
Computational aspects of feedback in neural circuits

Wolfgang Maass∗, Prashant Joshi∗ ,

and Eduardo D. Sontag†

Corresponding author: Wolfgang Maass (maass@igi.tugraz.at)

∗Institute for Theoretical Computer Science, Technische Universitaet Graz, Inffeldgasse 16b, A-8010

Graz, Austria, Tel. +43 316 873 5822, Fax. +43 316 873 5805
†Department of Mathematics, Rutgers, The State University of New Jersey, USA

1



Abstract

It had previously been shown that generic cortical microcircuit models can per-

form complex real-time computations on continuous input streams, provided that

these computations can be carried out with a rapidly fading memory. We investi-

gate in this article the computational capability of such circuits in the more realistic

case where not only readout neurons, but in addition a few neurons within the cir-

cuit have been trained for specific tasks. This is essentially equivalent to the case

where the output of trained readout neurons is fed back into the circuit. We show

that this new model overcomes the limitation of a rapidly fading memory. In fact,

we prove that in the idealized case without noise it can carry out any conceiv-

able digital or analog computation on time-varying inputs. But even with noise

the resulting computational model can perform a large class of biologically relevant

real-time computations that require a non-fading memory. We demonstrate these

computational implications of feedback both theoretically, and through computer

simulations of detailed cortical microcircuit models that are subject to noise and

have a complex inherent dynamics. We show that the application of simple learn-

ing procedures (such as linear regression or perceptron learning) to a few neurons

enables such circuits to represent time over behaviorally relevant long time spans,

to integrate evidence from incoming spike trains over longer periods of time, and

to process new information contained in such spike trains in diverse ways according

to the current internal state of the circuit. In particular we show that such generic

cortical microcircuits with feedback provide a new model for working memory that

is consistent with a large set of biological constraints.

Although this article examines primarily the computational role of feedback in

circuits of neurons, the mathematical principles on which its analysis is based apply

to a variety of dynamical systems. Hence they may also throw new light on the

computational role of feedback in other complex biological dynamical systems, such

as for example genetic regulatory networks.

2



Synopsis

Circuits of neurons in the brain have an abundance of feedback connections, both on

the level of local microcircuits and on the level of synaptic connections between brain

areas. But the functional role of these feedback connections is largely unknown. The

authors present a computational theory which characterizes the gain in computational

power that feedback can provide in such circuits. It shows that feedback endows standard

models for neural circuits with the capability to emulate arbitrary Turing machines. In

fact, with a suitable feedback they can simulate any dynamical system, in particular any

conceivable analog computer. Under realistic noise conditions the computational power

of these circuits is necessarily reduced. But the authors demonstrate through computer

simulations that feedback also provides a significant gain in computational power for

quite detailed models of cortical microcircuits with in-vivo-like high levels of noise . In

particular it enables generic cortical microcircuits to carry out computations that combine

information from working memory and persistent internal states in real-time with new

information from online input streams.

3



1 Introduction

The neocortex performs a large variety of complex computations in real-time. It is con-

jectured that these computations are carried out by a network of cortical microcircuits,

where each microcircuit is a rather stereotypical circuit of neurons within a cortical col-

umn. A characteristic property of these circuits and networks is an abundance of feedback

connections. But the computational function of these feedback connections is largely un-

known. Two lines of research have been engaged in order to solve this problem. In one

approach, which one might call the constructive approach, one builds hypothetical circuits

of neurons and shows that (under some conditions on the response behavior of its neurons

and synapses) such circuits can perform specific computations. In another research strat-

egy, which one might call the analytical approach, one starts with data-based models for

actual cortical microcircuits, and analyses which computational operations such “given”

circuits can perform under the assumption that a learning process assigns suitable values

to some of their parameters (e.g. synaptic efficacies of readout neurons). An underlying

assumption of the analytical approach is that complex recurrent circuits, such as cortical

microcircuits, cannot be fully understood in terms of the usually considered properties of

their components. Rather, system level approaches that address directly the dynamics of

the resulting recurrent neural circuits are needed to complement the bottom-up analysis.

This line of research started with the identification and investigation of socalled canonical

microcircuits [1]. Several issues related to cortical microcircuits have also been addressed

in the work of Grossberg; see [2] and the references therein. Subsequently it was shown

that quite complex real-time computations on spike trains can be carried out by such

“given” models for cortical microcircuits ([3–6], see [7] for a review). A fundamental lim-

itation of this approach was that only those computations could be modeled which can

be carried out with a fading memory, more precisely only those computations that only

require to integrate information over a time span of 200 or 300 ms (its maximal length

depends on the amount of noise in the circuit and the complexity of the input spike trains

4



[8]). In particular, computational tasks that require a representation of elapsed time

between salient sensory events or motor actions [9], or an internal representation of ex-

pected rewards [10],[11],[12], working memory [13], accumulation of sensory evidence for

decision making [14], the updating and holding of analog variables such as for example the

desired eye position [15], and differential processing of sensory input streams according

to attentional or other internal states of the neural system [16] could not be modeled in

this way. Previous work on concrete examples of artificial neural networks [17] and corti-

cal microcircuit models [18] had already indicated that these shortcomings of the model

might arise only if one assumes that learning affects exclusively the synapses of readout

neurons that project the results of computations to other circuits or areas, without giving

feedback into the circuit from which they extract information. This scenario is in fact

rather unrealistic from a biological perspective, since pyramidal neurons in the cortex

typically have in addition to their long projecting axon a large number of axon collaterals

that provide feedback to the local circuit [19]. Abundant feedback connections also exist

on the network level between different brain areas [20]. We show in this article that if

one takes feedback connections from readout neurons (that are trained for specific tasks)

into account, generic cortical microcircuit models can solve all of the previously listed

computational tasks. In fact, one can demonstrate this also for circuits whose underlying

noise levels and models for neurons and synapses are substantially more realistic than

those which had previously been considered in models for working memory and related

tasks.

We show in section 2.1 that the significance of feedback for the computational power

of neural circuits and other dynamical systems can be explained on the basis of general

principles. Theorem 1 implies that a large class of dynamical systems, in particular sys-

tems of differential equations which are commonly used to describe the dynamics of firing

activity in neural circuits, gain universal computational capabilities for digital and analog

computation as soon as one considers them in combination with feedback. A further math-

5



ematical result (Theorem 2) implies that the capability to process online input streams

in the light of non-fading (or slowly fading) internal states is preserved in the presence

of fairly large levels of internal noise. On the basis of this theoretical foundation one can

explain why the computer models of generic cortical microcircuits, which are considered

in section 2.2, are able to solve the previously mentioned benchmark tasks. These results

suggest a new computational model for cortical microcircuits, which includes the capabil-

ity to process online input streams in diverse ways according to different “instructions”

that are implemented through high-dimensional attractors of the underlying dynamical

system. The high-dimensionality of these attractors results from the fact that only a

small fraction of synapses need to be modified for their creation. In comparison with

the commonly considered low dimensional attractors, such high-dimensional attractors

have additional attractive properties such as compositionality (the intersection of several

of them is in general non-empty), and compatibility with real-time computing on online

input streams within the same circuit.

The presentation of theoretical results for abstract circuit models in section 2.1 is

complemented by mathematical details in sections 4.1 and 4.2 of the Appendix. Details

to the computer simulations of more detailed cortical microcircuit models (discussed in

section 2.2) can be found in section 4.3 of the Appendix. A discussion of the results of

this paper is given in section 3.

2 Results

We consider two types of models for neural circuits:

1. Mean field models, such as those defined by equation (6) in section 2.1, which model

the dynamics of firing rates of neurons in neural circuits. These models have the

advantage that they are theoretically tractable, but they have the disadvantage that

they do not reflect many known details of cortical microcircuits. However we show

6



that the theoretical results that are proven in section 2.1 hold for fairly large classes

of dynamical systems. Hence they potentially also hold for some more detailed

models of neural circuits.

2. In section 2.2 we consider quite detailed models of cortical microcircuits consisting

of spiking neurons (see the description in section 2.2 and 4.3). At present these

models cannot be analyzed directly by theoretical methods, hence we can only

present statistical data from computer simulations. Our simulation results show that

feedback has in these more detailed models a variety of computational consequences

that we have derived analytically for the simpler models of section 2.1. This is not

totally surprising insofar, as the computations that we consider in the more detailed

models can be approximately described in terms of time-varying firing rates for

individual neurons.

In both types of models we focus on computations that transform time-varying input

streams into time-varying output streams. The input streams are modeled in section 2.1 by

time-varying analog functions u(t) (that might for example represent time-varying firing

rates of neurons that provide afferent inputs), and in section 2.2 by spike trains generated

by Poisson processes with time-varying rates. Output streams are analogously modeled

by time-varying firing rates, or directly by spike trains. We believe that such online

computations, which transform time-varying inputs into time-varying outputs, provide a

better framework for modeling cortical processing of information than computations that

transform a static vector of numbers (i.e., a batch input) into a static output. Mappings

from time-varying inputs to time-varying outputs are referred to as filters (or operators)

in mathematics and engineering. A frequently discussed reference class of linear and

nonlinear filters are those which can be described by Volterra- or Wiener series (see e.g.

[21]). These filters can equivalently be characterized as those filters which are time-

invariant (i.e., they are input-driven and have no “internal clock”) and have a fading

memory (see [5]). Fading memory (which is formally defined in section 4.2.1) means

7



intuitively that the influence of any specific segment of the input stream on later parts

of the output stream becomes neglible when the length of the intervening time interval

is sufficiently large. We show in the next two subsections that feedback endows a circuit,

that by itself can only carry out computations with fading memory, with flexible ways

of combining fading-memory-computations on time varying inputs with computational

operations on selected pieces of information in a non-fading memory.

