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Abstract

We give an improved explicit construction of highly unbalad bipartite expander graphs with ex-
pansion arbitrarily close to the degree (which is polylathanic in the number of vertices). Both the
degree and the number of right-hand vertices are polyntnthise to optimal, whereas the previous
constructions of Ta-Shma, Umans, and Zuckerman (STOC ‘@duired at least one of these to be
quasipolynomial in the optimal. Our expanders have a simufsalf-contained description and analysis,
based on the ideas underlying the recent list-decodahde-eorrecting codes of Parvaresh and Vardy
(FOCS ‘05).

Our expanders can be interpreted as near-optimal “randssroendensers,” that reduce the task of
extracting randomness from sources of arbitrary min-guytrate to extracting randomness from sources
of min-entropy rate arbitrarily close to 1, which is a muckieatask. Using this connection, we obtain
a new, self-contained construction of randomness extrsthat is optimal up to constant factors, while
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1 Introduction

One of the exciting developments in the theory of pseudanammetss has been the discovery of intimate
connections between a number of fundamental and widelyestumbjects — expander graphs, random-
ness extractors, list-decodable error-correcting copes,dorandom generators, and randomness-efficient
samplers. Indeed, substantial advances have been made umaerstanding of each of these objects by
translating intuitions and techniques from the study of tarhe study of another. In this work, we continue

in this tradition. Specifically, we use ideas from recentlktlrough constructions of list-decodable codes,
due to Parvaresh and Vardy [PV], to give improved and singaliionstructions of both unbalanced bipartite
expander graphs and randomness extractors.

1.1 Unbalanced expander graphs

Expanders are graphs that are sparse yet very highly cathethey have a wide variety of applications in
theoretical computer science, and there is a rich body okworconstructions and properties of expanders.
(See the survey [HLW]). The classic measure of the connigctiv an expander isertex expansigrwhich
asks that every sét of vertices that is not too large have significantly more thtimeighbors. This property

is formalized for bipartite graphs through the followingidgions.

Definition 1.1. A bipartite (multi)graptwith IV left-vertices, M right-vertices, and left-degreP is specified
by a functionl" : [N] x [D] — [M], wherel'(x, y) denotes the'th neighbor ofz. For a setS C [N], we
write T'(.S) to denote its set of neighbof§'(x,y) : x € S,y € [D]}.

Definition 1.2. A bipartite graphI’ : [N] x [D] — [M]is a (K, A) expandeiif for every setS C [N] of
sizeK,we havel'(S)| > A- K. Itis a(<Kna, A) expandeif itis a (K, A) expander for allk’ < Kq.

The typical goals in constructing expanders are to maxinfizeexpansion factod and minimize the
degreeD. In this work, we are also interested minimizing the the dizef the right-hand side, sb/ < N
and the graph is highly unbalanced. Intuitively, this maggsansion harder to achieve because there is less
room in which to expand. Using the probabilistic methodait e shown that very good expanders exist —
with expansionA = (1 — ¢) - D, degreeD = O(log(N/M)/¢e), andM = O(Kpaz D/e) = O(Kpaz A/€)
right vertices. Thus, ifM < N¢ for some constant < 1, then the degree is logarithmic iN, and
logarithmic degree is in fact necessary\if = O(KmawA)E However, applications of expanders require
explicit constructions— ones where the neighbor functibhis computable in polynomial time (in its input
length,log IV + log D) — and the best known explicit constructions still do not chahe ones given by the
probabilistic method.

Most classic constructions of expanders, such_as [Marl, [RS8, [Mar2], focus on the balanced (or
non-bipartite) case (i.eM = N), and thus are able to achieve constant dedvee O(1). The expan-
sion properties of these constructions are typically pnolwg bounding the second-largest eigenvalue of
the adjacency matrix of the graph. While such ‘spectral’aggion implies various combinatorial forms
of expansion (e.g., vertex expansion) and many other upeferties, it seems insufficient for deducing
vertex expansion beyon /2 [Kah] or for obtaining highly imbalanced expanders withypogarithmic
degree [[WZX]. This is unfortunate, because some applicatadnexpanders require these properties. A

"More generally, the degree must be at l€@8bg(N/ K naz)/ log(M/(KmaA))), as follows from the lower bounds on the
degree of disperserSTRT].



beautiful example of such an application was given by Bulrmet al. [BMRV]. They showed that a
(<K, A) expander withV left-vertices,M right-vertices, and expansioh = (1 —¢)D yields a method
for storing any set C [N] of size at mosf#s,,,, /2 in an M -bit data structure so that membershipSican

be probabilistically tested by reading ordye bitof the data structure. An optimal expander would give
M = O(Knqs log N), only a constant factor more than what is needed to represeatbitrary set of size
K42 /2 (even without supporting efficient membership queries).

Explicit constructions of expanders with expansin= (1 — ) D were obtained by Ta-Shma, Umans,
and Zuckermarl | TUZ] for the highly imbalanced (and noncantstlegree) case and Capalbo et al. [CRVW]
for the balanced (and constant-degree) case. The consisicf Ta-Shma et al_ [ TUZ] can make either one
of the degree or right-hand side polynomially larger tham tlonconstructive bounds mentioned above,

at the price of making the other quasipolynomially largehafTis, one of their constructions givés =

poly(log N) and M = quasipoly (K ;D) = exp(poly(log(K e D))), whereas the other gived =

quasipoly(log N) andM = poly(K 4 D). The quasipolynomial bounds were improved recently inl[TU]
but remained superpolynomial.

We are able to simultaneously achiefe= poly(log N) and M = poly(K D), in fact with a good
tradeoff between the degrees of these two polynomials.

Theorem 1.3. For all constantsa: > 0: for every N € N, K,,.. < N, ande > 0, there is an explicit
(<K paz, (1 — €)D) expander : [N] x [D] — [M] with degreeD = O((log N)(log Kpmaz) /<) T/ and
M < D? . Klte,

The construction of our expanders is based on the recenidi®idable codes of Parvaresh and Vardy [PV],
and can be described quite simply. The proof of the exparmioperty is inspired by the list-decoding al-
gorithm for the PV codes, and is short and self-contained oyerview of this ‘list-decoding approach’ to
proving expansion is provided in Sectionl2.1.

1.2 Randomness extractors

One of the main motivations and applications of our expandestruction is the construction Endomness
extractors These are functions that convert weak random sourceshwigy have biases and correlations,
into almost-perfect random sources. For general modelseakwandom sources, this is impossible, so the
extractor is also provided with a short ‘seed’ of truly rarmdbits to help with the extraction [NZ]. This seed
can be so short (e.g. of logarithmic length) that one camadtieninate the need for any truly random bits by
enumerating all choices for the seed. For example, thigralextractors to be used for efficiently simulating
randomized algorithms using only a weak random source |ZN&]. Extractors have also found a wide
variety of other applications in theoretical computer scee beyond their original motivating application,
and thus a long body of work has been devoted to providingigfiiconstructions of extractors. (See the
survey of Shaltiell[Sha].)

To formalize the notion of an extractor, we need a few det@ingi Following [CG[ Zudl], the ran-
domness in a source is measuredrbin-entropy a random variabléX has min-entropy at least iff
Pr[X = z] < 27% for all z. Sometimes we refer to such a random variable assaurce A random
variableZ is e-closeto a distributionD if for all events A, Pr[Z < A] differs from the probability ofA
under the distributiorD by at mosts. Then an extractor is defined as follows:

Definition 1.4 (NZ]). A functionE : {0,1}" x {0,1}¢ — {0,1}™ is a (k, ) extractorif for every X
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with min-entropy at least, E(X,Y) is e-close to uniform, whelY is uniformly distributed o0, 1}d. An

The competing goals when constructing extractors are taimlat short seed length and to obtain a
long output length. Nonconstructively, it is possible tmgitaneously have a seed lengih= logn +
2log(1/e) + O(1) and an output length of. = k£ + d — 21log(1/¢) — O(1), and both of these bounds are
optimal up to additive constants (fér < n/2) [RT]. It remains open to match these parameters with an
explicit construction.

Building on a long line of work, Lu et al [LRVV] achieved seéhgth and output length that are
within constant factors of optimal, provided that the enparameter: is not too small. More precisely,
they achieve seed length = O(logn) and output lengthn = (1 — a)k for e > n=/108"7 where
« andc are any two positive constants. For generathey pay with either a larger seed lengthdt=
O((log* n)?log n + log(1/¢)), or a smaller output length of, = k/log®) n for any constant.

In this work, we also achieve extractors that are optimabugphstant factors, but are able to handle the
full range of error parametees

Theorem 1.5. For every constantv > 0, and all positive integers., k and alle > 0, there is an explicit
construction of a(k,e) extractor £ : {0,1}" x {0,1}¢ — {0,1}™ with d = O(logn + log(1/¢)) and
m > (1 —a)k.

Our extractor is also substantially simpler than thaf ofVii{|, which is a complex recursive construc-
tion involving many tools. The key component in our condiarc is the interpretation of our expander
graph as aandomness condenser

Definition 1.6. A functionC' : {0,1}" x {0,1} — {0,1}™ is ank —. k' condenseif for every X
with min-entropy at least, C(X,Y) is e-closeto a distribution with min-entropy’, whenY is uniformly

losslessf k' = k + d.

Observe that & —. k' condenser with output length = £’ is an extractor, because the unique distri-
bution on{0, 1}"" with min-entropym is the uniform distribution. Condensers are a natural stepgtone
to constructing extractors, as they can be used to increéasntropy rate(the ratio of the min-entropy in
a random variable to the length of the strings over which di¢ributed), and it is often easier to construct
extractors when the entropy rate is high. Condensers haeebaken used extensively in less obvious ways
to build extractors, often as part of complex recursive troetions (e.g.,[[ISW, RSW, LRVW]). Noncon-
structively, there exidbsslesondensers with seed length= logn + log(1/¢) + O(1), and output length
m=k+d-+log(l/e) + O(1).

As shown by[[TUZ], lossless condensers are equivalent tartiip expanders with expansion close to
the degree. Applying this connection to Theolfen 1.3, weinlikee following condenser:

Theorem 1.7. For all constantsa € (0,1): for everyn € N, k < n, ande > 0, there is an explicit
k —. k4 d (lossless) condensér : {0,1}" x {0,1}¢ — {0,1}" withd = (1 + 1/a) - (logn + logk +
log(1/e)) +O(1) andm < 2d + (1 + «a)k.

