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Abstract

We give new constructions of randomness extractors and lossless condensers that are optimal to
within constant factors in both the seed length and the output length. For extractors, this matches the
parameters of the current best known construction [LRVW03];for lossless condensers, the previous best
constructions achieved optimality to within a constant factor in one parameter only at the expense of a
polynomial loss in the other.

Our constructions are based on the Parvaresh-Vardy codes [PV05], and our proof technique is in-
spired by the list-decoding algorithm for those codes. The main object we construct is a condenser that
losesonly the entropy of its seed plus one bit, while condensing to entropy rate1 − α for any desired
constantα > 0. This construction is simple to describe, and has a short andcompletely self-contained
analysis. Our other results only require, in addition, standard uses of randomness-efficient hash functions
(to obtain a lossless condenser) or expander walks (to obtain an extractor).

Our techniques also show for the first time that a natural construction based on univariate polynomials
(i.e., Reed-Solomon codes) yields a condenser that retainsa 1 − α fraction of the source min-entropy,
for any desired constantα > 0, while condensing to constant entropy rate and using a seed length that is
optimal to within constant factors.
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1 Introduction

In this paper, we construct randomness extractors and condensers with the best parameters to date. Perhaps
more importantly, we do this by introducing a new algebraic construction basedon the ingenious vari-
ant of Reed-Solomon codes discovered by Parvaresh and Vardy [PV05]. Our proof technique is inspired
by the list-decoding algorithm for the Parvaresh-Vardy codes, which builds on the list-decoding results of
[Sud97, GS99]. The resulting extractors and condensers are simple to describe and have short, self-contained
analyses. In the remainder of the introduction. we describe our results more precisely, and place them in
context within the large body of literature on extractors and related objects.

A long line of research beginning in the late 1980s has been devoted to the goal of constructing explicit
randomness extractors. (See the survey of Shaltiel [Sha02].) Extractors are efficient functions that take an
n-bit string sampled from a “weak” random source together with a short trulyrandom seed, and output a
nearly uniform distribution.

The randomness in the source is measured byminentropy: a random variableX has minentropy at least
k iff Pr[X = x] ≤ 2−k for all x. A random variableZ is ε-closeto a distributionD if for all eventsA,
Pr[Z ∈ A] differs from the probability ofA under the distributionD by at mostε. An extractor is defined
as follows:

Definition 1.1 ([NZ96]). A (k, ε) extractoris a functionE : {0, 1}n ×{0, 1}t → {0, 1}m with the property
that for everyX with minentropy at leastk, E(X,Y) is ε-close to uniform, whenY is uniformly distributed
on{0, 1}t. An extractor isexplicit if it is computable in polynomial time.

The competing goals when constructing extractors are to obtain a short seed, and a long output length.
Nonconstructively, it is possible to simultaneously have a seed lengtht = log n+ 2 log(1/ε) + O(1) and an
output length ofm = k + t−2 log(1/ε)−O(1). It remains open to match these parameters with an explicit
construction.

A major theme in extractor constructions since the breakthrough result of Trevisan [Tre01], has been
the use of error-correcting codes. Trevisan’s extractor construction, which is based on the Nisan-Wigderson
pseudorandom generator [NW94], encodes the source with an error-correcting code with good distance, and
uses the seed to select (via certain combinatorial designs) a subset ofm bits of the codeword to output.

A more algebraic approach, exploiting the specific structure of polynomial error-correcting codes was
pioneered by Ta-Shma, Zuckerman and Safra [TZS06]. There the source is encoded with a multivariate
polynomial code (Reed-Muller code), the seed is used to select a starting point, and the extractor outputsm
successive symbols along a line1. Better parameters were achieve with a variant introduced by Shaltiel and
Umans [SU05], which exploits the fact that Reed-Muller codes arecyclic. There them output symbols are
simply m successive coordinates of the codeword, when written in the cyclic ordering. A common feature
of these algebraic constructions is that their analysis relies crucially on thelocal-decodabilityproperties of
the underlying error-correcting code. This paper diverges from theprevious works on exactly this point, as
our constructions use only univariate polynomial codes, which are not locally decodable.

A second major theme dating to [RSW06] and [RR99]2 is the use of a relaxation of extractors, called
condensers, as an intermediate goal:

Definition 1.2. A (n, k) →ε (m, k′) condenseris a functionC : {0, 1}n × {0, 1}t → {0, 1}m with the
property that for everyX with minentropy at leastk, C(X,Y) is ε-close to a distribution with minentropy

1In this discussion we are ignoring the distinction between outputtingm symbols from a large alphabet and outputtingm bits.
2Actually, since the formal definition we give does not explicitly require thatthe min-entropy rate increase, such objects were

already considered as far back as the original papers of [Zuc96, NZ96]. However, we will be interested in condensers that do
actually increase the min-entropy rate.
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k′, whenY is uniformly distributed on{0, 1}t. A condenser isexplicit if it is computable in polynomial
time. A condenser is calledlosslessif k′ = k + t.

Observe that a(n, k) →ε (m, m) condenser is an extractor, because the unique distribution on{0, 1}m

with minentropym is the uniform distribution. Condensers are a natural stepping-stone to constructing
extractors, as they can be used to increase theentropy rate(the ratio of the minentropy in a random variable
to the length of the strings over which it is distributed), and it is often easier to construct extractors when the
entropy rate is high. Condensers have also been used extensively in less obvious ways to build extractors,
often as part of complex recursive constructions (e.g., [ISW00, RSW06, LRVW03]). Nonconstructively,
one can hope forlosslesscondensers with seed lengtht = log n + log(1/ε) + O(1), and output length
m = k + t + log(1/ε) + O(1).

Our central result is a completely elementary construction of a condenser that retains all but the seed
min-entropy (plus one bit), and condenses toanyconstant entropy rate using a seed length that is optimal up
to constant factors. This is the most basic object from which we derive most of the other results:

Theorem 1.1 (main). For every1 ≥ α > 0: for all positive integersn, k and all ε > 0, there is an explicit
construction of a

(n, k′ = kt + log(1/ε)) →3ε (n′ = (1 + α)kt, k′ − 1)

condenserC : {0, 1}n × {0, 1}(1+α)t → {0, 1}n′

with t =
⌈

1
α(2 log n + log(2

ε ))
⌉

.

