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Abstract

We study linear programming relaxations of Vertex Cover and Max Cut arising from repeated
applications of the “lift-and-project” method of Lovasz and Schrijver starting from the standard
linear programming relaxation.

For Vertex Cover, Arora, Bollobas, Lovasz and Tourlakis prove that the integrality gap
remains at least 2 − ε after Ωε(log n) rounds, where n is the number of vertices, and Tourlakis
proves that integrality gap remains at least 1.5 − ε after Ω((log n)2) rounds. Fernandez de la
Vega and Kenyon prove that the integrality gap of Max Cut is at most 1

2 + ε after any constant
number of rounds. (Their result also applies to the more powerful Sherali-Adams method.)

We prove that the integrality gap of Vertex Cover remains at least 2− ε after Ωε(n) rounds,
and that the integrality gap of Max Cut remains at most 1/2 + ε after Ωε(n) rounds.

1 Introduction

Lovasz and Schrijver [LS91] describe a method, referred to as LS, to tighten a linear programming
relaxation of a 0/1 integer program. The method adds auxiliary variables and valid inequalities,
and it can be applied several times sequentially, yielding a sequence (a “hierarchy”) of tighter and
tighter relaxations. The method is interesting because it produces relaxations that are both tightly
constrained and efficiently solvable.

For a linear programming relaxation K, denote by N(K) the relaxation obtained by the application
of the LS method, and by Nk(K) the relaxation obtained by applying the LS method k times.
Following standard terminology, we will refer to the process of applying the LS method k times as
the application of k rounds of LS. If the original linear program K had n variables and poly(n)
constraints, then it is possible to optimize over Nk(K) in time nO(k), which is polynomial for
constant k and sub-exponential for k = o(n/ log n).

Lovasz and Schrijver [LS91] prove that Nk(K) enforces all valid linear inequalities over k-tuples of
variables and, in particular, Nn(K) contains only convex combinations of valid integral solutions. In
addition to enforcing “local” constraints, relaxations of the form Nk(K) also introduce more global
constraints via the auxiliary variables. If a linear programming relaxation maintains an integrality
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gap1 g or larger even after Ω(n) applications of LS, then we can take this fact as evidence that linear
programming methods are unlikely to yield an efficient approximation algorithm with performance
ratio better than g.

The approximability of the Vertex Cover problem is one of the outstanding questions in the study of
the complexity of approximation. A simple linear programming relaxation yields a 2-approximate
algorithm, and no better polynomial time approximation is known. Dinur and Safra [DS05] prove
that, unless P=NP, there is no polynomial-time 1.36 approximation algorithm for Vertex Cover,
and Khot and Regev [KR03] prove that if there is a 2 − ε approximate algorithm, ε > 0, then the
Unique Games Conjecture fails.

Arora, Bollobas, Lovasz, and Tourlakis [ABLT06, Tou06] consider the question of proving integrality
gaps for LS relaxations of Vertex Cover. They show that even after Ωε(log n) rounds the integrality
gap is at least 2 − ε [ABLT06], and that even after Ωε((log n)2) rounds the integrality gap is at
least 1.5 − ε [Tou06].

For some optimization problems, such as Max Cut and Sparsest Cut, the best known approxima-
tion algorithms are based on semidefinite programming. For Max Cut, in particular, the Goemans-
Williamson approximation algorithm based on semidefinite programming [GW95] achieves an ap-
proximation ratio of about .878, whereas no known, efficiently solvable, linear programming relax-
ation of Max Cut has an integrality gap better than 1/2.

Fernandez de la Vega and Kenyon [FdlVKM07] prove, for every ε > 0, that the integrality gap of
Max Cut remains at most 1

2 + ε even after a constant number of rounds of LS. Their result also
applies to the more powerful Sherali-Adams method [SA90]. (The relaxation obtained after r rounds
of Sherali-Adams is at least as tight as the relaxation obtained after r round of Lovasz-Schrijver.)

Our Result

We prove that after Ωε(n) rounds of LS the integrality gap of Vertex Cover remains at least 2− ε.

Following a suggestion of James Lee, we then apply our methods to the Max Cut problem, and we
show that after Ωε(n) rounds of LS the integrality gap of Max Cut remains at most 1

2 + ε.

The instances for which we prove the integrality gap results are (slight modifications of) sparse
random graphs. In such graphs, the size of the minimum vertex cover is ≈ n, where n is the
number of vertices, while we show the existence of a fractional solution of cost n · (1

2 + ε) that
remains feasible even after Ωε(n) rounds. The size of a maximum cut is ≈ m

2 , where m is the
number of edges, while we show the existence of a fractional solution of cost m · (1 − ε) that also
remains feasible after Ωε(n) rounds.

We use two properties of (modified) sparse random graphs. The first property is large girth; it
suffices for our application that the girth be a large constant depending on ε. The second property
is that for every set of k = o(n) vertices, such vertices induce a subgraph containing at most
(1 + o(1))k edges. The same properties are also used in [ABLT06, Tou06].

In order to prove that a certain fractional solution y is feasible for a relaxation Nk(K), it is sufficient
to construct a matrix Y such that certain vectors obtained from the rows and columns of Y are all

1The integrality gap of a relaxation for a minimization problem (respectively, a maximization problem) is the
supremum (respectively, the infimum), over all instances, of the ratio of the true optimum divided by the optimum
of the relaxation.
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feasible solutions for Nk−1(K). (By convention, N0(K) := K.) This suggest an inductive approach,
where we have a theorem that says that all solutions satisfying certain conditions are feasible from
Nk(K); to prove the theorem we take a solution y that satisfies the conditions for a certain value
of k, and then we construct a matrix Y such that all the derived vectors satisfy the conditions
of the theorem for k − 1, and hence, by inductive hypothesis, are feasible from N (k−1)(K), thus
showing that y is feasible for Nk(K). We can also use the fact that the set Nk−1(K) is convex;
this means that, once we define the matrix Y , and we have to prove that the associated vectors are
in Nk−1(K), it suffices to express each such vector as a convex combination of vectors that satisfy
the conditions of the theorem for k − 1. (These ideas all appear in previous work on LS and LS+

integrality gaps.)

Roughly speaking, in the work of Arora et al. [ABLT06] on Vertex Cover, the appropriate theorem
refers to solutions where all vertices are assigned the value 1/2 + ε, except for a set of exceptional
vertices that belong to a set of constant-diameter disks. Oversimplifying, to prove a lower bound
of k rounds, one needs to consider solutions that have up to k disks, and for the argument to
go through one needs the union of the disks to induce a forest, hence the lower bound is of the
same order as the girth of the graph. Tourlakis [Tou06] does better by showing that, due to extra
conditions in the theorem, the subgraph induced by k “disks” has diameter O(

√
k), and so it

contains no cycle provided that the girth of the graph is sufficiently larger than
√

k. This yields an
integrality gap result that holds for a number of rounds up to a constant times the square of the
girth of the graph.2

The solutions in our approach have a similar form, but we also require the disks to be far away
from each other. When we start from one such solution y, we construct a matrix Y , and consider
the associated vectors, we find solutions where disks are closer to each other than allowed by
the theorem, and we have to express such solutions as convex combinations of allowed solutions.
Roughly speaking, we show that such a step is possible provided that the union of the “problematic”
disks (those that are too close to each other) induces a very sparse graph. Due to our choice of
random graph, this is true provided that there are at most cε · n disks, where cε is a constant that
depends only on ε. We also show that, in order to prove an integrality gap for k rounds, it is
sufficient to consider solutions with O(k) disks, and so our integrality gap applies even after Ωε(n)
rounds. Hence (again, roughly speaking) our improvement over previous work comes from the fact
that it suffices that the union of the disks induce a sparse graph (something which is true for a
sublinear number of disks) rather than induce a forest (a requirement that fails once we have a
logarithmic or polylogarithmic number of disks). This oversimplified sketch ignores some important
technical points: We will give a more precise overview in Section 4.

Linear versus Semidefinite Relaxations

Lovasz and Schrijver [LS91] also describe a method (referred to as LS+) to turn a linear program-
ming relaxation into a sequence of tighter and tighter semidefinite programming relaxations.

After applying one round of LS+ to the basic linear programming relaxation of Max Cut one obtains
the Goemans-Williamson relaxation, which yields a .878 approximation. In contrast, we show that
even after Ωε(n) rounds of LS the integrality gap remains 1

2 +ε. This gives a very strong separation

2Arora et al. [ABLT06, Tou06] present their proofs in the language of a “prover-verifier” game, but they can be
equivalently formulated as inductive arguments.
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between the approximability of LS versus LS+ for a natural problem.

For all known approximation algorithms based on semidefinite programming, the semidefinite re-
laxation (or an even stronger one) can be obtained by a constant number of applications of LS+

to a basic linear programming relaxation. Proving integrality gaps for LS+ relaxations is hence a
strong form of unconditional inapproximability result (since one rules out a class of natural and
powerful algorithms). Proving a strong LS+ integrality gap result for Vertex Cover remains an
open question. We summarize below some known negative results about LS+.