2.1 Theoretical Analysis

The dynamics of firing rates in recurrent circuits of neurons is commonly modeled by

systems of nonlinear differential equations of the form

x′
i(t) = −λixi(t) + σ (

n
∑

j=1

aijxj(t) + bi · v(t)) , i = 1, . . . , n , (1)

or

x′
i(t) = −λixi(t) + σ (

n
∑

j=1

aijxj(t)) + bi · σ(v(t)) , i = 1, . . . , n (2)

([22–25]). Here each xi, i = 1, . . . , n, is a real-valued variable which represents the current

firing rate of the ith neuron or population of neurons in a recurrent neural circuit, and

v(t) is an external input stream. The coefficients aij, bi denote the strengths of synaptic

connections, and the λi > 0 denote time constants. The function σ is some sigmoidal ac-

tivation function (nondecreasing, with bounded range). In most models of neural circuits,

the parameters are chosen so that the resulting dynamical system has a fading memory for

preceding inputs. If one makes the synaptic connection strengths aij in (1) or (2) so large

that recurrent activity does not dissipate, the neural circuit tends to exhibit persistent

memory. But it is usually quite difficult to control the content of this persistent memory,

since it tends to be swamped with minor details of external inputs (or initial conditions)

from the distant past. Hence this chaotic regime of recurrent neural circuits (see [26]

for a review) is apparently also not suitable for biologically realistic online computations

8



that combine new information from the current input with selected (e.g., behaviorally

relevant) aspects of external or internal inputs from the past.

Recurrent circuits of neurons (e.g. those described by equations (1) or (2)) are from

a mathematical perspective special cases of dynamical systems. The subsequent mathe-

matical results show that a large variety of dynamical systems, in particular also fading

memory systems of type (1) or (2), can overcome in the presence of feedback the computa-

tional limitations of a fading memory without necessarily falling into the chaotic regime.

In fact, feedback endows them with universal capabilities for analog computing, in a sense

that can be made precise in the following way (see Fig. 1A-C for an illustration):

Theorem 1 A large class Sn of systems of differential equations of the form

x′
i(t) = fi(x1(t), . . . , xn(t)) + gi(x1(t), . . . , xn(t)) · v(t), i = 1, . . . , n (3)

are in the following sense universal for analog computing:

This system (3) can respond to an external input u(t) with the dynamics of any nth order

differential equation of the form

z(n)(t) = G(z(t), z′(t), z′′(t), . . . , z(n−1)(t)) + u(t) (4)

(for arbitrary smooth functions G : R
n → R) if the input term v(t) is replaced in (3) by

a suitable memoryless feedback function K(x1(t), . . . , xn(t), u(t)), and if a suitable mem-

oryless readout function h(x(t)) is applied to its internal state x(t) = 〈x1(t), . . . , xn(t)〉:

one can achieve then that h(x(t)) = z(t) for any solution z(t) of (4).

Also the dynamic responses of all systems consisting of several higher order differen-

tial equations of the form (4) can be simulated by fixed systems of the form (3) with a

corresponding number of feedbacks.

This result says more precisely that for any nth order differential equation (4) there

exists a (memory-free) feedback function K : R
n × R → R and a memory-free readout

9



function h : R
n → R (which can both be chosen to be smooth, in particular continuous)

so that, for every external input u(t), t ≥ 0, and each solution z(t) of the forced system

(4) there is an input u0(t) with u0(t) ≡ 0 for all t ≥ 1, so that the solution x(t) =

〈x1(t), . . . , xn(t)〉 of the fixed system (3)

x′(t) = f(x(t)) + g(x(t))K(x(t), u(t) + u0(t)) , x(0) = 0 (5)

(for f : R
n → R

n consisting of 〈f1, . . . , fn〉 and g : R
n → R

n consisting of 〈g1, . . . , gn〉) is

such that

h(x(t)) = z(t) for all t ≥ 1 .

Note that the function u0(t), that is added to the input for t < 1 (whereas u0(t) = 0 for

t ≥ 1), allows the system (3) (and (5)) to simulate with a standardized initial condition

x(0) = 0 any solution of (4) with arbitrary initial conditions.

Theorem 1 implies that even if some fixed dynamical system (3) from the class Sn has

fading memory, a suitable feedback K and readout function h will enable it to carry out

specific computations with persistent memory. In fact, it can carry out any computation

with persistent memory which could possibly be carried out by any dynamical system

(4). To get a clear understanding of this universality property, one should note that

the feedback function K and the readout function h depend only on the function G that

characterizes the simulated system (4), but not on the external input u(t) or the particular

solution z(t) of (4) that it simulates. Hence Theorem 1 implies in particular that any

system (3) that belongs to the class Sn has in conjunction with several feedbacks the

computational power of a universal Turing machine (see [27] or [28] for relevant concepts

from computation theory). This follows from the fact that every Turing machine (hence

any conceivable digital computation, most of which require a persistent memory) can be

simulated by systems of equations of the form (4) (this was shown in [29] for the case with

continuous time, and in [30, 31] for recurrent neural networks with discrete time; see [32]

for a review). But possibly more relevant for applications to biological systems is the fact

that any fixed system (3) that belongs to the class Sn is able to emulate any conceivable

10



continuous dynamic response to an input stream u(t) if it receives a suitable feedback

K(x(t), u(t)), where K can always be chosen to be continuous. Hence one may argue that

these systems (3) are also universal for analog computing on time-varying inputs.

The class Sn of dynamical systems that become through feedback universal for analog

computing subsumes systems of the form

x′
i(t) = −λixi(t) + σ (

n
∑

j=1

aij · xj(t)) + bi · v(t) , i = 1, . . . , n ; (6)

for example if the λi are pairwise different and aij = 0 for all i, j, and all bi are nonzero.

Fewer restrictions are needed if more then one feedback to the system (6) can be used.

Systems of the form (1) or (2) are of a slightly different form, since there the activation

function σ (that has a bounded range) is applied to the term v(t)). But such systems (1),

(2) can still be universal for all bounded analog responses of arbitrary dynamical systems

(4), which are argueably the only ones of interest in a biological context. This follows

from the fact that if the external input u(t) of the system (4), as well as the resulting

solution z(t) and its derivatives z(i)t for i ≤ n− 1, stay within some bounded range, then

the values of the feedback v(t) that is needed for the simulation of (4) by (3) will also

stay within a bounded range. More precisely, one has that:

For each constant c > 0 there is a constant C > 0 such that: for every external input

u(t), t ≥ 0, and each solution z(t) of the forced system (4) such that

|u(t)| ≤ c and
∣

∣z(i)(t)
∣

∣ ≤ c for all i = 0, . . . , n − 1 , for all t ≥ 0

the input u0 can be picked so that the feedback

v(t) = K(x(t), u(t) + u0(t)) t ≥ 0

to (1) or (2) satisfies:

|v(t)| ≤ C for all t ≥ 0 .

Thus, if we know a priori that we will only deal with solutions of the differential equa-

tion (4) that are bounded by c, and inputs are similarly bounded, we could also consider

11



instead of (3) a system such as x′(t) = f(x(t))+g(x(t))σ(v(t)) with f, g : R
n → R

n, where

some bounded activation function σ : R → R (e.g. q · tanh(v), for a suitable constant q) is

applied to the term v(t) (like in (2)). The resulting feedback term σ(K(x(t), u(t)+u0(t)))

is then of a mathematical form which is adequate for modeling feedback in neural circuits.

The proof of Theorem 1 builds on results from control theory. One important tech-

nique in nonlinear control is feedback linearization ([33], [34]). With this technique a large

class of nonlinear dynamical systems can be transformed through suitable feedback into

a linear system (which is then much easier to control). It should be pointed out that this

feedback linearization is not a standard linearization method that only yields approxi-

mation results, but a method that yields an exact transformation. More generally, one

can show in various cases that two dynamical systems D1 and D2 are feedback equiva-

lent. The notion of “feedback equivalence” (see section 4.1.1 for a definition), which is in

fact an equivalence relation, expresses that two systems of differential equations can be

transformed into each other through application of a suitable feedback and a change of

basis in the state space. Such change of basis can be achieved through readout functions

h(x(t)) as considered in the claim of Theorem 1. Thus, in order to show that a fixed

system D1 has the universality property that is specified in the claim of Theorem 1, it

suffices to show that D1 is feedback equivalent to all systems of the form (4). Known re-

sults about feedback linearization (see [34], Lemma 5.3.5) imply that the following linear

system (7) is an example of a system D1 (consisting of n differential equations) which has

this universality property:

x′(t) = Anx(t) + bnv(t) (7)

12



with

An :=























0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

0 0 0 . . . 0























bn :=























0

0
...

0

1























.

It is in fact very easy to see that any system (4) can be transformed into the system (7)

with the help of feedback: Set x1(t) = z(t), xi+1(t) = z(i) for i = 1, . . . , n − 1, and use

the feedback v(t) = G(x(t)) + u(t) in (7). In order to prove that many other dynamical

systems have the same universality property as this system (7), it suffices to observe that

feedback equivalence preserves this universality property.

We define the class Sn in the claim of Theorem 1 as the class of feedback linearizable

systems, that is, the class of dynamical systems (3) that are feedback equivalent to some

generic linear system. It can be proved (see Lemma in section 4.1.2) that every feedback

linearizable system (3) is also feedback equivalent to (7), and hence has the the same

universality property as (7).

We give in section 4.1.2 a precise definition of the class Sn in terms of feedback equiv-

alence (which is formally defined in section 4.1.1). We present in section 4.1.3 a formal

proof of the simulation result that is claimed in Theorem 1 (taking also initial conditions

into account). In addition we formulate in section 4.1.5 an equivalent criterion for a sys-

tem (3) to belong to the class Sn, which can be more easily tested for concrete cases of

dynamical systems. This criterion makes use of the Lie bracket formalism that is briefly

reviewed in section 4.1.4. Applications of this criterion to neural network equations are

discussed in section 4.1.6. In particular, we use this criterion to show that some dynamical

systems (6) that are defined by standard equations for recurrent neural circuits belong to

the class Sn. We also show in section 4.1.6 that not all systems of the form (6) belong to

the class Sn, rather it depends on the particular choice of parameters aij and bi in (6).