In recent years, condensers have been studied in their own right. Lossless condensers are of particular
interest, as they are equivalent to unbalanced bipartiteexpander graphswith extremely good expansion (of
greater than half the left degree of the graph). This turns out to be useful in a number of applications;
constructions of lossless condensers appear in [RR99, TUZ01, CRVW02, TU06].

For lossless condensers, the competing goals are short seed length, and shortoutput length (thus achiev-
ing the greatest “condensing” of the source minentropy). Constructionsare known that achieve essentially
optimal parameters for very largek [CRVW02], and very smallk [RR99], but for generalk, the best known
constructions can achieve optimality to within a constant factor in one parameteronly at the expense of a
polynomial loss in the other. Specifically, the best known constructions (stated here for constantε) achieve
seed lengtht = O(log2 n) and output lengthm = O(k) [TUZ01], or seed lengtht = O(log n) and out-
put lengthm = k1+α for any constantα > 0 [TUZ01]. Recently Ta-Shma and Umans [TU06] showed
that if optimalderandomized curve samplerscan be constructed, then a construction of lossless condensers
based on [SU05] would achieve seed lengtht = O(log n) and output lengthm = k · poly log(n); they
obtain near-optimal derandomized curve samplers that produce lossless condensers with somewhat worse
parameters.

Using Theorem 1.1, we obtain a new construction of lossless condensersthat are optimal to within
constant factors in both the seed length and the output length. This uses anidea from [RR99]: because
the condenser of Theorem 1.1 is only missing a small amount of minentropy, it can be made lossless by
appending a hash from an “almost-2-universal” hash family; we pay onlywith a constant factor increase in
the seed length. We obtain:

Theorem 1.2 (lossless condenser).For every constantα > 0: for all positive integersn, k and all ε > 0,
there is an explicit construction of a

(n, k + log(1/ε)) →6ε (m = (1 + α)k, k + d + log(1/ε))

lossless condenserC : {0, 1}n ×{0, 1}d → {0, 1}m with d = O(log n + log(1/ε)), providedk ≥ cd/α for
a universal constantc.
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We now return to extractors. There is a great diversity of extractor constructions; see Shaltiel’s survey
[Sha02] for a nearly-up-to-date summary. The current champion is the construction of Lu, Reingold, Vad-
han, and Wigderson [LRVW03] which achieves optimality to within a constant factor in the seed length
and output length simultaneously, for any minentropyk. (As with lossless condensers, for smallk, better
constructions are known; e.g., [SZ99, TUZ01]). Again using the condenser of Theorem 1.1, we can match
this best known construction with a simple, direct, and self-contained construction and analysis. We simply
need to “finish” the condenser of Theorem 1.1 with an extractor that extracts any desired constant fraction
of the minentropy, with a seed length that is optimal up to constant factors. Since this extractor can start
from a constant entropy rate arbitrarily close to 1, we can even use a standard extractor based on expander
walks [IZ89, CW89, Gil98, Zuc06]. Whenε is sub-constant, we use Zuckerman’s extractor [Zuc97] to
obtain the proper dependence onε. Altogether we obtain:

Theorem 1.3 (extractor). For all constantsα, γ > 0: for all positive integersn, k and allε > exp(−n1−γ),
there is an explicit construction of a(k, ε) extractorE : {0, 1}n × {0, 1}d → {0, 1}m with d = O(log n +
log 1

ε ) andm = (1 − α)k, providedk ≥ cd/α for a universal constantc.

In fact this result slightly improves upon [LRVW03], for general errorε = ε(n). They can handle error

as small asn−1/ log(c) n for any constantc, but for generalε, they must pay with either a larger seed length
of t = O((log∗ n)2 log n + log(1

ε )), or a smaller output length ofm = Ω(k/ log(c) n) for any constantc.

1.1 Our technique

In this section we give a high-level description of our construction and proof technique. Our condensers
are based on Parvaresh-Vardy codes [PV05], which in turn are based on Reed-Solomon codes. A Reed-
Solomon codeword is a univariate degreen polynomialf ∈ Fq[Y ], evaluated at all points in the field. A
Parvaresh-Vardy codeword is a bundle of several related degreen polynomialsf0, f1, f2, . . . , fm−1, each
evaluated at all points in the field. The evaluations of the variousfi at a given field element are packaged
into a symbol from the larger alphabetFqm . The purpose of this extra redundancy is to enable a better
list-decoding algorithm than is possible for Reed-Solomon codes.

The main idea in [PV05] is to view degreen polynomials as elements of the extension fieldF =
Fq[Y ]/E(Y ), whereE is some irreducible polynomial of degreen + 1. Thefi (now viewed as elements of
F) are chosen so thatfi = fhi

0 for i ≥ 1, and positive integershi. In order to list-decode, one produces a
nonzero univariate polynomialQ′ overF from the received word, with the property thatf0 is a root ofQ′

whenever the codeword has sufficient agreement with the received word. We use the same technique in the
analysis of our condenser, and below we describe how the interpolating polynomial is set up and how the
relationship between thefi’s helps in the context of our analysis.

Our condenser construction works as follows. We view the source stringx as describing a degreen

polynomialf(Y ) ∈ Fq[Y ]. We then definefi
def
= fhi

mod E for some parameterh, and irreducibleE.
Given a seedy ∈ Fq, our output isf0(y), f1(y), . . . , fm−1(y).

Since [Tre01], a common technique in analyzing extractors has been to show that for every subset
D ⊆ {0, 1}m, there are very few, say¿ 2k, source stringsx that are “bad” with respect toD; i.e., much
fewer than2k stringsx satisfy

∣

∣

∣

∣

Pr
y

[E(x, y) ∈ D] − Pr
z

[z ∈ D]

∣

∣

∣

∣

> ε.

From this, it follows that a source with min-entropyk is unlikely output a string that is bad with respect to
any givenD. Thus the output ofE on such a source must hit allD’s with close to the “proper” probability,
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and soE is an extractor for minentropyk. We use the same general outline to show that our construction
is a condenser. We only wish to show that the output is close to having minentropy k′, rather than close to
being uniform, and this is equivalent to showing that the output hits setsS of size about2k′

with less than
ε probability (see Section 2.1 for a precise statement of this fact). We do this byarguing that there are very
few source stringsx that are “bad” with respect toS; i.e., very fewx satisfyPry[C(x, y) ∈ S] > ε.