Buresh-Oppenheim, Galesy, Hoory, Magen and Pitassi [BOGH+03], and Alekhnovich, Arora, Tourlakis
[AAT05] prove Ω(n) LS+ round lower bounds for proving the unsatisfiablity of random instances
of 3SAT (and, in general, kSAT with k ≥ 3) and Ωε(n) round lower bounds for achieving approxi-
mation factors better than 7/8− ε for Max 3SAT, better than (1− ε) ln n for Set Cover, and better
than k−1−ε for Hypergraph Vertex Cover in k-uniform hypergraphs. We prove [STT06] a 7/6−ε
integrality gap for Vertex Cover after Ωε(n) applications of LS+.

For one round of LS+ (or, equivalently, for the function defined as number of vertices minus the
Theta function) Goemans and Kleinberg [KG98] had earlier proved a 2− o(1) integrality gap result
by using a different family of graphs. Charikar [Cha02] proves a 2 − o(1) integrality gap result
for a semidefinite programming relaxation of Vertex Cover that includes additional inequalities.
Charikar’s relaxation is no tighter than 3 rounds of LS+, and is incomparable with the relaxation
obtained after two rounds.

Extending the 2− ε gap to a super-constant number of applications of LS+ (or showing it does not
extend) remains an outstanding open problem. However, one will likely have to use substantially
different techniques then the ones in this paper (where we rely on random graph). Indeed, it is
known that the Theta function of a random sparse graph is very small, and so already one round
of LS+ provides a good approximation to Vertex Cover on random graphs.

2 The Lovasz-Schrijver Hierarchy

In this section we define the Lovasz-Schrijver operator N , that maps a linear programming relax-
ation K into a tighter one N(K). It is simpler to describe the application of the operator to convex
cones, as defined next. A convex cone is a set K ⊆ R

d such that for every y, z ∈ K and for every
non-negative α, β ≥ 0 we have αy + βz ∈ K.

We will use the following notation: for a matrix M , we denote by Mi the i-th row of M .

If K ⊆ R
d is a convex cone, then we define N(K) ⊆ R

d as follows: a vector y = (y0, . . . , yd−1)
belongs to N(K) if and only if there is a matrix Y ∈ R

d×d such that

• Y is symmetric

• For all i = 0, . . . , d − 1, Y0,i = Yi,i = yi

• For all i = 0, . . . , d − 1, Yi and Y0 − Yi are in K.

In such a case, we say that Y is a protection matrix for Y .

We also use the notation N0(K) := K and Nk(K) := N(Nk−1(K)).
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Let G = (V,E) be a graph, and assume V = {1, . . . , n}. The cone of the linear progamming
relaxation of the vertex cover problem is the set of vectors y ∈ R

n+1 such that

yi + yj ≥ y0 ∀(i, j) ∈ E

0 ≤ yi ≤ y0 ∀i ∈ V

y0 ≥ 0 (V C(G))

The relaxation of the Vertex Cover problem arising from k rounds of Lovasz Schrijver is the solution
of

min

n
∑

i=1

yi

subject to (y0, y1, . . . , yn) ∈ Nk(V C(G))

y0 = 1

The integrality gap of this relaxation for graphs of n vertices is the largest ratio between the
minimum vertex cover size of G and the optimum of the above program, over all graphs G with n
vertices.

The linear programming relaxation for MAX-CUT is a set of constraint on n vertex variables and
m edge variables. For a vector u ∈ R

n+m+1, let u0 be the extra coordinate for homogenization,3

(u1, . . . , un) denote the vertex variables and (ue1
, . . . , uem) denote the the edge-variables. Then the

cone is the solution set of the constraints

ue ≤ ui + uj ∀e = (i, j) ∈ E

ue ≤ 2u0 − (ui + uj) ∀e = (i, j) ∈ E

0 ≤ ui ≤ u0 ∀i ∈ V

0 ≤ ue ≤ u0 ∀e ∈ E

u0 ≥ 0 (MC(G))

The relaxation of the MAX-CUT arising from r rounds of Lovasz Schrijver is the solution of

max
n

∑

e∈E

ue

subject to (u0, u1, . . . , un, ue1
, . . . , uem) ∈ N r(MC(G))

u0 = 1

3 Our Results

Define an (α, δ, γ, η) graph G on n vertices as a graph with girth δ log(n), and such that no vertex
cover of size (1 − α)n exists and each induced subgraph of G with k ≤ γn vertices, has at most
(1 + η)k edges.

3Homogenization is the process of expressing a linear programming relaxation as a convex cone rather than as a
subset of [0, 1]n.
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Lemma 1 For every 0 < α < 1/125, η > 0, there exists a d = d(α) ∈ N, δ, γ > 0, and N ∈ N such
that for n ≥ N there exists an (α, δ, γ, η) graph with max cut less than 1

2 |E|(1 + α) and maximum
degree at most d on n vertices. Here d(α) is an explicit function that depends only on α.

Lemma 2 For every η, δ, γ > 0, 0 < ε < 1/20, d ∈ N if G is an (α, δ, γ, η) graph with maximum
degree at most d on n vertices then (1, 1/2 + ε, . . . , 1/2 + ε) ∈ NΩε,η,δ,γ,d(n)(V C(G)) if η ≤ η(ε, d)
where η(ε, d) is an explicit function that depends only on ε and d.

Lemma 3 For every η, δ, γ > 0, 0 < ε < 1/20, d ∈ N if G is an (α, δ, γ, η) graph with maximum
degree at most d on n vertices then the solution y defined as y0 := 1, yi := 1/2+ ε and ye := 1− 2ε
is in NΩε,η,δ,γ,d(n)(MC(G)) if η ≤ η(ε, d) where η(ε, d) is an explicit function that depends only on
ε and d.

Theorem 4 For all 0 < ζ < 1/50, there is a constant cζ > 0 such that, for all sufficiently large n,
the integrality gap for vertex cover after cζn rounds is at least 2 − ζ.

Proof: Let α = ζ/6 and ε = ζ/6. Let d = d(α) where d(α) is as in Lemma 1. Let η = η(ε, d)
where η(ε, d) is as in Lemma 2. Then by Lemma 1, there exists a δ, γ > 0, N ∈ N such that such
that for n ≥ N there exists an (α, δ, γ, η) graph with maximum degree at most d on n vertices.
By Lemma 2, the vector (1, 1/2 + ε, . . . , 1/2 + ε) ∈ NΩε,η,δ,γ,d(n)(V C(G)) because η = η(ε, d). This

exhibits an integrality gap of 1−α
1/2+ε = 1−ζ/6

1/2+ζ/6 ≥ 2 − ζ. �

Similarly, we have

Theorem 5 For all 0 < ζ < 1/50, there is a constant cζ > 0 such that, for all sufficiently large n,
the integrality gap for max cut after cζn rounds is at most 1

2 + ζ.

Lemma 1 is very similar to results already known in the literature (for example [ABLT06]) and so
we only prove the additional properties that we require in the appendix. Most of the rest of the
paper is dedicated to a proof of Lemma 2. Lemma 3 will follow via a relative simple “reduction”
to Lemma 2.

4 Overview of the Proof

If D is a random variable ranging over vertex covers, then the solution yD where y0 = 1 and yi =
Pr[i ∈ D] is a convex combination of integral solutions, and so it survives an arbitrary number of
rounds of LS. The protection matrix for yD is the matrix Y = YD such that Yi,j = Pr[i ∈ D∧j ∈ D].

In trying to show that a given vector y survives several rounds of LS, it is a good intuition to
think of y as being derived from a probability distribution over vertex covers (even if y is not a
convex combination of integral solutions, and cannot be derived in this way) and, in constructing
the protection matrix Y , to think of Y as being derived from the said distribution as above.

Note that for the above matrix, the vectors z = Yi/yi and w = (Y0 − Yi)/(1 − yi) correspond to
conditional distributions with zj = Pr[j ∈ D|i ∈ D] and wj = Pr[j ∈ D|i /∈ D]. To show that
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y ∈ Nk(V C(G)), we must show that z,w ∈ Nk−1(V C(G)) for the vectors z and w corresponding to
every i. The kth row in the protection matrices may now be interpreted as the distribution obtained
by further conditioning on k. Intuitively, more rounds of LS correspond to further conditioning on
other vertices which do not already have probability 0 or 1 in these conditional distributions. We
often refer to vertices having probability 0/1 as being fixed in the distribution.