13



Theorem 1 implies that a generic neural circuit may become through feedback a uni-

versal computational device, which can not only simulate any Turing machine, but also

any conceivable model for analog computing with bounded dynamic responses. The “pro-

gram” of such arbitrary simulated computing machine gets encapsulated in the static

functions K that characterize the memoryless computational operations that are required

from feedback units, and the static readout functions h. Since these functions are static,

i.e. time-invariant, and continuous, they provide suitable targets for learning. More pre-

cisely, in order to train a generic neural circuit to simulate the dynamic response of an

arbitrary dynamical system, it suffices to train - apart from readout neurons - a few neu-

rons within the circuit (or within some external loop) to transform the vector x(t), that

represents the current firing activity of its neurons, and the current external input u(t)

into a suitable feedback value K(x(t), u(t)). This could for example be carried out by

training a suitable feedforward neural network within the larger circuit, which can approx-

imate any continuous feedback function K [35]. Furthermore we will show in section 2.2

that these feedback functions K can in many biologically relevant cases be chosen to be

linear, so that it would in principle suffice to train a single neuron to compute K.

It is known that the memory capacity of such circuit is reduced to some finite number

of bits if these feedback functions K are not learnt perfectly, or if there are other sources

of noise in the system. More generally, no analog circuit with noise can simulate arbitrary

Turing machines [36]. But the subsequent Theorem 2 shows that fading memory systems

with noise and imperfect feedback can still achieve the maximal possible computational

power within this a-priori limitation: they can simulate any given finite state machine

(FSM). Note that any Turing machine with tapes of finite length is a special case of

a FSM. Furthermore any existing digital computer is a FSM, hence the computational

capability of FSM’s is actually quite large.

In order to avoid the cumbersome mathematical difficulties that arise when one anal-

yses differential equations with noise, we formulate and prove Theorem 2 on a more

14



abstract level, resorting to the notion of fading memory filters with noise (see section 4.2

for details). We assume here that the input-output behavior of those dynamical systems

with noise, for which we want to determine the computational impact of (imprecise) state

feedback, can be modeled by fading memory filters with additive noise on their output.

The assumption that the amplitude of this noise is bounded is a necessary assumption

according to [37]. We refer to [4], [5], [38] for further discussions of the relationship be-

tween models for neural circuits and fading memory filters. In particular it was shown

in [38] that every time-invariant fading memory filter can be approximated by models for

neural circuits, provided that these models reflect the empirically found diversity of time

constants of neurons and synapses.

Theorem 2 Feedback allows linear and nonlinear fading memory systems, even in the

presence of additive noise with bounded amplitude, to employ for real-time processing of

time-varying inputs the computational capability and non-fading states of any given FSM

(see Fig. 1D-E).

A precise formalization of this result is formulated as Theorem 5 in section 4.2.3, and

a formal proof of Theorem 5 is given in section 4.2.4. The external input u(t) can in this

case be injected directly into the fading memory system, so that the feedback K(x(t))

depends only on the internal state x(t) (see Fig. 1E). One essential ingredient of the proof

is a method for making sure that noise does not get amplified through feedback: the

functions K that provide feedback values K(x(t)) can be chosen in such a way that they

cancel the impact of imprecision in the values K(x(s)) for immediately preceding time

steps s < t.

2.2 Applications to Generic Cortical Microcircuit Models

We examine in this section computational aspects of feedback in recurrent circuits of

spiking neurons that are based on data from cortical microcircuits. The dynamics of

15



these circuits is substantially more complex than the dynamics of circuits described by

equ. (6), since it is based on action potentials (spikes) rather than firing rates. Hence one

can expect at best that the temporal dynamics of firing rates in these circuits of spiking

neuron is qualitatively similar to that of circuits described by (6).

The preceding theoretical results imply that it is possible for dynamical systems to

carry out computations with persistent memory without acquiring all the computational

disadvantages of the chaotic regime, where the memory capacity of the system is domi-

nated by noise. Feedback units can create selective “loopholes” into the fading memory

dynamics of a dissipative system, that can only be activated by specific patterns in the

input or circuit dynamics. In this way the potential content of persistent memory can

be controlled by feedback units that have been trained to recognize such patterns. This

feedback may arise from a few neurons within the circuit, or from neurons within a larger

feedback loop. The task to approximate a suitable feedback function K is less difficult

than it may appear on first sight, since it suffices in many cases to approximate a lin-

ear feedback function. The reason is that sufficiently large generic cortical microcircuit

models have an inherent kernel property [8], in the sense of machine learning [39]. This

means that a large reservoir of diverse nonlinear responses to current and recent input

patterns is automatically produced within the recurrent circuit. In particular, nonlinear

combinations of variables a, b, c, . . . (that may result from the circuit input or internal

activity) are automatically computed at internal nodes of the circuit. Consequently nu-

merous low degree polynomials in these variables a, b, c, . . . can be approximated by linear

combinations of outputs of neurons from the recurrent circuit. An example of this effect is

demonstrated in Fig. 3G, where it is shown that the product of firing rates r3(t) and r4(t)

of two independently varying afferent spike train inputs can be approximated quite well

by a linear readout neuron. The kernel property of biologically realistic cortical microcir-

cuit models is apparently supported by the fact that these circuits have many additional

nonlinearities besides those that appear in the equations (1), (2), (6).

16



One formal difference between neurons in the mean field model (6) and more realistic

models for spiking neurons is that the input to a neuron of the latter type consists of

postsynaptic potentials, rather than of firing rates. Hence the time-varying input x(t) to

a readout neuron is in this section not a vector of time-varying firing rates, but a smoothed

version of the spike trains of all presynaptic neurons. This smoothing is achieved through

application of a linear filter with an exponentially decaying kernel, whose time constant

of 30 ms models time constants of receptors and postsynaptic membrane of a readout

neuron in a qualitative fashion. Thus, if w is a vector of synaptic weights, then w · x(t)

models the impact of the firing activity of presynaptic neurons on the membrane potential

of a readout neuron.

We refer in the following to those neurons where the weights of synaptic connections

from neurons within the circuit are adapted for a specific computational task (rather than

chosen randomly from distributions that are based on biological data, like for all other

synapses in the circuit) as readout neurons. The output of a readout neuron was modeled

in most of our simulations simply by a weighted sum w · x(t) of the previously described

vector x(t). Such output can be interpreted as the time-varying firing rate of a readout

neuron. However we show in Fig. 3 that these readout neurons can (with a moderate loss

in performance) also be modeled by spiking neurons, exactly like the other neurons in the

simulated circuit. This demonstrates that not only those circuits that receive feedback

from external readout neurons, but also generic recurrent circuits in which a few neurons

have been trained for a specific task, acquire computational capabilities for real-time

processing that are not restricted to computations with fading memory.

Theorem 2 suggests that the training of a few of its neurons enables generic neural

circuits to employ persistent internal states for state-dependent processing of online input

streams. Previous models for non-fading memory in neural circuits [13, 40–42] proposed

that it is implemented through low-dimensional attractors in the circuit dynamics. These

attractors tend to freeze or entrain the whole state of the circuit, and thereby shut it

17



off from the online input stream (although independent local attractors could emerge in

local subcircuits under some conditions [41]). In contrast, the generation of non-fading

memory through a few trained neurons does not entail that the dynamics of the circuit

is dominated by their persistent memory states. For example, when a readout neuron

gives during some time interval a constant feedback K(x(t)) = c, this only constrains the

circuit state x(t) to remain in the sub-manifold {x : K(x) = c} of its high-dimensional

state space. This sub-manifold is in general high-dimensional. In particular, if K(x) is

a linear function w · x, which often suffices as we will show, the dimensionality of the

sub-manifold {x : K(x) = c} differs from the dimension of the full state space only by

1. Hence several such sub-manifolds have in general a high-dimensional intersection, and

their intersection still leaves sufficiently many degrees of freedom for the circuit state

x(t) to also absorb continuously new information from online input streams. These sub-

manifolds are in general not attractors in a strict mathematical sense. Rather, their

effective attraction property (or noise-robustness) results from the subsequently described

training process (“teacher forcing”). This training process produces weights w which have

the property that the resulting feedback w · x̃(t) moves a trajectory of circuit states that

goes through states x̃(t) in the neighborhood of the sub-manifold {x : K(x) = c} closer

to this sub-manifold.

We simulated generic cortical microcircuit models consisting of 600 integrate-and-fire

(I&F) neurons (for Fig. 3, 4), and circuits consisting of 600 Hodgkin-Huxley (HH) neurons

(for Fig. 5), in either case with a rather high level of noise that reflects experimental

data on the high conductance state in vivo [43]. These circuits were not constructed for

any particular computational task. In particular, sparse synaptic connectivity between

neurons was generated (with a biologically realistic bias towards short connections) by

a probabilistic rule. Synaptic parameters were chosen randomly from distributions that

depend on the type of pre- and postsynaptic neurons (in accordance with empirical data

from [44], [45]). More precisely, we used biologically realistic models for dynamic synapses

18



whose individual mixture of paired-pulse depression and facilitation (depending on the

type of pre- and postsynaptic neuron) was based on these data. It has previously been

shown in [8],[6] that the presence of such dynamic synapses extends the time span of

the inherent fading memory of the circuit. However the computational tasks that are

considered in this paper require, apart from a non-fading memory, only a fading memory

with a rather short time span (in order to make the estimation of the current firing

rate of input spike trains feasible). Therefore the biologically more realistic dynamic

synapses could be replaced in this model by simple static synapses, without a change in

the performance of the circuit for the subsequently considered tasks. All details of the

simulated microcircuit models can be found in section 4.3. Details of the subsequently

discussed computer experiments are given in sections 4.4 - 4.6.

We tested 3 different types of computational tasks for generic neural circuits with

feedback. The same neural circuit can be used for each task, only the organization of

input- and output streams needs to be chosen individually (see Fig. 2). The following

procedure was applied to train readout neurons, i.e. to adjust the weights of synaptic

connections from neurons in the circuit to readout neurons for specific computational

tasks (while leaving all other parameters of the generic microcircuit model unchanged):

• First those readout neurons were trained that provide feedback, then the other

readout neurons.