Let’s consider whatPry[C(x, y) ∈ S] > ε means for our construction. First of all,x is interpreted as a
degreen polynomialf0. Then,f0 being “bad” means that for more thanεq of the seedsy, we have

(f0(y), f1(y), . . . , fm−1(y)) ∈ S.

The first step in our analysis is to produce a non-zero polynomialQ : F
m
q → Fq that vanishes onS.

We arrange to haven deg Q < εq, so that the univariate polynomialQ(f0(Y ), f1(Y ), . . . , fm−1(Y )) is
identically zerofor badf0. Viewing thefi as elements of the extension fieldF = Fq[Y ]/E(Y ), andQ as a
polynomial overF, we have that(f0, f1, . . . , fm−1) is aroot of Q. Just as in the list-decoding algorithm of

[PV05], we define the polynomialQ′(Z)
def
= Q(Z, Zh, Zh2

, . . . , Zhm−1
), and observe that every badf0 is a

root of thisunivariatepolynomial. Thus the degree ofQ′ is a bound on the number of suchf0, and it turns
out that this bound is nearly optimal: the number of badf0 is shown to be at most the size ofS.

To summarize, the analysis has two main steps: first, we encodeS into a low-degree multivariate poly-
nomial Q, and argue that for every bad polynomialf0(Y ), Q(f0(Y ), . . . , fm−1(Y )) is in fact identically
zero. Then, we produce a univariate polynomialQ′ from Q that has all of the badf0 as roots (when ev-
erything is viewed over the extension fieldF). The degree ofQ′ is an upper bound on the number of bad
strings.

1.2 Additional results

In Section 6 we discuss some variations on the basic construction.
Using the “multiple roots” idea from Guruswami-Sudan [GS99], we optimize the seed length of our

condenser, making it(1 + γ) times the optimal seed length, while still retaining almost all the entropy and
outputting a source with a constant entropy rate ofΩ(γ) (Theorem 6.2). For constant errorε, one can then
extract almost all the entropy using the extractor from [Zuc06] which uses an additional seed of at most
log k + O(1) bits. The total seed length is thus(1 + γ) log n + log k + O(1), which approaches the optimal
log n + O(1) bound fork = no(1). This result appears as Theorem 6.5. A different setting of the condenser
parameters (Corollary 6.3) allows us to obtain anexactlyoptimal seed length, while retaining a constant
fraction (arbitrarily close to 1) of the entropy, at the expense of an output entropy rate ofΩ(1/ log(n/ε)),
which is still quite good.

With a small change to the original proof, we can say something about the variant of the main condenser
in which the seed is included in the output. One can hope to capture the entire seed entropy (which we do
in Theorem 1.2, but that involves the extra step of appending a hash); here we are able to capture all but
O(log(1/ε)) bits of the seed entropy directly.

Finally, using one of the main ideas from the Guruswami-Rudra codes [GR06], we argue that a variant
of our main construction is the natural precursor of [SU05], in which thatbasic construction is applied Reed-
Solomon codes. It has been an intriguing question for some time to determine what (if any) pseudorandom
object(s) can be obtained from this very natural construction. This question is studied in [KU06], where they
show that the Reed-Solomon construction “fools” certain kinds of low-degree tests. Our results in this paper,
which show that this construction is a very good condenser, seem to provide the correct (or nearly-correct)
answer, as we also describe an example that shows that the entropy rate and the constant factor entropy loss
for this construction cannot be improved substantively.
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2 Preliminaries

Throughout this paper, we use boldface capital letters for random variables (e.g., “X”), capital letters for
indeterminates, and lower case letters for elements of a set. Also throughoutthe paper,Ut is the random
variable uniformly distributed on{0, 1}t. All logs are base 2.

We record some standard facts about minentropy:

Proposition 2.1. A distributionD has minentropy at leastk iff D is a convex combination of flat distribu-
tions on sets of size exactly2k.

Proposition 2.2. The distance from a distributionD to a closest distribution with minentropyk is exactly
∑

a:D(a)≥2−k(D(a) − 2−k).

Proposition 2.3. A distributionD with minentropylog(K−c) is c/K-close to a distribution with minentropy
log K.

Proof. By Proposition 2.1, it suffices to prove the statement for flat distributionsD. By Proposition 2.2, the
distance fromD to the closest distribution with minentropylog K is exactly

∑

a:D(a)≥1/K(D(a)−1/K) =
(K − c)(1/(K − c) − 1/K) = c/K.

2.1 Analysis of condensers

The next lemma gives a useful sufficient condition for a distribution to be close to having large minentropy:

Lemma 2.4. Let Z be a random variable. If for all setsS of sizeK, Pr[Z ∈ S] ≤ ε thenZ is ε-close to
having minentropy at leastlog(K/ε).

Proof. Let S be a set of theK heaviest elementsx (under the distribution ofZ). Let 2−` be the average
weight of the elements inS. Thenε ≥ Pr[Z ∈ S] = 2−`K, so` ≥ log(K/ε). But every element outsideS
has weight at most2−`, and with all but probabilityε, Z hits elements outsideS.

This lemma establishes the framework within which we will prove our constructions are condensers:

Lemma 2.5. LetC : {0, 1}n × {0, 1}d → {0, 1}m be a function. For each subsetS, define

BAD(S, ε) =

{

x : Pr
y

[C(x, y) ∈ S] > ε

}

.

LetB(K, ε) = maxS:|S|=K |BAD(S, ε)|. Then the functionC is a

(n, log(B(K, ε)/ε)) →2ε (m, log(K/ε) − 1)

condenser.

Proof. We have a random variableX with minentropylog(B(K, ε)/ε). For a fixedS of sizeK, the proba-
bility that X is in BAD(S, ε) is at mostε; if that does not happen, then the probabilityC(X,Ut) lands inS
is at mostε. Altogether the probabilityC(X,Ut) falls in S is at most2ε. Now apply Lemma 2.4.
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3 The main construction

Fix the fieldFq and letE(Y ) be an irreducible polynomial of degreen + 1 over Fq. View elements of
{0, 1}n as describing univariate polynomials overFq with degree at mostn. Fix an integer parameterh.