Since only r vertices can be conditioned upon in r rounds, we only need to create solutions that
look “locally” like distributions over vertex covers for small sized subgraphs. Also, because the
given graph has large girth, subgraphs of size O(log n) are trees. We thus start by expressing the
vector y = (1, 1/2 + ε, . . . , 1/2 + ε) as a probability distribution over vertex covers for a tree. This
distribution we define has the property that conditioning on a vertex i only affects the vertices
upto a constant distance ` from i. In fact, the effect of conditioning decreases exponentially with
the distance from i and we explicitly truncate it at distance ` = O(1

ε log(1
ε )). The conditional

distribution is referred to as a splash around i as it creates “ripples” (change in probabilities)
which decrease with distance from i. Fernandez de la Vega and Kenyon [FdlVKM07, Section 5]
describe essentially the same distribution of vertex covers over trees in their paper, suggesting its
usefulness for proving integrality gaps for the vertex cover problem.

We start with the vector (1, 1/2 + ε, . . . , 1/2 + ε) for the given graph G. After one round of LS,
each row i of the protection matrix is defined by changing only weights of vertices within distance
a distance ` of vertex i according to a splash. Since it affects only a small subgraph, which is a tree
rooted at i, the solution “looks” locally like a valid conditional distribution.

Now consider trying to extend this strategy to a second round. Say we want to show that the
ith row of the protection matrix above survives another round. We thus need to create another
protection matrix for this row. Each row of this new matrix corresponds to conditioning on some
other vertex j. If i and j are at distance greater than 2`, the weights (probabilities) of vertices
within a distance ` from j are still 1/2 + ε. The conditional distribution can then be created by
replacing these values according to a splash around j and leaving the weights of the other vertices
as unchanged. If the distance between i and j is less than 2` and k is a vertex within distance ` of
either i or j, we modify the weight of k according to the probability that both i and j are in the
vertex cover.

It would become, unfortunately, very complex to proceed for a large number of rounds with this
kind of analysis, and it would appear that the girth of the graph would be a natural limit for the
number of rounds for which we can extend this line of argument. (See indeed [ABLT06, Tou06].)

We note however that certain cases are simpler to handle. Suppose that we are given a vector y
that is 1/2 + ε everywhere except in a number of balls, all at distance at least 5` from each other,
in which the values of y are set according to splashes. Then the above ideas can be used to define
a valid protection matrix. Unfortunately, this does not seem to help us in setting up an inductive
argument, because the structure of the vector that we start from is not preserved in the rows of
the protection matrix: we may end up with splash areas that are too close to each other, or with
the more special structures that we get by conditioning on a vertex less than distance 2` from the
root of a splash.

Our idea, then, is to take such more complex vectors and express them as convex combinations of
vectors that are 1/2 + ε everywhere except in splash areas that are at distance at least 5` from
each other. We will refer to such solutions as canonical solutions. Since we are trying to show that
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the complex vector belongs to some convex cone, it suffices to show that each one of these simpler
vectors is in the cone. Now we are back to the same type of vectors that we started from, and we
can set up an inductive argument.

Our inductive argument proceeds as follows: we start from a solution y in a “canonical” form, that
is, such that all vertices have value 1/2 + ε except for the vertices belonging to at most k splashes;
furthermore, the roots of any two splashes are at distance at least 5` from each other. We need to
construct a protection matrix Y for this vector. To define the jth row Yj of the protection matrix
we reason as follows: if j is far (distance > 2`) from the roots of all the splashes in y, then Yj

looks like y, plus a new splash around j. If j is at distance ≤ 2` from a splash (and, necessarily, far
from all the others) rooted at a vertex r, then we replace the splash rooted at r with a new splash
which corresponds to our original distribution over trees conditioned on both r and j.

If Yj happens to be a vector in canonical form, we are done, otherwise we need to express it
as a convex combination of vectors in canonical form. There are two ways in which Yj can fail
to be canonical: j may be at distance more than 2` but less than 5` from the closest splash; in
this case the new splash we create around j is too close to an already existing one. The other
possibility is that j is at distance less than 2` from an existing splash, in which case Yj contains a
“doubly-conditioned” splash which is not an allowed structure in a canonical solution.

Our idea is then to define a set S of “problematic vertices,” namely, the vertices in the two close
splashes, in the first case, or the vertices in the doubly-conditioned splash, in the second case. Then
we prove that4 that the restriction of Y to small (sub-linear) subset S of vertices can be expressed
as a distribution of valid integral vertex covers over S. We would then like to use this fact to
express y itself as a convex combination of solutions that are integral over S and agreeing with y
outside S; if we could achieve this goal, we would have expressed y as a convex combination of
vectors where the “problematic” coordinates of y are fixed, and the other coordinate are as nice as
they were in y.

Unfortunately, some complications arise. In order to express y as a convex combination
∑

a λaya

of vectors such that each ya is fixed in S, it is necessary that each ya contains a splash around
each of the newly fixed variables. The new splashes may themselves be at distance less than 5`
from each other, making the ya not canonical. To remedy this problem, we define S (the set of
vertices that will be fixed in the ya) via the following process: we initialize S to the initial set of
problematic vertices, then we add all vertices that are at distance less than ` from S and that can
be connected via a path of length ≤ 5` that does not pass through S, and so on. At the end of this
process, we express y restricted to S as a convex combination of integral covers, and we extend
each of these integral covers over S to a fractional solution over all vertices (by putting splashes
around the vertices of S) and so express y as a convex combination of solutions that, now, are
canonical.

The argument works provided that S is of sublinear size. A careful accounting guarantees that,
if we want to show that our solution survives k rounds, we only need to consider instances where
S is of size O(k). Intuitively, this is due to the fact that each time we make S larger we discover
a short path of length t ≤ 5` in the graph, and we add to the subgraph induced by S t − 1 new
vertices and t new edges. The subgraph induced by S can only include at most |S|(1 + η) edges,
for some very small η, so it cannot happen that S grows too much at each step, because it is not

4 Assuming some added conditions on the fractional solution y, called saturation.
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possible to consistently add more edges than vertices to the subgraph induced by S without causing
a contradiction to the sparsity condition.

Since this ensures that it takes Ω(n) rounds before the set of fixed vertices grows to size γn, we
can survive Ω(n) rounds.

5 Distributions of Vertex Covers in Trees

As a first (and useful) idealized model, suppose that our graph is a rooted tree. Consider the
following distribution over valid vertex covers:

• The root belongs to the cover with probability 1/2 + ε

• For every other vertex i, we make (independently) the following choice: if the parent of i does
not belong to the vertex cover, then i is in the cover with probability one; if the parent of i is
in the cover, then with probability 2ε/(1

2 + ε) we include i in the cover, and with probability
1 − 2ε/(1

2 + ε) we do not include i in the cover.

(The distribution is sampled by considering vertices in the order of a BFS, so that we make a
decision about a vertex only after having made a decision about the parent.)

This is an instantiation of the Ising Model, about which much is known, but we will need only very
elementary facts about it. The proofs of these facts are contained in the appendix.

A first observation is that each vertex has probability 1/2 + ε of being in the cover and 1/2 − ε of
not being in the cover. The second observation is that, if we condition on the event that, say, the
root is in the cover, then this condition affects very heavily the vertices that are close to root, but
this effect decreases exponentially with the distance. In particular, for each vertex whose distance
from the root is about 4ε−1 · (log ε−1), the probability of the vertex being in the cover condition
on the root being in the cover is between 1/2 + ε − ε4 and 1/2 + ε + ε4, and the same is true
conditioning on the root not being in the cover.

This second observation will show that reasoning about this distribution is useful to deal with graphs
that are only locally like trees, that is, graphs of large girth. Before discussing this application, we
slightly change the distribution so that, after a certain distance from the root, there is no effect
(rather than a small effect) if we condition on the root being or not being in the cover. Hence the
effect of conditioning on the root is explicitly cut-off after a certain distance.

In particular, consider the following two distributions which sample from the vertex covers of a tree
rooted at a vertex i. The conditioning on the root only affects vertices upto a distance ` = 8

ε log 1
ε

of i.

Definition 6 For b ∈ {0, 1} we define a b-Splash around a vertex i as the distribution which
modifies vertices upto a distance of 2` as follows

1. i = b

2. For every vertex upto distance ` (and at distance greater than `+1), we independently decide
to include it with probability 1 if its parent is not in the vertex cover and with probability
2ε/(1

2 + ε) if its parent is already in the vertex cover.
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3. For u and v at distances `, ` + 1 respectively, we include v with probability 1 if u is not in
the vertex cover and with probability

Pr[u = 1|i = b] −
(

1
2 − ε

)

Pr[u = 1|i = b]

otherwise.

Where u = 1 denotes the event u ∈ D for a random variable D (with distribution defined by the
splash) ranging over the vertex covers of the graph.

For the above to be well defined, we need Pr[u = 1|i = b] > 1/2 − ε for a vertex u at distance `
from i. Claim 7 shows that in fact Pr[u = 1|i = b] ∈ [1/2 + ε − ε4, 1/2 + ε + ε4] for u at distance
greater than `/2 and hence the probability at distance ` is non-negative.

