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Abstract

The importance of width as a resource in resolution theorem proving
has been emphasized in work of Ben-Sasson and Wigderson. Their
results show that lower bounds on the size of resolution refutations can
be proved in a uniform manner by demonstrating lower bounds on the
width of refutations, and that there is a simple dynamic programming
procedure for automated theorem proving, based on the search for
small width proofs.

The present article shows that the problem of determining, given
a set of clauses ¥ and an integer k, whether ¥ has a refutation of
width k, is EXPTIME-complete. The proof is by a reduction from
the (3, k)-pebble game, proved EXPTIME-complete by Kolaitis and
Panttaja.
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1 Introduction

The importance of width as a resource in resolution theorem proving has
been emphasized in a remarkable paper by Ben-Sasson and Wigderson [2].
In that article they prove a general theorem, of which one consequence is
that if ¥ is a contradictory set of clauses in 3CNF, then the minimal size
of a resolution refutation of ¥ is exponential in the minimal width of such
a refutation. In addition, they propose a simple dynamic programming
procedure for automated theorem proving — one which simply searches for
small width proofs. Both these results motivate the problem of deciding
whether or not a set of clauses has a proof of a given width.

The width problem for resolution is as follows: given a set of clauses
>, and integer k as input, determine whether or not there is a resolution
refutation of 3 of width bounded by k. We prove that this problem is
EXPTIME-complete by a reduction from the existential k-pebble game, re-
cently proved EXPTIME-complete by Kolaitis and Panttaja [3].

2 Resolution proofs and their width

A clause is a set of literals. We write the empty clause as 0, use the notation
C' Vv D for the clause C'U D, and write C' V[ for C U {l}, where [ is a literal.
We also employ the notation z < (y V z) as an abbreviation for the set of
three clauses {TVyV 2,7V x,Z Vx}.

If CVzand DV -z are clauses, then the resolution rule allows us to
derive the clause C'V D, by resolving on the variable x. If 3 is a set of clauses,
then a sequence of clauses C1,...,C}) is a resolution proof of the clause C
from ¥ if every clause in the sequence either contains a clause in X, or is
derived from earlier clauses in the sequence by resolution, and Cy = C; it is
a refutation of 3 if C = 0.

The width of a clause is the number of literals in it. The width w(X) of
a set of clauses is the maximum width of a clause in X, while the width of
a resolution proof P is the maximum width of a clause in P. The k-width
resolution problem is defined as follows. The input is a set of clauses X, and
a number k; the problem is — does X have a resolution refutation of width
no greater than k7



3 Characterization of resolution width

In this section, we give a proof of the result of Atserias and Dalmau [1]
characterizing the width of resolution refutations. The characterization is
in terms of a two player game, that we shall call the k-width game. The
players are the Prover and the Adversary. ! The game is played as follows.

The players are given a set of clauses X, on a set V of variables, and
an integer parameter k > 0. The players together construct a succession of
assignments to the variables V. Initially, the assignment is empty; at every
round of the game, all assignments involve at most k variables. Each round
of the game proceeds as follows. First, the Prover can delete some of the
variable assignments from the assignment from the previous round. Second,
the Prover queries an unassigned variable, and the Adversary assigns a value
to it.

The Prover wins if the current assignment falsifies an initial clause in 3.
The Adversary wins if an earlier assignment is repeated during the play of
the game.

Clearly every play of the game must eventually terminate with a win for
the Prover or for the Adversary (Atserias and Dalmau define their game so
that when the Adversary wins, the game can continue infinitely). It follows
that either the Prover or the Adversary must have a winning strategy.