• During the training of readout neurons that provide feedback, their actual feedback

was replaced by a noisy version of their target output (“teacher forcing”).

• Each readout neuron was trained by linear regression to output at any time t a

particular target value f(t). Linear regression was applied to a set of data points

of the form 〈x(t), f(t)〉 for many time points t, where x(t) is a smoothed version of

the spike trains of presynaptic neurons (as defined before).

Note that teacher forcing with noisy versions of target feedback values trains these read-

19



outs to correct errors resulting from imprecision in their preceding feedback (rather than

amplifying errors). This training procedure is responsible for the robustness of the dy-

namics of the resulting closed-loop circuits, in particular for the “attractor” properties of

the effectively resulting high-dimensional attractors.

In our first computer experiment, readout neurons were trained to turn a high-

dimensional attractor on or off (Fig. 3D), in response to bursts in 2 of the 4 independent

input spike trains. More precisely, 8 neurons were trained to represent in their firing

activity at any time the information in which of the input streams 1 or 2 a burst had

most recently occurred. If it had occurred most recently in stream 1, they were trained

to fire at 40 Hz, and if a burst had occurred most recently in input stream 2, they were

trained not to fire. Hence these neurons were required to represent the non-fading state

of a simple FSM, demonstrating in an example the computational capabilities predicted

by Theorem 2. Fig. 3G demonstrates that the circuit retains its kernel property inspite

of the feedback injected into the circuit by these readouts. But beyond the emulation of

a simple FSM, the resulting generic cortical microcircuit is able to combine information

stored in the current state of the FSM with new information from the online circuit input.

For example, Fig. 3E shows that other readouts from the same circuit can be trained to

amplify their response to specific inputs if the high-dimensional attractor is in the “on”-

state. Readouts can also be trained to change the function that they compute if the

high-dimensional attractor is in the on-state (Fig. 3F). This provides an example for an

online reconfigurable circuit. The readout neurons that provide feedback had been mod-

eled in this computer simulation like the other neurons in the circuit: by I&F neurons

with in-vivo like background noise. Hence they can be viewed equivalently as neurons

within an otherwise generic circuit.

Another difficult problem in computational neuroscience is to explain how neural cir-

cuits can implement a parametric memory, i.e. how they can hold and update an analog

value, that may represent for example an intended eye-position that a neural integra-

20



tor computes from a sequence of eye-movement commands [46], an estimate of elapsed

time [9], or accumulated sensory evidence [14]. Various designs have been proposed for

parametric memory in recurrent circuits, where continuous attractors (also referred to

as line attractors) hold and update an analog value. But these approaches are inher-

ently brittle [42], and have problems in dealing with high noise or online circuit inputs.

On the other hand Fig. 4 shows that dedicated circuit constructions are not necessary,

since feedback from readout neurons in generic cortical microcircuits models can also

create high-dimensional attractors that hold and update an analog value for behaviorally

relevant time spans. In fact, due to the high-dimensional character of the resulting high-

dimensional attractors, two such analog values can be stored and updated independently

(Fig. 4C,D), even within a fairly small circuit. In this example the readouts that provide

feedback were simply trained to increase or reduce their feedback at each time point. Note

that the resulting circuit activity is qualitatively consistent with recordings from neurons

in cortex and striatum during reward expectation [10],[11],[12]. A similar ramp-like rise

and fall of activity as shown in panels C, D, F has also been recorded in neurons of pos-

terior parietal cortex of the macaque in experiments were the monkey had been trained

to classify the duration of elapsed time [9]. The high-dimensionality of the continuous

attractors in this model makes it feasible to constrain the circuit state to stay simulta-

neously in more than one continuous attractor, thereby making it in principle possible

to encode complex movement plans that require specific temporal relationships between

individual motor commands.

Our model for parametric memory in cortical circuits is consistent with high noise:

Fig. 5G shows the typical trial-to-trial variability of a neuron in our simulated circuit

of HH neurons with in-vivo like background noise. It qualitatively matches the “wide

diversity of neural firing drift patterns in individual fish at all states of tuning” that was

observed in the horizontal occulomotor neural integrator in goldfish [15], and the large

trial-to-trial variability of neurons in prefrontal cortex of monkeys reported in [10]. In

21



addition, this model is consistent with the surprising plasticity that has been observed

even in quite specialized neural integrators [15], since continuous attractors can be created

or modified in this model by changing just a few synaptic weights of neurons that are

immediately involved. It does not require the presence of long-lasting postsynaptic po-

tentials, NMDA-receptors, or other specialized details of biological neurons or synapses,

although their inclusion in the model is likely to provide additional temporal stability

[13]. Rather it points to complementary organizational mechanisms on the circuit level,

that are likely to enhance the controllability and robustness of continuous attractors in

neural circuits. The robustness of this learning-based model can be traced back to the

fact that readout neurons can be trained to correct undesired circuit responses resulting

from errors in their previous feedback. Furthermore such error correction is not restricted

to linear computational operations, since the previously demonstrated kernel property of

these generic circuits allows even linear neurons to implement complex nonlinear control

strategies through their feedback. As an example we demonstrate in Fig. 5 that even un-

der biologically realistic high noise conditions a linear readout can be trained to update

a continuous attractor (Fig. 5D), to filter out input activity during certain time intervals

in dependence of the current state of the continuous attractor (Fig. 5E), or to combine

the time-varying analog variable encoded by the current state CA(t) of the continuous

attractor with a time-varying variable r1(t) that is delivered by an online spike input.

Hence intention-based information processing [16] and other tasks that involve a merging

of external inputs and internal state information can be implemented in this way. Fig. 5C

shows that a high-dimensional attractor need not entrain the firing activity of neurons

in a drastic way, since it just restricts the high-dimensional circuit dynamics x(t) to a

slightly lower dimensional manifold of circuit states x(t) that satisfy w ·x(t) = f(t) for the

current target output f(t) of the corresponding linear readout. On the other hand Fig. 5E

shows that the activity level CA(t) of the high-dimensional attractor can nevertheless be

detected by other linear readouts, and can simultaneously be combined in a nonlinear

22



manner with a time-varying variable r2(t) from one afferent circuit input stream, while

remaining invariant to the other afferent input stream.

Finally, the same generic circuit also provides a model for the integration of evidence

for decision making that is compatible with in-vivo like high noise conditions. Fig. 5H

depicts the time course of the same neural integrator as in panel D, but here for the

case where the rates r1, r2 of the 2 input streams assume in 8 trials 8 different constant

values after the first 100 ms (while assuming a common value of 65 Hz during the first

100 ms). The resulting time course of the continuous attractor is qualitatively similar to

the meandering path towards a decision threshold that has been recorded from neurons

in area LIP where firing rates represent temporally integrated evidence concerning the

dominating direction of random dot movements (see Fig. 5A in [14]).

3 Discussion

We have presented a theoretically founded model for real-time computations on complex

input streams with persistent internal states in generic cortical microcircuits. This model

does not require a handcrafted circuit structure or biologically unrealistic assumptions

such as symmetric weight distributions, static synapses that do not exhibit pair-pulsed

depression or facilitation, or neuron models with low levels of noise that are not con-

sistent with data on in-vivo conditions. Our model only requires the assumption that

adaptive procedures (synaptic plasticity) in generic neural circuits can approximate lin-

ear regression. Furthermore, in contrast to classical learning paradigms for attractor

neural networks, it is here not required that a large fraction of synaptic parameters in the

circuit are changed when a new computational task is introduced, or a new item is stored

in working memory. Rather, it suffices if those neurons that provide the circuit output

and a few neurons that provide feedback are subject to synaptic plasticity. Such minimal

circuit modifications have the advantage that thereby created attractors of the circuit dy-

namics are high-dimensional. We have shown that the circuit state can be simultaneously

23



in several of such high-dimensional attractors, and still retain sufficiently many degrees of

freedom to absorb and process new information from online input streams. In particular,

we have shown in Fig. 3 and 5 how bottom-up processing can be reconfigured in depen-

dence of discrete internal states (implemented through high-dimensional attractors) by

turning certain input channels on or off, and by changing the computational operations

that are applied to input variables. Furthermore we have shown in Fig. 5 that analog

variables, which are extracted from an online input stream, can be combined in real-time

computations with analog variables that are stored in high-dimensional continuous at-

tractors. This provides in particular a model for the implementation of intention-based

information processing [16] in cortical microcircuits.

It remains open how learning signals can induce neurons in a biological organism to

compute specific linear feedback functions. But at least we have reduced this problem

to the feasibility of perceptron-like learning (or more abstractly: to linear regression)

for single neurons. Subsequent research will have to determine whether these learning

requirements (which can partially be reduced to spike-timing dependent plasticity [47])

can be justified on the basis of results on unsupervised learning and reinforcement learning

[48] in biological organisms.

Whereas it was previously already known that one can construct specific circuits

that have universal computational capabilities for real-time computing on analog input

streams, Theorems 1 and 2 of this article imply that a large variety of dynamical systems

(in particular generic cortical microcircuits) can acquire through feedback such universal

capabilities for computations that map time-varying inputs to time-varying outputs. It

should be noted that these universal computational capabilities differ from the well known

but much weaker universal approximation property of feedforward neural networks (see

[35]), since not only the static output of an arbitrary continuous static function is ap-

proximated, but the dynamic response of arbitrary differential equations of higher order

to time-varying inputs.

24



The theoretical results of this article also provide an explanation for the astounding

computational capability and flexibility of echo state networks [17]. In addition they

can be used to analyze computational aspects of feedback in other biological dynamical

systems besides neural circuits. Several such systems, for example genetic regulatory

networks, are known to implement complex maps from time-varying input streams (e.g.

external signals) onto time-varying outputs (e.g. transcription rates). But little is known

about the way in which these maps are implemented. Whereas feedback in biological

dynamical systems is usually only analyzed and modeled from the perspective of con-

trol, we propose that an analysis of its computational aspects is likely to yield a better

understanding of the computational capabilities of such systems.