Consider the case that is a constant close to 0. Then the condenser has seed lexigif(n /<))
and output min-entropy rate roughly/ (1 + «). Thus, the task of constructing extractors for arbitrary
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seed lengthl output length Thm.
log n + O(log(k/¢)) (1—k 419
logn + O(logk - log(k/c)) | k+d—2log(1/e) —O(1) | EZ21

Figure 1: Extractors in this paper for min-entropyand error=. Above,y € (0, 1) is an arbitrary constant.

seed lengthl output length output entropy Thm.
(1+~)log(nk/e)+0O1) | (1 +1/y)k+2d | k+d (lossless) E3
log(nk/e) + O(1) d-(k+2) k+d (lossless) H4

Figure 2: Condensers in this paper for min-entrémnd error=. Above,~ > 0 is an arbitrary constant.

min-entropy is reduced to that of constructing extractorsnfiin-entropy rate close to 1, which is a much
easier task. Indeed, wheris constant, we can use a well-known and simple extractardoas expander
walks. Where is sub-constant, we can use Zuckerman'’s extractor for anhentropy rate |[Zu¢2] to obtain
the proper dependence eras long as > exp(—k/20(1°g* k)). Moreover, by combining our condenser
with ideas from the early constructions of extractors (tledtdver Hash Lemma, block-source extraction,
and simple compositions), we are able to give a completdfyceatained proof of Theoreii1.5 with no
constraint on the error parameteat all.

Our main extractors and condensers are summarized in BluaadD.

1.3 Organization and pointers to main results

We begin with a high level overview of our construction andgfrmethod in Sectiofl2. We describe and
analyze our expander construction in Secfibn 3 (our mairofigme[ 1B concerning expanders is proved as
TheorenZ3b). We then interpret our expander as a losslestenser and use it to obtain our extractors in a
self-contained way in Sectid 4 (our main Theoien 1.5 conngrextractors is proved as TheorEm 4.19).

In Sectior[6, we analyze a variant of our main condenser dmbtsimpler description in terms of just
Reed-Solomon codes and is a univariate analogue_df [SU]wéiode analysis is based dn [GR]. We give
two variants of such condensers, both of which have paramslightly worse than our main condenser.
Specifically, one is lossless but limited to achieving gpyroate1/2, and the other can achieve entropy
rate close to 1 but loses a constant fraction of the sourceemtiopy. The latter is analyzed using a list-
decoding view of lossy condensers that we describe in SeBtidn Sectiorl]7, we describe an application
of our lossless expanders to dictionary data structurearfewering set membership queries in the bitprobe
model, following [BMRV] who first made this beautiful conrtem. Finally we conclude in Sectidi 8 with
some open problems.

1.4 Notation

Throughout this paper, we use boldface capital letters dodom variables (e.g.,X"), capital letters
for indeterminates, and lower case letters for elements séta Also throughout the papéel], is the

random variable uniformly distributed of0, 1}*. The supportof a random variabl&X is supp(X) et



{z : Pr[X =2z] > 0}. Thestatistical distancebetween random variables (or distributiod)andY is
maxy |Pr[X € T] - Pr[Y € T]|. We sayX andY aree-closeif their statistical distance is at mostAll
logs are base 2.

2 Overview of our approach

In this section we give a high level overview of our constiarttand the proof technique.

2.1 Expansion via list-decoding

Before explaining our approach, we briefly review the basiclést-decodable codes. Aodeis mapping

C : [N] — [M]P, encoding messages of bit-length= log, N to D symbols over the alphabéd/].
(Contrary to the usual convention in coding theory, we udterdint alphabets for the message and the
encoding.) Theate of such a code ip = n/(D log, M). We say thatC is (¢, K) list-decodableif for
everyr € [M]P, the setLIST(r,¢) o {z : Pry[C(x), = ry] > e} is of size at most. We think of

r as areceived worcbtained by corrupting all but anfraction of symbols in some codeword. The list-
decodability property says that there are not too many rgessathat could have led to the received word
r. The goal in constructing list-decodable codes is to optmihe tradeoff between the agreemerind
the ratep, which are typically constants independent of the messaggthn. Both the alphabet sizé/
and the list-sizeK should be relatively small (e.g. constantpery(n)). Computationally, we would like
efficient algorithms both for computing(z) givenz and for enumerating the message&.i68T(r, ) given

a received word.

The classic Reed-Solomon codes were shown to achieve thegeriies with polynomial-time list-
decoding in the seminal work of Sudan [Sud]. The tradeofiveens andp was improved by Guruswami
and SudanJGS], and no better result was known for a numbezarky Indeed, their result remains the best
known for decoding Reed-Solomon codes. Recently, Pailvaned Vardy[[PV/] gave an ingenious variant
of Reed-Solomon codes for which the agreement-rate trhdeebven better, leading finally to thaptimal
tradeoff (hamelyp = ¢ — o(1)) achieved by Guruswami and Rudfa [GR] using “folded” Reetb®on
codes.

Our expanders are based on the Parvaresh-Vardy codes.fiSplgcifor a left-vertexz € [N] and
y € [D], we define they'th neighbor ofz to beT'(z,y) = (y,C(z),), whereC : [N] — [M]P is a
Parvaresh-Vardy code with a somewhat unusual setting enpeters. (Note that here we take the right-
hand vertex set to bg)]| x [M].) To prove that this graph is an expander, we adopt a ‘lisbdmg’ view
of expanders. Specifically, for a right-sEtC [D] x [M], we define

LIST(T) & {z € [N] : T'(z) C T'}.

Then the property of being a(K, A) expander can be reformulated as follows:
for all right-setsT" of size less thanl K, we havgLIST(T)| < K.

We note that a similar formulation of expansion appears_ifi] [@here it is restricted to sefB of the form
I'(S) for setsS C [N] of size at mosk).



Let us compare this to the standard list-decodability prtyder error-correcting codes. Notice that for
a received word ¢ [M]?,

LIST(r,e) = {x: I?Jr[C(x)y =1y > €}

= {x: Iz/r[F(m,y) €T, > e},

whereT, = {(y,ry) : y € [D]}. Thus, the two list-decoding problems are related, but tia@dollowing
key differences:

¢ In the coding setting, we only need to consider getsf the formT,.. In particular, these sets are all
very small — containing onlyp of the possibleD M right vertices.

¢ In the expander setting, we only need to bound the numberftefdetices whose neighborhood is
entirely contained ifT’, whereas in the coding setting we need to consider lefteesrfor which even
ane fraction of neighbors are i, .

e Inthe coding setting, it is desirable for the alphabet 3iz¢éo be small (constant groly(n)), whereas
our expanders are most interesting and useful wheis in the range between, say’() and2"/2.

e In the coding setting, the exact size bIST(r,¢) is not important, and generally amply(n/c)
bound is considered sufficient. In the expander setting glrew the relation between the list size and
the size ofI" is crucial. A factor of 2 increase in the list size (forof the same size) would change
our expansion factad from (1 —e)D to (1 —e)D/2.

For these reasons, we cannot use the analysis of Parvaafarty [PV] as a black box. Indeed, in light
of the last item, it is somewhat of a surprise that we can dapérthe bound on list size to yield such a tight
relationship betwee(t’| and|LIST(T")| and thereby provide near-optimal expansion.

This list-decoding view of expanders is related to thedistoding view of randomness extractors that
was implicit in Trevisan’s breakthrough extractor constian [Tre] and was crystallized by Ta-Shma and
Zuckerman[[TZ]. There one considext setsT” C [D] x [M] (not just ones of bounded size) and bounds the
size of LIST(T, u(T) +¢) = {x : Pr,[T(x,y) € T] > u(T)+e}, whereu(T) %< |T|/(DM) is the density
of T'. Indeed, our work began by observing a strong similarityMeen a natural ‘univariate’ analog of the
Shaltiel-Umans extractdr [$U] and the Guruswami—Rudr&s@@R], and by hoping that the list-decoding
algorithm for the Guruswami—Rudra codes could be used teefmat the univariate analog of the Shaltiel—
Umans construction is indeed a good extractor (as congxttir [KU]). However, we were only able to
bound|LIST(T, ¢)| for “small” setsT", which led to constructions ddssycondensers, as in the preliminary
version of our papelf [GUV1]. In the present version, we iadtbound the size dfIST(T") = LIST(7, 1),
and this bound is strong enough to yield expanders with esiparil — ¢) - D and thus directly implies
lossless condensers, as discussed above. (We still cotsidg condensers in Sectibh 5 of this paper for
the purpose of analyzing a variant of our main construction.

It is also interesting to compare our construction and aigly recent constructions of extractors based
on algebraic error-correcting codes, namely those of TagsEuckerman, and Safia [TZS] and Shaltiel and
Umans [SU]. Both of those constructions use multivariatlyqamials (Reed—Muller codes) as a starting
point, and rely on the fact that these codeslacally decodablgein the sense that any bit of the message can
be recovered by reading only a small portion of the receivediwMWhile the advantage of local decodability
is clear in the computational setting (i.e., constructiohigseudorandom generatofs_[STV,ISU, Uma]),



where it enables efficient reductions, it is less clear why iteeded in the information-theoretic setting of
extractors, where the ‘decoding’ only occurs in the analylideed, Trevisan’s extractdr [Tre] corresponds
to the pseudorandom generator construction_of [STV], bttt thie locally list-decodable code replaced by a
standard list-decodable code. However, the extractoyaesilof [TZS] and[SU] seem to rely essentially on
multivariate polynomials and local (list-)decodabilif@ur construction works with univariate polynomials

and the analysis does not require any local decoding — indeédhriate polynomial (Reed-Solomon) codes
are not locally decodable.

2.2 Parvaresh-Vardy codes and the proof technique

Our constructions are based on Parvaresh-Vardy codes {i\¢h in turn are based on Reed-Solomon
codes. A Reed-Solomon codeword is a univariate degreel polynomial f € F,[Y], evaluated at all
points in the field. A Parvaresh-Vardy codeword is a bundlseyeral related degree— 1 polynomials
fo, f1, f2, ..., fm—1, €ach evaluated at all points in the field. The evaluationise¥ariousf; at a given field
element are packaged into a symbol from the larger alplgpet The purpose of this extra redundancy is
to enable a better list-decoding algorithm than is posd$di&eed-Solomon codes.

The main idea in[[PV] is to view degree — 1 polynomials as elements of the extension figld=
F,[Y]/E(Y), whereE is some irreducible polynomial of degree The f; (now viewed as elements &)
are chosen so thgt = fJ' fori > 1, and a positive integer parameter As explained in Sectioi .1, our
expander is constructed directly from Parvaresh-Vardyesa@s follows:

L(fo,y) = [y, fo(w), f1(y), - fm—1(y)].