Definition 3.1 If ¥ is a set of clauses on a set V' of variables, then a
non-empty family F of V-assignments is an extendible k-family for ¥ if it
satisfies the following conditions:

1. No assignment in F falsifies a clause in X;
2. Ifa e F, and B C «, then B € F;

3. Ifa € F, |a|l <k, and x € V, then there is a § € F, so that o C (3,
and o(x) is defined.

The next theorem (Atserias and Dalmau [1]) shows that a resolution
refutation of width k constitutes a winning strategy for the Prover, while
an extendible k 4 1-family provides a winning strategy for the Adversary, in
the k + 1-width resolution game.

Theorem 3.2 Let X be a contradictory set of clauses, and k > w(X). Then
the following are equivalent:

! Atserias and Dalmau, following the tradition of finite model theory, call their players
the Spoiler and the Duplicator, but our terminology seems clearer in the present context



1. There is no resolution refutation of ¥ of width k;
2. There is an extendible k + 1-family for ¥;

3. The Adversary wins the k + 1-width game based on X..

Proof. First, let us suppose that there is no resolution refutation of ¥ of
width k. Define C to be the set of all clauses having a resolution proof
from ¥ of width at most k; by assumption, 3 C C. Let F be the set of all
assignments of size at most k+1 that do not falsify any clause in C. We claim
that F is an extendible k + 1-family for ¥. First, F is non-empty, because it
contains the empty assignment (since C does not contain the empty clause).
Second, F satisfies the first two conditions of Definition 3.1, by construction.
To prove the fourth condition, let « € F, and |a| < k, z € V, but there is
no extension 3 of « in ‘H with (x) defined. It follows that there is a clause
D € C that is falsified if we extend « by setting z to 0. Then D = FV
for some F, since otherwise a would falsify D. Similarly, there is a clause
F v T in C that is falsified by the extension of a that sets z to 1. Then «
must falsify £V F'; but FV F is in C, contradicting our assumption.

Second, let us suppose that there is an extendible k£ + 1-family F for X.
Then the Adversary can play the k4 1-width game on 3 by responding to the
Prover’s queries with the appropriate assignment from the family, starting
with the empty assignment. Since no assignment in the family falsifies an
initial clause, this strategy must eventually end in a win for the Adversary,
no matter how the Prover plays.

Finally, let us suppose that there is a resolution refutation of ¥ of width
k. Then the refutation provides the Prover with a winning strategy in the
k+1-width game based on Y. Starting from the empty clause at the root, the
Prover follows a path in the refutation to one of the leaves in the refutation.
At each round, the current assignment (after appropriate deletions), is a
minimal assignment falsifying a clause in the path. The variable queried is
the variable resolved upon to derive the current clause, and the next clause
in the path is one of the premisses of the clause from the previous round.
Since the refutation has width &, every assignment has size bounded by k+1,
so this strategy must result in a win for the Prover. O

Corollary 3.3 The k-width resolution problem is in EXPTIME.

Proof. On a given play of the game, it is possible to keep track of the
number of current assignments that have appeared up to a given round, and
so determine if a repetition has occurred. Since there are 3" assignments,



where n is the number of variables in the clause set 3 employed in the game,
when the count reaches 3" + 1, a repetition must have occurred.
Consequently, the description of the game given above shows that there
is an alternating Turing machine operating in polynomial space that deter-
mines whether the Prover or the Adversary wins a given instance of the
game. Hence, the problem is in EXPTIME. O

4 The existential k-width game

The k-width resolution problem is a special case of the existential pebble
game described in this section, as Atserias and Dalmau show in [1].

The ezistential k-pebble game [4], or (3,k)-pebble game for short, is
played on two finite relational structures A and B of the same similarity
type. A partial homomorphism ¢ between A and B is a mapping from a
substructure of A to a substructure of B that preserves all of the relations
in the structures; that is to say, for every relation R in A, if a1, ..., am, are
in the domain of ¢, and RA(ay, ..., an), then RB(p(ay), ..., olam)).