4 Appendix

4.1 Mathematical Definitions, Details to the Proof of Theo-

rem 1, and Examples

4.1.1 Definition of Feedback Equivalence

We recall that a smooth mapping is one for which derivatives of all orders exist (infinite

differentiability), and that a diffeomorphism T : R
n → R

n is a smooth mapping for which

there exists a well-defined smooth inverse T−1 : R
n → R

n.

Definition (see [34], Def. 5.3.1): Two n-dimensional systems x′ = f(x) + g(x)v

and x′ = f̃(x) + g̃(x)v (with smooth vector fields f = 〈f1, . . . , fn〉, g = 〈g1, . . . , gn〉, f̃ =

〈f̃1, . . . , f̃n〉, g̃ = 〈g̃1, . . . , g̃n〉) are called feedback equivalent (over the state space R
n) if

there exists

• a diffeomorphism T : R
n → R

n, and

• smooth maps α, β : R
n → R with β(x) 6= 0 for all x ∈ R

n,

25



such that, for each x ∈ R
n

T∗(x)(f(x) + g(x)α(x)) = f̃(T (x))

and

β(x)T∗(x)g(x) = g̃(T (x))

(where T∗ denotes the Jacobian of T ).

4.1.2 Definition of the class Sn

Recall that a linear system x′ = Ax+bu is controllable if it is possible to drive any state

x0 to any other state x1 using an input (see [34], Def. 3.1.6). Controllability is a generic

property of systems, and amounts to the requirement that the matrix (b,Ab, . . . ,An−1b)

has full rank, where n is the dimension of the system (see [34], Theorem 2). Note that

the linear system (7) satisfies this requirement, and hence is controllable.

We take Sn to be the class of n-dimensional systems (3) that are (globally) feedback

linearizable, that is to say, the systems (3) for which there exists some linear controllable

system that is feedback equivalent to (3) (see [34], Def. 5.3.2).

An n-dimensional system is feedback linearizable if and only if it is feedback equivalent

to the system (7) (see [34], Lemma 5.3.5). Therefore, we have the following:

Lemma: A system (3), with smooth vector fields f = 〈f1, . . . , fn〉 and g = 〈g1, . . . , gn〉,

belongs to Sn if and only if there exists a diffeomorphism T : R
n → R

n and two smooth

maps α, β : R
n → R, with β(x) 6= 0 for all x ∈ R

n, such that, for each x ∈ R
n:

T∗(x) f(x) = AnT (x) −
α(x)

β(x)
bn (8)

and

β(x)T∗(x) g(x) = bn , (9)

26



where T∗ denotes the Jacobian of T and

An :=























0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

0 0 0 . . . 0























bn :=























0

0
...

0

1























.

An interpretation of the property given in the above Lemma, that will be used in the

proof of Theorem 1 in section 4.1.3, is as follows (see [34], Chapter 5, for more discussion):

For each input µ(t) and each solution z(t) of

z(n) = µ ,

the vector function x(t) = T−1(Z(t)) satisfies (3) with the input v(t) = α(x(t)) +

β(x(t))µ(t), where

Z(t) =
(

z(t), z′(t), z′′(t), . . . , z(n−1)(t)
)

.

4.1.3 Details to the Proof of Theorem 1

In this section, we prove the simulation result that is claimed in Theorem 1.

Take any system (3) in Sn and any system (4) to be simulated. Using T, α, β as in the

Lemma in section 4.1.2 that characterizes the class Sn, we define:

K(x, w) := α(x) + β(x) [G(T (x)) + w]

and we let h(x) be the first coordinate of T (x). In the special case where (3) describes

the dynamics of a circuit according to (6), α is a linear function, β is a constant, and T

is an invertible linear map from R
n to R

n.

Next, pick an external input u(t), t ≥ 0, and a solution z(t) of the forced system (4).

27



From the interpretation of feedback linearization given earlier (in the last part of

section 4.1.2), it follows that for any inputs u(t) and u0(t) (in particular, one could take

u0 ≡ 0), and each solution z(t) of

z(n)(t) = G
(

z(t), z′(t), z′′(t), . . . , z(n−1)(t)
)

+ u(t) + u0(t)

(that is, we use µ(t) = G
(

z(t), z′(t), z′′(t), . . . , z(n−1)(t)
)

+ u(t) + u0(t) as the input to

z(n) = µ), the vector function x(t) = T−1(Z(t)) satisfies (3) with input

v(t) = α(x(t)) + β(x(t))µ(t) = K (x(t), u(t) + u0(t)) .

Furthermore, Z(t) = T (x(t)) means that z(t) = h(x(t)), as required for the notion of

simulation.

This almost proves the simulation result, except for the fact that there is no reason for

the initial value x(0) = T−1(Z(0)) to be zero, since z(t) is an arbitrary trajectory. This

is where the input u0 plays a role. Let ξ := T (0). We will show that, given any solution

z(t) and any input u(t), there is some input u0(t), with u0(t) ≡ 0 for all t ≥ 1, so that

the solution of

y(n)(t) = G
(

y(t), y′(t), y′′(t), . . . , y(n−1)(t)
)

+ u(t) + u0(t) (10)

with y(0) = ξ has the property that y(t) = z(t) for all t ≥ 1. (Where z(t) is the desired

trajectory to be simulated, with u0 ≡ 0.) Then letting x(t) = T−1(Y (t)) instead of

T−1(Z(t)) means that x(0) = 0 and still h(x(t)) = y(t) = z(t) for all t ≥ 1.

Consider now an arbitrary solution z(t) of the equation (4) and let ζ be the vector

with entries

ζi+1 := z(i)(1), i = 0, . . . , n − 1.

We next pick a scalar differentiable function φ such that φ(i)(0) = ξi+1 and φ(i)(1) = ζi+1

for i = 0, . . . , n − 1. (It is easy to see that such functions exist. For example, one may

simply consider the linear system p′ = Anp + bnq with states p and input q. This is a

28



completely controllable linear system, cf. [34], Chapter 3, so we just pick an input q(t)

which steers ξ into ζ, and finally let φ(t) be the first coordinate of p(t).) Now we let

u0(t) := φ(n)(t) − G(φ(t), . . . , φ(n−1)(t)) − u(t)

for t < 1, and u0(t) ≡ 0 for t ≥ 1, and claim that the solution of (10) with y(0) = ξ has

the property that y(t) = z(t) for all t ≥ 1. Since u(t) + u0(t) = u(t) for all t ≥ 1, we

only need to show that y(i)(1) = z(i)(1) for every i = 0, . . . , n − 1. To see this, in turn,

and using uniqueness of solutions of differential equations, it is is enough to show that

y(t) := φ(t) satisfies

φ(n)(t) = G
(

φ(t), φ′(t), φ′′(t), . . . , φ(n−1)(t)
)

+ u(t)

on the interval [0, 1] and has derivatives at t = 0 as specified by the vector ξ. But this is

indeed true by construction.

Finally, we remark that if |u(t)| ≤ c and
∣

∣z(i)
∣

∣ (t) ≤ c for all t ≥ 0 then x(t) =

T−1(Z(t)) is bounded in norm by a constant that only depends on c (since T−1 is contin-

uous, by definition of diffeomorphism), and the numbers bi := z(i)(1) are also bounded by

a constant that depends only on c, so K(x(t), u(t) + u0(t)) also is.

Corollary 3 Analogous results can be shown for the simulation of systems consisting of

any number k of higher order differential equations as in (4). In this case fixed systems

of first order differential equations of a form as in (3), but with k memoryless feedback

functions K1, . . . , Kk that depend on the simulated higher order system, can be shown to

be able to simulate the dynamic response of arbitrary higher order systems of differential

equations.

4.1.4 Lie Brackets

The study of controllability and other properties of nonlinear systems is based upon the

use of Lie bracket formalism and theory ([34], Chapter 4). We need this formalism to

29



show in section 4.1.6 that the class Sn includes some neural networks of the form (6). For

any two vector fields f and g,

[f, g] = g∗f − f∗g

denotes the Lie bracket of f and g. Recall that the Lie bracket of two vector fields is a

vector field that characterizes the effective direction of movement obtained by performing

this “commutator” motion: follow the vector field f for t time steps, then g for t time

steps, then f backward in time for t time steps, and finally g backward in time for t time

steps, for small t > 0. To be more precise, denote formally by etf the flow associated to

f , and similarly for g. Consider the following curve, for any initial state x0:

γ(t) := e−
√

tge−
√

tfe
√

tge
√

tf x0 .

Applying repeatedly this expansion:

etfx0 = x(0) + tx′(0) +
t2

2
x′′(0) + o(t2) = x0 + tf(x0) +

t2

2
f∗(x0)f(x0) + o(t2)

(and similarly for g), we obtain that

e−
√

tge−
√

tfe
√

tge
√

tf x0 = et[f,g]x0 + o(t)

as t → 0, from which it follows that γ ′(0) = [f, g](x0), which means that the direction

of [f, g] is followed when performing the commutator motions. Using the possible non-

commutativity of the vector fields, one generates in this manner genuinely new directions

of movement in addition to those provided by the linear combinations of f and g. Well-

known examples are provided by the Lie bracket of two rotations around orthogonal axes,

which is a rotation around the remaining axis (see for example [34], page 150), or the

motions involved in parking an automobile (see for example [34], Example 4.3.13).

Iterations of Lie brackets play a key role. Let us introduce, for any given vector field

f , the operator adf , which maps vector fields into vector fields, by means of the formula

adf (g) := [f, g]. Iterations of the operator adf are defined in the obvious way: ad0
f(g) = g

and adk+1
f (g) = adf(adk

f (g)).

30



It is also useful to consider an operator Lf that acts on scalar functions. We use the

notation Lfφ, for any (smooth) vector field f and (smooth) function φ, to denote the

Lie derivative of φ along f , that is, ∇φ · f . The function Lfφ, which is again smooth, is

nothing more than the directional derivative of the function φ in the direction of the vector

field f , in the sense of elementary calculus. One can also consider iterated applications

of the operator Lf .