Claim 7 Consider a b-Splash around any vertex i such that all vertices upto distance ` are labeled
1
2 + ε. Let j be a vertex such that d(i, j) ≤ `. Then,

1. Pr[j = 1|i = 1, d(i, j) = k] = (1/2 + ε)

[

1 + (−1)k
(

1/2−ε
1/2+ε

)k+1
]

for 0 ≤ k ≤ `

Pr[j = 1|i = 0, d(i, j) = k] = Pr[j = 1|i′ = 1, d(i′, j) = k − 1] for 1 ≤ k ≤ `

2. |Pr[j = 1|i = b, d(i, j) = `/2] − (1/2 + ε)| ≤ ε4

3. Pr[j = 1|i = 1, d(i, j) = k] + Pr[j = 1|i = 1, d(i, j) = k + 1] ≥ 1 + 4ε2 for 0 ≤ k ≤ `

Note, in particular, that the probabilities are independent of i and j and depend only on their
distance d(i, j). Also, the difference of the probabilities from 1/2 + ε decreases exponentially with
distance. The following claim shows that the vertices outside a radius of ` from i are independent
of whether or not i is in the cover.

Claim 8 If we pick a 0-Splash with probability 1/2−ε and a 1-Splash with probability 1/2+ε, then
all vertices have probability 1/2 + ε. Furthermore, vertices at distance ` + 1 or more from i have
weight 1/2 + ε in the 0-Splash as well as 1-Splash around i.

The vectors that appear in our argument may involve conditioning on a vertex i that has value
different from 1/2 + ε based on a splash distribution around a vertex r close to it. The following
claims allow us to compute Pr[i = 1, j = 1|r = b], the probability of two vertices i, j being
simultaneously present in a b-Splash at r, and also Pr[i = 0, j = 1|r = b], which is the probability
that j is present and i is not. We defer the proofs to the appendix.

Claim 9 Let i = v0, v1, . . . , vm−1, vm = j be the path to j, m ≤ `, and let u be the vertex on this
path which is closest to r. Then

1. Pr[i = 1, j = 1|r = b] = Pr[u = 1|r = b] ·Pr[i = 1|u = 1] · Pr[j = 1|u = 1]
+Pr[u = 0|r = b] · Pr[i = 1|u = 0] ·Pr[j = 1|u = 0]

10



2. If Pr[u = 1|r = b] = 1/2 + ε, then Pr[i = 1, j = 1|r = b] = (1/2 + ε)Pr[j = 1|i = 1]

The first part of the above claim states that once we condition on u, then i and j are independent.
The second part states that if u is sufficiently far r, we can ignore r completely and just compute
the probability of j as determined by a splash around i.

Claim 10 Let i be a vertex and (j,k) be an edge in a b-Splash around r and let b′ ∈ {0, 1}.

Pr[i = b′, j = 1|r = b] + Pr[i = b′, k = 1|r = b] ≥ Pr[i = b′|r = b] · (1 + 4ε3)

The next claim allows us to treat vertices that are sufficiently far from each other as almost
independent in the dirtibution conditioned on r.

Claim 11 Let i and j be two vertices in a b-Splash around r, such that d(i, j) ≥ `. Then

∣

∣Pr[i = b′, j = 1|r = b] − Pr[i = b′|r = b] · Pr[j = 1|r = b]
∣

∣ ≤ 2ε4

6 Distribution of Vertex Covers in Sparse Graphs

To reduce solutions with more complicated structure to simpler solutions, we will need to show
that if we look at a sufficiently small subgraph of our original graph obtained in Lemma 1, then
the more complicated solution can be expressed as a convex combination of 0/1 solutions.

The following result is proved in [ABLT06].

Lemma 12 ([ABLT06]) Let η ≤ 2ε
3+10ε and let G = (V,E) be a graph such that

1. for each S ⊆ V , G(S) = (VG(S), EG(S)), then |EG(S)| ≤ (1 + η)|VG(S)|.

2. girth(G) ≥ 1+2ε
ε .

Then there exists a distribution over vertex covers on G such that each vertex belongs to the vertex
cover with probability 1/2 + ε.

We will need a slight generalization. Instead of requiring the solution to have the value 1/2 + ε
everywhere, we only require that the sum of the values on each edge should be at least 1 + 2ε, if
both of its endpoints are not already fixed.

Definition 13 We call a fractional solution y for a graph G ε-saturated if for each edge (i, j) in
graph G either:

• Both i and j are fixed and yi + yj ≥ 1 or,

• yi + yj ≥ 1 + 2ε.

11



We now show that the under the conditions of the previous lemma, every ε-saturated solution can
be written as a convex combination of vertex covers of the graph.

Lemma 14 Let η ≤ 2ε
3+10ε and let G = (V,E) be a graph such that

1. for each S ⊆ V , G(S) = (VG(S), EG(S)), then |EG(S)| ≤ (1 + η)|VG(S)|.

2. girth(G) ≥ 1+2ε
ε .

and let y be an ε-saturated solution. Then there exists a distribution over vertex covers on G such
that each vertex i belongs to the vertex cover with probability yi.

Proof: For the graph G, we will create a set of feasible fractional solutions y(k) ∈ {0, 1/2+ε, 1}|V |

such that y is a convex combination of these vectors.

We partition V into V0, V1/2+ε, and V1, as follows:

i ∈







V0 yi < 1/2 + ε
V1/2+ε yi = 1/2 + ε

V1 yi > 1/2 + ε

We define t(i) as follows:

t(i) =











1 − yi

1/2+ε i ∈ V0

1 i ∈ V1/2+ε
yi−(1/2+ε)

1/2−ε i ∈ V1

We can order the t(i)’s: 0 ≤ t(i1) ≤ t(i2) ≤ · · · ≤ t(i|V |) ≤ 1. For each k : 1 ≤ k ≤ |V | we create
the vector y(k) where

y(k)i =







0 i ∈ V0 and t(i) ≤ t(ik)
1 i ∈ V1 and t(i) ≤ t(ik)
1/2 + ε otherwise

We claim the distribution where y(k) occurs with probability tik − tik−1
gives us y.

If i ∈ V0, then it will be 0 with probability ti and 1/2+ ε with probability 1− ti = yi

1/2+ε . Therefore
the probability that i is in the vertex cover is yi. If i ∈ V1, then it will be 1 with probability
ti = yi−(1/2+ε)

1/2−ε and 1/2 + ε with probability 1− ti = 1 − yi−(1/2+ε)
1/2−ε . Therefore the probability that

i is in the vertex cover is yi−(1/2+ε)
1/2−ε + (1/2 + ε)(1 − yi−(1/2+ε)

1/2−ε ) = yi. If i ∈ V1/2+ε, then it is clear

that the probability that i is in the vertex cover is 1/2 + ε.

Note that all the weights in each y(k) are 0, 1 or 1/2 + ε. It remains to show that in each of these
y(k) any edge which contains one vertex fixed to 0 has the other vertex fixed to 1. First, note that
all neighbors of vertices in V0 are in V1. It suffices to show that if i and j are adjacent, i ∈ V1,
j ∈ V0, that t(i) ≥ t(j). However
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t(i) − t(j) =
yi − (1/2 + ε)

1/2 − ε
− (1/2 + ε) − yj

1/2 + ε

=
(yi + yj)/2 + ε(yi − yj) − (1/2 + ε)

1/4 − ε2

≥ (1 + 2ε)/2 + ε(yi − yj) − (1/2 + ε)

1/4 − ε2

=
ε(yi − yj)

1/4 − ε2
≥ 0

which concludes the proof of the lemma. �

7 The Main Lemma

We now define the type of solutions that will occur in our recursive argument.

Let G = (V,E) be an (α, δ, γ, η) graph with n vertices and degree at most d, as in the assumption
of Lemma 2. We define the constant C =

∑`+1
i=1 di as the maximum number of vertices within a

distance ` from some vertex and D = 5`C as the maximum number of vertices within distance ` of
all the vertices in a path of length 5`. Choose η = 1

3D . Note that η depends on only ε and d. Also,
we assume that n is large enough that the girth of the graph is larger than various fixed constants
throughout. We fix G for the rest of this section.

Let R = γn
C+2D

Let G|S = (S,E|S) be the subgraph of G induced by S ⊆ V . For some set S ⊆ V , define NS(i) = {j :
there exists path of length ` from i to j using only edges in E\E|S).

Definition 15 We say that a vector y = (y0, . . . , yn) is r-canonical if there exists a set S ⊆ V
such that:

• ∀j ∈ S yj ∈ {0, 1} and y|S is a vertex cover of G|S

• For every two vertices in S the shortest path between them that uses only vertices not in S
has length > 5`. (Therefore if i, j ∈ S, i 6= j, then NS(i) ∩ NS(j) = ∅).

•
yi =

{

Pr[i = 1|j = yj] ∃j ∈ S s.t. i ∈ NS(j)
1/2 + ε o.w

• |S| ≤ rC + 2rD

• Let |S| = rC + kD (k ≤ 2r) and G|S = (S,E|S) is the subgraph of G induced by S, then

|E|S | − |S| ≥ k − r

We call a set S as in Definition 15 a witness.
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Claim 16 If y is an r-canonical vector then, y ∈ V C(G). Moreover, y is ε2-saturated.