The (3, k)-pebble game, where k > 2 is a positive integer, is played by
two players, the Spoiler and Duplicator, on the relational structures A and
B (in the terminology of §3, the Prover plays the role of the Spoiler, the
Adversary the role of the Duplicator). Each player has a set of k pebbles,
numbered 1,. .., k; we shall write {p1,...,pr} for the set of pebbles used by
the Spoiler, and {q1,...,qr} for the set of pebbles used by the Duplicator.
In each round of the game, the Spoiler can make one of two different moves:
either removing a pebble p; from a pebbled element of A, or placing a free
pebble p; on an element of the domain of A. To each move of the Spoiler, the
Duplicator must respond, either by removing the corresponding numbered
pebble ¢; from an element of B, or placing the pebble ¢; on an element of B.

The pebbles placed by the two players at any stage of the game define
a relation R between the domains of A and B; if a is an element of A,
and b of B, then Rab holds if and only if there is a pebble p; on a, and
a corresponding pebble ¢; on b. The Spoiler wins a play of the game at a
given round if the relation R defined by the pebbling at that round is not a
partial homomorphism between A and B. The Duplicator wins if there is a
repetition of an earlier position. As before, the game must terminate after
a finite number of moves in a win for the Spoiler or the Duplicator, and so
either the Spoiler or the Duplicator must have a winning strategy.

As in the case of the resolution game of §3, we can give a combinatorial
characterization of a winning strategy for the Duplicator.



Definition 4.1 Let A and B be two finite relational structures of the same
similarity type. A non-empty family H of partial homomorphisms between
A and B is an extendible k-family if it satisfies the following two conditions:

1. 'H is closed under subfunctions: If h € H, and g C h, then g € H.

2. 'H has the k-extension property: If f € H, |f| < k and a is an element
of A, then there is an element b of B so that f U {(a,b)} is in H.

The characterization in the following theorem is the general result of
which Theorem 3.2 is a special case.

Theorem 4.2 Let A and B be two finite relational structures of the same
similarity type, and k a positive integer. Then the following two statements
are equivalent:

1. The Duplicator has a winning strategy for the (3, k)-pebble game on
the structures A and B.

2. There is an extendible k-family of partial homomorphisms for A and

B.

Proof. See Kolaitis and Vardi [4, §4]. O

In the reduction of the next section, it is helpful to assume that the
strategy for the Spoiler in the (3, k)-pebble game is of a restricted sort.

Lemma 4.3 If there is a winning strategy for the Spoiler in the (3, k)-pebble
game, then there is a strategy in which the Spoiler never places more than
one pebble on an element of A.

Proof. If the Spoiler places a pebble p; on an element of A, where there
is already a pebble p; placed earlier in the game, then the Duplicator can
respond by placing ¢; on the same element of B as ¢;. Any other response is
an obvious blunder, since the relation defined from the resulting position is
not a homomorphism. Consequently, such moves can give no advantage to
the Spoiler, and so the Spoiler might as well play as if the Duplicator never
makes such obvious blunders, and thus never place two pebbles on the same
element of A. O



5 Complexity of the k-width problem

In this section, we prove our main result by reducing the problem of deter-
mining the winner in (3, k)-pebble game to the k-width problem for resolu-
tion. The former problem was proved EXPTIME-complete by Kolaitis and
Panttaja [3]. In fact, they prove the stronger result, that a special case of
this problem is EXPTIME-complete, a fact that is useful in our reduction.

A coloured graph is a relational structure A of the form (A, E,C1,...,Cp,),
where F is a symmetric, irreflexive relation on A, and C4,...,C,, are sub-
sets of A. Using this notion, we can state the main result of Kolaitis and
Panttaja.

Theorem 5.1 The problem of determining whether the Duplicator has a
winning strategy in the (3, k)-pebble game on the structures A and B, where
A and B are coloured graphs of the same similarity type, is EXPTIME-
complete under logspace reducibility.

Proof. See Kolaitis and Panttaja [3]. O

We now give a reduction of the (3, k)-pebble game problem to the width
problem for resolution, by translating the first problem into a set of clauses
in 3CNF.