In the analysis, our task is to show that for anyBeif size L, the setLIST(T") = {fo : I'(fo) C T} is
small. To do this we follow the list-decoding analysis[of [PWhich in turn has the same general structure
as the list-decoding algorithms for Reed—Solomon cdded,|G6]. We first produce a non-zero polynomial
Q : Fj*™ — F, that vanishes off’. Now, for everyf, € LIST(T), we have

Q(yvf()(y)v s >fm—1(y)) =0 vy € qu

and by ensuring thaf) has small degree (which is possible becalisis not too large), we will be able
to argue that the univariate polynomi@(Y, fo(Y),..., fm—1(Y)) is the zero polynomial. Recalling the
definition of thef;, and viewing thef; as elements of the extension fi#d= F,[Y]/E(Y '), we observe that
fo Is aroot of the univariate polynomial

Q(2) ¥ Qy,z,z" 2", ..., 2" ") mod E(Y).

This is because when simplifying the formal polynomigi(fy(Y")) mod E(Y), we can first take each
fo(Y)" term moduloE(Y"), resulting inf;(Y'), and we have just argued th@(Y, fo(Y),..., fm_1(Y))

is the zero polynomial, so it is still the zero polynomial mém £(Y'). This argument holds for every
fo € LIST(T"), and so we can upper-boufidIST(7")| by the degree of)*.

3 Expander Graphs
We first formally develop the list-decoding view of exparxidescribed in Sectidn2.1.
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Definition 3.1. For a bipartite graphI" : [N] x [D] — [M] and a sefl’ C [M], define

LIST(T) = {z € [N] : T(z) C T}.

The proof of the next lemma follows from the definitions:

Lemma 3.2. A graphl'is a (K, A) expander iff for every séf of size at mostl K — 1, LIST(T') is of size
at mostK — 1.

3.1 The construction

Fix the fieldF, and letZ(Y') be an irreducible polynomial of degreeoverF,. We identify elements dfy
with univariate polynomials ovef, with degree at mosi — 1. Fix an integer parametér.

Our expander is the bipartite graph F x F, — F;**! defined as:

def
L(foy) = ly, (), (f" mod E)(y), (f** mod E)(y),--- . (f
In other words, the bipartite graph has “message” polyntsniét”) on the left, and the’th neighbor of
f(Y) is simply they’th symbol of the Parvaresh-Vardy encoding ffY"). For ease of notation, we will
refer to(f* mod FE) as “f;.”

hmfl

mod E)(y)]. (1)

Theorem 3.3. The graphl™ : Fy; x F, — IE‘Q”“ defined in[L) is <K a0z, A) expander fork ., = h™
andA=q— (n—1)(h—1)m.

Proof. Let K be any integer less than or equalkg,,, = k"™, and letA = ¢ — (n — 1)(h — 1)m. By
Lemmd3.2, it suffices to show that for every $et IF;”“ of size at mostA K — 1, we havelLIST(T)| <
K — 1. Fix such a sef".

Our first step is to find a nonzero “low-degree” polynon@lY, Y1, . . ., Y;, ) that vanishes off’. Specif-
ically, @ will only have nonzero coefficients on monomials of the farfl/; (Y3,...,Y,,) for0 <i < A-1
and0 < j < K—1 < ™ —1,whereM;(Yy,...,Y,,) = Y{°--- Yt andj = jo+jih+-- -+ jm_1h™ !
is the basé: representation of. (For simplicity, one may think of{ = A™, in which case we are simply
requiring thatQ has degree at moét— 1 in each variablé’;.) For each:z € T, requiring thatQ(z) = 0
imposes a homogeneous linear constraint on4he coefficients ofQ). Since the number of constraints is
smaller than the number of unknowns, this linear system masmaero solution. Moreover, we may assume
that among all such solution§), is the one of smallest degree in the variableThis implies that if we write
Q in the form

K-1
QY. Y1, ... Yn) = > pi(Y) Mj(Yn,...,Yy)
§=0

for univariate polynomialgy(Y),...,px—1(Y), then at least one of the;’s is not divisible by E(Y").
OtherwiseQ(Y, Y1, ...,Y,,)/E(Y) would have smaller degree i and would still vanish of” (sinceE
is irreducible and thus has no rootskp).

Consider any polynomiaf(Y') € LIST(7T"). By the definition ofLIST(7") and our choice of), it holds
that

Q, fow), fi)s-- - fm=1(y)) =0  VyeF,.

9



That is, the univariate polynomidt(Y") f QY. fo(Y),..., fm—1(Y)) hasq zeroes. Since the degree of

R;(Y)isatmostA — 1) + (n — 1)(h — 1)m < ¢, it must be identically zero. So
QY. fo(Y),..., fno1(Y)) =0

as a formal polynomial. Now recall thdf(Y) = f(Y)"" (mod E(Y)). Thus,

QU f(Y), FY), .. f()™ )
QY. foY),..., fmaa1(Y)) =

So if we interpretf(Y’) as an element of the extension fidid= I,[Y]/E(Y), then f(Y') is a root of the
univariate polynomial)* over[F defined by

0 (mod E(Y)).

Q" (2) ¥ Qy,z,z", 2",..., 2" ") mod E(Y)

=

(p;(Y) mod E(Y)) - M;(Z,2",..., 2"

I
[ing

S

() (Y) mod E(Y)) - Z7.

o

<.

Since this holds for every(Y') € LIST(T'), we deduce thaf)* has at leasfLIST(T')| roots inF. On the
other hand@* is a non-zero polynomial, because at least one 0pf{E)’s is not divisible by£(Y'). Thus,
|[LIST(T)| is bounded by the degree €f, which is at most{ — 1. O

Remark 3.4. Observe that for alb C F,, the subgraph of that comes from taking only-th edges for
y € S,is a(<Kpq, A) expander fotd = |S| — (n — 1)(h — 1)m by the same argument.

3.2 Setting parameters

The following theorem differs from Theorelll]l.3 only by allog o to be non-constant.

Theorem 3.5(Thm.[I3, generalized)For all positive integersV, Kn.x < N, alle > 0, and alla €
(0,1og z/loglog z) for x = (log N)(log Kyn4z) /¢, there is an explici{ < K44, (1 — €)DD) expander” :
[N] x [D] — [M] with degreeD = O(((log N)(log Kmax)/s)”l/a) andM < D?- K}te. Moreover,D
and M are powers of 2.

Proof. Letn = log N andk = log Kpax. Lethg = (2nk/e)Y/*, h = [hyg], and letq be the power of 2 in
the interval(h!*t< /2, p1+e].

Setm = [(log Kmax)/(logh)], so thath™ ! < Kp.. < k™. Then, by Theorerfir3.3, the graph
I : Fl xF, — Frt! defined in[L) is < k™, A) expander forA = ¢ — (n — 1)(h — 1)m. Since
Knax < h™,itis also a(<Kpax, A) expander.

Note that the number of left-vertices Ihis ¢" > N, and the number of right-vertices is

M = qm—i-l < q2 . h(l+a)~(m—l) < q2 . Klta

10



The degree is

Ddéfq < plta < (ho _|_1)1+a

= O(htt*) = 0 (((log N)(log Komax) /E)1+1/a).

where the second-to-last equality follows from the fact tha= (nk:/s)l/a > « (due to the upper bound
ona).

To see that the expansion factér= g — (n — 1)(h — 1)m > g — nhk is atleasi{1 — ¢)D = (1 — ¢€)q,
note that
nhk < e-h'TY < egq,

where the first inequality holds because > nk/e.

Finally, the construction is explicit because a represiemaf F, for ¢ a power of 2 (i.e. an irreducible
polynomial of degreéog ¢ over[Fy) as well as an irreducible polynomi&l(Y') of degreen overF, can be
found in timepoly(n, log ¢) = poly(log N, log D) [Shd]. O

Remark 3.6. In this proof we work in a fieldf, of characteristic 2, which has the advantage of yielding
a polynomial-time construction even when we need to tat@ebe superpolynomially large (which occurs
whene(n) = n=“(M). Whene > 1/poly(n), then we could use any prime powginstead, with some
minor adjustments to the construction and the parametairmet! in the theorem.

In the above theoremy is restricted to be slightly sublogarithmic irk /<. It will sometimes be useful
to use the following variant, which corresponds to a loganit value ofor and yields a degree with a linear
dependence olog N.

Theorem 3.7. For all positive integersV, Ky.x < IV, and alle > 0, there is an explici{ < K44, (1 —
)D) expanderl : [N] x [D] — [M] with degreeD < 2(log N)(log Knqez)/e and M < (4K a0 )08 L.
Moreover,D and M are powers of 2.

Proof. The proof is along the same lines as that of Thedrein 3.5, exeefakeh = 2, g € (nk/e, 2nk/e],
andm = [log K. ]. Then we can bound the degree By= ¢ < 2nk/e, the number of right-hand
vertices byM = ¢™*! = (4-2m71)logd < (4K,,,,)°89, and the expansion b = ¢ — (n—1)(h—1)m >
g—nk>(1-¢)D. O

4 Lossless condensers and extractors

In this section we prove our main extractor theorem.

4.1 Lossless condensers

We first interpret the expanders constructed in the prevgmgion as lossless condensers (see Defini-
tion[L.8). This connection, due to Ta-Shma, Umans, and Zutke [TUZ], is based on viewing a function
C :{0,1}" x {0,1}¢ — {0,1}™ as the neighbor function of a bipartite graph with left-vertices,2™
right-vertices, and left-degre¥. It turns out that this graph has expansion close to the dafjamd only if

C is a lossless condenser.
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Lemma 4.1([TUZ]). Forn,m,d € N, ¢ € (0,1), andk € [0,n] suchtha* € N, C : {0,1}" x {0,1}¢ —
{0,1}™ is ak —. k + d condenser iff the corresponding bipartite graph i€24, (1 — ¢) - 2¢) expander.

One minor technicality in the above connection is that ituiegs that2* be an integer, whereas the
notion of condenser makes sense forfalE [0,n]. However, this is easily handled by rounding, if we
allow a tiny increase in the error parameteiSpecifically, we have the following generalization of tli@ “
direction of Lemma&4l1:

Lemma4.2. For n,m,d € N,e € (0,1), andk € [0,n], C : {0,1}" x {0,1}¢ — {0,1}" isak —. k+d
condenser if the corresponding bipartite graph i§[a@*], (1 — ¢) - 2¢) expander and &|2*], (1 — ¢) - 29)
expander.

