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Abstract

The most intriguing aspect of the new theory of matchgate computations and holographic algo-
rithms by Valiant [12] [14] is that its reach and ultimate capability are wide open. The methodology
produces unexpected polynomial time algorithms solving problems which seem to require exponential
time. To sustain our belief in P 6= NP, we must begin to develop a theory which captures the limit
of expressibility and power of this new methodology.

In holographic algorithms, symmetric signatures have been particularly useful. We give a com-
plete characterization of these symmetric signatures over all bases of size 1. These improve previous
results [4] where only symmetric signatures over the Hadamard basis (special basis of size 1) were
obtained. This in particular confirms a conjecture by Valiant [18]. We also give a complete charac-
terization of Boolean symmetric signatures over bases of size 1.

Finally, it is an open problem whether signatures over bases of higher dimensions are strictly more
powerful. The recent result by Valiant [17] seems to suggest that bases of size 2 might be indeed
more powerful than bases of size 1. This result is with regard to a restrictive counting version of
#SAT called #Pl-Rtw-Mon-3CNF. It is known that the problem is #P-hard, and its mod 2 version
is ⊕P-hard. Yet its mod 7 version is solvable in polynomial time by holographic algorithms. This
was accomplished by a suitable symmetric signature over a basis of size 2 [17]. We show that the
same unexpected holographic algorithm can be realized over a basis of size 1. Furthermore we prove
that 7 is the only modulus for which such an “accidental algorithm” exists.

Subject: Computational and structural complexity.

1 Introduction

Valiant has recently developed the theory of matchgate computations and holographic algorithms [12,
14]. This is a novel methodology to design polynomial time algorithms. With this methodology, for
some seemingly exponential time computations, one can design a custom made process to carry out
exponentially many cancellations so that the computation can actually be done in polynomial time.
Frequently the technical content of this design process amounts to finding a suitable signature.

These algorithms can appear quite unintuitive and exotic. So far, the main impact of this new theory
is not so much as solving every day algorithmic problems, but rather pointing out the existence of some
unexpected ways of doing computation. Thus, to us, the most intriguing aspect of the new theory is its
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broader implication in complexity theory. A case in point is the following restrictive version of #SAT
(the problem of counting satisfying assignments), called #Pl-Rtw-Mon-3CNF. Here we consider only
planar Boolean formulae in Conjunctive Normal Form with 3 variables in each clause. Furthermore we
assume each variable appears positively (Monotone) and in exactly two clauses (Read twice). (This
problem can also be stated naturally as a Vertex Cover problem on 2-3-regular planar bipartite graphs.)
#Pl-Rtw-Mon-3CNF has been studied before, including its approximate versions [6, 5, 1]. It is known
to be #P-hard. Moreover counting the satisfying assignments modulo 2 for such formulae is ⊕P-hard.
However, Valiant [17] showed that a surprising polynomial time (he called it an “accidental”) algorithm
exists for this counting problem mod 7, denoted #7Pl-Rtw-Mon-3CNF, using holographic algorithms.
What makes this work is a particular symmetric signature exists over the field Z7. This is what Valiant
called an “accidental or freak object” [17]. 1

Suppose we all believe P 6= NP. Unless and until a proof of P 6= NP is found, one should regard this
as an open problem. Then it is reasonable to ask where do we derive our confidence in this assertion.
Certainly this is not due to any strong unconditional lower bound. We believe this confidence is based
on the fact that all existing algorithmic approaches do not seem to tackle a myriad of NP-hard problems.
Valiant’s new theory of holographic algorithms challenges us to re-examine this belief critically. To put
it bluntly, if you haven’t seen these “exotic” or “accidental” algorithms, and haven’t looked closely
at how such algorithms behave, then how do you know such algorithms do not exist for one NP-hard
problem? As Valiant pointed out [14], “any proof of P 6= NP may need to explain, and not only to
imply, the unsolvability” of NP-hard problems in this framework.

