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Abstract

We give new constructions of randomness extractors andekssondensers that are optimal to
within constant factors in both the seed length and the daugmgth. For extractors, this matches the
parameters of the current best known construction [LRVWfiB]lossless condensers, the previous best
constructions achieved optimality to within a constantda one parameter only at the expense of a
polynomial loss in the other.

Our constructions are based on the Parvaresh-Vardy co¥#&6TPand our proof technique is in-
spired by the list-decoding algorithm for those codes. Tlagnmobject we construct is a condenser that
losesonly the entropy of its seed plus one bit, while condensing toopgtratel — « for any desired
constanty > 0. This construction is simple to describe, and has a shortampletely self-contained
analysis. Our other results only require, in addition, dtad uses of randomness-efficient hash functions
(to obtain a lossless condenser) or expander walks (torolteéxtractor).

Our technigues also show for the first time that a naturaltcoction based on univariate polynomials
(i.e., Reed-Solomon codes) yields a condenser that regiglins « fraction of the source min-entropy,
for any desired constant > 0, while condensing to constant entropy rate and using a seegh that is
optimal to within constant factors.
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1 Introduction

In this paper, we construct randomness extractors and conderifethevbest parameters to date. Perhaps
more importantly, we do this by introducing a new algebraic construction basdte ingenious vari-
ant of Reed-Solomon codes discovered by Parvaresh and Vard@b[PWur proof technique is inspired
by the list-decoding algorithm for the Parvaresh-Vardy codes, whiddsan the list-decoding results of
[Sud97, GS99]. The resulting extractors and condensers are simgedotek and have short, self-contained
analyses. In the remainder of the introduction. we describe our results prnecisely, and place them in
context within the large body of literature on extractors and related objects.

A long line of research beginning in the late 1980s has been devoted todahefgonstructing explicit
randomness extractargSee the survey of Shaltiel [Sha02].) Extractors are efficient funstibat take an
n-bit string sampled from a “weak” random source together with a short teuigom seed, and output a
nearly uniform distribution.

The randomness in the source is measurenhimgntropy a random variabl& has minentropy at least
k iff Pr[X = x] < 27F for all z. A random variabléZ is -closeto a distributionD if for all events A,
Pr[Z € A] differs from the probability ofA under the distributiorD by at most. An extractor is defined
as follows:

Definition 1.1 ([NZ96]). A (k, ) extractoris a functionE : {0,1}" x {0,1}" — {0, 1} with the property
that for everyX with minentropy at least, £(X,Y) is e-close to uniform, whelY is uniformly distributed
on{0,1}". An extractor isexplicit if it is computable in polynomial time.

The competing goals when constructing extractors are to obtain a shdytaseka long output length.
Nonconstructively, it is possible to simultaneously have a seed léngttog n + 21og(1/¢) + O(1) and an
output length ofn = £+t —2log(1/¢) — O(1). It remains open to match these parameters with an explicit
construction.

A major theme in extractor constructions since the breakthrough resulewgis@n [Tre01], has been
the use of error-correcting codes. Trevisan’'s extractor constryatibich is based on the Nisan-Wigderson
pseudorandom generator [NW94], encodes the source with arcem@cting code with good distance, and
uses the seed to select (via certain combinatorial designs) a subsdtitsf of the codeword to output.

A more algebraic approach, exploiting the specific structure of polynomiai-eorrecting codes was
pioneered by Ta-Shma, Zuckerman and Safra [TZS06]. There thees@iencoded with a multivariate
polynomial code (Reed-Muller code), the seed is used to select a stastiitggnd the extractor outputs
successive symbols along a lin@etter parameters were achieve with a variant introduced by Shaltiel and
Umans [SUO05], which exploits the fact that Reed-Muller codexgetic. There then output symbols are
simply m successive coordinates of the codeword, when written in the cyclicingdeA common feature
of these algebraic constructions is that their analysis relies crucially dodhkedecodabilityproperties of
the underlying error-correcting code. This paper diverges fronptbeious works on exactly this point, as
our constructions use only univariate polynomial codes, which are paliyodecodable.

A second major theme dating to [RSWO06] and [RR98]the use of a relaxation of extractors, called
condensersas an intermediate goal:

Definition 1.2. A (n,k) —. (m,k’) condenseis a functionC' : {0,1}" x {0,1}" — {0,1}"™ with the
property that for everyX with minentropy at least, C(X,Y) is e-close to a distribution with minentropy

YIn this discussion we are ignoring the distinction between outputtirgymbols from a large alphabet and outputtingits.

2Actually, since the formal definition we give does not explicitly require thatmin-entropy rate increase, such objects were
already considered as far back as the original papers of [Zuc986NZHowever, we will be interested in condensers that do
actually increase the min-entropy rate.



k', whenY is uniformly distributed or{0, 1}t. A condenser igxplicit if it is computable in polynomial
time. A condenser is callddsslessf &' = k + ¢.

Observe that &, k) —. (m, m) condenser is an extractor, because the unique distributidn,dr}™
with minentropym is the uniform distribution. Condensers are a natural stepping-stonenstracting
extractors, as they can be used to increasetiwpy rate(the ratio of the minentropy in a random variable
to the length of the strings over which it is distributed), and it is often easianrtstaict extractors when the
entropy rate is high. Condensers have also been used extensivelg obiésus ways to build extractors,
often as part of complex recursive constructions (e.g., [ISW00, RE\WRVWO03]). Nonconstructively,
one can hope folosslesscondensers with seed length= logn + log(1/¢) + O(1), and output length
m=k+t+log(l/e) + O(1).