Proof. Let K = 2* ¢ NandL = |K|. Everyk-source is a convex combination of sour@sn which

some sefS of L elements each have probability mass exattlit, and one element ¢ .S has probability
1—L/K; thus it suffices to prove the lemma for such souXedVe can decomposk = pX; + (1 —p)Xaz

whereX; is uniform onS, Xz is uniform onSU{z}, andp € [0, 1] satisfiep/L+ (1—p)/(L+1) = 1/K

(so that all elements & have probability exactly / K).

By LemmalZ1l,C(X;, Uq) is e-close to a sourc&; of min-entropylog(LD), whereD = 2¢, and
C(X2,Uyq) is e-close to a sourc&z of min-entropylog((L + 1)D). ThenC (X, Uy) is e-close toZ =
pZ1 + (1 — p)Z2. We now claim thaf is a(k + d)-source. Indeed, for every

Pr[Z:z]gp-Pr[Zl:z]+(1—p)Pr[Z2:z]gp.i+(1_p).(L_:l)D:KlD.

LD

Using this lemma, the following are immediate consequentd@heorem$§ 315 arld3.7.

Theorem 4.3(TheorenLl7, generalizedfor everyn € N, k0. < 1, > 0, and

a € (0,log(nkmaz /€)/ log log(nkmas /€)), there is an explicit functio® : {0,1}" x {0,1}¢ — {0,1}™
withd = (1 + 1/«) - (logn + log kpas + log(1/€)) + O(1) andm < 2d + (1 + «)kma such that for all
k < kpmaz, Cis ak —. k + d (lossless) condenser.

Theorem 4.4. For everyn € N, knqe < n, anda,e > 0, there is an explicit functio” : {0,1}" x
{0,1}¢ — {0,1}™ with d < logn + log kpaq + log(1/e) + 1 andm < d - (kpas + 2) such that for all
k < ks, Cis ak —. k + d (lossless) condenser.

Once we have condensed almost all of the entropy into a sauitbehigh entropy rate (as in Theo-
rem[4.3), extracting (most of) that entropy is not that difficAll we need to do is to compose the condenser
with an extractor that works for high entropy rates. Thedeihg standard fact makes the composition for-
mal:

Proposition 4.5. Suppos& : {0,1}" x {0,1}% — {0,1}" is ank —., k' condenser, and : {0,1}" x
{0,1}%2 — {0,1}™ is a (k', e,)-extractor, thenE o C' : {0,1}" x {0,1}% %9 — {0,1}™ defined by
(E o C)(z,y1,Y2) def E(C(x,y1),y2) isa(k,e1 + e2)-extractor.

12



In the next section, we will use this proposition to compose @ondenser with a simple extractor
for high entropy rates to obtain our main extractor theor@tmepren_LE) for the case of constant error
e. For subconstant error, we could compose with Zuckermatitai@or for constant entropy rate [Zuc2],
which works provided > exp(—k/200°¢" k) Instead, in Sectiold 4 we combine our condenser with ideas
from the early constructions of extractors (the Leftoveshlaemma, block-source extraction, and simple
compositions), to obtain a completely self-contained paforheoren”Lb with no constraint on the error
parametet at all.

4.2 Extractors for constant error

In this section, we prove Theordm1lL.5 for the case of constaate (which suffices for many applications
of extractors). It is obtained by composing our condenséh wiextractor for min-entropy rate close to 1.
A standard extractor construction for this setting is basedxpander walks [Gil, Zu¢2, Zuc3]. Specifi-
cally, such an extractor can be obtained by combining thévalgmce between extractors and ‘averaging
samplers’[[ZucP], and the fact that expander walks are araguey sampler, as established by the Chernoff
bound for expander walks 1(;@.

Theorem 4.6. For all constantsa, ¢ > 0, there is a constani < 1 for which the following holds: for all
positive integers:, there is an explicit construction of @& = on, ¢) extractor £ : {0,1}" x {0,1} —
{0,1}"™ with ¢ < log(an) andm > (1 — a)n.

For completeness, we present the short proof:

Proof. Letm = [(1 — a)n], and for some absolute constants- 1 and\ < 1, let G be an explicit2©-
regular expander o™ vertices (identified with{0, 1}"") and second eigenvalue = \(G) < 1. Let L

be the largest power of 2 at most — m)/c (SOL > (n —m)/(2¢)), and lett = log L < log(an). The
extractorF is constructed as follows. Its first argumenis used to describe a walk, v, . .., vy, of length

L in G by pickingv; based on the first: bits of x, and each further step of the walk from the nekits of

x — so in all, L must satisfyn = m + (L — 1)c. The seed; is used to pick one of the vertices of the walk
at random. The outpuf(z, y) of the extractor is then-bit label of the chosen vertex.

Let X be a random variable with min-entropy= én. We wish to prove that for any C {0,1}™, the
probability thatE' (X, Uy) is a vertex inS'is in the rangeu £ ¢ wherep = |S|/2™. Fix any such subse.
Callanz € {0,1}" “bad” if

P;r[E(x,y) €S]—pul>¢e/2.

The known Chernoff bounds for random walks on expanderd [@ply that the number of bad's is at

most
on . e—Q(ez(l—A)L) —9n. 6—9(52(1—)\)an/c) —9n. 2—Q(€2cm)

(sincec, \ are absolute constants). Therefore the probability Xai bad is at mos2—%" - 2" . 2-Qe%an)
which is exponentially small for large enough< 1. Therefore

|PrlE(X,Us) € 8] — | <e/2+2790 <,

implying thatE is a(k, ¢)-extractor. O

2The papers[IIZ_CV] prove hitting properties of expanderksahnd observe that these imply objects related to (but ereak
than) extractors, known as dispersers.
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Combining this with our condenser, we obtain the followix¢y&ctor:

Theorem 4.7(Thm.[I5 for constant errar)For all constantsw, e > 0: for all positive integersn, k, there
is an explicit construction of &k, ¢) extractor £ : {0,1}" x {0,1}% — {0,1}™ with d = O(logn) and
m > (1 —a)k.

Proof. Given constantv,e > 0, apply Theoreni 416 to obtain@& = 1 — ~ for a constanty > 0 and
an explicit (k,£/2) extractorE : {0,1}* x {0,1}} — {0,1}™ with a = |k/(1 —~)], t < loga, and
m=(1l—a)a>(1-ak.

By Theoren{ZB, there is an explidit—./, k + d condenseC : {0,1}" x {0,1}* — {0,1}" with
u = O(logn) andb < (1 +v/2) - k + 2u < a, where the latter inequality holds because we may assume
k > (4u + 2)/~. (Otherwise a trivial extractor that outputs its seed valisfy the theorem.)

By Propositionl4}b, we obtain &, <) extractorE : {0,1}" x {0,1}¢ — {0,1} with seed length
d =t+u = O(logn) and output lengthn > (1 — a)k. O

4.3 Extractors for arbitrary error

In this section, provide a self-contained constructiondfaztors that are optimal up to constant factors,
with no constraint on the error parameter. It is obtaineddaylzining our condenser with the ideas from the
early constructions of extractols [Zu¢1, NZ,1$Z, ZUc?, IGBgyond our condenser, the only tools needed
are the universal hashing and some simple (and standartipdseto compose extractors. In this section,
we often use the terrba-sourceto mean a random variable with min-entropy at Igast

4.3.1 The Leftover Hash Lemma

The Leftover Hash Lemma_ILL], which predates the generdiniteon of extractors [[NZ], shows that
universal hash functions are randomness extractorst alfibia large seed length:

Lemma 4.8([ILL]) . Forall n € N, k < n, ande > 0, there is an explici{k, ) extractorE : {0,1}" x
{0,1}¢ — {0,1}™ withd = nandm > k + d — 2log(1/¢).

Note that the output length is optimal, but the seed lendthégr rather than logarithmic im. Neverthe-
less, this extractor was a very useful component in earlgtcoctions of extractors with (poly)logarithmic
seed length [Zu¢1, NZ, Zut?]. Indeed, it was dubbed the “Motif all Extractors” by Nisar [NIT].

Proof Sketch.We associatg0, 1} = {0, 1} with the finite fieldF of size2". Givenz,y € F, we define
E(z,y) = (y, zy|m), Wwherezy|,, is the firstm = [k + d — 21log(1/<)] bits of the producty € F.

The fact that this is &k, e) extractor follows from the Leftover Hash LemmiaTILL] and tfaet that
the set of functions,(z) = zy|,, is 2-universal. For completeness, we sketch the proof HegeX be
a k-source on{0, 1}, andY be uniform on{0, 1}¢. Then, it can be shown that tloellision probabilitﬁ
of B(X,Y) = (Y,XY|y) isatmost(1/D) - (1/K + 1/M) < (1 + 2¢?)/(DM). (1/D is the collision
probability of Y, 1/K is the collision probability ofX, and1/M is the probability thattY = 2’Y for
any two distinctr # 2’.) This is equivalent to saying that tlie distance of the distributio’(X,Y') from

*Thecollision probabilityof a random variabl& is 3~ Pr[Z = z]* = Pr[Z = Z'], whereZ' is an iid copy ofZ.
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uniform is at most,/2e2/DM < 2¢/vDM. Then the statistical distance to uniform equals 1/2 &he
distance, which in turn is at most a factor@ M larger than the/, distance. O

We note that by composing our lossless condenser (Thdafnwidh this extractor via Propositidn4.5,
we can reduce the seed length franto O (k + log(n /<)), matching the low min-entropy extractors bf1SZ]
(which are based on generalization of the Leftover Hash Lanmalmost-universal hash functions):

Lemma 4.9. For every constanty > 0, for all n € N, k£ < n, ande > 0, there is an explicit extractor
E:{0,1}" x {0,1}¢ — {0,1}™ with d = (1 + a)k + O(log(n/e)) andm > k + d — 2log(1/¢) (the
constant inO(log(n/c)) depends o).

Remark 4.10. It was pointed out to us by Michael von Korff and Kai-Min Chutitat the seed length
can be reduced further @k + O(log(n/e)) for an arbitrarily small constant > 0 by condensing to
lengthn’ = (1 + «)k + O(log(n/¢)), and then applying the “high min-entropy” extractor lof [G\Wjhich
requires a seed of lengif — k + O(log(1/¢)) = ak + O(log(n/e)) and has optimal output length =

k 4+ d — 2log(1/e) — O(1) (if implemented using Ramanujan expander graphs). In tle sextion, we
will see another way (LemnfaZ4]11) to achieve this constactisf savings in seed length, which has the
advantage of being self-contained (not relying on Ramamnejganders) but has the disadvantage of only
extracting a constant fraction of the min-entropy.