Valiant actually introduced two related theories, first, matchgate/matchcircuit [12], and second,
holographic algorithms [14]. In the first theory, the basic notion is a matchgate and its character, defined
by Pfaffians. He used this theory to simulate a fragment of quantum computations. In the second, a
new ingredient was added, that of a linear vector basis through which computation is expressed. In
this second theory, the matchgates are assumed to be planar, and each matchgate is associated with a
signature defined by the Perfect Matching polynomial PerfMatch. Then the computation is ultimately
done in terms of the Fisher-Kasteleyn-Temperley (FKT) method [7, 8, 11] via the Holant Theorem [14].
After the development from [3, 4], a certain unification of the two theories was achieved. Basically, using
the algebraic properties of Pfaffians, we were able to achieve a complete characterization of realizable
characters in [3]. In [4] an equivalence theorem was proved for matchgates/characters on the one hand
and planar-matchgates/signatures on the other, thereby the characterization theorem also applies to
planar matchgates and their standard signatures. In this paper, we will use these results.

Due to space limitations, we will omit most definitions, and refer the readers to [12, 14, 3, 4, 2].
A planar matchgate Γ = (G,X, Y ) is a weighted graph G = (V,E,W ) with a planar embedding,
having external nodes, the input nodes X and the output nodes Y , placed on the outer face. Define
PerfMatch(G) =

∑

M

∏

(i,j)∈M wij , where the sum is over all perfect matchings M . The standard

signature, u = u(Γ), is defined to be a 2|Y | × 2|X| matrix whose entries are indexed by subsets X ′ ⊆ X
and Y ′ ⊆ Y , and the entry at (row Y ′, column X ′) is uZ = PerfMatch(G − Z), where Z = X ′ ∪ Y ′.
Here G − Z denotes the subgraph of G obtained by removing the subset of nodes in Z (and all their
incident edges). Matchgates with only output nodes are called generators. Matchgates with only input
nodes are called recognizers.

In the design of holographic algorithms so far, the most useful signatures have been the so-called
symmetric signatures. A symmetric signature is one where uZ only depends on the cardinality of Z; we
denote this by σ|Z|. Thus, a symmetric signature of a generator or a recognizer with k external nodes

1From Valiant [17]: “. . . the situation with the P = NP question is not dissimilar to that of other unresolved enumerative
conjectures in mathematics. The possibility that accidental or freak objects in the enumeration exist cannot be discounted,
if the objects in the enumeration have not been systematically studied previously.”
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can be identified with a vector of k + 1 entries σ = [σ0, σ1, . . . , σk]. The ingenious idea of holographic
algorithms is that one can transform the standard signatures under a linear transformation of the basis
vectors. Under this transformation, the symmetric signature will remain a symmetric signature, but will
have a clear combinatorial meaning. E.g., σ = [0, 1, 1, 1] will mean a Boolean OR. These combinatorial
interpretations, when applied with the Holant Theorem [14], lead to polynomial time algorithms. The
symmetric signatures are responsible for a majority of the interesting polynomial time algorithms in
the new theory.

To understand the limit of holographic algorithms, and to develop a substantial theory for this new
methodolgy, we must come to grips with what can or cannot be done by signatures of matchgates, under
all possible basis transformations. This is still a rather remote goal. For now we can only say something
intelligent on symmetric signatures, and over bases of size 1.

In this paper, we give a complete characterization of symmetric signatures over bases of size 1.
Our characterization is valid for all fields with sufficiently large characteristic p (including the complex
numbers C). These improve previous results [4] where only symmetric signatures over the Hadamard
basis, which is a special basis of size 1, were obtained. In [4], those results were proved using properties
of Krawtchouk polynomials. Here we are able to prove a much stronger results without the use of these
special polynomials. This in particular confirms a conjecture by Valiant [18]. We also give a complete
characterization of Boolean symmetric signatures over bases of size 1.

It is an open problem whether signatures over bases of higher dimensions are strictly more powerful.
The recent result by Valiant [17] seems to suggest that this might be the case. He considered a restrictive
version of #SAT, called #Pl-Rtw-Mon-3CNF: To count the number of satisfying assignments for a
planar monotone read-twice 3CNF formula. The problem is #P-hard for counting [5, 1] and ⊕P-hard
for counting mod 2. But Valiant showed that it is solvable by an exotic holographic algorithm for
counting mod 7. In order to do that, he used a suitable signature, with a basis of size 2. We show
that the same holographic algorithm for #7Pl-Rtw-Mon-3CNF can be realized over a basis of size 1.
Furthermore we prove that 7 is the only modulus for which such an “accidental algorithm” exists.