Our central result is a completely elementary construction of a conderaenethins all but the seed
min-entropy (plus one bit), and condenseamy constant entropy rate using a seed length that is optimal up
to constant factors. This is the most basic object from which we derivé ohttse other results:

Theorem 1.1 (main). For everyl > « > 0: for all positive integers:, k and alle > 0, there is an explicit
construction of a
(n, k' =kt +1og(1/¢)) —3: (n' = (1 + a)kt, k' — 1)

condenser” : {0,1}" x {0,137 — (0,1} with ¢ = [L(21ogn + log(2))].

In recent years, condensers have been studied in their own righglesescondensers are of particular
interest, as they are equivalent to unbalanced bipatipander graphsvith extremely good expansion (of
greater than half the left degree of the graph). This turns out to bellused number of applications;
constructions of lossless condensers appear in [RR99, TUZ01, QRYWJO06].

For lossless condensers, the competing goals are short seed ledgthpetioutput length (thus achiev-
ing the greatest “condensing” of the source minentropy). Constructianknown that achieve essentially
optimal parameters for very largef CRVWO02], and very smalk [RR99], but for generat, the best known
constructions can achieve optimality to within a constant factor in one paraordyeat the expense of a
polynomial loss in the other. Specifically, the best known constructionteskeere for constani achieve
seed lengtht = O(log®n) and output lengthn = O(k) [TUZ01], or seed lengthh = O(logn) and out-
put lengthm = k'« for any constanty > 0 [TUZ01]. Recently Ta-Shma and Umans [TU06] showed
that if optimalderandomized curve samplaran be constructed, then a construction of lossless condensers
based on [SUO5] would achieve seed lengts O(logn) and output lengthn = k - polylog(n); they
obtain near-optimal derandomized curve samplers that produce losstet=nsers with somewhat worse
parameters.

Using Theorem 1.1, we obtain a new construction of lossless condahs¢rare optimal to within
constant factors in both the seed length and the output length. This usésaaftom [RR99]: because
the condenser of Theorem 1.1 is only missing a small amount of minentro@n ib& made lossless by
appending a hash from an “almost-2-universal” hash family; we paywitlya constant factor increase in
the seed length. We obtain:

Theorem 1.2 (lossless condenserfor every constané > 0: for all positive integersy, k and alle > 0,
there is an explicit construction of a

(n,k+log(1l/e)) —6: (m = (1+ a)k,k+d+log(1l/e))

lossless condensér : {0,1}" x {0,1}% — {0,1}™ withd = O(log n + log(1/¢)), providedk > cd/a for
a universal constant.



We now return to extractors. There is a great diversity of extractostoactions; see Shaltiel's survey
[Sha02] for a nearly-up-to-date summary. The current champion isoi&reiction of Lu, Reingold, Vad-
han, and Wigderson [LRVWO03] which achieves optimality to within a constactof in the seed length
and output length simultaneously, for any minentrégpy(As with lossless condensers, for smallbetter
constructions are known; e.g., [SZ99, TUZ01]). Again using the caoseleof Theorem 1.1, we can match
this best known construction with a simple, direct, and self-contained catisin and analysis. We simply
need to “finish” the condenser of Theorem 1.1 with an extractor that@steay desired constant fraction
of the minentropy, with a seed length that is optimal up to constant factorse 8iiscextractor can start
from a constant entropy rate arbitrarily close to 1, we can even use@asthextractor based on expander
walks [1Z89, CW89, Gil98, Zuc06]. When is sub-constant, we use Zuckerman’s extractor [Zuc97] to
obtain the proper dependenceorAltogether we obtain:

Theorem 1.3 (extractor). For all constantsy, v > 0: for all positive integers:, k and alle > exp(—n'~7),
there is an explicit construction of @, ¢) extractorE : {0,1}" x {0,1}* — {0,1}™ withd = O(logn +
log 1) andm = (1 — )k, providedk > cd/« for a universal constant.

In fact this result slightly improves upon [LRVWO3], for general erot €(n). They can handle error

as small a1/ 12" 7 for any constant, but for generak, they must pay with either a larger seed length
of t = O((log* n)? logn + log(1)), or a smaller output length of = Q(k/ log(®) n) for any constan.

1.1 Our technique

In this section we give a high-level description of our construction andfpiechnique. Our condensers
are based on Parvaresh-Vardy codes [PVO05], which in turn aedb@s Reed-Solomon codes. A Reed-
Solomon codeword is a univariate degre@olynomial f € F,[Y], evaluated at all points in the field. A
Parvaresh-Vardy codeword is a bundle of several related degpedéynomialsfy, f1, fo, ..., fm_1, €ach
evaluated at all points in the field. The evaluations of the varip@ a given field element are packaged
into a symbol from the larger alphabEf~. The purpose of this extra redundancy is to enable a better
list-decoding algorithm than is possible for Reed-Solomon codes.

The main idea in [PV05] is to view degree polynomials as elements of the extension fi€ld=
F,[Y]/E(Y'), whereE is some irreducible polynomial of degreet 1. The f; (now viewed as elements of
IF) are chosen so thagt = fé” for i > 1, and positive integers;. In order to list-decode, one produces a
nonzero univariate polynomid)’ overF from the received word, with the property thatis a root of@Q’
whenever the codeword has sufficient agreement with the receivet W use the same technique in the
analysis of our condenser, and below we describe how the interpolatlyggonial is set up and how the
relationship between thg’s helps in the context of our analysis.

Our condenser construction works as follows. We view the source striemgdescribing a degree

polynomial f(Y') € F,[Y]. We then definef; 4t th' mod E for some parametel, and irreduciblek.
Given a seeq < F,, our outputisfo(y), fi(v), ..., fm-1(y).