4.3.2 An extractor with seed much shorter than its output

Our goal in this subsection is to constructing the followagractor, which will be the main building block
for our recursive construction:

Lemma 4.11. For everyconstantt > 0 and all positive integers, > k and alle > 0, there is an explicit
(k,e) extractor E : {0,1}" x {0,1}¢ — {0,1}™ withm = [k/2] andd < k/t + O(log(n/e)).

The point is that this extractor has a seed length that is bitranily large constant factor (namely
t/2) smaller than its output length. This will be useful as adinig block for our recursive construction
of extractors optimal up to constant factors in Secfion3t.3Ve now turn to defining block sources and
collecting basic results about extracting randomness fram.

A block sourceis a useful model of a weak random source that has more steutttan an arbitrary
k-source:

Definition 4.12([CG]). X = (X1, Xa,...,X¢)isa(ky, ko, ..., k) block sourcef for everyzy, ..., z;_1,
XilX1=a1,..X;_1=z;_, IS &k;-source. Ifk; = kg =--- = k; = k, then we callX at x k block source

Note that a k1, k2, . . ., k) block source is also @& + - - - + k;)-source, but it comes with additional
structure — each block is guaranteed to contribute someemirepy. Thus, extracting randomness from
block sources is easier task than extracting from genetatee. Indeed, we have the following standard
lemma:

Lemma 4.13. Let By : {0,1}™ x {0,1}% — {0,1}™ be a(k;,¢;)-extractor, andE; : {0,1}"2 x
{0,1}%2 — {0,1}™2 be a(kq, e2)-extractor withmy > dy. DefineE’((x1,x2),y2) = (F1(21,y1), 22),
where(yy, z2) is obtained by partitioning®s (x2, y2) into a prefixy; of lengthd; and a suffixze of length
mo — dl.
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Then for everyk,, k2) block sourceX = (X4, X2) taking values in{0, 1}™ x {0,1}"2, it holds that
E'(X,Uyg,) is (g1 + e2)-close toU,,; X Upm,_d,-

Proof. (X1,Y1,Z2) = (X1, E2(X2,Uq,)) isez-close t0(X1, Um,) = (X1,Ud,; Umy—dy )-
Thus,(E1(X1,Y1), Z2) ises-close to( E1 (X1, Uq, ), Um,—d, ), Whichise;-close to( U, ; Umy—dy )-
By the triangle inequalityE’ (X, Ug,) = (E1(X1,Y1),Z2) is (e1+e2)-close tq( U, , Umy—d,). O

The benefit of this composition is that the seed lengtlibkquals that of only one of the extractors
(namely E»), rather than being the sum of the seed lengths. Thus, we gatriact from multiple blocks at
the “price of one.” Moreover, since we can take= mo, which is typically larger thamds, the seed length
of E' can even be much smaller than thatf.

The lemma extends naturally to extracting from many blocks:

Lemma4.14.Fori=1,...,t, letE; : {0,1}™ x {0,1}% — {0,1}"™ be a(k;, <;)-extractor, and suppose
thatm; > d;_ for everyi = 1,...,t, where we defindy = 0. DefineE’ ((z1,...,x¢),yt) = (21,---, 2t),
where fori = t,...,1, we inductively definéy;_1, z;) to be a partition ofE;(x;, y;) into a d;_1-bit prefix
and a(m; — d;—1)-bit suffix.

Then for every(ky, ..., k) block sourceX = (Xy,...,Xy) taking values if0, 1}t x --- {0, 1}, it
holds thatE’ (X, Uy, ) is e-close toU,, fore = 3¢ e; andm = 320 (m; — di_1).

In light of this composition, many constructions of extstwork by first converting the source into
a block source and then applying block-source extractioabmwve. Our construction will also use this
approach (recursively). It is based on the observationdhatondenser gives a very simple way to convert
a general source into a block source. Indeed, every soustdfadiently high min-entropy is already a block
source.

Lemma 4.15. If X is a(n — A)-source of lengtm, and X = (X;,X3) is a partition of X into blocks of
lengthsn; andng, then(Xy, X2) is e-close to somén; — A, ny — A —log(1/e)) block source.

The intuition behind the above lemma is thatXifis missing onlyA bits of entropy, then no substring
of it can be missing more thaf bits of entropy (even conditioned on the others). The asulitilog(1/<)
bits of entropy loss iK 5 is to ensure that the min-entropy Kk is high conditioned on all but anfraction
of values ofX;.

Consider ak-sourceX of lengthn = (4/3)k, i.e. the source has min-entropy ratél, as can be
achieved by applying our condenser. Then setting= &/3 and breakingX into two halves of length
n/2 = (2/3)k, we have a block source in which each block has min-entropghly %/3. Then, by
Lemma[4.IB, if we want to extraél(k) bits using a seed of lengthi(log n), it suffices to have &k /3, <)
extractor E; with output lengthm, = Q(k) and a(k/3, ) extractorE» with seed lengthi; = O(logn)
such that the output length, of E is at least the seed length of £, (e.g. both can beoly(log k)). By
now, there are many such paitg;( E5) in the literature, some of which are quite clean and diré&till,
we do not use that approach here, because it is not selfioed{eand, more importantly, it does not yield
extractors with arbitrarily small errar.

By induction, we have the following:
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Corollary 4.16. If X is a(n— A)-source of lengthh, and X = (X1, Xz, ..., X¢) is a partition of X into ¢
blocks, each of length at least, then(X1, X2, ..., X¢) is te-close to someé x (n’ — A —log(1/¢)) block
source.

Returning to our goal of constructing the extractors of Leaffif1, here is our plan for the proof. To
convert a generat-sourceX into a block source withh = O(1) blocks, we can first use our condenser of
TheorenT4.1 to obtain &-sourceX’ of length(1 + «)k for a sufficiently small constant, which we then
break intot equal-sized blocks. By applying Corolldry4l.16 with= «k, the result will be close to a source
with min-entropy at least/t — ak = Q(k) per block, providedv < 1/t. Applying block-source extraction
with the extractor of Lemmi@a4.8, we obtain extractor promhiseLemmdZ.TI. The formal details follow.

Proof of Lemmd—411:Round¢ up to an integer, and set = ¢/(4t + 1). Given ak-sourceX, we
apply the condenser of Theordml4.3 with errgrand parameter = 1/(6¢). With a seed of lengthl’ =
O(log(n/e¢)) = O(log(n/<)), this provides us with aiX’ of length at most’ = (1 + «)k + O(log(n/¢))
that iseg-close to ak-source.

Next, we partitionX' into 2¢ blocks, each of size” = |n//(2t)] orn” +1. By Corollary[Z1®, the
result is(eg + 2teg)-close to &t x k" source, where

K" =n" —ak — O(log(n/e)) > k/(2t) — ak — O(log(n/e)) = k/(3t) — O(log(n/e)) .

Now we perform block-source extraction using the “Leftotrsh Lemma” extractof” of Lemmal4.8
with input lengthn” + 1, min-entropyk”, and errorz to extract from each block. The seed length fgf
isd” <n"+1=Ek/t+ O(log(n/e), and output lengthn” > max{d", k" + d”’ — 2log(1/2¢)}. (Output
lengthm” = d” is always achievable by simply having the extractor outfsuséed.)

Applying the block-source extractor of Lemma4.14 with = E” for everyi, the number of bits we
extract is

m > 2t-(m" —d") =2t (k" —2log(1/e0)) = 2k/3 — O(log(n/e)) > [k/2]

(the last step follows since # < O(log(n/c)) we can simply output the seed). The statistical distance
increases by at most - ¢y, for an output that has distance at mpst+ 1) - 9 = € from uniform. The total
seed length needed for the block-source extractiahisd” = k/t + O(log(n/¢)). O

4.3.3 The recursion and extractors optimal up to constant fetors

We now apply the above techniques recursively to construek&ractor that is optimal up to constant factors
for all settings of parameters. This extractor outputs dralf of the min-entropy from the source, but we
will be able to easily boost this to an output length(éf— «)k for any desired constant > 0, using
standard techniques (TheorEm4.19).

Theorem 4.17. For all positive integersn, k and alle > 0, there is an explicit construction of @, ¢)
extractor £ : {0,1}" x {0,1}% — {0,1}™ withd = O(logn + log(1/¢)) andm > k/2.

Overview of the ConstructionNote that for small min-entropies, namelyk = O(log(n/¢)), this is

already achieved by Lemnia4l11 with seed lengtbmaller than the output lengtlv by any constant
factor. (If we allowd > m, then extraction is trivial — just output the seed.) Thust gaal will be
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to recursively construct extractors for large min-entespusing extractors for smaller min-entropies. Of
course, ifE : {0,1}" x {0,1}¢ — {0,1}™ is a(ko, ) extractor, say withn = kq/2, then it is also dk, <)
extractor for everyt > ky. The problem is that the output length is o&ly/2 rather thark /2. Thus, we need
to increase the output length. This can be achieved by siaggiying extractors for smaller min-entropies
several times.

Lemma 4.18 ((WZ, RRV])). SupposeE; : {0,1}" x {0,1}% — {0,1}™ is a (k1,¢;) extractor and
Ey : {0,1}" x {0,1}92 — {0,1}™2 is a (kq, ) extractor forky < k; —my — s. ThenE’ : {0,1}" x
{0,134+ — {0, 1}m+m2 defined byE (, (y1,y2)) = Er(x,y1) o Bala,ys) is & (k, (1/(1 — 27%)) -
€1 + £2) extractor.

The intuition is that most outputs df; have probability mass: 27™1; thus after conditioning on the
output of £, the source still has min-entropy k1 — mj.

To see how we might apply this, consider setting= .8k andm; = k1/2,e1 = g3 = &, s = 1,
ke = k1 —mq — 1 € [.3k, .4k], andmy = k2 /2. Then we obtain &k, 3¢) extractorE’ with output length
m = mj + mg > k/2 from two extactors for min-entropigs,, ko that are smaller thah by a constant
factor.

Now, however, the problem is that the seed length grows bynataat factor (e.g. ifly = ds, we
get seed lengtBd rather thand). Fortunately, block source extraction (Lemma#.13, with éxtractor of
Lemma4.Tll ad’s) gives us a method to reduce the seed length by a constaat. f§€he seed length of
the composed extractdt’ will be the same of that a&-, which will be a constant factor smaller than its
output lengthms, which we can take to be equal to the seed lenftbf £;. Thus, the seed length &’
will be a constant factor smaller than thatff.) To apply this, we will convert our source to a block source
by condensing it to high min-entropy rate and applying Qargl4.16.

One remaining issue is that the errostill grows by a constant factor. However, we can start with
polynomially small error at the base of the recursion andettaxe only logarithmically many levels of
recursion, so we can afford this blow-up.