2 Holographic Algorithms for #7Pl-Rtw-Mon-3CNF

Theorem 2.1. For Z7 and for basis β = [n, p] =

[(

n0

n1

)

,

(

p0

p1

)]

=

[(

1
6

)

,

(

3
5

)]

, there is a generator

for [1, 0, 1] and a recognizer for [0, 1, 1, 1].

Remark: We recall that the notation is for symmetric signatures. Thus for a generator, [1, 0, 1] denotes
(1, 0, 0, 1)T in dimension 4, and for a recognizer, [0, 1, 1, 1] denotes (0, 1, 1, 1, 1, 1, 1, 1, 1) in dimension 8.
Proof: It is a simple fact that the standard signature (3, 0, 0, 5)T is realizable by a generator matchgate
with 2 outputs. This can be shown directly by a direct construction [14] or it follows from the general
theory of standard signature realizability theorem in terms of matchgate identities [14, 3, 4]. Similarly
the standard signatures [0, 3, 0, 5] is realizable by a recognizer, with 3 inputs.

A simple calculation shows that n ⊗ n + p ⊗ p = (3, 0, 0, 5)T for the chosen basis β over Z7. Thus
the generator has signature [1, 0, 1] under the basis β.

As a recognizer, its signature uβ w.r.t. the basis β and its standard signature u are related by the
equation

uβ = uT⊗3, where T =

[

n0 p0

n1 p1

]

.

We can calculate its signature w.r.t. β, and we find the symmetric signature [r0, r1, r2, r3], where
r0 = 3 × 3n2

0n1 + 5n3
1 = 0,

r1 = 3(n2
0p1 + 2n0n1p0) + 5n2

1p1 = 1,
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r2 = 3(p2
0n1 + 2p0p1n0) + 5p2

1n1 = 1,
r3 = 3 × 3p2

0p1 + 5p3
1 = 1.

Therefore this matchgate recognizes [0, 1, 1, 1].

Corollary 2.1. There is a polynomial time algorithm for #7Pl-Rtw-Mon-CNF.

For bases of size 1, we can further prove that a similar technique can not be applied to any other
#kPl-Rtw-Mon-3CNF problem unless k = 7. This result may highlight the true “accidental” nature of
the polynomial time algorithm for #7Pl-Rtw-Mon-3CNF.

Theorem 2.2. Characteristic 7 is the unique characteristic of a field for which there is a common basis
of size 1 for generating [1, 0, 1] and recognizing [0, 1, 1, 1].

The proof is omitted here, and is given in the appendix.

3 Symmetric Signatures

In this section we give a closed form solution to characterize all symmtric signatures of generators and
recognizers, under any basis of size 1. Our closed form applies to complex numbers C and to all fields
with characteristic p greater than the arity n of the matchgate. Since we can calculate (tij) and (t̃ij)
from [n, p], we need only consider recognizers. The situation for generators is similar.

In tensor analysis we have the following proposition, which is straightfarward from (??)(??).

Proposition 3.1. If a tensor T is symmetric in one basis, it is still symmetric after transforming to
other basis.

Since we focus on the case of two dimensional space V spanned by {e0, e1}, all the symmetric tensors
in V⊗n form a n + 1 dimensional space, which can be denoted by σ = [σ0, σ1, . . . , σn]. The symmetric
signature transforms as follows under a basis transformation:

σ′
k′ =

∑

k

σka
k
k′ , (1)

where

ak
k′ =

k
∑

s=0

(

k′

s

)(

n − k′

k − s

)

(t11)
s(t01)

k′−s(t10)
k−s(t00)

n−k−k′+s. (2)

We can rewrite (2) as

ak
k′ = (t01)

k′

(t00)
n−k′

k
∑

s=0

(

k′

s

)(

n − k′

k − s

)(

t11t
0
0

t01t
1
0

)s (

t10
t00

)k

. (3)

A matchgate is called an even or an odd matchgate, precisely when it has an even or an odd number
of nodes. The parity consideration is crucial in signatures of matchgates, as they are defined in terms
of perfect matchings. More subtle, but just as important, are the matchgate identities [14, 3]. From the
work of [3, 4] we know the following precise information regarding symmetric standard signatures.

Lemma 3.1. Suppose Γ is an even matchgate, with symmetric standard signature σ = [σ0, σ1, . . . , σn].
Then for all odd i, σi = 0, and there exist constants r1, r2 and λ, such that σ2i = λ · (r1)

[n/2]−i · (r2)
i.