Since [Tre01], a common technique in analyzing extractors has been wothho for every subset
D C {0,1}™, there are very few, sag 2*, source strings: that are “bad” with respect t®; i.e., much

fewer tharR” stringsz: satisfy
Pr[E(x,y) € D] — Pr[z € D]| > e.
Yy z

From this, it follows that a source with min-entropyis unlikely output a string that is bad with respect to
any givenD. Thus the output o’ on such a source must hit dll's with close to the “proper” probability,
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and soF is an extractor for minentropy. We use the same general outline to show that our construction
is a condenser. We only wish to show that the output is close to having mipgritraather than close to
being uniform, and this is equivalent to showing that the output hits$efssize about*” with less than
¢ probability (see Section 2.1 for a precise statement of this fact). We do tlaiggling that there are very
few source strings that are “bad” with respect t6; i.e., very fewzx satisfyPr,[C(z,y) € S] > e.

Let’s consider whaPr, [C'(z,y) € S| > € means for our construction. First of all,is interpreted as a
degreen polynomial fy. Then, fy being “bad” means that for more thag of the seedg, we have

(fO(y)7 fl(y)a oo 7fm—1(y)) es.

The first step in our analysis is to produce a non-zero polyno@ial F;* — [, that vanishes or$.
We arrange to have deg ) < eq, so that the univariate polynomi&)(fo(Y), f1(Y),..., fm—-1(Y)) is
identically zerdfor bad fy. Viewing the f; as elements of the extension fidld= F,[Y]/E(Y), andQ as a
polynomial overF, we have that fo, fi1,. .., fm—1) is aroot of Q. Just as in the list-decoding algorithm of

[PVO5], we define the polynomia’ (2) < Q(z, z", 2", ..., z"" "), and observe that every bgglis a
root of thisunivariatepolynomial. Thus the degree &F is a bound on the number of sug¢h, and it turns
out that this bound is nearly optimal: the number of fais shown to be at most the size 8f

To summarize, the analysis has two main steps: first, we engaak® a low-degree multivariate poly-
nomial @, and argue that for every bad polynomja(Y"), Q(fo(Y), ..., fm-1(Y)) is in fact identically
zero. Then, we produce a univariate polynongjalfrom @ that has all of the bad, as roots (when ev-
erything is viewed over the extension fiéfj. The degree of)’ is an upper bound on the number of bad
strings.

1.2 Additional results

In Section 6 we discuss some variations on the basic construction.

Using the “multiple roots” idea from Guruswami-Sudan [GS99], we optimize #eal $ength of our
condenser, making {tl + +) times the optimal seed length, while still retaining almost all the entropy and
outputting a source with a constant entropy rat€6f) (Theorem 6.2). For constant errgrone can then
extract almost all the entropy using the extractor from [Zuc06] whicls @aseadditional seed of at most
log k 4+ O(1) bits. The total seed length is th(s+ ) log n + log k + O(1), which approaches the optimal
logn + O(1) bound fork = n°M). This result appears as Theorem 6.5. A different setting of the csrden
parameters (Corollary 6.3) allows us to obtainexactlyoptimal seed length, while retaining a constant
fraction (arbitrarily close to 1) of the entropy, at the expense of an oetpwopy rate of2(1/log(n/<c)),
which is still quite good.

With a small change to the original proof, we can say something about tia@taf the main condenser
in which the seed is included in the output. One can hope to capture the eptirerseopy (which we do
in Theorem 1.2, but that involves the extra step of appending a hagie) weeare able to capture all but
O(log(1/¢)) bits of the seed entropy directly.

Finally, using one of the main ideas from the Guruswami-Rudra codes [[;R66@rgue that a variant
of our main construction is the natural precursor of [SU05], in whichlilatc construction is applied Reed-
Solomon codes. It has been an intriguing question for some time to determinéifveimy) pseudorandom
object(s) can be obtained from this very natural construction. Thidiques studied in [KUO6], where they
show that the Reed-Solomon construction “fools” certain kinds of lowekegests. Our results in this paper,
which show that this construction is a very good condenser, seem tamerhe correct (or nearly-correct)
answer, as we also describe an example that shows that the entropyd-#te @onstant factor entropy loss
for this construction cannot be improved substantively.
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2 Preliminaries

Throughout this paper, we use boldface capital letters for randoiabkas (e.g., X"), capital letters for
indeterminates, and lower case letters for elements of a set. Also througkequaperUy is the random
variable uniformly distributed o0, 1}*. All logs are base 2.

We record some standard facts about minentropy:

Proposition 2.1. A distribution D has minentropy at leagt iff D is a convex combination of flat distribu-
tions on sets of size exacfly.

Proposition 2.2. The distance from a distributioP to a closest distribution with minentrogyis exactly
Za:D(a)ZQ—k(D(a) - 2_k)'

Proposition 2.3. A distribution D with minentropylog( K —c) is ¢/ K -close to a distribution with minentropy
log K.

Proof. By Proposition 2.1, it suffices to prove the statement for flat distributidonBy Proposition 2.2, the
distance fromD to the closest distribution with minentropys K is exactlyy .. p(,y>1/x (D(a) —1/K) =
(K—¢)(1/(K—-¢)—1/K) =¢/K. O

2.1 Analysis of condensers

The next lemma gives a useful sufficient condition for a distribution to beedlo having large minentropy:

Lemma 2.4. LetZ be a random variable. If for all setS of sizeK, Pr[Z € S| < ¢ thenZ is e-close to
having minentropy at leasbg (K /<).

Proof. Let S be a set of thek' heaviest elements (under the distribution o). Let 2~¢ be the average
weight of the elements if. Thene > Pr[Z € S] = 27K, so/ > log(K/¢). But every element outsidg
has weight at most—¢, and with all but probability, Z hits elements outsid§. O

This lemma establishes the framework within which we will prove our constructos condensers:

Lemma2.5. LetC : {0,1}" x {0,1}¢ — {0,1}™ be a function. For each subsét define
BAD(S,¢) = {af :Pr[C(z,y) € 5] > E} .
Y

Let B(K, ¢) = maxg. g)—k |BAD(S, ¢)|. Then the functiod’ is a
(n,log(B(K,¢e)/e)) —2: (m,log(K/e) — 1)
condenser.