We now proceed with the proof details. It will be notatiogatbnvenient to do the steps in the reverse
order from the description above — first we will reduce theddeegth by a constant factor, and then apply
Lemmd4.IB to increase the output length.

Proof of Theorerl417Fix n € N andgy > 0. Setd = clog(n/ep) for an error parameter, and a
sufficiently large constant to be determined in the proof below. (To avoid ambiguity, wié keep the
dependence onexplicit throughout the proof, and all big-Oh notation tédmiversal constants independent
of ¢.) Fork € [0,n], leti(k) be the smallest nonnegative integesuch thats < 2° - 8d. This will be the
level of recursion in which we handle min-entropynote thati(k) < logk < logn.

For everyk € [0,n], we will construct an explicifsy, : {0, 1}" x {0,1}% — {0, 1}[*/2] thatis a(k, ;1))
extractor, for an appropriate sequenge< 1 < e2---. Note that we require the seed length to remain

d and the fraction of min-entropy extracted to remain 1/2 fbrvalues ofk. The construction will be by
induction oni(k).

Base Case: i(k) = 0, i.e. k < 8d. The construction of follows from Lemmd 4111, setting= 9 and
taking c to be a sufficiently large constant.
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Inductive Case: We constructty, for i(k) > 1 from extractorsEy with i(k’) < i(k) as follows. Given a
k-sourceX of lengthn, E}, works as follows.

1. We apply our condenser (TheorEml4.3) to cond¥einto a sourceX’ that ise-close to a-source of
length(9/8)k + O(log(n/co)). This requires a seed of length(log(n/ep)).

2. We divideX’ into two equal-sized halvgsXy, X3). By Corollary[£1I6,X 1, X5) is 2¢o-close to a
2 x k' block source for
K =k/2—k/8 — O(log(n/sp)) -

Note thati(k') < i(k). Sincei(k) > 1, we also havé’ > 3d — O(log(n/c¢)) > 2d, for a sufficiently
large choice of the constant

3. Now we apply block-source extraction as in Lemima4.13. &¥e £, to be a(2d,ey) extractor
from LemmaZ4Ill with parametér= 16, which will give usms = d output bits using a seed of
lengthdy = (2d)/16 + O(log(n/eo)). For Ey, we use our recursively constructégl,, which has
seed lengthl, errore; .y, and output lengthx’/2] > k/6 (where the latter inequality holds for a
sufficiently large choice of the constantbecauseé: > 8d > 8clog(1/¢)).

Allin all, our extractor so far has seed length at mo&+O(log(n/eo)), error at most; ;)1 +O(eo),
and output length at least/6. This would be sufficient for our induction except that thepat length is
only k/6 rather thark /2. We remedy this by applying LemriaZ118.

With one application of the extractor above, we extractastie:; = & /6 bits of the source min-entropy.
Then with another application of the extractor above for-emitropy threshold, = k—m; —1 = 5k/6—1,
by LemmdZ4.IB, we extract anoth@ik /6 — 1) /6 bits and so on. After four applications, we have extracted
allbut(5/6)*-k+0(1) < k/2 bits of the min-entropy. Our seed length is thiefd/8+ O (log(n/s0))) < d
and the total error is; ) = O(e;(x)—1)-

Solving the recurrence for the error, we get= 200 . g5 < poly(n) - €9, SO we can obtain errar by
settingeg = ¢/poly(n). As far as explicitness, we note that computifig consists of four evaluations of
our condenser from TheordmM#.3, four evaluation&pffor values oft’ such that (k') < (i(k) — 1), four
evaluations of the explicit extractor from Lemina4.11, aindpde string manipulations that can be done in
time poly(n, d). Thus, the total computation time is at ma&t) - poly(n, d) = poly(n, d). O

4.3.4 Main extractor theorem

The extractor of Theoreln 417 extracts only half of the mitr@py from the source, but we can obtain
extractors that obtain any constant fraction of the mimagyt or all the min-entropy by repeated application
of Lemmd4.1B.

Theorem 4.19(main extractor result)For every constant > 0: for all positive integers: > k and all
e > 0, there is an explicitk, ¢) extractor £ : {0,1}" x {0,1}¢ — {0,1}™ with m = (1 — a)k and
d =logn + O(log(k/¢)).

Proof. Achieving the parameters in the theorem, except with seegthe) (log(n /<)) follows immediately

by applying Lemm&Z.1®(1/«) times with both extractors being taken from Theofem#.17 adlueve
the promised seed lengthgn + O(log(k/<)), we first apply our condenser from Theoréml 4.4 to the
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source. This requires a seed of lengdtkS logn + log k + log(1/¢) + 1 to condense the source to length
n' <d-(k+2) = O(k-log(n/e)), while retaining all of the min-entropy (up to statisticatdnce=). Then
extracting a constant fraction of the min-entropy only ieggian additional seed length(log(n’/c)) =
O(log k + loglogn + log(1/¢)) = O(log(k/e)). (We assumé& > log n; otherwise we can use the trivial
extractor that just outputs the seed.) O

Note that an additional improvement of Theorem #.19 overféa[4. 1V is that it achieves a constant
of 1 in front of thelog n. Indeed, wherk = n°() ande = 1/n°(), the seed length is within @ + o(1))
factor of the optimal bountbg n 4 2log(1/¢) + O(1), improving over the extractors of Lu et dl. [LRVW] in
which the seed length is only optimal to within some largestant factor. (In the conference version of this
paper [GUV?2], we also showed how to use our techniques tegeihh [Zuc3] to improve the seed length
of Theoren 419 t@1 + +) log n + log k + O(1) for arbitrarily small constants, v > 0; we omit that result
here because the improvement is only for a rather limitegeai parameters.)

4.3.5 Extracting all the min-entropy

Next, we give an extractor that extracts all of the min-egmgran order to also get the min-entropy of the
seed, we will use the following variant of Lemria4.18, whére $econd extractor is also applied to the
seed of the first extractor.

Lemma 4.20([RRV]). Supposef; : {0,1}™ x {0,1}% — {0,1}™ is a (k;,e;) extractor andE; :
{0, 1} x {0,1}92 — {0,1}™2 is a(kg, £2) extractor forky < ki +dy —my —s. ThenE’ : {0,1}™ x
{0, 1314 — {0, 1}m+m defined byE'(z, (y1,92) = Ei(x,y1) © Ea((z,91), ) is a (kr, (1/(1 -
27%)) - e1 + &2) extractor.

Theorem 4.21. For all positive integers: > k and alle > 0, there is an explicitk, ) extractor E :
{0,1}" x {0,1}4 — {0,1}™ withm = k + d — 2log(1/e) — O(1) andd = logn + O(log k - log(k /<)).

Proof. Similar to the proof of Theorefn 4119, we show how to get thgdaseed lengtt) (log & - log(n/¢))
first; then the result follows by composing the extractotwvaitir condenser from Theordm#.4.

By applying Lemmd 418 (witls = 1) to our extractors from Theorem 4117 (with eregr = ¢/6k)
log k times, we obtain dk,e;) extractorE; : {0,1}"* x {0,1}% — {0,1}™ with seed lengthi; =
O(logk - log(n/20)) = O(log k - log(n/e)), output lengthm; = k, and errors; < 2 - 2'°8% . ¢y = ¢/3.
(With s = 1, each application of Lemnia4]18 doubles the error and agldisNow we use LemmBZ420
to composeF; with the (ks,s2) extractorE, : {0,134 x {0,1}%2 — {0,1}™2 from LemmaZB, for
min-entropyke, = k+d; — m; — 1 = dy — 1 and errore; = ¢/3. E, has seed lengtdy = ko +
O(log((n + d1)/e2)) = O(logk - log(n/e)), and output lengthne = ko + d2 — 2log(1/e2) — O(1).
The final extractoz’ from LemmdZ.2D has seed length+ ds = O(log k - log(n/c)) and output length
m1+m2:k:+d1+d2—210g(1/6)—0(1). O

Remark 4.22. In some applications of extractors, it is useful to hatreng extractorswhere the seed ap-
pears as a substring of the output in a fixed set of coordinaésf our extractors (namely Theorem 4117,
Theoren{ 4,19, and Theordm4.21) can be made to have thisrfyr@péth no loss in the claimed parame-
ters)E To achieve this, we first observe that our condenser (The@t8ins already strong. (Indeed, the

4Another common definition of strong extractor requires thatjoint distribution of the seed and outputislose to uniform. A
strong extractor with output length in that definition is equivalent to a strong extractor withyu lengthm + d in our definition.

20



seedy is the first component of the output 6f = T" in Equation[(1).) Then the fact thétis ak —. k + d
condenser implies that for evekysourceX, C (X, Uy) is e-close to a joint distributiofUgq, Z) where for
everyy € {0,1}4, Z|y,—, is ak-source. Thus, whenever we condense the source in our gotistr, we
can simply save the seed for the output, and operate onlf as our condensed source. All of the other
compositions and transformations in our constructiongesthis notion of strongness.

Remark 4.23. One of the major remaining open problems about extractots extract all of the min-
entropy (as in TheorefZR1) with a seed lengtftOgfog(n/c)) (as in Theoreni 4.19). To this end, it is
worth pointing out where we lose entropy in the proof of TreeoiZI9. The first place is in Lemrha4.11,
but as pointed out in Remafk™4110 this can be avoided by cdmbiour condenser with extractors from
Ramanujan expanders. The other place we lose entropy isrifrepeated) use of Lemnia—4]15, where
we view a high min-entropy source as a block source. Intlitivthe entropy loss comes because we do
not know from which of the two blocks the entropy is missingvge pessimistically assume it is missing
from both. This entropy loss problem has arisen in previooskwand in fact the “zig-zag product” for
extractors[[RVW] solves it for the case of very high min-eply n— A (where we can find optimal extractors
for sources of lengtl®(A) by exhaustive search). Needless to say, it would be veryeisiieg to eliminate
the entropy loss in our setting too.

5 List-decoding view of lossy condensers

In Sectior®, we give a (arguably simpler) construction afdensers from Reed-Solomon codes instead
of Parvaresh-Vardy codes. The price for this modificatioiiéd the resulting objects are no londessless
condensers, but instead just ordinary (lossy) condeBskrshis section, we develop a list-decoding char-
acterization of lossy condensers that will be used in theseamgent sections. For this we will need some
lemmas about min-entropy.

Proposition 5.1. A distribution D with min-entropylog(K — ¢) is ¢/ K-close to some distribution with
min-entropylog K.

Proof. The distance fronD to the closest distribution with min-entropyg K is

> (D@ -1/K)<1— (K —c) 1/K =¢/K.
a:D(a)21/K

O
The following lemma gives a useful sufficient condition fodiatribution to be close to having large
min-entropy:

Lemma 5.2. LetZ be a random variable and a positive integer.