Proof: This follows from the fact all edges are either internal to S, internal to some NS(i), internal
to V \ ∪i∈SN(i) or between some N(i) and V \ ∪i∈SN(i). In the first case, it follows because y|S

is a valid vertex cover having only 0/1 values. In the second because of the fact that a N(i) is
weighted according to a splash and Claim 7. In the third case, because the weights are all 1/2 + ε.
The final case just concerns the vertices at distance ` and ` + 1 from the center of a splash and
again follows from Claim 7. �

Lemma 2 follows from the above claim, the following result and the fact that (1, 1/2 + ε, . . . , 1/2 + ε)
is 0-canonical.

Lemma 17 Let y be an r-canonical solution, and r ≤ R. Then y is in NR−r(V C(G)).

Proof: We prove it by induction on R − r. By Claim 16, an R-canonical solution is feasible for
V C(G), and this gives the basis for the induction.

Let y be an r-canonical solution and let S be a witness to y. We show that there is a protection
matrix Y for y such that (Yi)/yi and (Y0 − Yi)/(y0 − yi) are distributions over (r + 1)-canonical
vectors for yi 6= 0, y0. If yi = 0, then we take Yi = 0 which is in Nk(V C(G)) for all k and
Y0 − Yi = Y0 which is r-canonical.

The protection matrix is defined as follows. (When we talk about distance between vertices, we
mean distance via paths that do not go through any vertex in S.)

• Yi,0 = Y0,i = Yi,i = yi.

• If i and j are at distance greater than ` from each other, then Yi,j = yi · yj

• If i is at distance greater than 2` from the closest vertex in S, and j is at distance at most
` from i, then Yi,j is the probability that i and j both belongs to a vertex cover selected
according to a splash distribution around Yij = yi Pr[j = 1|i = 1]

• If i is at distance at most 2` from a vertex r ∈ S, and j is at distance at most ` from i,
then Yij is the probability that i and j both belong to a vertex cover selected according to a
b-Splash distribution around r i.e. Yij = Pr[i = 1, j = 1|r = b]

Claim 18 The matrix Y is symmetric.

Proof: If d(i, j) > `, clearly Yij = Yji. There remain three additional cases.

• First, if both i and j are at distance greater than 2` from any vertex in S, then yi = yj = 1/2+ε
and also Pr[j = 1|i = 1] = Pr[j = 1|i = 1] as it depends only on the distance by Claim 7,
and hence Yij = Yji.

• Second, both i and j are at distance at most 2` from any vertex in S. Both i and j cannot
be close to two different vertices in S because then d(i, j) ≤ ` would imply a path of length
at most 5` between the two vertices which is not possible. Hence, in this case, Yij = Yji =
Pr[i = 1, j = 1|r = b], where r is the vertex in S close to both i and j.
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• Finally, if d(i, r) ≤ 2` for some r ∈ S and d(j, r) > 2` ∀r ∈ S, then the path from i to j
cannot come closer than distance ` + 1 to r. If l is the vertex on this path closest to r, then
we have P b

r (l) = 1/2 + ε and by Claim 9, Pr[i = 1, j = 1|r = b] = (1/2 + ε)Pr[j = 1|i = 1] =
yi Pr[j = 1|i = 1] . Therefore, Yij = Pr[i = 1, j = 1|r = b] = yi Pr[j = 1|i = 1] = Yji.

�

Let us fix a vertex i, and consider the vectors z := Yi/yi and w := (Yi − Y0)/yi. We will show
that they are (convex combinations of) (r + 1)-canonical vectors. (If yi = 0 we do not need to
analyse z, and if yi = 1 we do not need to analyse w.)

Note that z and w are same as y except for vertices that are within distance ` of i.

Lemma 19 If y is an r-canonical solution and Y is the matrix as defined above, then ∀1 ≤ i ≤ n,
the solutions z := Yi/yi and w := (Yi − Y0)/yi are ε3-saturated

Proof: We first give the proof for z. Note that for d(i, j) > ` zj = yj and hence edges as distance
greater than ` from i are ε2 saturated because they were in y by Claim 16. If d(i, r) > 2` ∀r ∈ S
then the distribution up to distance 2` from i is same as a 1−Splash, which is in fact ε2-saturated
by Claim 7 and Claim 8.

Let i be within distance 2` of r ∈ S and let (j, k) be an edge such that d(i, j) ≤ ` or d(i, k) ≤ `. If
both j and k are within distance ` of i, then by Claim 10

Yij + Yik = Pr[i = 1, j = 1|r = b] + Pr[i = 1, k = 1|r = b]

≥ (1 + 4ε3)Pr[i = 1|r = b] = (1 + 4ε3)yi

and we are done. Finally, if d(i, j) = ` and d(i, k) = ` + 1, then we know by Claim 11 that
|Pr[i = 1, k = 1|r = b] − Pr[i = 1|r = b]Pr[k = 1|r = b]| ≤ 2ε4. This gives

Yij + Yik = Pr[i = 1, j = 1|r = b] + Pr[i = 1|r = b]Pr[k = 1|r = b]

≥ Pr[i = 1, j = 1|r = b] + Pr[i = 1, k = 1|r = b] − 2ε4

≥ (1 + 4ε3)Pr[i = 1|r = b] − 2ε4 ≥ (1 + 3ε3)yi

using the fact that Pr[i = 1|r = b] is at least 2ε. We prove this for w similarly. �

We shall now express z and w as a convex combination of (r + 1)-canonical vectors.

Claim 20 If i ∈ S, or if ∀r ∈ S, d(i, r) > 5`, then z is r + 1 canonical.

Proof: If i ∈ S, then zk = yk (or wk = yk) for all k ∈ V by construction of protection matrix.
Because y is r-canonical z (or w) is also and this thus also (r + 1)-canonical.

If ∀r ∈ S, d(i, r) > 5`, then it is easily seen that S ∪ {i} is a witness to z and w being (r + 1)-
canonical. �

If neither of these cases is true, we treat only z, because the same argument works for w. We first
define the subset of vertices which is fixed in these vectors.
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Recall that for i ∈ S, NS(i) = {j : there exists path of length at most ` from i to j using only
edges in E\E|S). In addition let ∂NS(i) = {j : d(i, j) = ` + 1 in the graph (V,E\E|S)}. Also, let
N ′

S(i) = NS(i) ∪ ∂NS(i).

Then we make the following definition:

Definition 21 For a fixed vertex i, we construct F ⊆ V \ S as follows:

Start with F = N ′
S(i). If there is a path P of length less that 5` between any two vertices in F ∪ S

that uses only edges in V \ (F ∪ S), then F = F ∪ P . Also, if P intersects NS(j) for j ∈ S, then
F = F ∪ P ∪ (N ′

S(j)\{j}).

Note that it follows from the above definition that for every j ∈ S, either NS(j) ∩ F = ∅ or
N ′

S(j) ⊆ F . Also if ∂F = {j ∈ F : j has neighbors in V \(S ∪ F )}, then ∀j ∈ ∂F , zj = 1/2 + ε
(because for every intersecting NS(j′), we also included ∂NS(j′)). We now bound the size of F .

Claim 22 |F | ≤ C + (2r + 2 − k)D, where |S| = rC + kD.

Proof: Every path added in the construction of F has length at most 5`. Also, each vertex in a
path can be within distance ` of at most one j ∈ S. Thus, the number of vertices added due to a
path is at most 5`C = D. Thus, if p paths are added during the construction, then |F | ≤ C + pD
since C is the size of the N ′

S(i), which we start with.

Since the paths are added incrementally, it suffices to show that adding 2r + 2 − k paths implies
a contradiction. This would imply that p ≤ 2r + 2 − k and hence the claim. Let F ′ be F after
addition of 2r + 2 − k paths. Then

|E|S∪F ′ |
|S ∪ F ′| = 1 +

|E|S∪F ′| − |S ∪ F ′|
|S ∪ F ′|

Note that |E|S∪F ′ | − |S ∪ F ′| ≥ (k − r) + (2r + 2 − k) − 1, since |E|S | − |S| ≥ (k − r) to begin
with and addition of N ′

S(i), which is a tree adds one more vertex than edge (hence contributing
−1), while the addition of each path adds one more edge than vertex. For any j ∈ S including the
region NS(j) intersected by the path includes a tree of which at least one vertex is already in F
and can only contribute positively. This gives

|E|S∪F ′|
|S ∪ F ′| ≥ 1 +

k − r + 2r − k + 1

|S| + |F ′| ≥ 1 +
r + 1

rC + kD + C + (2r + 2 − k)D
= 1 +

1

C + 2D
> 1 + η

since η = 1
3D < 1

C+2D . But this is a contradiction since |S ∪ F ′| ≤ γn and hence |E|S∪F ′ | ≤
(1 + η)|S ∪ F ′|. �

Now, because r ≤ R = γn
C+2D , |S ∪F | ≤ γn and we employ Lemma 14 to T = S ∪F using the fact

that z is ε3-saturated.