Proof. We have a random variabX with minentropylog(B (K, ¢)/c). For a fixedS of size KK, the proba-
bility that X is in BAD(S, ) is at most; if that does not happen, then the probabilityX, U ) lands inS
is at most. Altogether the probability’(X, Uy) falls in S is at moste. Now apply Lemma 2.4. O



3 The main construction

Fix the fieldF, and letE(Y") be an irreducible polynomial of degree+ 1 overF,. View elements of
{0,1}™ as describing univariate polynomials o&rwith degree at mosi. Fix an integer parametér.
We describe a functio6’ : {0, 1}" x F, — ;" that is the basis of all of our constructions:

C(f,9) € f(y) o (f" mod E)(y) o (f'” mod E)(y)o---o (f" " mod E)(y).

For ease of notation, we will refer {g"' mod E) as “f;.”

Lemma 3.1. Defining BAQYS, ¢) and B(K, ) with respect ta” as in Lemma 2.5, we have
B(K=h"—-1,¢) <K,

providedg > nm(h — 1) /e.

Proof. FixasetS C F" of size at mosK. LetQ € F,[Z1, Zs, . .., Z,,] be a nonzeren-variate polynomial
that vanishes o, and with individual degrees at mdst- 1. By definition, for everyf(Y') € BAD(S,¢),
it holds that

PrQ(o(), 1Y), .- fm-1(y)) = 0] > &.
Therefore, the univariate polynomia(Y) o Q(fo(Y),..., fm—1(Y)) has more tharq zeroes, and
degree at mostm(h — 1). Sincenm(h — 1) < eq, R(Y') must be identically zero, and so

QUY), . .. fm—a(Y)) =0

foreveryf(Y) € BAD(S,¢).
Now, view ) as a multivariate polynomial over the extension fiéle- F,[Y]|/E(Y), and define

Q(2)% Qz.2"2",.... 2",

Because the individual degrees @fwere all less thar, Q' is a non-zero polynomial (because distinct
monomials inQ map to distinct monomials i)’).
For everyf(Y') € BAD(S, ), now viewed as an element Bf we have

Q/(f) = Q(f07f17f27 . '7fm—1) =0,
i.e., fisarootof@’. Thus|BAD(S,¢)| < deg(Q’). The degree of)’ is at most
(h=1)(A+h+h*+- +h™ H=r"-1=K.

We can now prove our main theorem (restated here):

Theorem 1.1 (restated). For everyl > « > 0: for all positive integers:, k and alle > 0, there is an
explicit construction of a

(n, k' =kt +log(1/e)) —3c (n' = (1 + @)kt k' — 1)

condenser” : {0,1}" x {0,137 — (0,1} with ¢ = [L(21logn + log(2))].



Proof. We describe how to set parameters, and then apply Lemmas 3.1 and 2.b. =Sét, note that
h > (2n2/e)/*. Letq be the largest prime less than or equaktd®. By Bertrand’s Postulate, first proved
by Chebyshev, we have!*®/2 < ¢ < h'T, Since we may assume < n, we haveg > nmh/c as
required. Setn = k.

The functionC has output length

mlogg < m(l+ a)logh = (1 + «a)kt

as claimed (we can pad the condenser with dummy bits to make the output lengtlly €ka- o)kt). By
Lemma 3.1, and Lemma 2.6} is a

(n,log((h"™ —1)/e)) —2e (1 + a)kt,log((h™ —1)/e) — 1)

condenser. All that remains is numerical manipulation to express this in thevgaynas it is stated in the
theorem. First, note that

log((h™ —1)/e) < log(h™/e) = kt + log(1/e) .

Also, by Proposition 2.3, a distribution witlog((h™ — 1)/¢) — 1 minentropy is1/h™ close to having
minentropy
log(h™/e) — 1 = mlogh + log(1l/e) — 1 = kt + log(1/e) — 1.

Sincel/h™ is always at most, C'is a(n, kt + log(1/¢)) —s- ((1 + «)kt, kt + log(1/e) — 1) condenser
as claimed. The seed lengthlig ¢ < (1 + «)logh = (1 + a)t. O

Remark 1. In this proof we work in a prime fielfl,. The same proof works over any fiég, with a minor
adjustment to the inequality describing how clgge to A<,

4 Lossless condensers that are optimal up to constant factors

We begin with the general method to recover “missing” minentropy, first bggeR99]. Given gn, k) —.

(m, k') condenser, we say it has entropy less= k& + t — k’. We can make the condenser lossless by
appending a random hash inf&(d + log(1/¢)) bits. Whend is small, the extra randomness can also be
small, provided we use a randomness-efficient family of hash functiorext, Me describe the “almost
2-universal” hash family that we will use:

Theorem 4.1 ([AGHP92, SZ99]).For everyn’, m/, there exists an explicit familif of hash functions from
n' tom’ bits, of cardinalityO((n’m’2™")?), that satisfies the following property:

Yy # ws [h(wy) = h(wg)] <2-27™. 1)

Pr

heH
Arandomh € H can be sampled usirigg | H| bits, and given these bits,can be computed in paly’, m')
time.

Note that a truly 2-universal hash function would satisfy (1) with the rfginid-side replaced "
— but the price would be tha#f| > 2", which is far too large to be useful for us. Now we show that
appending a random hash makes a condenser lossless.



Lemma 4.2. LetC : {0,1}" x {0,1}' — {0,1}" be a(n, k) —. (m,k’) condenser. LeH be a family
of hash functions from’ = n + t bitstom’ = 2(k + ¢ — k') + log(1/¢) + 1 bits satisfying (1). Then the
functionC” : {0, 1}" x {0,1}/=tHleelHl _, 1o 1ymHloelHl+m" gefined by:

C'(w;y,h € H) = C(x,y) o ho h(x,y)

isa(n,k) —9 (m+log|H|+m' k+1t')lossless condenser.