1. Suppose that for all sefB of sizeK, Pr[Z € T] < e. ThenZ is e-close to having min-entropy at
leastlog(K/e).

2. Conversely, i% is e-close to having min-entropy at ledsig(K /<), thenPr[Z € T < 2¢ for all sets
T of sizeK.

*We are able to get a lossless condenser from Reed-Solomes wdtn the output entropy rate is less than.
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Proof. 1. LetT be a set of thek heaviest elements (under the distribution o). Let 2~¢ be the
average probability mass of the elementginThene > Pr[Z € T] = 27K, sol > log(K/e).

But every element outsidE has weight at mosz—¢, and with all but probability, Z hits elements
outsideT.

2. Suppose tha’ is the random variable of min-entropy at least(K /<) that ise-close toZ, and let
T be asetof sizé. ThenPr[Z € T| < Pr[Z' e T|+e < |T|- (¢/K) + & = 2.

O

Now we can develop a “list-decoding” view of lossy condessanalogous to the one we have used

for expanders (Lemm@_3.2) and the one known for extracforg. [Trhe following definition should be
compared to Definitiof =3l 1:

Definition 5.3. For a functionC' : {0,1}" x {0,1}¢ — {0,1}™ and a sefl’ C {0,1}™, define

LIST(T,e) & {w Pr{C(a,y) € T) > e} .

Similar to the situation with expanders, if we can bound the ef LIST (7', ¢) for all setsT" that are not
too large, then we have a condenser:

Lemma 5.4. Fix a functionC : {0,1}" x {0,1}¢ — {0,1}™ and positive integer¢l and L.
1. Suppose that every SEtC {0, 1} of size at mosL, we havgLIST(T,¢)| < H. ThenC'is a

log(H/e) —c log(L/e) — 1
condenser.
2. Conversely, suppose thatis a
log H —. log(L/e)
condenser. Then for every sBtC {0, 1}" of size at mosL, we havgLIST(T, 2¢)| < H.
Proof. 1. We have a random variabk with min-entropylog(H/<). For a fixedT" of size at most,
the probability thatX is in LIST(7',¢) is at moste; if that does not happen, then the probability

C(X, Uy) lands inT is at most. Altogether the probability” (X, Uy) falls in T' is at most2e. Now
apply LemmaSR.

2. Suppose that there is a getC {0, 1} of size at most_ for which |LIST(T',2¢)| > H. Let X be
a random variable uniformly distributed ovBIST (7', 2¢); note thatX has min-entropy greater than
log H. The probability that” (X, Uy ) lands inT is greater tharte. By Lemmd&5R (X, Uy) is not
e-close to any random variable of min-entrojpy(L /<), contradicting the condenser property.

O
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Thus, up to a constant factor in the ereoandlog(1/e) bits of source min-entropy, proving that a
function is a condenser is equivalent to bounding the sizBISfT (T, )| for setsT” of a some sizd.. In the
conference version of this papér |GUV2], we used this letatling view of lossy condensers to show that
we can eliminate théog k in the seed length of the condenser of Theoker 4.3kfer k,,,.. ), at the price
of losing a constant fraction of the min-entropy. (The idesswo use the “multiple roots” trick of [GS] in
the list-decoding analysis.) We omit that result in thissi@n because the improvement is rather small, and
instead use the lossy condenser framework to analyze a “fSeéaimon” version of our construction.

6 Condensers from Reed-Solomon codes

We use one of the main ideas from the folded Reed-Solomonamudgruction of Guruswami and Rudra|[GR]
to argue that a small modification to our construction givgead condenser from (folded) Reed-Solomon
codes, answering a question raisedlin [KU]. There are tw@ants of the Reed-Solomon construction:
the first is lossy (it loses a constant fraction of the sourdeopy), but it achieves entropy rate arbitrarily
close to 1 (just like the main condenser of Theofem 4.3); éocersd (pointed out to us by Ariel Gabizon) is
lossless, but it only achieves entropy rate 1/2.

6.1 Lossy Reed-Solomon condenser

Let ¢ be an arbitrary prime power, and lgte F, be a generator of the multiplicative groiifj. Then the
polynomial E(Y) = Y4~ — ¢ is irreducible oveff, [CN] Chap. 3, Sec. 5]. The following identity holds
forall f(Y) e F,[Y]:

FY)T=fY) = fYY) = f(CY)  (mod E(Y)).

In this case, if we modify our basic functidh(see [[1)) slightly so that we raigeto successive powers of
rather tharh, we obtain the functio@ : FI' x F, — F"*! defined by:

'y, f(y), (f mod B)(y), (f* mod E)(y),--- ,(f"" mod E)(y)]

= [ya f(y)> f({y), e 7f(<m_1y)]' (2)

In other words, our function interprets its first argumentascribing a univariate polynomial ovEy, of
degree at most — 1 (i.e., a Reed-Solomon codeword), it uses the seed to sefacidam location in the
codeword, and it outputs: successive symbols of the codeword, together with the sBleig.is precisely
the analogue of the Shaltiel-Umansary extractor constructiori [SU], for univariate polynaisi rather
than multivariate polynomials. Alternatively (and followg the correspondence with codes described in
SectiolZIL)C(f,y) is they’'th symbol in an encoding of the “messagg’in the “folded Reed—Solomon
code” of Guruswami and Rudra|GR]. (Actually, the folded B&olomon codes only takges from a subset

of F, in order to save on the codeword length.)

C(f,y)

With a minor modification to the proof of Theordm13.3, we shbwattthis is good condenser:

Theorem 6.1. DefineC as in [2) andLIST(7', ) with respect toC' as in Definition[23. Then for every
T C Fyt! of size at most = Ah™ — 1, we have

ILIST(T, )| < (h— 1) -
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whereA =eq — (n — 1)(h — 1)m.

Proof. Let T' C IE‘Q”“ with |T'| < AR™ — 1. The proof follows along the lines of Theordm13.3. We
interpolate a nonzero polynomi@(Y, Y1, Y3,...,Y,,) that vanishes off’, and and has degree at maist 1
in Y and at mosth — 1) in eachY;. The number of coefficients of sucitrequalsAh™ which exceeds$T|,

and therefore such a nonzero polynongaindeed exists. We can also ensure thgt") does not divide).

For everyf(Y) € LIST(T,¢), the polynomialR;(Y) ey QIY, f(Y), f(CY),..., f(¢™1Y)) has more

thaneq roots, and degree at mast — 1) + (n — 1)(h — 1)m, and therefore must be the zero polynomial.
We defineQ* slightly differently:

Q') ¥ Qy, 2,29, 2,..., 29" ) mod E(Y).
As before,Q* is a nonzero polynomial over the extension figle= F,[Y]/(E(Y)). Further, everyf(Y)

LIST(T,¢), viewed as an element of the extension fig|ds a root ofQ*. It follows that|LIST(7, )| <
deg(Q*). The degree of)* is at most

(h—1)A+qg+¢+ - +¢"H)=(h-1)-
and this proves the claimed bound. O

By picking parameters suitably in the above constructiomptain the following condenser. Unlike our
basic condenser (TheorémM.3), this condenser is no looggeks. Instead, the ratio of the input and output
min-entropies is< (1 + 1/«a), which means that we retain onlyd (1 + «) fraction of the min-entropy.

Theorem 6.2(Reed-Solomon lossy condenseFpr everyn € N, ¢ < n such that2’ is an integer, and
a,e > 0, there is an explicit functiod' : {0,1}" x {0,1}¢ — {0,1}" defined in[R) that is a

(1+1/a)lt +log(1/e) —3. bt +d —2

condenser withl < (1 + 1/a)t andn’ < (1 + 1/a)lt + d, wheret = [alog(4nf/e)], provided(t >
log(1/¢).

Proof. Seth = 2¢ and note thah!/® > 4n/c. Letq be the power of in (h!T1/@ /2 pl+1/2], Setm = ¢.

Note that
A% eq— (n—1)(h — m > g —nhm > =q/2,

because > h't1/%/2 > 2nhi /e, andm = /.

Consider the functio’ : F? x F, — F/"*! defined in[[2). By Theorefi@.1, for evefy C F;**! of
size at most. = Ah™ — 1 we havelLIST(T,¢)| < ¢™ — 1. Applying LemmdXH4, we find that' is a

qm—1 AR™ -1
log | =—— ) —eelog | —5—

condenser. By Propositidn 5.1, the output distributionhaf tondense€ is within statistical distance
= < 27% < ¢ of a distribution with min-entropy at least

AR™
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We can thus conclude thétis a
(1+1/a)lt +1log(1/e) —3. bt +d —2

condenser. This is the claimed condenser; the upper boundsiadr’ follow from the fact thaiyy = 27¢ <
2(1+1/a)t.

Finally, the construction is explicit because a represemaf [, for ¢ a power of 2 as well as a generator
of I}, can be found in timgoly(log ¢) [Shd]. O

6.2 Lossless Reed-Solomon condenser

The variant in this subsection is lossless, and so it is nastanient to describe it as an expander graph first
and then apply Lemnia.2. The construction is again obtaiyesicareful choice ok and the irreducible
E(Y). In this variant we require that the parametes a prime power greater than and that; is a power

of h (solF, contains a subfielf;). Let( € F;, be a generator of the multiplicative grofify (compare with
the previous section which selected a generatd;pfand define the polynomidl(Y) = Yh=1 —¢. The
advantage of these choices for our construction was poouetb us by Ariel Gabizon.

We identify elements df} with polynomials oveif;, that have degree at mast- 1 (compare with the
previous section in which the polynomials were offg). The following identity holds for alf (Y') € Fj,[Y]
and: > 0:

FOO = fY) = py DT DY) = £(CY) - (mod E(Y). 3)
As usual, for ease of notation, we will refer ([g‘)’hi mod F) as “f;.” Our expander is the bipartite graph

[rs : F x F, — F71 defined as:

Irs(f,y) [y, foy), fr(y), f2(y), -+ s fm—1(y)]

= [y, fFW), F(Cy), F(CPy),- .o, FC™ )] ()

Analogous to Theorein 3.3, we have the following:

Theorem 6.3. The graphl'gs : F} xF, — IE‘Z”“ defined in[(#) is <K 4., A) expander fork ., = h™
andA = ¢ — (n — 1)(h — 1)m, providedlog;, ¢ andh — 1 are relatively prime.