We describe a functionC : {0, 1}n × Fq → F
m
q that is the basis of all of our constructions:

C(f, y)
def
= f(y) ◦ (fh mod E)(y) ◦ (fh2

mod E)(y) ◦ · · · ◦ (fhm−1
mod E)(y).

For ease of notation, we will refer to(fhi
mod E) as “fi.”

Lemma 3.1. Defining BAD(S, ε) andB(K, ε) with respect toC as in Lemma 2.5, we have

B(K = hm − 1, ε) ≤ K,

providedq ≥ nm(h − 1)/ε.

Proof. Fix a setS ⊆ F
m
q of size at mostK. LetQ ∈ Fq[Z1, Z2, . . . , Zm] be a nonzerom-variate polynomial

that vanishes onS, and with individual degrees at mosth − 1. By definition, for everyf(Y ) ∈ BAD(S, ε),
it holds that

Pr
y

[Q(f0(y), f1(y), . . . , fm−1(y)) = 0] > ε.

Therefore, the univariate polynomialR(Y )
def
= Q(f0(Y ), . . . , fm−1(Y )) has more thanεq zeroes, and

degree at mostnm(h − 1). Sincenm(h − 1) ≤ εq, R(Y ) must be identically zero, and so

Q(f0(Y ), . . . , fm−1(Y )) = 0

for everyf(Y ) ∈ BAD(S, ε).
Now, viewQ as a multivariate polynomial over the extension fieldF = Fq[Y ]/E(Y ), and define

Q′(Z)
def
= Q(Z, Zh, Zh2

, . . . , Zhm−1
).

Because the individual degrees ofQ were all less thanh, Q′ is a non-zero polynomial (because distinct
monomials inQ map to distinct monomials inQ′).

For everyf(Y ) ∈ BAD(S, ε), now viewed as an element ofF, we have

Q′(f) = Q(f0, f1, f2, . . . , fm−1) = 0,

i.e.,f is a root ofQ′. Thus|BAD(S, ε)| ≤ deg(Q′). The degree ofQ′ is at most

(h − 1)(1 + h + h2 + · · · + hm−1) = hm − 1 = K.

We can now prove our main theorem (restated here):

Theorem 1.1 (restated). For every1 ≥ α > 0: for all positive integersn, k and all ε > 0, there is an
explicit construction of a

(n, k′ = kt + log(1/ε)) →3ε (n′ = (1 + α)kt, k′ − 1)

condenserC : {0, 1}n × {0, 1}(1+α)t → {0, 1}n′

with t =
⌈

1
α(2 log n + log(2

ε ))
⌉

.
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Proof. We describe how to set parameters, and then apply Lemmas 3.1 and 2.5. Seth = 2t, note that
h ≥ (2n2/ε)1/α. Let q be the largest prime less than or equal toh1+α. By Bertrand’s Postulate, first proved
by Chebyshev, we haveh1+α/2 ≤ q ≤ h1+α. Since we may assumem ≤ n, we haveq ≥ nmh/ε as
required. Setm = k.

The functionC has output length

m log q ≤ m(1 + α) log h = (1 + α)kt

as claimed (we can pad the condenser with dummy bits to make the output length exactly (1 + α)kt). By
Lemma 3.1, and Lemma 2.5,C is a

(n, log((hm − 1)/ε)) →2ε ((1 + α)kt, log((hm − 1)/ε) − 1)

condenser. All that remains is numerical manipulation to express this in the sameway as it is stated in the
theorem. First, note that

log((hm − 1)/ε) < log(hm/ε) = kt + log(1/ε) .

Also, by Proposition 2.3, a distribution withlog((hm − 1)/ε) − 1 minentropy is1/hm close to having
minentropy

log(hm/ε) − 1 = m log h + log(1/ε) − 1 = kt + log(1/ε) − 1.

Since1/hm is always at mostε, C is a(n, kt + log(1/ε)) →3ε ((1 + α)kt, kt + log(1/ε) − 1) condenser
as claimed. The seed length islog q ≤ (1 + α) log h = (1 + α)t.

Remark 1. In this proof we work in a prime fieldFq. The same proof works over any fieldFq, with a minor
adjustment to the inequality describing how closeq is toh1+α.

4 Lossless condensers that are optimal up to constant factors

We begin with the general method to recover “missing” minentropy, first usedby [RR99]. Given a(n, k) →ε

(m, k′) condenser, we say it has entropy lossd = k + t − k′. We can make the condenser lossless by
appending a random hash intoO(d + log(1/ε)) bits. Whend is small, the extra randomness can also be
small, provided we use a randomness-efficient family of hash functions. Next, we describe the “almost
2-universal” hash family that we will use:

Theorem 4.1 ([AGHP92, SZ99]).For everyn′, m′, there exists an explicit familyH of hash functions from
n′ to m′ bits, of cardinalityO((n′m′2m′

)2), that satisfies the following property:

∀w1 6= w2 Pr
h∈H

[h(w1) = h(w2)] ≤ 2 · 2−m′

. (1)

A randomh ∈ H can be sampled usinglog |H| bits, and given these bits,h can be computed in poly(n′, m′)
time.

Note that a truly 2-universal hash function would satisfy (1) with the right-hand-side replaced by2−m′

– but the price would be that|H| ≥ 2n′
, which is far too large to be useful for us. Now we show that

appending a random hash makes a condenser lossless.
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Lemma 4.2. Let C : {0, 1}n × {0, 1}t → {0, 1}m be a(n, k) →ε (m, k′) condenser. LetH be a family
of hash functions fromn′ = n + t bits tom′ = 2(k + t − k′) + log(1/ε) + 1 bits satisfying (1). Then the
functionC ′ : {0, 1}n × {0, 1}t′=t+log |H| → {0, 1}m+log |H|+m′

defined by:

C ′(x; y, h ∈ H)
def
= C(x, y) ◦ h ◦ h(x, y)

is a (n, k) →2ε (m + log |H| + m′, k + t′) lossless condenser.

Proof. Let X be a random variable distributed uniformly on an arbitrary set of size2k. We prove thatC ′ is
the stated condenser when its source isX, which by Proposition 2.1 suffices. We denote byH, the random
variable that is uniformly distributed over the hash functions inH. We also takeY to be a random variable
uniformly distributed on{0, 1}t.