Lemma 3.2. Suppose Γ is an odd matchgate, with symmetric standard signature σ = [σ0, σ1, . . . , σn].
Then for all even i, σi = 0, and there exist constants r1, r2 and λ, such that σ2i+1 = λ · (r1)

[(n−1)/2]−i ·
(r2)

i.
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Let’s substitute r1 = b2 and r2 = c2 (if necessary in an extension field). Since b = 0 and c = 0 is
trivial, we assume at least one of them is non-zero.
Case 1: even n and even matchgate
In this case, we have σk = λbn−kck, ∀k even, and σk = 0, ∀k odd. From (1) and (3) we get:

σ′
k′ =

n
∑

k=0

σka
k
k′

= λ
∑

k even

bn−kckak
k′

= λ(t01)
k′

(t00)
n−k′

∑

k even

bn−kck

[

k
∑

s=0

(

k′

s

)(

n − k′

k − s

)(

t11t
0
0

t01t
1
0

)s (

t10
t00

)k
]

= λ(t01)
k′

(t00)
n−k′

n
∑

s=0

(

k′

s

)(

ct11
t01

)s

bk′−s





∑

k even, k≥s

(

n − k′

k − s

)

bn−k′−k+s

(

ct10
t00

)k−s


 .

Now the second sum within the brackets is

∑

k even, k≥s

(

n − k′

k − s

)

bn−k′−k+s

(

ct10
t00

)k−s

=
1

2

[

(

b +
ct10
t00

)n−k′

±
(

b − ct10
t00

)n−k′
]

,

Choose + if s is even and − if s is odd.
Therefore, we have

σ′
k′ =

1

2
λ(t01)

k′

(t00)
n−k′

[

(

b +
ct10
t00

)n−k′

+

(

b − ct10
t00

)n−k′
][

n
∑

s even

(

k′

s

)(

ct11
t01

)s

bk′−s

]

+
1

2
λ(t01)

k′

(t00)
n−k′

[

(

b +
ct10
t00

)n−k′

−
(

b − ct10
t00

)n−k′
] [

n
∑

s odd

(

k′

s

)(

ct11
t01

)s

bk′−s

]

=
1

2
λ(t01)

k′

[(bt00 + ct10)
n−k′

+ (bt00 − ct10)
n−k′

] · 1

2

[

(

b +
ct11
t01

)k′

+

(

b − ct11
t01

)k′
]

+
1

2
λ(t01)

k′

[(bt00 + ct10)
n−k′ − (bt00 − ct10)

n−k′

] · 1

2

[

(

b +
ct11
t01

)k′

−
(

b − ct11
t01

)k′
]

=
1

2
λ[(bt00 + ct10)

n−k′

(bt01 + ct11)
k′

+ (bt00 − ct10)
n−k′

(bt01 − ct11)
k′

].

The proof of other cases are omitted here, and can be found in the Appendix.
To sum up, we get the following theorem:

Theorem 3.1. A symmetric signature [x0, x1, . . . , xn] for a recognizer is realizable under the basis

β = [n, p] =

[(

n0

n1

)

,

(

p0

p1

)]

iff it takes one of the following forms:

• Form 1: there exist (arbitrary) constants λ, s, t and ε where ε = ±1, such that for all i, 0 ≤ i ≤ n,

xi = λ[(sn0 + tn1)
n−i(sp0 + tp1)

i + ε(sn0 − tn1)
n−i(sp0 − tp1)

i]. (4)
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• Form 2: there exist (arbitrary) constants λ,such that for all i, 0 ≤ i ≤ n,

xi = λ[(n − i)n0(p1)
i(n1)

n−1−i + ip0(p1)
i−1(n1)

n−i]. (5)

• Form 3: there exist (arbitrary) constants λ,such that for all i, 0 ≤ i ≤ n,

xi = λ[(n − i)n1(p0)
i(n0)

n−1−i + ip1(p0)
i−1(n0)

n−i]. (6)

Similarly we can prove

Theorem 3.2. A symmetric signature [x0, x1, . . . , xn] for a generator is realizable under the basis

β = [n, p] =

[(

n0

n1

)

,

(

p0

p1

)]

iff it takes one of the following forms:

• Form 1: there exist (arbitrary) constance λ, s, t and ε where ε = ±1, such that for all i, 0 ≤ i ≤ n,

xi = λ[(sp1 − tp0)
n−i(−sn1 + tn0)

i + ε(sp1 + tp0)
n−i(−sn1 − tn0)

i]. (7)

• Form 2: there exist (arbitrary) constants λ,such that for all i, 0 ≤ i ≤ n,

xi = λ[(n − i)p1(n0)
i(−p0)

n−1−i − in1(n0)
i−1(−p0)

n−i]. (8)

• Form 3: there exist (arbitrary) constants λ,such that for all i, 0 ≤ i ≤ n,

xi = λ[−(n − i)p0(−n1)
i(p1)

n−1−i + in0(−n1)
i−1(p1)

n−i]. (9)

We wish to obtain another characterization of realizable symmetric signatures. First, we deal with
some degenerate cases. The following three cases are called degenerate:

• In Form 1, sn0 + tn1 = 0 or sn0 − tn1 = 0.

• In Form 2, n1 = 0.

• In Form 3, n0 = 0.

In Form 1, if sn0 + tn1 = 0 and sn0 − tn1 = 0, then all the realizable signatures take the following
form (λ is arbitrary):

[0, 0, · · · , 0, λ]. (10)

In Form 1, if sn0 + tn1 = 0 and sn0 − tn1 6= 0, or sn0 + tn1 6= 0 and sn0 − tn1 = 0, then all the
realizable signatures take the following form (a, q, λ are arbitrary):

[a, aq, aq2, · · · , aqn−1, λ]. (11)

Notice that (10) is a special case of (11), we will not consider (10) later.
In Form 2, if n1 = 0, then all the realizable signatures take the following form (λ1, λ2 is arbitrary):

[0, 0, · · · , 0, λ1, λ2]. (12)

In form 3, if n0 = 0, then all the realizable signatures take the following form (λ1, λ2 is arbitrary):

[0, 0, · · · , 0, λ1, λ2].

This is the same as (12).
Besides these degenerate cases, we can rewrite the sequence defined in Form 1 as xi = Aαi + Bβi,

and the sequence defined Form 2 or Form 3 as xi = αi(Ai + B). Both are solutions to second-order
homogeneous linear recurrences (xi = axi−1 + bxi−2). To sum up in a more symmetric way, we
have the following theorem:
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Theorem 3.3. A symmetric signature [x0, x1, · · · , xn] is realizable on some basis of size 1 iff there
exists three constants a, b, c(not all zero), such that ∀k, 0 ≤ k ≤ n − 2,

axk + bxk+1 + cxk+2 = 0. (13)

Proof:
“⇒”:
Since [x0, x1, · · · , xn] is realizable, from Theorem 3.1 (3.2), xi takes one of the forms in Theorem 3.1
(3.2). If it is degenerate as (11), we can let a = −q, b = 1, c = 0. If it is degenerate as (12), we
can let a = 1, b = 0, c = 0. Otherwise it is a second-order homogeneous linear recurring sequence
xi = a0xi−1 + b0xi−2, we can let a = b0, b = a0, c = −1. Therefore if [x0, x1, · · · , xn] is realizable on
some basis of size 1 , there exists three constants a, b, c (not all zero), such that ∀k, 0 ≤ k ≤ n − 2,
axk + bxk+1 + cxk+2 = 0.
“⇐”:
If c = 0 and b = 0, then a 6= 0. From (13), we know xk = 0, ∀k, 0 ≤ k ≤ n − 2. So {xi} takes the form
(12), which is realizable.
If c = 0 and b 6= 0, form (13) we have axk + bxk+1 = 0, ∀k, 0 ≤ k ≤ n − 2. Let q = −a/b, we have
xk+1 = xkq, ∀k, 0 ≤ k ≤ n − 2. Therefore {xi} takes the form (11), which is realizable.
Otherwise c 6= 0, substituting a0 = −b/c, b0 = −a/c, we have xk+2 = a0xk+1 + b0xk, ∀k, 0 ≤ k ≤ n− 2.
The characteristic equation is x2 − a0x − b0 = 0. Let α, β be the two roots of the characteristic
equation. If α 6= β, we can calculate A,B such that xi = Aαi + Bβi, ∀i, 0 ≤ i ≤ n. If A = B = 0, then
xi = 0, ∀i, 0 ≤ i ≤ n, which trivially realizable. If A = 0 and B 6= 0 (the case B = 0 and A 6= 0 is
similar), then xi = Bβi. Let ε = s = 1, t = 0, λ = B/2, n0 = 1, p0 = β, n1 = 0, p1 = 1 in (4), we know it
is realizable. Otherwise AB 6= 0, let λ = ε = s = t = 1 in (4), we have the following equations:

n0 + n1 =
n

√
A (14)

n0 − n1 =
n

√
B (15)

p0 + p1 = α
n

√
A (16)

p0 − p1 = β
n

√
B (17)

