . In case k > kx′ , for more than a half of y in Γ(x′), it

holds that πy ≤ θk − 1
10K . Therefore,

either Pr
r

[∃WN(x, W, r) = 1] > 1 − e−Θ(n) or Pr
r

[∃WN(x, W, r) = 1] < e−Θ(n) (47)

for a fraction at least 1 − 1/K ≥ 1 − 1/na of inputs x ∈ {0, 1}n. Hence our first claim follows.
We leave the second claim solely to a reader. Its proof follows closely the lines of Lemma

21. �

Acknowledgements

The author would like to thank Edward A. Hirsch and Rahul Santhanam for helpful discussions.
Besides, the author is grateful to Edward for his help with reviewing early drafts of this paper,
and to Rahul for suggesting to apply the techniques to heuristic NP.

References

[Bar02] B. Barak. A probabilistic-time hierarchy theorem for “slightly non-uniform” algo-
rithms. In International Workshop on Randomization and Approximation Techniques
in Computer Science. LNCS, 2002.

[Coo73] S. Cook. A hierarchy for nondeterministic time complexity. Journal of Computer and
System Sciences, 1973.

[FS04] L. Fortnow and R. Santhanam. Hierarchy theorems for probabilistic polynomial time.
In IEEE Symposium on Foundations of Computer Science (FOCS), 2004.

[FS06] L. Fortnow and R. Santhanam. Recent work on hierarchies for semantic classes.
SIGACT News, 37(3), 2006.

[FST05] L. Fortnow, R. Santhanam, and L. Trevisan. Hierarchies for semantic classes. In ACM
Symposium on Theory of Computing (STOC), 2005.

[GG81] O. Gaber and Z. Galil. Explicit construction of linear size superconcentrators. Journal
of Computer and System Sciences (JCSS), 22, 1981.

[GST04] O. Goldreich, M. Sudan, and L. Trevisan. From logarithmic advice to single-bit advice.
In Electronic Colloquium on Computational Complexity, technical reports, 2004.

[GW00] O. Goldreich and A. Wigderson. On pseudorandomness with respect to deterministic
observers. In Proceedings of the satellite workshops of the 27th ICALP, 2000.

[HS66] F. Hennie and R. Stearns. Two-tape simulation of multitape Turing machines. Journal
of the ACM, 13, 1966.

[IJK06] R. Impagliazzo, R. Jaiswal, and V. Kabanets. Approximately list-decoding direct prod-
uct codes and uniform hardness amplification. In IEEE Symposium on Foundations
of Computer Science (FOCS), 2006.

[Mar73] G. Margulis. Explicit constructions of expanders. Probl. Pered. Inform.; English
translation, Probl. Inform. Transm., 9(4), 1973.

[SFM78] J. Seiferas, M. Fischer, and A. Meyer. Separating nondeterministic time complexity
classes. Journal of the ACM, 25, 1978.

[vMP06] D. van Melkebeek and K. Pervyshev. A generic time hierarchy for semantic models
with one bit of advice. In IEEE Conference on Computational Complexity, 2006.

15

[Wil83] R. Wilber. Randomness and the density of hard problems. In IEEE Symposium on
Foundations of Computer Science (FOCS), 1983.

[Žák83] S. Žák. A Turing machine time hierarchy. Theoretical Computer Science, 1983.

16

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