Definition 5.2 Let A= (A, E,Cy,...,Cp) and B= (B, F,D1,...,Dy,) be
coloured graphs, with A = {a1,...,a,} and B = {by,...,b;}. For every i,
1 <i <p, X(A,B) contains q variables Pf, for each j, 1 < j < gq, and in
addition, q—1 auxiliary variables Q;, for1l < j < q. The clauses constituting
Y(A, B) are as follows:

1. Q% for 1 <i<p.

2. Q= (PIVQiyy), for 1<j<q—1,and Q, < (P;_, V P}).
3. —|P]?', where a; € Cy., bj & D,., for some r.

4. ﬂPji V =P, where E(a;,as), but not F'(bj,by).

. ﬂPji\/ﬂP,i, where 1 < j <k <q.

The set of clauses X(A, B) is satisfiable if and only if there is a homo-
morphism from A to B, and is logspace constructible from A and B. If « is
an assignment to the variables of (A, B), we define Dom(a) to be the set
of all ¢ for which oz(P;) is defined, for some j.

7



If R C A x B, then we write a[R] for the assignment defined by:
a[R](P]?) = 1 if and only if R(a;,b;). Furthermore, if f is a mapping from
a subset of A to B, then we define the assignment (3[f] determined by f as
follows. If 4 € Dom(f), then B[f](P}) = 1 if f(a;) = bj, and ﬁ[f](P]’) =0
otherwise, while 8[f](Q%) = 1 if f(a;) = bj, for k < j, and ﬂ[f](Q;) =0
otherwise. It is easily checked that if f is a partial homomorphism from .4
to B, B[f] does not falsify any clause in X(A, B).

Lemma 5.3 If A and B are coloured graphs, and k > 3, then the Spoiler
has a winning strategy for the (3, k)-pebble game on A and B if and only if
the Prover has a winning strategy for the k + 2-width game on X(A, B).

Proof. (=) First, assume that the Spoiler has a winning strategy for the
(3, k)-pebble game on A and B. By Lemma 4.3, we can assume that the
strategy for the Prover never involves doubly pebbled elements; this implies
that every relation R; produced by the Spoiler’s strategy is a map from a
subset of A to B. Then the Prover has a winning strategy for the k+2-width
game that follows the Spoiler’s strategy. At each stage in the strategy, the
current assignment « maintained by the Prover contains a set of at most k
variables of the form P;, all of them set to 1, and representing a partial map
from A to B. In addition, « assigns values to at most two extra variables,
each of these being either a variable P;, or an auxiliary variable of the form
Q.

The Prover’s strategy consists of successively forcing the Adversary to
assign the value 1 to variables of the form Pji, in such a way as to pro-
duce a series of assignments of the form a[Rp|, a[R1],...,a[R¢],..., where
Ro, Ry,..., Ry, ... are the relations Ry C A x B produced by following the
Spoiler’s strategy in the (3, k)-pebble game on A and B.

Let us suppose that the Prover’s current assignment is of the form a[R;].
If Ryy1 is produced from R; by removing pebbles, then the Prover simply
deletes the appropriate variable assignment from a|R;]. So, let us suppose
that the Spoiler places a free pebble on an element a; of A, so that |Ry| < k.
The Prover must now force the Adversary to set at least one variable P; to
1.