From the above equations, we can get the value of n0, n1, p0, p1 and we conclude that xi = Aαi+Bβi

is realizable.
If α = β we can calculate A,B such that xi = αi(Ai + B), ∀i, 0 ≤ i ≤ n. If α = 0 or A = 0, the above
argument shows it is realizable. Otherwise let λ = n1 = 1, p1 = α, n0 = B

n , p0 = Aα + Bα
n in form (5),

we conclude that xi = αi(Ai + B) is realizable.

Corollary 3.1. Over the complex numbers C as well as all fields F of characteristic p > 3, every
signature [x0, x1, x2, x3] is realizable on some basis of size 1.

Proof: View r1 = (x0, x1, x2), r2 = (x1, x2, x3) as two vectors in 3-dimension Euclid space. Geometri-
cally, there exists a non-zero vector r0 = (a, b, c) such that r0 ⊥ r1 and r0 ⊥ r2. That is ax0+bx1+cx2 = 0
and ax1 + bx2 + cx3 = 0. From Theorem 3.3, we know that [x0, x1, x2, x3] is realizable.

This confirms a conjecture by Valiant [18].
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4 Boolean Symmetric Signatures

In this section, we consider the realizability of a special family of symmetric signatures, which we call
boolean symmetric signatures (BSS).

Definition 4.1. A signature of a generator or a recognizer is called a Boolean Symmetric Signature
(BSS) iff it is symmetric [x0, x1, . . . , xn] and ∀i ∈ [n], xi ∈ {0, 1}.

From Corollary 3.1 and Theorem 3.3 , we can conclude that:

Theorem 4.1. When n ≤ 3, all BSS are realizable.

When n ≥ 4, the set of realizable BSS is rather sparse. More precisely we have the following theorem:

Theorem 4.2. When n ≥ 4, a BSS [x0, x1, . . . , xn] is realizable on some basis of size 1 iff it has one
of the following forms (λ, λ1, λ2 ∈ {0, 1} is arbitrary):

[λ1, 0, 0, · · · , 0, λ2] (18)

[1, 1, · · · , 1, λ] (19)

[λ, 1, 1, · · · , 1] (20)

[0, 0, · · · , 0, λ1, λ2] (21)

[λ1, λ2, 0, 0, · · · , 0] (22)

[1, 0, 1, 0, · · · , 0(1)] (23)

[0, 1, 0, 1, · · · , 0(1)] (24)

Proof: From Theorem 3.3, we can check that form 18–24 are all realizable.
Now we prove that form 18–24 are the only possible cases. Since BSS [x0, x1, . . . , xn] is realizable on some
basis of size 1, we know that there exists three constants a, b, c(not all zero), such that ∀k, 0 ≤ k ≤ n−2,
axk + bxk+1 + cxk+2 = 0.
If c = 0 and b = 0, then a 6= 0. From (13), we know xk = 0, ∀k, 0 ≤ k ≤ n − 2. So {xi} takes the form
(21).
If c = 0 and b 6= 0, we know {xi} takes the form of (11). Since we further request it to be a BSS, the
only possible form is (18),(19).
Otherwise c 6= 0, we can rewrite (13) as

xk+2 = a0xk+1 + b0xk. (25)

We prove the result by checking all the possible values of x0, x1, x2, x3.

• [0, 0, ∗, ∗]: from (25) we know xi = 0,∀i. This takes the form (22). (Here if * is not 0, the signature
is not realizable)

• [0, 1, 0, 0]:from (25) we know a0 = b0 = 0 and therefore xi = 0,∀i ≥ 2. This takes the form (22).

• [0, 1, 0, 1]:from (25) we know a0 = 0, b0 = 1. Therefore {xi} takes the form (24).

• [0, 1, 1, 0]:from (25) we know a0 = 1, b0 = −1. But x4 = x3 − x2 = −1, so this is not a BSS. (Here
we assume the characteristic of the field is not 2).