Proof. Let X be a random variable distributed uniformly on an arbitrary set of ®iz&Ve prove that”’ is
the stated condenser when its sourcXjsvhich by Proposition 2.1 suffices. We denotelythe random
variable that is uniformly distributed over the hash functiongf/inWe also takéy to be a random variable
uniformly distributed on{0, 1}*.

Call z € {0,1}™ “good” if Pr[C(X,Y) = 2] < 27*. Observe that by Proposition 2.2/(X,Y) is
good with all bute probability.

DefineS, = {(z,y) : C(z,y) = =}, and callh “good with respect ta” if & is 1-1 onS,. Notice that
for an arbitrary sef,

2
Pr[H is not 1-1 onS] < Z Pr[H(w;) = H(ws)| < 2'5,‘_1-

w1,w2 €S,w1 Fw2

Sincel|S,| = 28t Pr[C(X,Y) = z], we have that for good, |S.| < 28t~*, Therefore, for good, H is
good with respect te with all bute probability.

We now argue that the output distribution@f is 2¢-close to having minentropy + ¢'. Fix an output
string(z, h, 2’). If z is good, and is good with respect te, then

PrlC(X,Y)=2AH=hAHX,Y) =7

— PHC(X,Y) =] ﬁ Pr{H(X,Y) = 2[H = h, O(X,Y) = 2]
1 1
— POX,Y) = 2] ! )

|H| 28 Pr[C(X,Y) = 2] 2FH|H|

As we have argued, we hit a goadwith all but e probability, and therH is good with respect te with
all but ¢ probability. Overall, with all buRe probability, we hit an output string with weight +t) as
required. O

Applying this transformation to the condenser from Theorem 1.1, we obtaisezond main theorem,
restated here:

Theorem 1.2 (restated). For every constan&t > 0: for all positive integers:, k and alle > 0, there is an
explicit construction of a

(n,k +log(1/e)) =6 (m= (14 a)k,k+ d+log(1/¢e))

lossless condensét : {0,1}" x {0,1}* — {0,1}™ withd = O(log n.+ log(1/¢)), providedk > cd/« for
a universal constant.



Proof. Consider the condenser of Theorem 1.1 with its parameset to half the present, which has seed
length(1 + «/2)t where

t= g(zlogn + 10g(2/€))—‘ :

We set that condenser’s parameteto the presenk divided by ¢, rounded down. It then has entropy
deficiency at most2 + «/2)t + 1 (up tot is attributable to the rounding down, and ttle+ «/2)t seed bits
are lost, plus one).

Now apply Lemma 4.2. The output length of the hashis= O(logn + log(1/¢)), and the number of
bits needed to sample frofd is 2m’ + O(logn) + O(loglog(1/<)). The resulting condenser is lossless,
and it has the stated seed length. Its output length is at most

(1+a/2)k +log(1l/e) +m' +log|H| < (1 + a/2)k + O(logn + log(1/¢)),

which by our lower bound ok is at most(1 + «)k. O

5 Extractors that are optimal up to constant factors

Once we have condensed all (or almost all) of the entropy into a sourceemtithpy rate close to, ex-
tracting (most of) that entropy is not that difficult. All we need to do is to corepghe condenser with an
extractor that works for entropy rates close tal'he following standard fact makes this formal:

Proposition 5.1. Suppose” : {0,1}" x {0,1}"* — {0,1}" is an(n,k) —., (n',k’) condenser, and
E:{0,1}" x {0,1}2 — {0,1}™ is a (K, e5)-extractor, thenk o C : {0,1}" x {0,1}117 — {0,1}™
defined by(E o C)(z, y1,y2) = E(C(z,y1),y2) is a(k,e1 + e2)-extractor.

For the best dependence on the error parametee extractor we will use is due to Zuckerman:

Theorem 5.2 ([Zuc97]). For all constantsy, 6, v > 0: for all positive integersy, k and alle > exp(—n'~7),
there is an explicit construction of & = dn,e) extractor £ : {0,1}" x {0,1}' — {0,1}™ with
t =O(logn +log 1) andm = (1 — a)k.

We now prove our main extractor theorem, restated here:

Theorem 1.3 (restated). For all constantsy, v > 0: for all positive integers:, k and alle > exp(—n'~7),
there is an explicit construction of @, ¢) extractorE : {0,1}" x {0,1}* — {0,1}™ with d = O(logn +
log 1) andm = (1 — )k, providedk > cd/a for a universal constant.

Proof. Consider the condenser of Theorem 1.1, with its paramedet to the one sixth of the presentand
its parametet set to (say)l /2. This condenser has seed length2 where

t=1[2-(2logn +log(12/¢))],
and we set its parametgrto be the preserit divided byt, rounded down, minueg(6/<). The resultis a
(n.k) —epo ((3/2)(k —t = 1),k —t —1)

condenser (the loss of up tobits comes from the rounding). By the lower bound /gnwe know that
k—t—12> (1-«/2)k. Applying Proposition 5.1 to this condenser and the extractor of Theor2ifwih
its error parameter set to half the presen) gives the claimed extractor. O
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In the fairly common case thatis a constant, we can use the much simpler “expander-walk” extractor
(in place of the extractor of Theorem 5.2) which extracts almost all of ttrenfor entropy rates close to
1. Note that our condenser from Theorem 1.1 achieves a constanpendte arbitrarily close taé, and so
can be combined with any extractor for such high min-entropy rates. Aataidnstruction achieving this
is based on expander walks [1Z89, CW89, Gil98]; the following versiamze found in [Zuc06]:

Theorem 5.3. For every constant > 0, there is a constant < 1 for which the following holds: for
all positive integers: and all constant > 0, there is an explicit construction of @& = dn, ) extractor
E:{0,1}" x {0,1}" — {0,1}" with t = log(an) andm > (1 — a)n.