Call z ∈ {0, 1}m “good” if Pr[C(X,Y) = z] ≤ 2−k′
. Observe that by Proposition 2.2,C(X,Y) is

good with all butε probability.
DefineSz = {(x, y) : C(x, y) = z}, and callh “good with respect toz” if h is 1-1 onSz. Notice that

for an arbitrary setS,

Pr[H is not 1-1 onS] ≤
∑

w1,w2∈S,w1 6=w2

Pr[H(w1) = H(w2)] ≤
|S|2

2m′−1
.

Since|Sz| = 2k+t Pr[C(X,Y) = z], we have that for goodz, |Sz| ≤ 2k+t−k′
. Therefore, for goodz, H is

good with respect toz with all butε probability.
We now argue that the output distribution ofC ′ is 2ε-close to having minentropyk + t′. Fix an output

string(z, h, z′). If z is good, andh is good with respect toz, then

Pr[C(X,Y) = z ∧ H = h ∧ H(X,Y) = z′]

= Pr[C(X,Y) = z] ·
1

|H|
· Pr[H(X,Y) = z′|H = h, C(X,Y) = z]

= Pr[C(X,Y) = z] ·
1

|H|
·

1

|Sz|

= Pr[C(X,Y) = z] ·
1

|H|
·

1

2k+t Pr[C(X,Y) = z]
=

1

2k+t|H|
= 2−(k+t′).

As we have argued, we hit a goodz with all but ε probability, and thenH is good with respect toz with
all but ε probability. Overall, with all but2ε probability, we hit an output string with weight2−(k+t′), as
required.

Applying this transformation to the condenser from Theorem 1.1, we obtain our second main theorem,
restated here:

Theorem 1.2 (restated). For every constantα > 0: for all positive integersn, k and all ε > 0, there is an
explicit construction of a

(n, k + log(1/ε)) →6ε (m = (1 + α)k, k + d + log(1/ε))

lossless condenserC : {0, 1}n ×{0, 1}d → {0, 1}m with d = O(log n + log(1/ε)), providedk ≥ cd/α for
a universal constantc.
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Proof. Consider the condenser of Theorem 1.1 with its parameterα set to half the presentα, which has seed
length(1 + α/2)t where

t =

⌈

2

α
(2 log n + log(2/ε))

⌉

.

We set that condenser’s parameterk to the presentk divided by t, rounded down. It then has entropy
deficiency at most(2 + α/2)t + 1 (up tot is attributable to the rounding down, and the(1 + α/2)t seed bits
are lost, plus one).

Now apply Lemma 4.2. The output length of the hash ism′ = O(log n + log(1/ε)), and the number of
bits needed to sample fromH is 2m′ + O(log n) + O(log log(1/ε)). The resulting condenser is lossless,
and it has the stated seed length. Its output length is at most

(1 + α/2)k + log(1/ε) + m′ + log |H| ≤ (1 + α/2)k + O(log n + log(1/ε)),

which by our lower bound onk is at most(1 + α)k.

5 Extractors that are optimal up to constant factors

Once we have condensed all (or almost all) of the entropy into a source withentropy rate close to1, ex-
tracting (most of) that entropy is not that difficult. All we need to do is to compose the condenser with an
extractor that works for entropy rates close to1. The following standard fact makes this formal:

Proposition 5.1. SupposeC : {0, 1}n × {0, 1}t1 → {0, 1}n′
is an (n, k) →ε1 (n′, k′) condenser, and

E : {0, 1}n′
× {0, 1}t2 → {0, 1}m is a (k′, ε2)-extractor, thenE ◦ C : {0, 1}n × {0, 1}t1+t2 → {0, 1}m

defined by(E ◦ C)(x, y1, y2)
def
= E(C(x, y1), y2) is a (k, ε1 + ε2)-extractor.

For the best dependence on the error parameterε, the extractor we will use is due to Zuckerman:

Theorem 5.2 ([Zuc97]).For all constantsα, δ, γ > 0: for all positive integersn, k and allε > exp(−n1−γ),
there is an explicit construction of a(k = δn, ε) extractor E : {0, 1}n × {0, 1}t → {0, 1}m with
t = O(log n + log 1

ε ) andm = (1 − α)k.

We now prove our main extractor theorem, restated here:

Theorem 1.3 (restated). For all constantsα, γ > 0: for all positive integersn, k and allε > exp(−n1−γ),
there is an explicit construction of a(k, ε) extractorE : {0, 1}n × {0, 1}d → {0, 1}m with d = O(log n +
log 1

ε ) andm = (1 − α)k, providedk ≥ cd/α for a universal constantc.

Proof. Consider the condenser of Theorem 1.1, with its parameterε set to the one sixth of the presentε, and
its parameterα set to (say)1/2. This condenser has seed length3t/2 where

t = d2 · (2 log n + log(12/ε))e ,

and we set its parameterk to be the presentk divided byt, rounded down, minuslog(6/ε). The result is a

(n, k) →ε/2 ((3/2)(k − t − 1), k − t − 1)

condenser (the loss of up tot bits comes from the rounding). By the lower bound onk, we know that
k− t− 1 ≥ (1−α/2)k. Applying Proposition 5.1 to this condenser and the extractor of Theorem 5.2 (with
its error parameterε set to half the presentε) gives the claimed extractor.
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In the fairly common case thatε is a constant, we can use the much simpler “expander-walk” extractor
(in place of the extractor of Theorem 5.2) which extracts almost all of the entropy for entropy rates close to
1. Note that our condenser from Theorem 1.1 achieves a constant entropy rate arbitrarily close to1, and so
can be combined with any extractor for such high min-entropy rates. A standard construction achieving this
is based on expander walks [IZ89, CW89, Gil98]; the following version can be found in [Zuc06]:

Theorem 5.3. For every constantα > 0, there is a constantδ < 1 for which the following holds: for
all positive integersn and all constantε > 0, there is an explicit construction of a(k = δn, ε) extractor
E : {0, 1}n × {0, 1}t → {0, 1}m with t = log(αn) andm ≥ (1 − α)n.