The Prover begins by querying Q%, which the Adversary is forced to
set to 1; the Prover then queries P;. If the Adversary assigns this last
variable the value 1, then the Prover has succeeded. Otherwise, the Prover
performs a binary search in the sequence of variables o = Q¢ . .. ,Qz_l, P(;.
At each stage in the search, the Prover retains two variables from ¢ in the
current assignment, the first set to 1, the second set to 0. The next variable



queried is chosen so as to cut the interval between the two variables in o as
nearly in half as possible. This search procedure must terminate with two
consecutive variables in ¢ set to 1 and 0, respectively, say, Q; and Q; 11
Then the Adversary must assign 1 to the variable P; on the next query,
otherwise a clause of type 2 is falsified. Once the Prover has succeeded
in forcing a response of this kind from the Adversary, the assignments to
the extra variables are deleted, and the strategy continues with the new
assignment of the form a[R11], with ¢ € Dom(a[Ri11])-

Since the strategy described above corresponds to a winning strategy for
the Spoiler, any play using this strategy terminates in a win for the Prover,
since it must end when one of the assignments «[R;]| falsifies a clause of type
3, 4 or 5 in Definition 5.2 (the Spoiler wins the (3, k)-pebble game when R;
is not a partial homomorphism from A to B).

(<) Second, assume that the Duplicator has a winning strategy for the
(3, k)-pebble game on A and B. We describe a winning strategy for the
Adversary in the k-width game, based on the Duplicator’s winning strategy.
By Theorem 4.2, there is an extendible k-family H of homomorphisms for
A and B. At each round in a play of the k-width game, the Adversary
has a partial homomorphism belonging to H. Initially, this homomorphism
is empty; the homomorphism is updated as the play proceeds. We now
describe the Adversary’s update procedure.

The Adversary plays so as to maintain the following properties invariant
throughout the game:

1. fis a partial homomorphism in H, and |f| < k.
2. {i:a; € Dom(f)} C Dom(«).

Let a be the assignment at the start of a given round of the k-width game,
and f € H the partial homomorphism that the Adversary has available at
the end of the previous round. Initially, the Prover removes some variable
assignments from c«. If this results in the removal of some i € Dom(«),
where a; € Dom(f), then f is restricted appropriately; that is to say, the
new assignment f’ is defined by f’:= f|{a; : i € Dom(a)}.

We now need to describe the variable querying part of a round. Let
« be the current assignment maintained by the Prover, and f the partial
homomorphism maintained by the Adversary. When the Prover queries an
unset variable of the form P]Z or Q;, three cases arise:

1. If a; € Dom(f), then the Adversary answers in accordance with the
assignment [[f].



2. If a; ¢ Dom(f), but |f| < k, then the Adversary extends f to a new
partial homomorphism ¢g € H, with a; € Dom(g), and then replies
according to f[g].

3. If a; &€ Dom(f), but |f| = k, then the Adversary sets any variable P;
to 0, and any variable Q; to 1.

We need to prove that this strategy on the part of the Adversary suc-
ceeds. This amounts to showing that whenever the Adversary answers
a query, that the resulting assignment never falsifies an initial clause in
Y(A,B). In the first two cases, this is clearly true, by the definition of an
extendible k-family. Only the third case causes difficulties. Let o’ be the
extension of « after the Adversary’s reply. In this case, there are at most
two variables assigned values by o' that are not assigned values by J[f].
Since all such variables P]’ are set to 0 by the Adversary, no clause of types
3,4 or 5 can be falsified by o/, and since all such variables Q; are set to 1,
no clause of type 1 can be falsified. Finally, since at most two such variables
are assigned values, no clause of type 2 can be falsified by o/, completing
the verification that the strategy used by the Adversary always succeeds in
the k 4 2-width game using the set of clauses X(A, B). O

Theorem 5.4 The k-width problem for resolution is EXPTIME-complete
under logspace reducibility.

Proof. Theorem 5.1 of Kolaitis and Panttaja shows that the problem of
determining the winner in an instance of the (3, k)-pebble game on coloured
graphs A and B of the same similarity type is EXPTIME-complete under
logspace reducibility. Theorem 3.2 and Lemma 5.3 provide a logspace re-
duction of this problem to the k 4+ 1-width problem for (A4, B). O

Corollary 5.5 The problem of determining the winner in an instance of
the (3, k)-pebble game on relational structures A and B, where B is a two-
element structure, is EXPTIME-complete.
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