4.1.5 A Characterization of Sn via Lie Brackets

With these notations, we are ready to present a Lie geometric characterization of the

class Sn. The next theorem follows by combining the proofs of Proposition 5.3.9 and of

Theorem 15 in [34] (with O = X = R
n in the notations of that text).

Theorem 4 The system x′ = f(x) + g(x)v is globally feedback linearizable if and only if

there exists a smooth function

ϕ : R
n → R

having everywhere nonzero gradient and satisfying the following properties:

1. for each x ∈ R
n, the vectors g(x), adfg(x), . . . , adn−1

f g(x) are linearly independent;

2. for each x ∈ R
n and each j = 0, . . . , n − 2, ∇ϕ(x) · adj

fg(x) = 0;

3. the map x 7→ (ϕ(x), Lfϕ(x), . . . , Ln−1
f ϕ(x)) is a bijection R

n → R
n.

Observe that the conditions amount to the existence of a well-behaved solution ϕ of a

set of first-order linear partial differential equations. Existence of a solution of this form

is not trivial to verify. In order to study solvability, in control theory one considers the

following conditions:

(LI) The set of vector fields {g(x), adfg(x), . . . , adn−1
f g(x)} is linearly independent.

31



(INV) The distribution generated by {g, adfg, . . . , adn−2
f g} is involutive.

This last condition means that the Lie bracket of any two of the vector fields adi
fg, for

i ∈ {0, . . . , n−2}, should be, for each x, a linear combination of these same n−1 vectors.

One then has the following result (see Theorem 15 in [34]), which is a consequence of

Frobenius’ Theorem in partial differential equation theory: A system satisfies both con-

ditions (LI) and (INV) at a state x if and only if it is feedback linearizable in some open

set containing x. This provides a useful and complete characterization of local feedback

linearizability, and in particular a necessary condition for global feedback linearizability.

In examples, often these conditions lead one to a globally defined solution, see e.g. example

5.3.10 in [34]).

4.1.6 Application to Neural Network Equations

Let us now show with the help of Theorem 4 that the class Sn includes some fading

memory systems of the form (6). Indeed, consider any system as follows:

x′ = −diag(λ1, . . . , λn)x + b · v (11)

where the λi 6= λj for each i 6= j are all positive, diag(λ1, . . . , λn) is the resulting diagonal

matrix, and the column vector b = col(b1, . . . , bn) has nonzero entries: bi 6= 0 for all i.

(Such a system, which has the form (6) with σ(Ax) ≡ 0, consists of n first order linear

differential equations in parallel, and is obviously fading-memory.) It is easy to see that,

up to signs (−1)i, we have

adi
fg(x) = col(λi

1b1, . . . , λ
i
nbn)

for i > 0, and the linear independence of g(x), adfg(x), . . . , adn−1
f g(x) follows from the

fact that these constant vectors form a Vandermonde matrix. Then we can pick ϕ(x) as a

linear map x → ax, where a is any vector in R
n which is orthogonal to all of the vectors

col(λi
1b1, . . . , λ

i
nbn) , i = 0, 1, . . . , n − 2 .

32



The map x 7→ (ϕ(x), Lfϕ(x), . . . , Ln−1
f ϕ(x)) is represented then also by a Vandermonde

matrix, so it is a bijection. Hence the conditions 1.-3. of Theorem 4 are satisfied, which

implies that the system (11) belongs to the class Sn.

As a further example, we now consider the following system, which also has the general

form of the neural-network equations (6):

x′
1(t) = −λ1x1(t) + σ (x2(t) + ax3(t))

x′
2(t) = −λ2x2(t) + σ (x2(t) + x3(t))

x′
1(t) = −λ3x3(t) + v(t)

where σ is a scalar function, smooth but otherwise arbitrary for now, and a as well as

the λi’s are constants, also arbitrary for now. We will analyze this example using the Lie

formalism described in section 4.1.4. The system has the form x′ = f(x) + g(x)v, with

n = 3, and f and g are the following vector fields:

f =











−λ1x1 + σ(x2 + ax3)

−λ2x2 + σ(x2 + x3)

−λ3x3











, g =











0

0

1











.

Note that the Jacobian g∗ of g is identically zero, which simplifies the computation of Lie

brackets. We calculate adfg(x) = [f, g](x) = −f∗(x)g(x) and [g, adfg] = (adfg)∗(x)g(x)

as follows:

adfg(x) =











− a σ′(x2 + ax3)

− σ′(x2 + x3)

λ3











, [g, adfg] =











− a2σ′′(x2 + ax3)

− σ′′(x2 + x3)

0











.

The involutivity condition says that the set of vector fields {g, adfg} should be involutive,

which means that [g, adfg](x) should be in the span of g(x) and adfg(x) for all x. Let

us evaluate g, adfg, [g, adfg] at the particular points for which x3 = 0, so that we obtain,

33



respectively, three vectors v1, v2, v3 that depend on x2 only:

v1(x2) =











0

0

1











, v2(x2) =











− a σ′(x2)

− σ′(x2)

λ3











, v3(x2) =











− a2σ′′(x2)

− σ′′(x2)

0











.

If [g, adfg](x) is in the span of g(x) and adfg(x) for all vectors x, then, in particular,

v3(x2) must belong to the span of v1(x2) and v2(x2) for all x2. This means that there is,

for each x2, a scalar r(x2) such that

a2σ′′(x2) = ar(x2)σ
′(x2) , σ′′(x2) = r(x2)σ

′(x2) .

If a 6= 0, it follows that σ′′(x2) = aσ′′(x2) for all x2. So, if also a 6= 1, we conclude that

σ′′(x2) must vanish for all x2. Thus, the system in our example (assuming a 6∈ {0, 1}) is

feedback linearizable only if σ is a linear function.

On the other hand, consider now the cases a = 0 or a = 1. Then, the involutivity

condition becomes the requirement that there should exist a scalar function r such that

σ′′(x2 + x3) = r(x)σ′(x2 + x3) ,

which can be achieved provided only that the function σ′ is everywhere nonzero (which is

true if σ is, for example, a standard sigmoidal function), simply by taking r(x) = σ′′(x2 +

x3)/σ
′(x2 + x3). The linear independence condition amounts to showing that the set of

vectors {g, adfg, ad2
fg} is linearly independent. Computing the determinant of the matrix

that has these vectors as columns, when a = 0 we obtain −σ′(x2)[σ
′(x2 + x3)]

2, which is

everywhere nonzero, provided that we again assume that σ has an everywhere nonzero

derivative. Thus, the Lie-theoretic conditions for feedback linearization are satisfied,

for any choice of λi’s, when a = 0. In the case a = 1, the same computation gives

a determinant of (λ1 − λ2)[σ
′(x2 + x3)]

2, so the Lie-theoretic conditions for feedback

linearization are satisfied, for any choice of λi’s such that λ1 6= λ2.

34



4.2 Mathematical Definitions and Details to the Proof of The-

orem 2

4.2.1 Fading Memory Filters

A map (or filter) F from input- to output streams is defined to have fading memory

if its current output at time t depends (up to some precision ε) only on values of the

input u during some finite time interval [t − T, t]. (We use in this section boldface

letters to denote input streams, because they typically have a dimension larger than

1.) In formulas: F has fading memory if there exists for every ε > 0 some δ > 0 and

T > 0 so that |(Fu)(t) − (F ũ)(t)| < ε for any t ∈ R and any input functions u, ũ with

‖u(τ) − ũ(τ)‖ < δ for all τ ∈ [t − T, t]. This is a characteristic property of all filters

that can be approximated by an integral over the input stream u, or more generally by

Volterra- or Wiener series. Note that non-trivial Turing machines and FSMs can not be

approximated by filters with fading memory, since they require a persistent memory.

4.2.2 Finite State Machines

The deterministic finite state machine (FSM), also referred to as deterministic finite au-

tomaton, is a standard model for a digital computer, or more generally for any realistic

computational device that operates in discrete time with a discrete set of inputs and in-

ternal states [27]. One assumes that a FSM is at any time in one of some finite number

l of states, and that it receives at any (discrete) time step one input symbol from some

alphabet {s1, . . . , sk} that may consist of any finite number k of symbols. Its “program”

may consist of any transition function TR : {s1, . . . , sk} × {1, . . . , l} → {1, . . . , l}, where

TR(si, j
′) = j denotes the new internal state j which the FSM assumes at the next time

step after processing input symbol si in state j′.

35



4.2.3 Precise Statement of Theorem 2

We consider here a slight variation of the finite state machine model, which is more ade-

quate for systems that operate in continuous time and receive analog inputs (for example

trains of spikes in continuous time). We assume that the raw input is some arbitrary n-

dimensional input stream u (i.e., u(t) ∈ R
n for every t ∈ R). Furthermore we assume that

there exist pattern detectors F1, . . . , Fk that report the occurrence of spatio-temporal pat-

terns in the input stream u from k different classes C1, . . . , Ck. In the case where the input

u consists of spike trains, these classes could consist for example of particular patterns of

firing rates, of particular spike patterns, or particular correlation patterns among some of

the input spike trains. It was shown in [5] that readouts from generic neural microcircuit

models can easily be trained to approximate the role of such pattern detectors F1, . . . , Fk.

We assume that the detection of a pattern from class Ci by pattern detector Fi affects

the state of the FSM according to its transition function TR in a way which corresponds

to the presentation of input symbol si in the discrete-time version: if j′ was its preceding

state, then it changes now within some finite switching time to state j = TR(si, j
′).