For completeness, we present the short proof:

Proof. Let m = (1−α)n, and for some absolute constantc > 1, letG be an explicit2c-regular expander on
2m vertices (identified with{0, 1}m) with second eigenvalueλ = λ(G) < 1. The extractorE is constructed
as follows. Its first argumentx is used to describe a walkv1, v2, . . . , vL of lengthL in G by picking v1

based on the firstm bits ofx, and each further step of the walk from the nextc bits ofx — so in all,L must
satisfyn = m + (L − 1)c. The seedy, which contains more thandlog Le bits, is used to pick one of the
vertices of the walk at random. The outputE(x, y) of the extractor is them-bit label of the chosen vertex.

Let X be a random variable with minentropyk = δn. We wish to prove that for anyS ⊆ {0, 1}m, the
probability thatE(X,Ut) is a vertex inS is in the rangeµ ± ε whereµ = |S|/2m. Fix any such subsetS.
Call anx ∈ {0, 1}n “bad” if

∣

∣

∣

∣

Pr
y

[E(x, y) ∈ S] − µ

∣

∣

∣

∣

> ε/2.

The known Chernoff bounds for random walks on expanders [Gil98]imply that the number of badx’s is at
most

2n · e−Ω(ε2(1−λ)L) = 2n · e−Ω(ε2(1−λ)αn/c) = 2n2−Ω(ε2αn)

(sincec, λ are absolute constants). Therefore the probability thatX is bad is at most2(1−δ)n2−Ω(ε2αn),
which is exponentially small for large enoughδ < 1. Therefore

|Pr[E(X,Ut) ∈ S] − µ| ≤ ε/2 + 2−Ω(n) ≤ ε,

implying thatE is a(k, ε)-extractor.

Combining Theorem 1.1 with Theorem 5.3 via Proposition 5.1, as in the proof ofTheorem 1.3, we
obtain the following extractor, which has the advantage that its proof is short and entirely self-contained:

Theorem 5.4. For every constantα > 0: for all positive integersn, k, and all constantε > 0, there is an
explicit construction of a(k, ε) extractorE : {0, 1}n × {0, 1}d → {0, 1}m with d = O(log n + log 1

ε ) and
m = (1 − α)k, providedk ≥ cd/α for a universal constantc.

6 Variations on the main condenser

In this section we show how minor modifications to the proof allow us to optimize the seed length or the
output entropy. We also show that a small modification to the construction yieldscondensers from Reed-
Solomon codes.
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6.1 Optimizing the seed length

The condenser of Theorem 1.1 retains all the source minentropy (except for 1 bit) and achieves an entropy
rate of1 − δ for any desiredδ > 0. Its main shortcoming is the large seed length, which is greater than
(log n)/δ, whereas the optimal condenser achieves a seed length oflog n + log(1/ε) + O(1).

We now show that the seed length can be improved to(1 + γ)(log n + log(1/ε)) — the new condenser
still retains a(1 − O( 1

log n)) fraction of the input entropy and the output entropy rate isΩ(γ). While the
entropy rate is not close to1 as it was before, it is still a constant, and extractors with seed length of
1 · log n + O(1) were recently constructed for sources of any constant minentropy rate,and constant error
ε [Zuc06] (Theorem 6.4 below). Composing the condenser with such an extractor gives an extractor that
extracts(1−α)k bits from a source with minentropyk, using seed length(1 + γ) log n + log k + O(1), for
arbitrary constantsα, γ > 0. Note that whenk = no(1), the seed length is near-optimal.

The improved analysis that permits us to optimize the seed length is in the following lemma(compare
to Lemma 3.1):

Lemma 6.1. Defining BAD(S, ε) andB(K, ε) with respect toC as in Lemma 2.5, for any integer parameter
s ≥ 1, we have

B

(

K =

⌊

hm − 1
(

m+s−1
s−1

)

⌋

, ε

)

≤ hm − 1,

providedq ≥ nm(h − 1)/(sε).

Proof. Let S ⊆ F
m
q be an arbitrary set of size at mostK. The proof follows along the lines of the

proof of Theorem 1.1, with the main change being that we make sure that the interpolated polynomial
Q(Z1, Z2, . . . , Zm) has a root of multiplicity at leasts at each element(α1, α2, . . . , αm) ∈ S. (Note that
Theorem 1.1 is the special case of the current theorem withs = 1.) This is equivalent to the condition that
Q(Z1 − α1, . . . , Zm − αm) has no monomials of degrees − 1 or smaller with nonzero coefficients, which
amounts to

(

m+s−1
s−1

)

homogeneous linear constraints on the coefficients ofQ. Sincehm > |S|
(

m+s−1
s−1

)

,
such a nonzero polynomialQ of degree at most(h − 1) in each variable exists. FixQ to be any such
nonzero polynomial.

Supposef(Y ) ∈ BAD(S, ε). Let y ∈ Fq be such thatC(f, y) ∈ S. Then certainly

Q(f0(y), f1(y), . . . , fm−1(y)) = 0.

In fact, sinceQ hass roots at each element ofS, the polynomialR(Y )
def
= Q(f0(Y ), f1(Y ), . . . , fm−1(Y ))

has a root of multiplicitys aty. We conclude that iff(Y ) ∈ BAD(S, ε), i.e., if

Pr
y

[Q(f0(y), f1(y), . . . , fm−1(y)) = 0] > ε ,

thenR(Y ) has more thanεsq roots counting multiplicities. On the other hand the degree ofR(Y ) is at most
nm(h − 1). Therefore, sinceεsq ≥ nm(h − 1), we must haveR(Y ) = 0.

¿From this point on, the proof proceeds identically to that of Theorem 1.1,leading to the desired con-
clusion|BAD(S, ε)| ≤ hm − 1.

Picking parameters suitably, and following the outline of the proof of Theorem1.1, we obtain the fol-
lowing condenser:
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Theorem 6.2. For everyγ > 0: for all positive integersn, k and allε > 0, there is an explicit construction
of a

(n, k′ = kt + log(1/ε)) →2ε (n′ = (1 + 1/γ)kt, k′ − 3k − 1)

condenserC : {0, 1}n × {0, 1}
1+γ

γ
t
→ {0, 1}n′

with t = dγ log(2n/ε)e, providedt ≥ 4.

Proof. We describe how to set parameters, and then apply Lemmas 6.1 and 2.5. Fort = dγ log(2n/ε)e, set
h = 2t and note that note thath1/γ ≥ 2n/ε. Let q be the largest prime less than or equal toh1+1/γ . By
Bertrand’s Postulate, we haveh1+1/γ/2 ≤ q ≤ h1+1/γ . Setm = s = k. We haveq ≥ nmh/(εs) = nh/ε
as required.