For completeness, we present the short proof:

Proof. Letm = (1 — «a)n, and for some absolute constant 1, let G be an explicic-regular expander on
2™ vertices (identified witH 0, 1}"*) with second eigenvalug = \(G) < 1. The extracto# is constructed
as follows. Its first argument is used to describe a walk , v2, ..., vy, of length L in G by picking vy
based on the first: bits of z, and each further step of the walk from the nekits of x — so in all, L. must
satisfyn = m + (L — 1)c. The seed;, which contains more thaflog L| bits, is used to pick one of the
vertices of the walk at random. The outpufz, y) of the extractor is ther-bit label of the chosen vertex.

Let X be a random variable with minentropy= én. We wish to prove that for ang C {0, 1}, the
probability thatF (X, Uy) is a vertex inS is in the range: + ¢ wherep = |S|/2™. Fix any such subset.
Call anz € {0,1}" “bad” if

Pyr[E(:U,y) €S| —ul>e/2

The known Chernoff bounds for random walks on expanders [Git8B]y that the number of bad's is at

most
on . 6—0(62(1—)\)L) —9n. 6—9(62(1—)\)an/c) _ 2n2—Q(62an)

(sincec, \ are absolute constants). Therefore the probability ¥as bad is at mosp(l—9)ng—Q(s*an),
which is exponentially small for large enough< 1. Therefore

|Pr[E(X,Ug) € S| —p| <e/2+ 2= < ¢
implying thatE is a(k, ¢)-extractor. -

Combining Theorem 1.1 with Theorem 5.3 via Proposition 5.1, as in the prodhedrem 1.3, we
obtain the following extractor, which has the advantage that its proof i$ ahdrentirely self-contained:

Theorem 5.4. For every constant > 0: for all positive integers:, k, and all constant > 0, there is an
explicit construction of &k, ¢) extractorE : {0,1}" x {0,1}* — {0,1}™ with d = O(logn + log 1) and
m = (1 — «)k, providedk > cd/« for a universal constant.

6 Variations on the main condenser
In this section we show how minor modifications to the proof allow us to optimize tbe Ieagth or the

output entropy. We also show that a small modification to the construction yelt$ensers from Reed-
Solomon codes.
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6.1 Optimizing the seed length

The condenser of Theorem 1.1 retains all the source minentropy teecdpbit) and achieves an entropy
rate of 1 — ¢ for any desiredd > 0. Its main shortcoming is the large seed length, which is greater than
(logn)/d, whereas the optimal condenser achieves a seed lengthoft- log(1/¢) + O(1).

We now show that the seed length can be improved to +)(log n + log(1/¢)) — the new condenser
still retains a(1 — O(loén)) fraction of the input entropy and the output entropy rat€fs). While the
entropy rate is not close to as it was before, it is still a constant, and extractors with seed length of
1-logn 4+ O(1) were recently constructed for sources of any constant minentropyaradesonstant error
¢ [Zuc06] (Theorem 6.4 below). Composing the condenser with such taacexr gives an extractor that
extracts(1 — a)k bits from a source with minentropy, using seed lengtfl + +) log n + log k + O(1), for
arbitrary constants, v > 0. Note that wherk = n°(1), the seed length is near-optimal.

The improved analysis that permits us to optimize the seed length is in the following Iécompare
to Lemma 3.1):

Lemma 6.1. Defining BAOS, ) and B( K, €) with respect ta” as in Lemma 2.5, for any integer parameter

s > 1, we have
W — 1 .
B(K:\‘WJ,ZE)Sh —1,

Proof. Let S C ;" be an arbitrary set of size at mo&t. The proof follows along the lines of the
proof of Theorem 1.1, with the main change being that we make sure thattdrpdlated polynomial
Q(Zy,Z,, ..., Zy) has a root of multiplicity at least at each elemen(v, as,...,a,,) € S. (Note that
Theorem 1.1 is the special case of the current theoremsndthl.) This is equivalent to the condition that
Q(Zy — ai,..., Zm — ayy) has no monomials of degree- 1 or smaller with nonzero coefficients, which
amounts to("*; ') homogeneous linear constraints on the coefficient§ oBincer™ > |S|("* 1),
such a nonzero polynomi& of degree at mosth — 1) in each variable exists. Fig to be any such
nonzero polynomial.

Supposef (V) € BAD(S,¢). Lety € F, be such thaC'(f,y) € S. Then certainly
Qfow), f1y),---, fm—-1(y)) = 0.

In fact, since) hass roots at each element 6f, the polynomialR(Y") e Q(fo(Y), L(Y), ..., fm—1(Y))
has a root of multiplicitys aty. We conclude that if (Y') € BAD(S,¢), i.e., if

]'er[Q(fU(y)afl(y)7 .- ‘7fm—1(y)) = 0] > €,

providedq > nm(h —1)/(se).

thenR(Y') has more thaasq roots counting multiplicities. On the other hand the degreB(@f) is at most
nm(h — 1). Therefore, sincesq > nm(h — 1), we must have?(Y) = 0.

¢ From this point on, the proof proceeds identically to that of Theorenielading to the desired con-
clusion|BAD(S,¢)| < h™ — 1. O

Picking parameters suitably, and following the outline of the proof of Thedrdmwe obtain the fol-
lowing condenser:

12



Theorem 6.2. For every~ > 0: for all positive integers:, k and alle > 0, there is an explicit construction
of a
(n, k' =kt +log(1/¢)) —29c (n' = (1 + 1/7)kt, k' — 3k — 1)

condenser : {0,1}" x {0, 1}1%” — {0,1}" with ¢ = [ylog(2n/e)], providedt > 4.