• [0, 1, 1, 1]:from (25) we know a0 = 1, b0 = 0. Therefore {xi} takes the form (20).
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• [1, 0, 0, ∗]: from (25) we know xi = 0,∀i ≥ 1. This takes the form (22). (Here if * is not 0, the
signature is not realizable)

• [1, 0, 1, 0]: from (25) we know a0 = 0, b0 = 1. Therefore {xi} takes the form (23).

• [1, 0, 1, 1]: from (25) we know a0 = 1, b0 = 1.But x4 = x3 + x2 = 2, so this is not a BSS. (Here we
assume the characteristic of the field is not 2).

• [1, 1, 0, 0]: from (25) we know xi = 0,∀i ≥ 2. This takes the form (22).

• [1, 1, 0, 1]: from (25) we know a0 = −1, b0 = 1.But x4 = −x3 + x2 = −1, so this is not a BSS.
(Here we assume the characteristic of the field is not 2).

• [1, 1, 1, ∗]: from (25) we know xi = 1,∀i. This takes the form (20). (Here if * is not 1, the signature
is not realizable)
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Proof of Theorem 2.2

Proof: Let β = [n, p] =

[(

n0

n1

)

,

(

p0

p1

)]

be a linearly independent basis, for which a generator and a

recognizer as stated in the theorem exist. The standard signature of the generator is n ⊗ n + p ⊗ p =
(n2

0 + p2
0, n0n1 + p1p0, n0n1 + p1p0, n

2
1 + p2

1). Being defined by Perfect Matchings, there is the parity
constraint. Either all the even entries of the standard signature are 0 or all the odd entries are 0.

n2
0 + p2

0 = 0, (26)

n2
1 + p2

1 = 0; (27)

or
n0n1 + p1p0 = 0. (28)

Let M be the matrix

[

n0 p0

n1 p1

]−1

, by Proposition 4.3 from [14] we may assume the determinant of

M is 1. Then M =

[

p1 −p0

−n1 n0

]

. Denote by a = p1, b = −n1, c = −p0 and d = n0 , we can write M

simply as

[

a c
b d

]

. Equation (26), (27) and (28) translate to

c2 + d2 = 0, (29)

a2 + b2 = 0; (30)

or
ac + bd = 0. (31)
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We also have
ad − bc = 1. (32)

The signature of the recognizer w.r.t. β = [n, p] is uβ = [0, 1, 1, 1], in symmetric form. So the
standard signature u can be written as u = uβM⊗3. It can be shown that the standard signature takes
the symmetric form u = [σ0, σ1, σ2, σ3], where

σi = (a + b)3−i(c + d)i − a3−ici (33)

for 0 ≤ i ≤ 3. The parity conditions require that

σ0 = σ2 = 0, (34)

or
σ1 = σ3 = 0. (35)

Notice that after changing the positions of a with c, and b with d, (34) and (35) translate to each other,
(29) and (30) translate to each other, (31) remains unchanged. Wolog. we need only consider case (34).
We expand (34) as

(a + b)3 − a3 = 0, (36)

(a + b)(c + d)2 − ac2 = 0. (37)

First we assume b = 0. From (32), we get ad = 1 6= 0. (37) translates to

2c + d = 0. (38)

Back to the generator contraints, if (29) and (30) hold, from (30) we have a = 0, a contradiction. If
(31) holds, we get ac = 0. Since a 6= 0, we get c = 0, and from (38) we get d = 0. This is also a
contradiction.

So we get b 6= 0, and from (36) we know a 6= 0 and (36) is translated to

(a + b)2 + a(a + b) + a2 = 0. (39)

Case (29)(30): From (30) (39) we get

2a + 3b = 0. (40)

From (29) (37) we get
c(2ad + 2bd − ac) = 0. (41)

Suppose c = 0, from (29) we get d = 0, a contradiction. So

2ad + 2bd − ac = 0. (42)

From (40) (42) we get
ac + bd = 0. (43)

Then the standard signature of the generator is (0, 0, 0, 0)T , a contradiction.
Case (31): b × (31) + a × (32) we get

(a2 + b2)d = a. (44)

Since a 6= 0, by (44) we have
a2 + b2 6= 0. (45)

11



and
d =

a

a2 + b2
, (46)

c =
−b

a2 + b2
. (47)