Proof. The proof is exactly the same as the proof of Thedrerh 3.3; afteng two facts: first, by Eqn[13)
the degree of each of thg is at most: — 1 (even ifh — 1 is larger tham); second,F(Y") as defined in this
section is irreducible oveF, [LNI Chap. 3, Sec. 5] (this is where the coprime requiremeniog;, ¢ and
h — 1is used). O

Setting parameters we obtain (compare to Thed@rein 3.5):

Theorem 6.4(Reed-Solomon expanderifor all positive integersV, K.x < N,and all1 > ¢ > 0, there
is an explicit( <K naz, (1—€) D) expandel'rgs : [N]x[D] — [M] with degreeD = O((log N)(log K yaz)/€)?
and M < (DK 42 )%. Moreover,D and M are powers of 2.
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Proof. We setn = log N, k = log Kmax, andh to be the power of 2 in the randénk /<), 2(nk/<)]. Set
q = h%. Observe thak — 1 and?2 are relatively prime, so Theordmb.3 applies. The remaiatithe proof
proceeds exactly as the proof of Theolen 3.5 with 1. O

Finally, applying Lemm&4]2, we immediately obtain theduling lossless condenser based on Reed-
Solomon codes:

Theorem 6.5(Reed-Solomon lossless condensd®r everyn € N, k., < n, ande > 0, there is an
explicit functionC : {0,1}" x {0,1}¢ — {0,1}™ with d = 2(logn + 1og ke + log(1/¢)) + O(1) and
m < 2(d + k) such that for allk < k4., C'is ak — k + d (lossless) condenser.

6.3 Limitation of the Reed-Solomon condensers

For the Reed-Solomon-based construction, a relativelplsimrgument shows that the entropy rate mustin
general be a constant less than 1. The example below commd@HES4,[TZ] (it applies to the function
I'rs as well as the functiod’ from Eqn. [2), for which it is stated):

Lemma 6.6. DefineC as in Eqn. [(R). For every positive integer< n such thap|(q — 1), there is a source
X with min-entropy at leastn/p] - log ¢ for which the support of (X, Uy, ) is entirely contained within
a set of sizev™, wherew = (¢ — 1) /p + 1.

Proof. Take the source to heth powers of all polynomials ovef, of degree at most(n — 1)/p|. Every
output symbol ofC' is an evaluation of such a polynomial, and therefore must p¢hapower or 0. There
are thus onlyw = (¢ — 1)/p + 1 possible output symbols, so the output is contained wittseteof size
w'. O

For such a sourcX, the output min-entropy of’ is at mostm log w and the output length is: log g.
Thus the output entropy rate is at most
logw 1 log p
logq logq
So for example, for a source obtained wherx ./n, the Reed-Solomon condens€ryields constant
entropy rate bounded away frohunless the seed lenglbg g is w(log n).

This implies that the entropy rates obtained in Theorlends6dP6.b are not an artifacts of the analysis.
That is, it is not possible to improve the entropy rates (e¢@.l — o(1)) simply by giving a different,
improved analysis.

7 Application to Storing Sets

Buhrman, Miltersen, Radhakrishnan, and Srinivaan [BMBMwed that unbalanced expanders with ex-
pansion close to the degree can be used to construct thevifodjdkind of data structures for storing sets:

Definition 7.1. Arandomized bitprobe data structure for set membersbizists of two algorithms:

¢ A (deterministicencoding algorithnthat takes a set C [N] of sizeL (specified as a list of elements),
a parameter: > 0, and outputs an encoding < {0, 1}*.

26



¢ A (randomizeddecoding algorithnthat is given the paramete, L, ¢, an element: € [N], and
oracle accesw the encodingX, and outputs a bib.

We require that ifX is the output of the encoding algorithm on st then for everyx, the decoding
algorithm’s output will correctly indicate whether or notis in S, with probability at leastl — ¢ over the
algorithm’s coin tosses. A-queryscheme is one in which the decoding algorithm makes at grpstries
to the encodingX. M is called thelengthof the data structure, andthe error probability.

We say the data structure éxplicit if the encoding can be computed in time polynomial in its irgmad
output lengths, i.e. timpoly (L, log N, log(1/<), M) and the decoding can be computed in time polynomial
in its input length, i.e. timgoly (log N, log(1/¢)).

The construction of such data structures from expandeigas tpy the following theorem. As observed
by Ta-Shmal[Ta-], to have an explicit data structure, we reedxpander that not only has an efficiently
computable neighbor function but which can also be effitjetist decoded.”

Theorem 7.2(implicit in [BMRV], explicitin [[a-]) . If there is a(<2L, (1—¢)D) expandef : [N]x[D] —
[M], then there is a randomized one-query bitprobe data stradir subsets ofN] of size at mosL with
length M and error probability at moste.

Moroever, if the expander is explicit and for every $etC [M] of size at mosL D, we can compute
LIST(T,4¢) in timepoly (L, log N,log(1/¢), M), then the data structure is explicit.

With an optimal expander we hawd = O(LD) = O(L - (log N)/¢); therefore, the length of the data
structure is only arO(1/¢) factor larger than thé. log N bits that are needed describe the Sewithout
concern for efficient membership tests.

We now observe that our expanders have the list decodingpyopeeded for TheorenT.2:

Lemma 7.3. Definel : F? x F, — F7"™ as in [1). Then give’ C F"*! ande > 0, we can compute
LIST(T,¢) intimepoly(|T|,n, m, ¢, log h) provided thatT'| < Ah™—1, whereA = ¢q—(n—1)(h—1)m.

Proof. The observation is that essentially the proof of Theofethgdv8s analgorithm for computing
LIST(T,¢). (The proof of Theorei-3 3 corresponds to the casedhat 1, but as seen in the proof of
Theoren{®&1, it generalizes to arbitraryf we setA = ¢q — (n — 1)(h — 1)m.) We go through the steps
here:

e SetH = [(|T| + 1)/A]. Find a polynomialQ(Y,Y1,...,Y,,) vanishing onI’ with nonzero coef-
ficients on monomials of the far?M;(Y1,Ys,...,Y,) for0 < i < A—land0 < j < H-1
(borrowing the notation from the proof of Theor€ml3.3). Tieiguires solving a linear system oy
with |T'| equations andlH unknowns. To ensur€ is not divisibly by E(Y"), we repeatedly remove
factors of E(Y'); there can by at most /(n — 1) such factors.

e As in the proofs of Theorenls_3.3 ahd16.1, evgiyy’) € LIST(T,¢) is a root of the polynomial
Q*(2) = Q(Y,Z,Z",...,Z" Y mod E(Y) overF = F,[Y]/E(Y). We construciQ* by first
substituting theZ variable and then reducing different univariate polynomialg;(Y"), each of de-
gree at mostl — 1, moduloE(Y"), which is of degree at most— 1.

e Find the rootsf of @*(Z), which is a polynomial of degree at maSt— 1 over the fieldF, which is
of sizeq™.
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e For each such roaf, check whether it is an element bIST(T', ), which can be done by counting
how many of itsy neighbors'(f, y) are inT'.

All of these steps can be done in timely (|7, n, m, q,log h). O

Plugging our expanders into Theor€ml7.2, we obtain the\iafig:

Theorem 7.4. For everyN, L < N, ande, a > 0, there is a randomized one-query bitprobe data structure
for subsets of V] of size at mosL with error probability at most and length

O(1+1/«
9

Proof. We show how to achieve the claimed length with error prolitgtat most4e for anye > 0, which is
equivalent to the above theorem up to a change in the hiddestar@t. We will apply Theorefi4.2 with our
expandei defined in Equatior{1). We will set the parameters:, ¢, andh as in the proof of Theorem3.5,
for K., = [L/3¢]. (Note that the upper bound @nis not a problem, since here we may assums 1
wlog.) This gives a right-hand side of size

O(1+1
M < D?. Kito — <_1°gN> e LM

max
9

sinceD = ((log N)/e)00+1/a),

SinceK ,q.; > 2L, we have an explicit<2L, (1—¢)D) expander and the first condition of Theorem 7.2
is satisfied. For the second condition, we will use Lenima @.8rtsure that we can efficiently compute
LIST(T, 4¢) for every T of size at mostL.D. Recalling thatD = ¢, this imposes the constraidly <
Ah™—1,whereA = 4eq— (n—1)(h—1)m. The settings in Theoreln3.5 ensure #hat (n—1)(h—1)m/e,
so we haved > 3¢q. They also ensure that™ > K,,... Thus, we have

AR™ 2 3eqK pmae > Lg+ 1,

as desired. Thus, we can compU&T (7, 4¢) for |T'| < LD intimepoly(|T|, n,m,q,log h) = poly(M).
U

The optimal setting oft in the above theorem is = ©(/(loglog N + log(1/¢))/log L), which leads
to a bound of

o(1)
M=1L- <log;N> - exp (\/(loglogN—i—log(l/s)) -logL) .

Previous explicit constructions achievéfl = O(L? - (log N)/<?) [BMRV] and M = L - exp((log log N +
log(1/¢))?) [Tad]. Our bound is an improvement when

((log N)/e)*V < L < exp(o((loglog N + log(1/¢))?)).
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8 Conclusions

The “list-decoding” view of expanders and condensers uséus paper seems to be quite powerful, leading
to constructions that are more direct, achieve improvedmaters. It is thus natural to ask how far this
approach can be pushed. Constructing unbalanced expamitleiexpansion close to the degree where the
degree and/or size of the right-hand side are witlinstant factor®f optimal is a natural next goal. This
is closely related to question of constructing truly opfiregtractors, ones that are optimal upadditive
constants in the seed length and/or output length. Towais€hd, we wonder if there is some variant of
our construction with a better entropy rate — the next nathrashold is to have entropgeficiencyonly
k°(M) . Another interesting question is whether some variant e$éhconstructions can give a block-wise
source directly. Depending on the actual parameters, reithihese two improvements have the potential
to lead to extractors with optimal output length (i.e. ongsaet all the min-entropy). Alternatively, if we
can find an extractor with optimal output length for high nemiropy (say99n), then, by composing it with
our condenser, we would get one for arbitrary min-entromt afother approach is to eliminate the entropy
loss in our recursion construction; see Renfarkl4.23.

We also wonder whether these new techniques can help in s#tééings. For example, can we use
them to argue abowtomputationalanalogues of the objects in this paper — pseudorandom dersseand
pseudoentropy generators? Or, can variants of our cotistmag/ield so-called “2-source” objects, in which
both the source and the seed are only weakly random? In regakt[RZ], a 3-source extractor was
constructed using the techniques from this paper, for tee wdnen one of the sources is much shorter than
the other two. Whether one can remove this length restnciiiod construct a general 3-source (or even
2-source) extractor remains open.
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