Proof. We describe how to set parameters, and then apply Lemmas 6.1 and 2t5= Fotog(2n/¢c)], set
h = 2! and note that note that'/” > 2n/c. Let q be the largest prime less than or equahta!/7. By
Bertrand’s Postulate, we hawét!/7/2 < ¢ < h'*t1/7, Setm = s = k. We haveg > nmh/(es) = nh/e
as required.

With this parameter setting, the functi6hhas output length

mlogg <m(l+1/v)logh = (1+1/v)kt

as claimed. By Lemma 6.1, and Lemma Z5is a

(n,log((h™ —1)/€)) =2 ((1+1/7)kt,log(K/e) — 1)

condenser. Nowk = [(h™ —1)/(*"1)] > (k™ —1)/22™~' — 1 > (h/8)™, as long as: > 10. The

m—1

theorem follows, using the fact thiatg(h™) = kt andlog(h/8)™ = k(t — 3). O

In the previous theoremy may be subconstant, and in the following corollary we show that it can be
set to produce an exactly optimal seed length (up to the additive constéilg,still retaining a constant
fraction of the minentropy, at the expense of an entropy rafe(of log(n/<)), which is non-constant, but
still quite good.

Corollary 6.3. For every integer constant > 4: for all positive integersq, k and alle > 0, there is an
explicit construction of a

(n, k' = ke + log(1/2)) —a <n _ <1 + w> ke, <1 _ %) K - 1)

condenser” : {0,1}" x {0,1}* — {0, 1}”' with d = logn + log(1/e) + O(1).
Proof. Sety = ¢/log(2n/¢) in Theorem 6.2. O

We now combine the condenser of Theorem 6.2 with Zuckerman'’s rexgat®r. (This extractor in
turn starts by applying a condenser due to Raz [Raz05] that has cossthlength and can increase the
entropy rate frond to 1 — § for any constané > 0, while retaining a constant fraction of the minentropy.)

Theorem 6.4 ([Zuc06]). For all constantsy, § > 0: for all positive integers: and all constant > 0, there
is an explicit construction of & = dn,¢) extractor £ : {0,1}" x {0,1}% — {0,1}™ with seed length
d =logn + O(1) and output lengthn = (1 — a)k.

Combining Theorem 6.2 with Theorem 6.4 via Proposition 5.1, as in the prooheérem 1.3, we
obtain the following extractor, which has a near-optimal seed length:

Theorem 6.5. For all constantsa,y > 0: for all positive integersn, k£ and all constant > 0, there
is an explicit construction of 4k, ) extractor £ : {0,1}" x {0,1}% — {0,1}™ with seed lengthl =
(14 ) logn+logk + O(1) and output lengthn = (1 — «)k, providedk > cd/«a for a universal constant
C.
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6.2 Increasing the output entropy

The condenser of Theorem 1.1 is missing only the entropy of the seedj wghitnall enough that it can
be “recovered” using the hashing technigue of Lemma 4.2. Howevercamask how far our new proof
technique can go in isolation. More precisely, we modify the funofices follows

C'(f,9) < (y,C(f,9)),

and ask how much entropy is retained for this “strong” variant of the lwasistruction. It is not hard to see
that in the language of Lemma 2.5, we could hopeBdfs, ) < K/q, when the seed lengthlsg ¢. This
would correspond to recovering all of the entropy of the source agwdl tegjether.

In this section we show that a minor modification to the proof allows us to argue3iifd, ) < K/r
for r approachinggq. This corresponds to recovering all Bug(1/¢) + O(1) of the total entropy, although
we don’t know of a direct use for this improvement. We show the improvedltrby recording a variant of
Lemma 3.1 forC’ as defined above:

Lemma 6.6. Defining BAYS, ¢) and B(K, ¢) with respect ta”” as in Lemma 2.5, we have
B(K =rh™ —1,¢e) < K/r,
wherer = (1 — 1/c)eq, providedq > cnm(h — 1) /e, for anyc > 0.

Proof. FixasetS C F, x ;" of size at mosK'. LetQ € Fy[Y, Z1, Z3, ..., Z,,] be a nonzeren + 1-variate
polynomial that vanishes o\, with degree-—1 in Y, and individual degrees at mdst- 1 for the remaining
m variables. By definition, for every(Y') € BAD(S, <), it holds that

f;r[Q(y, fo(), fr(y)s- -y fm—1(y)) = 0] > &.

Therefore, the univariate polynomi&(Y") o QY. foY),..., fm—1(Y)) has more thamq zeroes, and
degree at most + nm(h — 1). Sincer + nm(h — 1) < eq, R(Y) must be identically zero, and so
QY. foY),..., fm—1(Y)) = 0for every badf (Y).

Now, view @ as a polynomial irf,[Y][Z1, Zs, ..., Zy], and factor out the largest power &f(Y).
SinceE(Y') has no roots i, the resulting polynomial still vanishes ¢h Also, the resulting polynomial
is non-zero moduld(Y); let Q" be the resulting polynomial after reducing modil¢Y”).

Now, view Q" as a multivariate polynomial (in variableés, Z,, ..., Z,,) over the extension fielff =
F,[Y]/E(Y), and define

Q2)=qQ(z,z"z",. .. 2" ).

Because the individual degrees @f are all less thark, Q" is a non-zero polynomial (because distinct
monomials inQ’ map to distinct monomials i®").

For everyf(Y) € BAD(S, ), now viewed as an element Bf we haveQ”(f) = 0; i.e., f is a root of
Q". Thus|BAD(S,¢)| < deg(Q"). The degree of)” is at most

(h=1)(A+h+h*+- + ™ H =" -1 < K/r.
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6.3 Reed-Solomon version

We use one of the main ideas from [GRO06] to argue that a small modification tooastruction gives a
good condenser from Reed-Solomon codes, answering a questied ira[KU06].