In order to make an implementation of such FSM by a noisy system feasible, we assume

that the pattern detectors (F1u)(t), . . . , (Fku)(t) always assume values ≤ 0, except during

a switching episode. During a switching episode exactly one of the pattern detectors

(Fiu)(t) assumes values > 0. We assume that this (Fiu)(t) reaches values ≥ 1 during this

switching episode. We also assume that the length of each switching episode (i.e., the time

during which some (Fiu)(t) assumes values > 0) is bounded from above by some constant

δ, and that the temporal distance between the beginnings of any two different switching

episodes is at least ∆ + 3δ (where ∆ is the assumed temporal delay of the feedback in

the circuit). In order to avoid that the subsequent construction is based on unrealistic

assumptions, we allow that each pattern detector Fi is replaced by some arbitrary filter F̂i

so that (F̂iu)(t) is a continuous function of time (with values in some arbitrary bounded

range [−B, B]) with |(F̂iu)(t) − (Fiu)(t)| ≤ 1
4

for any input stream u that is considered.

36



The informal statement of Theorem 2 is made precise by the subsequent Theorem 5

(see Fig. 6 for an illustration). It exhibits a simple construction method whereby fading

memory filters with additive noise of bounded amplitude can be composed into a closed

loop system C that emulates an arbitrary given FSM in a noise-robust manner. The

resulting system C can be embedded into any other fading memory system, which receives

the outputs CL − Ĥj(t) of C as additional inputs. In this way any given fading memory

system can integrate the computational capability and non-fading states of the FSM that

is emulated by C into its own real-time computation on time-varying input streams u.

An essential aspect of the proof of Theorem 5 is that suitable fading memory filters

Hj can prevent in the closed loop the accumulation of errors through feedback, even if

the ideal fading memory filters Hj are subsequently replaced by imperfect approximations

Ĥj . One just has to construct the ideal fading memory filters Hj in such a way that they

take into account that their previous outputs, that have been fed back into the system

C, may have been corrupted by additive noise. As long as this additive noise of bounded

amplitude has not been amplified in the closed loop, the filters Hj can still recover which

of the finitely many states of the emulated FSM A was represented by that noise-corrupted

feedback.

From the perspective of neural circuit models it is of interest to note that the con-

struction of the system C can be replaced by an adaptive procedure, whereby readouts

from generic cortical microcircuit models are trained to approximate the target filters Hj .

General approximation results [4, 5, 38] imply that if the neural circuit is sufficiently large

and contains sufficiently diverse components (for example dynamic synapses with slightly

different parameter values), then the actual outputs Ĥj of these readouts can approximate

the target filters Hj uniformly up to any given maximal error ε > 0. Theorem 5 guar-

antees that the resulting neural circuit model with these (imperfectly) trained readouts

can in the closed loop emulate the given FSM A in a reliable manner, provided that the

neural circuit model is sufficiently large and diverse so that its readout can achieve an

37



approximation error ε not larger than 1/4.

Theorem 5 One can construct for any given finite state machine (FSM) A some time

invariant fading memory filters H1, . . . , Hl with the property that any approximating filters

Ĥ1, . . . , Ĥl with |Hj−Ĥj | ≤ 1/4 provide in the closed loop with delay ∆ (see Fig. 6) outputs

CL − Ĥ1, . . . , CL − Ĥl that simulate the FSM A in the following sense:

If [t1, t2] is some arbitrary time interval between switching episodes of the FSM A with

noise-free pattern detectors (F1u)(t), . . . , (Fku)(t) during which A is in state j, then the

outputs CL − Ĥi(t) of the approximating filters Ĥi in the closed loop with noisy pattern

detectors (F̂1u)(t), . . . , (F̂ku)(t) satisfy CL−Ĥj(t) ≥
3
4

and CL−Ĥj∗(t) ≤
1
4

for all j∗ 6= j

and all t ∈ [t1, t2].

4.2.4 Proof of the Precise Statement of Theorem 2

We present here a proof of Theorem 5 (see section 4.2.3), which provides a formally precise

version of Theorem 2.

In order to prove that the given FSM A can be implemented in a noise robust fashion,

we construct suitable time invariant fading memory filters H1, . . . , Hl. They receive as

inputs the time-varying functions (F̂1u)(t), . . . , (F̂ku)(t). In addition they receive in the

open loop inputs v1(t), . . . , vl(t), where each vj(t) will be replaced by a delayed version of

the output of Hj (or Ĥj) in the closed loop (see Fig. 6). The filters Hj will be defined in

such a way that Hj(t) ≥ 1 signals in the closed loop that the FSM A is at time t in state

j. To make this implementation noise robust, we make sure that even if one replaces the

filters Hj by noisy approximations Ĥj which satisfy in the open loop |Hj(t) − Ĥj(t)| ≤
1
4

(for all t ∈ R and any time varying inputs (F̂1u)(t), . . . , (F̂ku)(t) and v1(t), . . . , vl(t)),

then the closed loop version of such imperfect approximations Ĥj simulates the FSM A

in such a way that Ĥj(t) ≥
3
4

implies that A is in state j at time t.

Let ∆ be the time delay in the feedback for the closed-loop. We now define the target

38



outputs H1(t), . . . , Hl(t) (for the open loop version, where the Hj receive in addition to

(F̂1u)(t), . . . , (F̂ku)(t) some arbitrary time-varying variables v1(t), . . . , vl(t) with values in

[−1, 2] as inputs). We define the target outputs of H1, . . . , Hl as a stationary transforma-

tion of the time-varying inputs vj(t) and of the outputs of the following two other types

of time invariant fading memory filters:

(i) fi(t) := max{(F̂iu)(τ) : t − ∆ − δ ≤ τ ≤ t} for i = 1, . . . , k

(ii) vj(t − 2δ) for j = 1, . . . , l.

We will show below in Lemma 6 and Lemma 7 that both of these functions of time can

be viewed as outputs of time invariant fading memory filters that receive as inputs the

time-varying functions (F̂iu)(t) (for some arbitrary input stream u) and vj(t). On the

basis of these two Lemmata it is clear that the Hj are time invariant fading memory filters

if one can define H1(t), . . . , Hl(t) as (static) continuous functions of the variables vj(t) and

the outputs of the filters (i) and (ii). In the following we sometimes refer to H1, . . . , Hl as

static functions of input vectors (f1(t), . . . , fk(t), v1(t), . . . , vl(t), v1(t− 2δ), . . . , vl(t− 2δ))

from R
k+2l, and sometimes as filters with time-varying inputs F̂iu and vj (if we view

the filters (i) and (ii) as being part of the computation of Hj). In order to define such

functions Hj(t) we first define for each j ∈ {1, . . . , l} two disjoint closed and bounded

sets Sj,0, Sj,1 ⊆ R
k+2l, and we set Hj(x) = 0 for x ∈ Sj,0 and Hj(x) = 1 for x ∈ Sj,1.

Since the sets Sj,0 and Sj,1 will have positive distance (i.e., inf{‖x − y‖ : x ∈ Sj,0 and

y ∈ Sj,1} > 0), it follows from standard arguments of analysis that the definition of Hj

can be continued outside of Sj,0, Sj,1 to yield a continuous function from R
k+2l into R.

In order to define the sets Sj,0, Sj,1 we consider the following two types of conditions:

(Aj) There exist i ∈ {1, . . . , k} and j′ ∈ {1, . . . , l} so that TR(i, j ′) = j,

fi(t) ≥
3
4

and fi′(t) ≤
1
4

for all i′ 6= i,

vj′(t − 2δ) ≥ 3
4

and vj∗(t − 2δ) ≤ 1
4

for all j∗ 6= j ′.

(Bj) fi(t) ≤
1
4

for i = 1, . . . , k, vj(t) ≥
3
4

and vj∗(t) ≤
1
4

for all j∗ 6= j.

39



We say that a vector (f1(t), . . . , fk(t), v1(t), . . . , vl(t), v1(t − 2δ), . . . , vl(t − 2δ)) ∈

[−B, B]k × [−1, 2]2l belongs to set Sj,1 if the conditions Aj or Bj apply, and to set Sj,0 if

there exists some j∗ 6= j so that the conditions Aj∗ or Bj∗ apply.

It follows immediately from the definition of the sets Sj,0 and Sj,1 that they are closed

and bounded. One can also verify immediately that for any j, j′ ∈ {1, . . . , l} the con-

ditions Aj and Bj′ can never be simultaneously satisfied (for any values of the variables

fi(t), vj(t), vj(t − 2δ)). In addition the conditions Aj and Aj′ (Bj and Bj′) can never be

simultaneously satisfied for any j 6= j′. This implies that the sets Sj,0 and Sj,1 are disjoint

for each j ∈ {1, . . . , l}.

We define for each j ∈ {1, . . . , l} a continuous function Hj : R
k+2l → [0, 1] by setting

Hj(x) :=







1 , if dist(x, Sj,0) ≥ dist(Sj,0, Sj,1)

dist(x, Sj,0)/dist(Sj,0, Sj,1) , otherwise ,

where dist(x, S) := inf{‖x − y‖ : y ∈ S} for any set S ⊆ R
k+2l. It is then obvious that

Hj is a continuous function from R
k+2l into [0, 1] with Hj(x) = 0 for all x ∈ Sj,0 and

Hj(x) = 1 for all x ∈ Sj,1. These functions Hj will prevent the amplification of noise in

the closed loop, since they assume outputs 1 or 0 in all relevant situations, even if their

inputs deviate by up to 1
4

from their “ideal” values.

We consider some arbitrary imprecise and/or noisy versions Ĥj of these filters Hj (with

inputs (F̂1u)(t), . . . , (F̂ku)(t) and additional inputs v1(t), . . . , vl(t)) whose output differs

at any time t by at most 1
4

from that of Hj (of course in the closed loop these deviations

could be accumulated and amplified to values > 1
4
). We want to show that for any such

Ĥ1, . . . , Ĥl the closed loop version of the circuit implements the given FSM A. As initial

condition we assume that the given FSM A is in state 1 for t ≤ 0, and consequently also

that Ĥ1(t) ≥ 3
4

and Ĥj(t) ≤ 1
4

for j = 2, . . . , l, as well as fi(t) ≤ 1
4

for all t ≤ 0 and

i = 1, . . . , k.