With this parameter setting, the functionC has output length

m log q ≤ m(1 + 1/γ) log h = (1 + 1/γ)kt

as claimed. By Lemma 6.1, and Lemma 2.5,C is a

(n, log((hm − 1)/ε)) →2ε ((1 + 1/γ)kt, log(K/ε) − 1)

condenser. Now,K = b(hm − 1)/
(

2m−1
m−1

)

c ≥ (hm − 1)/22m−1 − 1 ≥ (h/8)m, as long ash ≥ 10. The
theorem follows, using the fact thatlog(hm) = kt andlog(h/8)m = k(t − 3).

In the previous theorem,γ may be subconstant, and in the following corollary we show that it can be
set to produce an exactly optimal seed length (up to the additive constant), while still retaining a constant
fraction of the minentropy, at the expense of an entropy rate ofΩ(1/ log(n/ε)), which is non-constant, but
still quite good.

Corollary 6.3. For every integer constantc ≥ 4: for all positive integersn, k and all ε > 0, there is an
explicit construction of a

(n, k′ = kc + log(1/ε)) →2ε

(

n′ =

(

1 +
log(2n/ε)

c

)

kc,

(

1 −
3

c

)

k′ − 1

)

condenserC : {0, 1}n × {0, 1}d → {0, 1}n′

with d = log n + log(1/ε) + O(1).

Proof. Setγ = c/ log(2n/ε) in Theorem 6.2.

We now combine the condenser of Theorem 6.2 with Zuckerman’s recent extractor. (This extractor in
turn starts by applying a condenser due to Raz [Raz05] that has constant seed length and can increase the
entropy rate fromδ to 1 − δ for any constantδ > 0, while retaining a constant fraction of the minentropy.)

Theorem 6.4 ([Zuc06]). For all constantsα, δ > 0: for all positive integersn and all constantε > 0, there
is an explicit construction of a(k = δn, ε) extractorE : {0, 1}n × {0, 1}d → {0, 1}m with seed length
d = log n + O(1) and output lengthm = (1 − α)k.

Combining Theorem 6.2 with Theorem 6.4 via Proposition 5.1, as in the proof ofTheorem 1.3, we
obtain the following extractor, which has a near-optimal seed length:

Theorem 6.5. For all constantsα, γ > 0: for all positive integersn, k and all constantε > 0, there
is an explicit construction of a(k, ε) extractorE : {0, 1}n × {0, 1}d → {0, 1}m with seed lengthd =
(1 + γ) log n + log k + O(1) and output lengthm = (1−α)k, providedk ≥ cd/α for a universal constant
c.
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6.2 Increasing the output entropy

The condenser of Theorem 1.1 is missing only the entropy of the seed, which is small enough that it can
be “recovered” using the hashing technique of Lemma 4.2. However, onecan ask how far our new proof
technique can go in isolation. More precisely, we modify the functionC as follows

C ′(f, y)
def
= (y, C(f, y)),

and ask how much entropy is retained for this “strong” variant of the basicconstruction. It is not hard to see
that in the language of Lemma 2.5, we could hope forB(K, ε) ≤ K/q, when the seed length islog q. This
would correspond to recovering all of the entropy of the source and seed together.

In this section we show that a minor modification to the proof allows us to argue that B(K, ε) ≤ K/r
for r approachingεq. This corresponds to recovering all butlog(1/ε) + O(1) of the total entropy, although
we don’t know of a direct use for this improvement. We show the improved result by recording a variant of
Lemma 3.1 forC ′ as defined above:

Lemma 6.6. Defining BAD(S, ε) andB(K, ε) with respect toC ′ as in Lemma 2.5, we have

B(K = rhm − 1, ε) < K/r,

wherer = (1 − 1/c)εq, providedq ≥ cnm(h − 1)/ε, for anyc > 0.

Proof. Fix a setS ⊆ Fq×F
m
q of size at mostK. LetQ ∈ Fq[Y, Z1, Z2, . . . , Zm] be a nonzerom+1-variate

polynomial that vanishes onS, with degreer−1 in Y , and individual degrees at mosth−1 for the remaining
m variables. By definition, for everyf(Y ) ∈ BAD(S, ε), it holds that

Pr
y

[Q(y, f0(y), f1(y), . . . , fm−1(y)) = 0] > ε.

Therefore, the univariate polynomialR(Y )
def
= Q(Y, f0(Y ), . . . , fm−1(Y )) has more thanεq zeroes, and

degree at mostr + nm(h − 1). Sincer + nm(h − 1) ≤ εq, R(Y ) must be identically zero, and so
Q(Y, f0(Y ), . . . , fm−1(Y )) = 0 for every badf(Y ).

Now, view Q as a polynomial inFq[Y ][Z1, Z2, . . . , Zm], and factor out the largest power ofE(Y ).
SinceE(Y ) has no roots inFq, the resulting polynomial still vanishes onS. Also, the resulting polynomial
is non-zero moduloE(Y ); let Q′ be the resulting polynomial after reducing moduloE(Y ).

Now, viewQ′ as a multivariate polynomial (in variablesZ1, Z2, . . . , Zm) over the extension fieldF =
Fq[Y ]/E(Y ), and define

Q′′(Z) = Q′(Z, Zh, Zh2
, . . . , Zhm−1

).

Because the individual degrees ofQ′ are all less thanh, Q′′ is a non-zero polynomial (because distinct
monomials inQ′ map to distinct monomials inQ′′).

For everyf(Y ) ∈ BAD(S, ε), now viewed as an element ofF, we haveQ′′(f) = 0; i.e.,f is a root of
Q′′. Thus|BAD(S, ε)| ≤ deg(Q′′). The degree ofQ′′ is at most

(h − 1)(1 + h + h2 + · · · + hm−1) = hm − 1 < K/r.
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6.3 Reed-Solomon version

We use one of the main ideas from [GR06] to argue that a small modification to ourconstruction gives a
good condenser from Reed-Solomon codes, answering a question raised in [KU06].