Let ¢ be an arbitrary prime power, and g€ [, be a generator of the multiplicative grolip. Itis well
known, and not hard to show, thAYY) = Y¢~! — ( is irreducible oveif, [LN86, Chap. 3, Sec. 5]. The
following identity holds for allf (Y') € F,[Y]:

(f(Y))?mod E(Y) = f(Y9) mod E(Y) = f(Y? 1Y) mod E(Y) = f(¢Y) mod E(Y) .
In this case, if we modify our basic functi@n: {0,1}" xF, — 7" slightly so that we rais¢ to successive

powers ofq rather tharh, we get:

m—1

Cfy) © fly)o (f1mod E)(y) o (f mod E)(y)o---o (f" " mod E)(y)

= fy)of(Cy)o---o f(C™ ). )

In other words, our function interprets its first argument as describingivariate polynomial oveF,

of degree at most (i.e., a Reed-Solomon codeword), it uses the seed to select a randdiardnahe

codeword, and it outputs successive symbols of the codeword. This is precisely the analog ofittige®

Umansg-ary extractor construction [SUO5] for univariate polynomials, rathen tiultivariate polynomials.
With a minor modification to the proof of Lemma 3.1, we show that this is good caeden

Lemma 6.7. Defining BAO/S, ¢) and B(K, €) with respect to the functio@' of Equation (2) as in Lemma
2.5, we have
B(K=h"—-1¢6)<(¢" —1)(h—1)/(qg—1),

providedg > nm(h — 1) /e.
Proof. The proof is the same as the proof of Lemma 3.1 except that we defidiferently:

Q)Y Qz,2,27,..., 27,

As before, everyf(Y) € BAD(S, ¢), is a root of@’. Thus|BAD(S,¢)| < deg(Q’). The degree of)’ is at
most
(h=1)(1+q+q"+ - +¢" ") =(h—1)((¢" - 1)/(a—1)).

We obtain the following condenser:

Theorem 6.8 (Reed-Solomon condenserfor every constant > « > 0: for all positive integersn, k
and alle > 0, there is an explicit construction of a

(n, (14 a)kt +log(1/e)) —3- (' = (1 + a)kt, kt +log(1/e) — 1)

condenser” : {0,1}" x {0, 1} — (0,1} with ¢ = [L(21ogn + log(2))].
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Proof. We describe how to set parameters, and then apply Lemmas 6.7 and 2.b. =Sét, note that
h > (2n%/e)!/®. Let ¢ be the largest prime less than or equahtd®. By Bertrand’s Postulate, we have
hite/2 < ¢ < k't Since we may assume < n, we havey > nmh/c as required. Set, = k.

The functionC' has output length

mlogqg < m(l+a)logh=(1+ a)kt
as claimed. By Lemma 6.7, and Lemma Z5is a
(n,log(¢q™/€)) —2e (1 + a)kt, log((A™ —1)/e) — 1)
condenser (using the fact thgt > (¢™ — 1)(h —1)/(¢ — 1)). Now,
log(¢™/e) < mlogq+log(l/e) < (14 )kt + log(1/e).

And, as in the proof of Theorem 1.1, a distribution witlg((~™ — 1)/e) — 1 minentropy isl/h"™ < ¢
close to having minentropyt + log(1/¢) — 1. ThusC' is the claimed condenser. The seed length is
logg < (14 a)logh = (1+ a)t. O

For the Reed-Solomon-based construction, a relatively simple argunmws #hat the entropy rate and
the ratio of output minentropy to input minentropy must both be constants las4 tiéhe example below
comes from [GHSZ02, TSZ04]:

Theorem 6.9. For every positive integep such thatp|(¢ — 1), there is a sourceX with minentropy at
least [n/p] log ¢ for which C'(X, Uy), as defined in Equation (2), isot e-close to having minentropy
log(2-w™), wherew = (¢ — 1)/p + 1.

Proof. Take the source to bg-th powers of all degreén/p| polynomials. Every output symbol af'
is an evaluation of such a polynomial, and therefore must betrapower, or 0. There are thus only
w = (¢ — 1)/p + 1 possible output symbols, so the output is contained within a set ofigfzevhich by
Proposition 2.2 is not-close to any distribution with minentropyg(ﬁwm). O

This example can be interpreted as follows. For any |n/p|, we have enough entropy to hope for
C’s output (which has lengthn log ¢) to be close to uniform. However, if we chooge= n’ for some
constanty > 0, then the output minentropy can be no larger thas{O(w™)) = mlog(q'~%), for some
constanty’ > 0, as long as; = poly(n) (which is required for seed length(logn)). So this setting of
parameters shows that an entropy rate that is a constant less than 1dglahbky and also that the output
minentropy must be a constant factor smaller than the input minentropy, in f@s ca

7 Conclusions

This paper introduces a new proof technique for analyzing algebragoger constructions, which does not
rely on local decodability of the underlying error-correcting codess thus natural to ask whether these
new techniques can help in other settings. For example, can we use thegu¢oadoutcomputational
analogs of the objects in this paper — pseudorandom generators ardbestopy generators? Or, can
variants of our constructions yield so-called “2-source” objects, in whiath the source and the seed are
only weakly random?
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Of course a significant remaining open problem is to construct truly optiriedators, ones that are
optimal up toadditive constants in the seed length and/or output length. Towards this end, veemibn
there is some variant of our constructions with a better entropy rate — theakexal threshold is to have
entropydeficiencyonly k°(1). Another interesting question is whether some variant of these constmiction
can give a block-wise source directly. Depending on the actual paresneitber of these two improvements
have the potential to lead to extractors with optimal output length (i.e. onesdinatteall the minentropy).
Alternatively, if we can find an extractor with optimal output length for high mimropy (say99n), then,
by composing it with our condenser, we would get one for arbitrary mtropy.

Acknowledgements. This paper began with a conversation at the BIRS workshop “Recevdanfas in
Computation Complexity.” The authors would like to thank the organizers fatingvthem, and BIRS for
hosting the workshop.
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