We obtain vertex covers on S∪F , T 1, . . . , Tm such that λ1T
1+. . .+λmTm = z |T where

∑m
l=1 λl = 1.

Note that the values for the vertices in S are 0/1 and are hence unchanged in all these solutions.
To extend these solutions to fractional solutions over the whole graph, we look at each vertex j on
the boundary of the set F and change the values of vertices upto a distance ` from it in V \ (S ∪F )
according to a splash around j. We first prove that all the vertices upto distance ` from the
boundary of F have value 1/2 + ε in z.
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Claim 23 For all j ∈ F , either

• all neighbors of j are in S ∪ F , or

• For all k ∈ NS∪F (j), zk = 1/2 + ε

Proof: Assume not, then for some j ∈ F which has some neighbor not in S ∪ F , there exists
k ∈ NS∪F (j) such that zk 6= 1/2 + ε. First, we show that it must be that zj = 1/2 + ε. The only
elements of z which do not have weight 1/2+ε are elements of NS(l) for l ∈ F and NS(i). However,
N ′

S(i) ⊆ F ∪ S so no element of NS(i) has a neighbor outside of F . Similarly, if j ∈ NS(l), then
because j ∈ F , it must be that N ′

S(l) ⊆ F ∪ S and thus j has no neighbors outside S ∪ F .

So, say that k 6= j, then k 6∈ S ∪ F . But there exists a path P of length ≤ ` which avoids S ∪ F
from j to k. Because y is r-canonical, and z is the same as y except possibly at the vertices in
NS(i), it must be that k ∈ NS(i) or k ∈ NS(j′) for some j′ ∈ S. But, it cannot be that k ∈ NS(i)
because NS(i) ⊆ F . Also if k ∈ NS(j′) for some j′ ∈ S, then there is a path from j to j′ length
at most 2` and so either k must be in S ∪ F or j = j′. The former cannot be true by assumption.
The later cannot be true because j ∈ F which is disjoint from S. �

Create y(l) as follows.

y
(l)
k =

{

Pr
[

k = 1|j = y
(l)
j

]

k ∈ NS∪F (j) for some j ∈ F

y
(l)
k = zi o. w.

First note that this is well defined, because if any vertex were in NS∪F (j) and NS∪F (j′) for j, j′ ∈ F ,
j 6= j′, then there would be path between two vertices in F of length 2` which does not go through
S ∪ F .

We wish to show that λ1y
(1), . . . , λmy(m) = z. Consider first some k ∈ NS∪F (j) for some j ∈ F .

First note that λ1y
(1)
j + . . . + λmy

(m)
j = zj . By Claim 23 if k 6= j, then it must be that zj = zk =

1/2 + ε. Therefore by Claim 8

λ1y
(1)
k + . . . + λmy

(m)
k = zj Pr[k = 1|j = 1] + (1 − zj)Pr[k = 1|j = 0] = 1/2 + ε = zk

If k 6∈ ∪j∈F NS∪F (j), then y
(l)
k = zk for all k, and so λ1y

(1)
k , . . . , λmy

(m)
k = zk. We now must show

that for each k, y(k) is an (r + 1)-canonical solution. We show that T = S ∪F is a witness for y(k).

Since the solution T (k) given by Lemma 14 is a vertex cover y
(k)
|T = T (k) is a vertex cover for T .

Also, by construction of F , there is no path of length less than 5` between any vertices of S ∪ F
using only vertices outside S∪F . By Claim 22 |T | = |S|+ |F | ≤ rC+kD+C+(2r+2−k)D = (r+
1)C+2(r+1)D. If the number of paths added in constructing F is p, then |T | ≤ (r+1)C+(k+p)D.
Also, as argued in Claim 22, |E|S∪F | − |S ∪ F | ≥ (k − r) + p − 1 = (k + p) − (r + 1).

Finally, we need to show that y
(k)
j = Pr[j = 1|j′ = yj′] if j ∈ NS∪F (j′) and 1/2 + ε otherwise. Let

y
(k)
j 6= 1/2 + ε. Then either j ∈ NS∪F (j′) for some j′ ∈ F (since these vertices were set according

to a splash pattern while creating y(k)) and we are done, or zk 6= 1/2 + ε. However, z = Yi/yi

differs from y only in NS(i). Therefore, zk 6= 1/2+ ε in turn implies j ∈ NS(i) and hence j ∈ F , or
yj 6= 1/2 + ε. To finish off, we note that yj 6= 1/2 + ε would mean j ∈ NS(j′) for some j′ ∈ S (by

17



assumption on S). Since NS(j′) is either contained in or disjoint with F , we must have j ∈ S ∪ F
or j ∈ NS∪F (j′) respectively.

Since each y(k) is an (r + 1)-canonical solution, by our inductive hypothesis ∀1 ≤ k ≤ m y(k) ∈
NR−r−1(V C(G)) and hence z ∈ NR−r−1(V C(G)). Using a similar argument for show w, we get
that y ∈ NR−r(V C(G)). This completes the proof of Lemma 17. �

8 Lower bounds for MAX-CUT

Let G = (V,E) be a graph with n vertices and m edges. We prove a 1/2 + ζ integrality gap for
Ω(n) rounds of LS on MAX-CUT.

The solutions we define for MAX-CUT are simple extensions of vertex cover solutions. For a vector
y ∈ R

n+1, we define an extension Ext(y) as the vector u ∈ R
n+m+1 such that, ui = yi ∀0 ≤ i ≤ n

and ue = 2y0 − yi − yj for e = (i, j) ∈ E. Also, we define Res(u) as the inverse operation i.e.
the projection of the first n + 1 coordinates of u. It is easy to verify that if y ∈ V C(G) then
Ext(y) ∈ MC(G). Notice that with R = γn

C+D as defined in the previous section, it is sufficient to
prove the following

Lemma 24 If y ∈ Rn+1 is a 2r-canonical solution for VC(G), then Ext(y) ∈ NR/2−r(MC(G)).

The integrality gap follows because y = (1, 1/2+ ε, . . . , 1/2+ ε) is 0-canonical and for u = Ext(y),
∑

e∈E ue = (1 − 2ε)m.

Proof: We proceed by induction on R/2− r. The base case follows because if y is an R-canonical
solution, then y ∈ V C(G) which implies Ext(y) ∈ MC(G) = N0(MC(G)). For the inductive step,
let y be an 2r-canonical solution and let u = Ext(y). We create a protection matrix U , such that
∀1 ≤ i ≤ n and ∀e ∈ E, Res(Ui), Res(Ue), Res(U0 − Ui) and Res(U0 − Ue) can be expressed
as convex combinations of (2r + 2)-canonical solutions. This suffices because for a vector u if
Res(u) = λ1u

(1) + . . . + λmu(m) then u = Ext(λ1u
(1)) + . . . + Ext(λmu(m)), since the coordinates

of Ext(v) are affine functions of the coordinates of v.

Let Y be the protection matrix of a 2r-canonical solution as defined in the previous section. We
define the matrix U as

Ui = Ext(Yi) ∀0 ≤ i ≤ n

Ue = Ext(2Y0 − (Yi + Yj)) ∀e = (i, j) ∈ E

We can write out the entries of U as follows, showing that it is symmetric.

Ui,j = Yij 0 ≤ i, j ≤ n

Ui,e = Ue,i = 2Yi0 − Yij − Yik 0 ≤ i ≤ n, e = (j, k) ∈ E

Ue1,e2
= 4Y00 − 2(Yi0 + Yj0 + Yk0 + Yl0) + (Yik + Yjk + Yil + Yjl) e1 = (i, j), e2 = (k, l) ∈ E

Note that for i ∈ V and e = (j, k) ∈ E, Res(Ui) = Yi, Res(U0 − Ui) = Y0 − Yi and Res(Ue) =
Y0 − Yj + Y0 − Yk, which are convex combinations of (2r + 1)-canonical solutions as proved in
the previous section. It only remains to tackle Res(U0 −Ue) = Yj +Yk −Y0. We first prove that
it is ε3-saturated.
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Claim 25 If Y is the protection matrix of a 2r-canonical solution and (i, j), (u, v) are two edges,
then

(Yi + Yj − Y0)u
yi + yj − y0

+
(Yi + Yj − Y0)v

yi + yj − y0
≥ 1 + 4ε3

Proof: Without loss of generality, we can assume that j and u are the closer endpoints of the edges
(i, j) and (u, v). We first handle the case when d(j, u) > `. Then Yiu = yiyu, Yiv = yiyv, Yju = yjyu

and Yjv = yjyv. Hence, the LHS is yu + yv, which is greater than 1 + 2ε2 since a 2r-canonical
solution is ε2 saturated.