Let q be an arbitrary prime power, and letζ ∈ Fq be a generator of the multiplicative groupF
∗
q . It is well

known, and not hard to show, thatE(Y ) = Y q−1 − ζ is irreducible overFq [LN86, Chap. 3, Sec. 5]. The
following identity holds for allf(Y ) ∈ Fq[Y ]:

(f(Y ))q mod E(Y ) = f(Y q) mod E(Y ) = f(Y q−1Y ) mod E(Y ) = f(ζY ) mod E(Y ) .

In this case, if we modify our basic functionC : {0, 1}n×Fq → F
m
q slightly so that we raisef to successive

powers ofq rather thanh, we get:

C(f, y)
def
= f(y) ◦ (f q mod E)(y) ◦ (f q2

mod E)(y) ◦ · · · ◦ (f qm−1
mod E)(y)

= f(y) ◦ f(ζy) ◦ · · · ◦ f(ζm−1y). (2)

In other words, our function interprets its first argument as describing aunivariate polynomial overFq

of degree at mostn (i.e., a Reed-Solomon codeword), it uses the seed to select a random location in the
codeword, and it outputsm successive symbols of the codeword. This is precisely the analog of the Shaltiel-
Umansq-ary extractor construction [SU05] for univariate polynomials, rather than multivariate polynomials.

With a minor modification to the proof of Lemma 3.1, we show that this is good condenser:

Lemma 6.7. Defining BAD(S, ε) andB(K, ε) with respect to the functionC of Equation (2) as in Lemma
2.5, we have

B(K = hm − 1, ε) ≤ (qm − 1)(h − 1)/(q − 1),

providedq ≥ nm(h − 1)/ε.

Proof. The proof is the same as the proof of Lemma 3.1 except that we defineQ′ differently:

Q′(Z)
def
= Q(Z, Zq, Zq2

, . . . , Zqm−1
).

As before, everyf(Y ) ∈ BAD(S, ε), is a root ofQ′. Thus|BAD(S, ε)| ≤ deg(Q′). The degree ofQ′ is at
most

(h − 1)(1 + q + q2 + · · · + qm−1) = (h − 1)((qm − 1)/(q − 1)).

We obtain the following condenser:

Theorem 6.8 (Reed-Solomon condenser).For every constant1 ≥ α > 0: for all positive integersn, k
and allε > 0, there is an explicit construction of a

(n, (1 + α)kt + log(1/ε)) →3ε (n′ = (1 + α)kt, kt + log(1/ε) − 1)

condenserC : {0, 1}n × {0, 1}(1+α)t → {0, 1}n′

with t =
⌈

1
α(2 log n + log(2

ε ))
⌉

.
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Proof. We describe how to set parameters, and then apply Lemmas 6.7 and 2.5. Seth = 2t, note that
h ≥ (2n2/ε)1/α. Let q be the largest prime less than or equal toh1+α. By Bertrand’s Postulate, we have
h1+α/2 ≤ q ≤ h1+α. Since we may assumem ≤ n, we haveq ≥ nmh/ε as required. Setm = k.

The functionC has output length

m log q ≤ m(1 + α) log h = (1 + α)kt

as claimed. By Lemma 6.7, and Lemma 2.5,C is a

(n, log(qm/ε)) →2ε ((1 + α)kt, log((hm − 1)/ε) − 1)

condenser (using the fact thatqm > (qm − 1)(h − 1)/(q − 1)). Now,

log(qm/ε) ≤ m log q + log(1/ε) ≤ (1 + α)kt + log(1/ε).

And, as in the proof of Theorem 1.1, a distribution withlog((hm − 1)/ε) − 1 minentropy is1/hm < ε
close to having minentropykt + log(1/ε) − 1. ThusC is the claimed condenser. The seed length is
log q ≤ (1 + α) log h = (1 + α)t.

For the Reed-Solomon-based construction, a relatively simple argument shows that the entropy rate and
the ratio of output minentropy to input minentropy must both be constants less than 1. The example below
comes from [GHSZ02, TSZ04]:

Theorem 6.9. For every positive integerp such thatp|(q − 1), there is a sourceX with minentropy at
least bn/pc log q for which C(X,Ut), as defined in Equation (2), isnot ε-close to having minentropy
log( 1

1−εw
m), wherew = (q − 1)/p + 1.

Proof. Take the source to bep-th powers of all degreebn/pc polynomials. Every output symbol ofC
is an evaluation of such a polynomial, and therefore must be ap-th power, or 0. There are thus only
w = (q − 1)/p + 1 possible output symbols, so the output is contained within a set of sizewm, which by
Proposition 2.2 is notε-close to any distribution with minentropylog( 1

1−εw
m).

This example can be interpreted as follows. For anym ≤ bn/pc, we have enough entropy to hope for
C ’s output (which has lengthm log q) to be close to uniform. However, if we choosep = nδ for some
constantδ > 0, then the output minentropy can be no larger thanlog(O(wm)) = m log(q1−δ′), for some
constantδ′ > 0, as long asq = poly(n) (which is required for seed lengthO(log n)). So this setting of
parameters shows that an entropy rate that is a constant less than 1 is unavoidable, and also that the output
minentropy must be a constant factor smaller than the input minentropy, in this case.

7 Conclusions

This paper introduces a new proof technique for analyzing algebraic extractor constructions, which does not
rely on local decodability of the underlying error-correcting codes. Itis thus natural to ask whether these
new techniques can help in other settings. For example, can we use them to argue aboutcomputational
analogs of the objects in this paper – pseudorandom generators and pseudoentropy generators? Or, can
variants of our constructions yield so-called “2-source” objects, in which both the source and the seed are
only weakly random?
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Of course a significant remaining open problem is to construct truly optimal extractors, ones that are
optimal up toadditiveconstants in the seed length and/or output length. Towards this end, we wonder if
there is some variant of our constructions with a better entropy rate – the next natural threshold is to have
entropydeficiencyonly ko(1). Another interesting question is whether some variant of these constructions
can give a block-wise source directly. Depending on the actual parameters, either of these two improvements
have the potential to lead to extractors with optimal output length (i.e. ones that extract all the minentropy).
Alternatively, if we can find an extractor with optimal output length for high min-entropy (say.99n), then,
by composing it with our condenser, we would get one for arbitrary min-entropy.

Acknowledgements. This paper began with a conversation at the BIRS workshop “Recent Advances in
Computation Complexity.” The authors would like to thank the organizers for inviting them, and BIRS for
hosting the workshop.
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