Substituting (46)(47) in (37), we get

(a + b)(a − b)2 − ab2 = 0. (48)

We now assume, after scaling appropriately using Proposition 4.3 form [14], that b = 1. Substituting
this to (39) (48) we get

3a2 + 3a + 1 = 0, (49)

a3 − a2 − 2a + 1 = 0. (50)

3 × (50) + (49)
3a3 − 3a + 4 = 0. (51)

3 × (50) + a × (49)
6a3 − 5a + 3 = 0. (52)

(52) − 2 × (51)
a − 5 = 0. (53)

We get a = 5, and substituting it in (49) we get 91 = 0. Therefore the field F must have characteristic
either 7 or 13. From (45) we get a2 + b2 = 26 6= 0, so the characteristic is not 13. Now with the result
of Theorem 2.1 we complete the proof.

Proof details of Theorem 3.1

Case 2: odd n and even matchgate
In this case, we have σk = λbn−1−kck, ∀k even, and σk = 0 ,∀k odd. From (1) and (3) we get:

σ′
k′ =

n
∑

k=0

σka
k
k′ = λ

∑

k even

bn−1−kckak
k′ . (54)

If b 6= 0, let λ′ = λ/b, we can have the similar calculation as Case 1 and get the following form:

σ′
k′ =

1

2
λ′[(bt00 + ct10)

n−k′

(bt01 + ct11)
k′

+ (bt00 − ct10)
n−k′

(bt01 − ct11)
k′

]. (55)

Otherwise b = 0, then σn−1 = λcn−1, and σk = 0, ∀k 6= n−1. In this subcase, let λ′ = λcn−1 = σn−1.
The only non-zero term in (1) is when k = n − 1 and further more the only non-zero terms in (2) are
when s = k′ and s = k′ − 1:

σ′
k′ =

n
∑

k=0

σka
k
k′

= σn−1a
n−1
k′

= λ′((n − k′)(t11)
k′

(t10)
n−1−k′

t00 + k′(t11)
k′−1t01(t

1
0)

n−k′

).
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Case 3: odd n and odd matchgate
In this case, we have σk = λbn−kck−1, ∀k odd, and σk = 0, ∀k even. From (1) and (3) we get:

σ′
k′ =

n
∑

k=0

σka
k
k′ = λ

∑

k odd

bn−kck−1ak
k′ . (56)

If c 6= 0, let λ′ = λ/c, we can have the similar calculation as in Case 1 and get the following form:

σ′
k′ =

1

2
λ′[(bt00 + ct10)

n−k′

(bt01 + ct11)
k′ − (bt00 − ct10)

n−k′

(bt01 − ct11)
k′

]. (57)

Otherwise c = 0, then σ1 = λbn−1, and σk = 0, ∀k 6= 1. In this subcase, let λ′ = λbn−1 = σ1. The
only non-zero term in (1) is when k = 1 and further more the only non-zero terms in (2) are when s = 0
and s = 1:

σ′
k′ =

n
∑

k=0

σka
k
k′

= σ1a
1
k′

= λ′((n − k′)(t01)
k′

t10(t
0
0)

n−1−k′

+ k′t11(t
0
1)

k′−1(t00)
n−k′

)

Case 4: even n and odd matchgate
In this case, we have σk = λbn−k−1ck−1, ∀k odd, and σk = 0, ∀k even. From (1) and (3) we get:

σ′
k′ =

n
∑

k=0

σka
k
k′ = λ

∑

k odd

bn−k−1ck−1ak
k′ . (58)

If bc 6= 0, let λ′ = λ/(bc), we can have the similar calculation as Case 1 and get the following form:

σ′
k′ =

1

2
λ′[(bt00 + ct10)

n−k′

(bt01 + ct11)
k′ − (bt00 − ct10)

n−k′

(bt01 − ct11)
k′

]. (59)

Otherwise if b = 0, similar with Case 2, we have

σ′
k′ = λ′((n − k′)(t11)

k′

(t10)
n−1−k′

t00 + k′(t11)
k′−1t01(t

1
0)

n−k′

). (60)

If c = 0, similar with Case 3,we have

σ′
k′ = λ′((n − k′)(t01)

k′

t10(t
0
0)

n−1−k′

+ k′t11(t
0
1)

k′−1(t00)
n−k′

). (61)
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