When d(j, u) ≤ `, all the four vertices are within distance `+2 of each other. Now, in any subgraph
H of diameter 3`, we may think of the restriction of y to H as the probabilities of the vertices
being present in a distribution over vertex covers of H. Notice that if y is a 2r-canonical solution,
H may contain vertices close to (within distance ` of) at most one fixed vertex. In case there is
such a vertex r, ∀i ∈ H yi = Pr[i = 1|r = 1]. If there is no such vertex, all vertices in H have
yi = 1/2 + ε and we can these as probabilities for a distribution which chooses a 1-splash with
probability 1/2 + ε and 0-splash with probability 1/2− ε around any arbitrary vertex in H (Claim
8). Also, we can interpret Ypq as Pr[p = 1, q = 1] for the same distribution as above.

Consider the distribution over the subgraph within a radius ` + 2 from i. We first note that since
(Y0 − Yi)/(1 − yi) is a valid vertex cover solution and (Y0 − Yi)i = 0, (Y0 − Yi)j/(1 − yi) = 1
which gives yi + yj − 1 = Yij. Using this and the fact that Pr[(i = 1)∨ (j = 1)|u = 1] = 1, we have

(Yi + Yj − Y0)u
yi + yj − y0

=
yu(Pr[i = 1|u = 1] + Pr[j = 1|u = 1] − 1)

Pr[i = 1, j = 1]

=
yu Pr[(i = 1) ∧ (j = 1)|u = 1]

Pr[i = 1, j = 1]

= Pr[u = 1|i = 1, j = 1]

Therefore, we get

(Yi + Yj − Y0)u
yi + yj − y0

+
(Yi + Yj − Y0)v

yi + yj − y0
− 1 = Pr[u = 1|i = 1, j = 1] + Pr[v = 1|i = 1, j = 1] − 1

= Pr[(u = 1) ∧ (v = 1)|i = 1, j = 1]

= Pr[(u = 1) ∧ (v = 1)|j = 1]

The last equality following from the fact that it is sufficient to condition on the closer of the two
vertices i and j. Also,

Pr[(u = 1) ∧ (v = 1)|j = 1] = Pr[u = 1|j = 1] + Pr[v = 1|j = 1] − 1

=
Yuj

yj
+

Yvj

yj
− 1

≥ 4ε3 (by Lemma 19)

�

19



We now want to express w = (Yi + Yj − Y0)/(yi + yj − 1) as a convex combination of (2r + 2)-
canonical solutions. Let S be the witness to y being 2r-canonical. We now find a set T ⊇ S such
that w is a convex combination of solutions w(1), . . . ,w(m) which take 0/1 values over T and which
are (2r + 2)-canonical, with T being the witness. There are two cases:

Case 1: i /∈ S and ∃r ∈ S s.t. d(i, r) ≤ 5` (with d(i, r) being length of the shortest path not
passing through S)
By the proof in the previous section, we know that the vector z = Yi/yi is a convex combination
of (2r + 1)-canonical solutions with a set S1 being the witness for all of them. Also, j ∈ S1 as it
includes every vertex within distance ` of i. We take T = S1.

Case 2: i ∈ S or d(i, r) > 5` ∀r ∈ S
In this case z = Yi/yi is (2r+1)-canonical with S∪{i} the witness. We now look at the protection
matrix Z for z and consider the vector z′ = Zj/zj . This is a convex combination of (2r+2)-canonical
solutions having a common witness S2 which contains S ∪ {i}. Take T = S2.

In both cases |T | ≤ (2r +2)C +(4r +4)D. We now employ Lemma 14 to T to obtain vertex covers
T 1, . . . , Tm on T such that λ1T

1 + . . . + λmTm = w|T with
∑m

l=1 λl = 1. We can extend them to

create (2r + 2)-canonical solutions w(1), . . . ,w(m) as in the previous section. By the arguments in
the previous section, all these have T as the witness. This completes the proof. �
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A Proof of Lemma 1

Lemma A.1 For every 0 < α < 1/125, η > 0, there exists a d = d(α) ∈ N, δ, γ > 0, and
N ∈ N such that for n ≥ N there exists an (α, δ, γ, η) graph with max cut less than 1

2 |E|(1+α) and
maximum degree at most d on n vertices. Here d(α) is an explicit function that depends only on α.

We use the following lemma from [ABLT06]

Lemma A.2 For every 1 < α < 1/250, η > 0, there exists a δ, γ > 0 such that a random graph
from the Gn,p distribution where p = α−2/n has the following properties with probability 1 − o(n):

• after O(
√

n) edges are removed, the girth is δ log n.

• the minimum vertex cover contains at least (1 − α)n vertices

• every induced subgraph on a subset S of at most γn vertices has at most (1 + η)|S| edges.

Proof:[of Lemma A.1] Given α, η > 0, set α′ = α/2. Use Lemma A.2 with inputs α′, η to randomly
pick a graph on n vertices. Set p = (α′)−2/n as in Lemma A.2. Now, with high probability, we can
remove set of edges R to obtain a (α/2, δ, γ, η)-graph on n vertices. Do not yet remove edges.
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Also, it is well known that w.h.p. the max-cut in a random Gn,p has size less than 1
2 |E|(1+ 1/

√
d),

where d is the average degree. The average degree of a vertex in this model is λ = pn = 4α−2.
Hence the size of the max-cut is at most 1

2 |E|(1 + α/2). The probability that some fixed vertex
v0 has degree greater than 2λ is less than exp(−λ/3) by a Chernoff bound. So by Markov’s
inequality the probability that more than exp(−λ/6)n vertices have degree greater than 2λ is at
most exp(−λ/6) ≤ exp(−10000).

If this is the case, then first remove the edge set R. By removing edges we could only decrease the
maximum degree. Then simply remove all vertices with degree more than 2λ from the graph and
any other subset to obtain a graph G′ with n(1−exp(−d/6)) vertices. Now, it is easy to check that
G′ is a (α, δ, γ, η)-graph with maximum degree at most d(α) = 2λ = 8/α2. Removing the edges
and vertices changes the max cut to 1

2 |E|(1 + α/2 + o(1)) < 1
2 |E|(1 + α). �

B Proofs of claims about splashes

We use the following notation for the proofs in this appendix. We denote Pr[i = 1|r = b] and
Pr[i = 1, j = 1|r = b] by P b

r (i) and P b
r (i, j) respectively. Pr[i = 0|r = b] and Pr[i = 0, j = 1|r = b]

are expressed as 1 − P b
r (i) and P b

r (j) − P b
r (i, j) respectively. Also, in cases where Pr[j = 1|i = b]

depends only on d(i, j), we denote it by Qb(d(i, j)).

Claim B.1 Consider a b-Splash around a vertex i such that all vertices upto distance ` are labeled
1
2 + ε. Then,

1. Q1(k) = (1/2 + ε)

[

1 + (−1)k
(

1/2−ε
1/2+ε

)k+1
]

for 0 ≤ k ≤ `

Q0(0) = 0 and Q0(k) = Q1(k − 1) for 1 ≤ k ≤ `

2.
∣

∣Q0(`/2) − (1/2 + ε)
∣

∣ ≤ ε4

3. ∀0 ≤ k ≤ `, Q1(k) + Q1(k + 1) ≥ 1 + 4ε2

Proof: We prove the formula for Q1(k) by induction. For k = 0,

(1/2 + ε)

[

1 + (−1)k

(

1/2 − ε

1/2 + ε

)k+1
]

= (1/2 + ε)

[

1

1/2 + ε

]

= 1 = Q1(0)

Assuming the correctness of the formula for k = n, we start with the recurrence

Q1(n + 1) = (1 − Q1(n)) +

(

2ε

1/2 + ε

)

Q1(n) = 1 −
(

1/2 − ε

1/2 + ε

)

Q1(n)

since the vertex at distance n (in the same path) might not be present with probability 1−Q1(n) in
which case the one at distance n+1 is present with probability 1, and it is present with probability

Q1(n) in which case the one at distance n + 1 is included with probability
(

2ε
1/2+ε

)

. Therefore, we
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have

Q1(n + 1) = 1 −
(

1/2 − ε

1/2 + ε

)

(1/2 + ε)

[

1 + (−1)n

(

1/2 − ε

1/2 + ε

)n+1
]

= 1 − (1/2 − ε) + (−1)n+1 (1/2 + ε)

(

1/2 − ε

1/2 + ε

)n+2

= (1/2 + ε)

[

1 + (−1)n+1

(

1/2 − ε

1/2 + ε

)n+2
]

Also note that if i is labeled 0, then all its neighbors must be set to 1. Hence Q0(0) = 0 and
Q0(1) = 1. The rest of the induction works exactly as above.

Note that

∣

∣Q0(`/2) − (1/2 + ε)
∣

∣ = (1/2 + ε)

(

1/2 − ε

1/2 + ε

)`/2

< (1 − 2ε)`/2 = (1 − 2ε)(
4

ε
log 1

ε
) ≤ ε4

Finally for 0 ≤ k < `,

Q1(k) + Q1(k + 1) = (1/2 + ε)

[

2 + (−1)k

(

1/2 − ε

1/2 + ε

)k+1 (

1 − 1/2 − ε

1/2 + ε

)

]

= (1/2 + ε)

[

2 + (−1)k

(

1/2 − ε

1/2 + ε

)k+1 (

2ε

1/2 + ε

)

]

≥ (1/2 + ε)

[

2 −
(

2ε

1/2 + ε

) (

1/2 − ε

1/2 + ε

)2
]

= 1 + 2ε − 2ε

(

1/2 − ε

1/2 + ε

)2

≥ 1 + 4ε2

The claim for k = ` follows from part 2 and the fact that Q1(d) = 1/2 + ε for d > `. �

Claim B.2 If we pick a 0-Splash with probability 1/2 − ε and a 1-Splash with probability 1/2 + ε,
then all vertices have probability 1/2 + ε. Furthermore, vertices at distance ` + 1 or more from i
have weight 1/2 + ε in the 0-Splash as well as 1-Splash around i.

Proof: We prove it by induction on the length of the path from i to j. Let Pi(j) = (1/2 −
ε)P 0

i (j) + (1/2 + ε)P 1
i (j). The base case, when the path is of length 0 is clear. If the path between

i and j is i = v0, v1, . . . , vm−1, vm = j, then there are two cases. In the first case vm−1 and vm are
both within distance ` of i. Then

Pi(j) = 1 − (1 − 2ε

1/2 + ε
)Pi(vm−1)

because vm is only excluded with probability 2ε
1/2+ε when vm−1 is present and this event is inde-

pendent of whether or not each vertex i = v0, v1, . . . , vm−1 is included in the cover. By induction,
Pi(vm−1) = 1/2 + ε, and so 1 − (1 − 2ε

1/2+ε)Pi(vm−1) = 1/2 + ε.

In the second case vm−1 is at distance `. However,

P b
i (j) = 1 − (1 − P b

i (vm−1) − (1/2 − ε)

P b
i (vm−1)

)P b
i (vm−1) = 1/2 + ε

because the probability vm−1 is included in a b-Splash is P b
i (vm−1) and the probability of including

vm when vm−1 is present is
P b

i (vm−1)−(1/2−ε)

P b
i (vm−1)

. �
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Claim B.3 Let i = v0, v1, . . . , vm−1, vm = j be the path to j, m ≤ `, and let u be the vertex on this
path which is closest to r. Then

1. P b
r (i, j) = P b

r (u) · P 1
u (i)P 1

u (j) + [1 − P b
r (u)] · P 0

u (i)P 0
u (j)

2. If P b
r (u) = 1/2 + ε, then P b

r (i, j) = (1/2 + ε)P 1
i (j)

Proof:

1. Let E be the event that both i and j are in a vertex cover and r = b. Then P b
r (i, j) =

Pr[E | r = b]. We can also condition on whether u is in the vertex cover.

P b
r (i, j) = Pr[u ∈ V C | r = b] · Pr[E | r = b and u ∈ V C]

+ Pr[u /∈ V C | r = b] · Pr[E | r = b and u /∈ V C]

But Pr[E | r = b and u ∈ V C] = Pr[E | u ∈ V C]. Because given that u is in or out of the
vertex cover, we can determine if i and j are in the vertex cover by following the edges from
u to each of them. But this information is independent of whether r is in the vertex cover.
For the same reason Pr[E | r = b and u ∈ V C] = Pr[E | u ∈ V C]. Therefore

P b
r (i, j) = P b

r (u) · P 1
u (i)P 1

u (j) + [1 − P b
r (u)]Ṗ 0

u (i)P 0
u (j)

as claimed.

2. The probability that i and j are in a vertex cover (assume r is not yet fixed) is just (1/2 +
ε)P 1

i (j). Now, we can just condition on l, and rewrite this as

Pr[u ∈ V C] · P 1
u (i, j) + Pr[u 6∈ V C] · P 0

u (i, j)

We can also not condition on r = b because once l is fixed, that does not affect anything, and
in addition, Pr[u ∈ V C] = 1/2 + ε = P b

r (u). So this becomes

P b
r (u) · P 1

u (i, j) + [1 − P b
r (u)] · P 0

u (i, j)

Finally, if we note that P b
u(i, j) = P b

u(i)P b
u(j), we see that we get

P b
r (l) · P 1

u (i)P 1
u (j) + [1 − P b

r (u)] · P 0
u (i)P 0

u (j)

which by 1) is simply P b
r (i, j) as claimed.

�

Claim B.4 Let i be a vertex and (j,k) be an edge in a b-Splash around r. Then if j and k are not
already fixed

P b
r (i, j) + P b

r (i, k) ≥ P b
r (i)(1 + 4ε3)

and
[P b

r (j) − P b
r (i, j)] + [P b

r (k) − P b
r (i, k)] ≥ (1 − P b

r (i))(1 + 4ε3)
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Proof: We consider separately the cases when (j, k) lies on or outside the path between r and i.

Case 1: (j, k) lies outside the path connecting r and i
Without loss of generality, let j be the vertex closer to the path from r to i. Let u be the vertex
in the path closest to j. Then by Claim B.3

P b
r (i, j) = P b

r (u) · P 1
u (i)P 1

u (j) + [1 − P b
r (u)] · P 0

u (i)P 0
u (j)

P b
r (i, k) = P b

r (u) · P 1
u (i)P 1

u (k) + [1 − P b
r (u)] · P 0

u (i)P 0
u (k)

Therefore,

P b
r (i, j) + P b

r (i, k) = P b
r (u)P 1

l (i) ·
[

P 1
u (j) + P 1

u (k)
]

+ [1 − P b
r (u)]P 0

u (i) ·
[

P 0
u (j) + P 0

u (k)
]

Also by Claim B.1 we know that P b
u(j) + P b

u(k) ≥ 1 + 4ε2, if j and k are not already fixed, which
gives

P b
r (i, j) + P b

r (i, k) ≥
[

P b
r (u)P 1

u (i) + [1 − P b
r (u)]P 0

u (i)
]

(1 + 4ε2) = P b
r (u)(1 + 4ε2)

Case 2: (j, k) lies on the path connecting r and i
Let j be the vertex closer to r. Also, let α = P b

r (j) and β = P 1
j (i). Then,

P b
r (i, j) = P b

r (j)P 1
j (i) = αβ

P b
r (i, k) = P b

r (k)P 1
k (i) =

[

1 − α +
2ε

1/2 + ε
α

] [

(1 − β)
1/2 + ε

1/2 − ε

]

= (1 − α)(1 − β)

(

1/2 + ε

1/2 − ε

)

+ α(1 − β)

(

2ε

1/2 − ε

)

where the second equation follows from the recurrence Q1(n + 1) = (1 − Q1(n)) +
(

2ε
1/2+ε

)

Q1(n)

used in Claim B.1. Also,

P b
r (i) = P b

r (j)P 1
j (i) + (1 − P b

r (j))P 0
j (i) = P b

r (j)P 1
j (i) + (1 − P b

r (j))P 1
k (i)

= αβ + (1 − α)(1 − β)

(

1/2 + ε

1/2 − ε

)

This gives

P b
r (i, j) + P b

r (i, j)

P b
r (i)

= 1 +
α(1 − β)

(

2ε
1/2−ε

)

αβ + (1 − α)(1 − β)
(

1/2+ε
1/2−ε

) ≥ 1 + 4ε3

since α, (1− β) > 2ε (all probabilities in a splash are at least 2ε, unless one is 0 and the other is 1,
but then both are fixed).

The proof of the second statement follows similarly. �
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Claim B.5 Let i and j be two vertices in a b-Splash around r, such that d(i, j) ≥ `. Then

∣

∣

∣
P b

r (i, j) − P b
r (i)P b

r (j)
∣

∣

∣
≤ 2ε4

and
∣

∣

∣
[P b

r (j) − P b
r (i, j)] − (1 − P b

r (i))P b
r (j)

∣

∣

∣
≤ 2ε4

Proof: Let u be the vertex closest to r on the path from i to j. Without loss of generality, assume
that d(i, u) ≥ `/2. Then

∣

∣

∣
P b

r (i, j) − P b
r (i)P b

r (j)
∣

∣

∣
=

∣

∣

∣
P b

r (u) · P 1
u (i)P 1

u (j) + [1 − P b
r (u)] · P 0

u (i)P 0
u (j) − P b

r (i)P b
r (j)

∣

∣

∣

≤
∣

∣

∣
(1/2 + ε)

[

P b
r (u) · P 1

u (j) + [1 − P b
r (u)] · P 0

u (j)
]

− P b
r (i)P b

r (j)
∣

∣

∣
+ ε4

=
∣

∣

∣
(1/2 + ε)P b

r (j) − P b
r (i)P b

r (j)
∣

∣

∣
+ ε4 ≤ 2ε4

where the two inequalities follow from the fact that |P b
r (i)−(1/2+ε)| ≤ ε4 if d(i, r) ≥ `/2 as proved

in Claim B.1.

The second statement can be proven in a similar fashion. �
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