We will now prove the claim of Theorem 5 for arbitrary time intervals [t1, t2] outside

of switching episodes. We assume without loss of generality that t2 marks the beginning

40



of the next switching episode [t2, t3] for some t3 > t2 with |t3 − t2| ≤ δ. Furthermore

we assume that either t1 = 0 (Case 1), or t1 is the endpoint of the preceding switching

episode [t0, t1] with |t1 − t0| ≤ δ (Case 2). The formal proof is carried out by induction on

the number of preceding switching episodes (and Case 2 represents the induction step).

In both cases one just needs to analyze the outputs of the previously defined filters Ĥj(t)

in the case where some of their inputs are delayed feedbacks of their previous outputs.

Case 1: t1 = 0

We prove by a nested induction on m ∈ N that CL − Ĥ1(t) ≥
3
4

and CL − Ĥj(t) ≤
1
4

for all j > 1 holds for all t ∈ [m · ∆, (m + 1) · ∆) ∩ [t1, t2]. Since by assumption no

switching episode occurs during [t1, t2], one has fi(t) ≤ 1
4

for i = 1, . . . , k and for all

t ∈ [t1, t2]. Furthermore by our assumption on the initial condition of the FSM A (for

m = 0), or by the induction hypothesis of the nested induction (for m > 0) we can assume

that the variables vj(t) of the open loop have now been assigned in the closed loop the

values CL − Ĥj(t − ∆), therefore they are ≥ 3
4

for j = 1 and ≤ 1
4

for all j > 1. Hence

condition B1 in the definition of the sets Sj,0, Sj,1 applies, and the current circuit input is

therefore in S1,1. Thus H1 = 1 and Hj = 0 for j > 1, which implies Ĥ1 ≥ 3
4

and Ĥj ≤
1
4

for j > 1 in the open loop, hence CL − Ĥ1(t) ≥
3
4

and CL − Ĥj(t) ≤
1
4

for j > 1 in the

closed loop (since vj(t) = CL − Ĥj(t − ∆) in the closed loop).

Case 2: t1 is the endpoint of a preceding switching episode [t0, t1].

Assume that (F̂iu)(t) is the (approximating) pattern detector that assumes a value

≥ 3
4

during the preceding switching episode [t0, t1], while (F̂i′u)(t) ≤ 1
4

for all i′ 6= i during

[t0, t1]. Let t′ ∈ [t0, t1] be the first time point where (F̂iu)(t) reaches a value ≥ 3
4
. Then

fi(t) ≥
3
4

and fi∗(t) ≤ 1
4

for all i∗ 6= i and for all t ∈ [t′, t′ + ∆ + δ] (by the definition of

the filters fi(t)). Furthermore one has by the induction hypothesis that for the state j′ in

which the FSM A was before the switching episode [t0, t1] that CL− Ĥj′(t−∆− 2δ) ≥ 3
4

and CL−Ĥj∗(t−∆−2δ) ≤ 1
4

for all j∗ 6= j ′ and all t ∈ [t′, t′+∆+2δ]. We exploit here that

41



t0 ≤ t′ ≤ t1 ≤ t0+δ, hence t0−∆−2δ ≤ t−∆−2δ ≤ t0 for all t ∈ [t′, t′+∆+δ]. Furthermore

we have assumed that the minimal distance between the beginnings of switching episodes

is ∆ + 3δ. Therefore the considered range [t0 − ∆ − 2δ, t0] for t − ∆ − 2δ is contained

in the preceding time interval before the switching episode [t0, t1] to which the induction

hypothesis applies.

The previously listed conclusions imply that for t ∈ [t′, t′ + ∆ + δ] the current input

to the open loop lies in the set Sj,1 for j = TR(i, j′), hence Hj = 1 and Ĥj ≥ 3
4
, while

Hj∗ = 0 and Ĥj∗ ≤ 1
4

for all other j∗. But if one chooses as inputs v1(t), . . . , vl(t) to the

open loop just those values which the circuit receives in the closed loop, one gets that

CL− Ĥj(t) ≥
3
4

and CL− Ĥj∗(t) ≤
1
4

for all j∗ 6= j and all t ∈ [t′, t′ +∆+ δ], in particular

for all t ∈ [t1, t1 + ∆].

One can then prove by a nested induction on m ∈ N like in Case 1 that the outputs

CL− Ĥj∗(t) for j∗ = 1, . . . , l have the desired values for t ∈ [t1 + m∆, t1 + (m + 1) ·∆] ∩

[t1, t2]. The preceding argument provides the verification of the claim for the initial step

m = 0 of this nested induction.

In order to complete the proof of Theorem 5 it only remains to verify the following

two simple facts about time invariant fading memory filters.

Lemma 6 Assume that F̂i is some arbitrary time invariant fading memory filter, and

∆, δ are arbitrary positive constants. Then the map which assigns to an input stream u

the function fi(t) := max{(F̂iu)(τ) : t − ∆ − δ ≤ τ ≤ t} is also a time invariant fading

memory filter.

Proof of Lemma 6: Assume some ε > 0 is given. Fix δ′ and T > 0 so that

|(F̂iu)(τ) − (F̂iv)(τ)| < ε for all τ ∈ [t − ∆ − δ, t] and all u,v with ‖u(s) − v(s)‖ < δ′

for all s ∈ [t − ∆ − δ − T, t]. Then |max{(F̂iu)(τ) : t − ∆ − δ ≤ τ ≤ t} − max{(F̂iv)(τ) :

t − ∆ − δ ≤ τ ≤ t}| < ε.

42



Lemma 7 The filter which maps for some arbitrary fixed δ > 0 the function u(t) onto

the function u(t − 2δ) is time invariant and has fading memory.

Proof of Lemma 7: Follows immediately from the definitions (choose T ≥ 2δ in the

condition for fading memory).

This completes the proof of Theorem 5, which shows that any given FSM can be re-

liably implemented by fading memory filters with feedback even in the presence of noise.

Remark: In the application of this theory to cortical microcircuit models we train

readouts from such circuits to simultaneously assume the role of the pattern detectors

F̂1, . . . , F̂k, which become active if some pattern occurs in the input stream that may

trigger a state change of the simulated FSM A, and the role of the fading memory filters

Ĥ1, . . . , Ĥl, that create high-dimensional attractors of the circuit dynamics that represent

the current state of the FSM A.

4.3 Details of the Cortical Microcircuit Models

We complement in this section the general description of the simulated cortical micro-

circuit models from section 2.2, providing in particular all missing data that are needed

to reproduce our simulation results. The original code that was used for these simulations

is online available from http://www.lsm.tugraz.at/research/index.html.

Each circuit consisted of 600 neurons, which were placed on the integer grid points

of a 5 × 5 × 24 grid. 20% of these neurons were randomly chosen to be inhibitory. The

probability of a synaptic connection from neuron a to neuron b (as well as that of a

synaptic connection from neuron b to neuron a) was defined as C · exp(−D2(a, b)/λ2),

where D(a, b) is the Euclidean distance between neurons a and b, and λ is a parameter

43



which controls both the average number of connections and the average distance between

neurons that are synaptically connected (we set λ = 3). Depending on whether the

pre- or postsynaptic neuron were excitatory (E) or inhibitory (I), the value of C was

set according to [45] to 0.3 (EE), 0.2 (EI), 0.4 (IE), 0.1 (II), yielding an average of

10900 synapses for the chosen circuit size. External inputs and feedbacks from readouts

were connected to populations of neurons in the circuit with randomly chosen connection

strengths.

I&F neurons: A standard leaky-integrate-and-fire neuron model was used, where

the membrane potential Vm of a neuron is given by:

τm

dVm

dt
= −(Vm − Vresting) + Rm · (Isyn + Iinject + Inoise) (12)

where tm is the membrane time constant (30 ms), which subsumes the time constants

of synaptic receptors as well as the time constant of the neuron membrane. Other pa-

rameters: absolute refractory period 3ms (excitatory neurons), 2ms (inhibitory neurons),

threshold 15mV (for a resting membrane potential Vresting, assumed to be 0), reset voltage

drawn uniformly from the interval [13.8, 14.5 mV] for each neuron, input resistance Rm,

1MΩ, constant non-specific background current Iinject uniformly drawn from the interval

[13.5 nA, 14.5 nA] for each neuron, an additional time-varying noise input current Inoise

was drawn every 5 ms from a Gaussian distribution with mean 0 and SD chosen for each

neuron randomly from the uniform distribution over the interval [4.0 nA, 5.0 nA]. For each

simulation, the initial condition of each I&F neuron, i.e., its membrane voltage at time

t = 0, was drawn randomly (uniform distribution) from the interval [13.5mV, 14.9mV].

Finally, Isyn(t) is the sum of input currents supplied by the explicitly modeled synapses.

HH-neurons: We used single compartment HH neuron models with passive and

active properties modeled according to [49, 50]. The membrane potential was modeled by

Cm

dV

dt
= −gl(V − El) − INa − IKd − IM −

1

a
Inoise − Isyn , (13)

44



where Cm = 1 µF/cm2 is the specific membrane capacitance, gL = 0.045 mS/cm2 is the

leak conductance density, EL = −80 mV is the leak reversal potential, and Isyn(t) is the

input current supplied by explicitly modeled synapses (see the definition below). The

membrane area a of the neuron was set to be 34636 µm2 as in [49]. The term Inoise(t)

(see the precise definition below) models smaller background input currents from a large

number of more distal neurons, causing a depolarization of the membrane potential and

a lower input resistance commonly referred to as ’high conductance state’ (for a review

see [43]).

In accordance with experimental data on neocortical and hippocampal pyramidal neu-

rons ([51–54]) the active currents in the HH neuron model comprise a voltage dependent

Na+ current INa ([55]) and a delayed rectifier K+ current IKd ([55]). For excitatory neu-

rons a non-inactivating K+ current IM ([56]) responsible for spike frequency adaption was

included in the model.

The voltage-dependent Na+ current was modeled by:

INa = ḡNam
3h(V − ENa)

dm

dt
= αm(V )(1 − m) − βm(V )m

dh

dt
= αh(V )(1 − h) − βh(V )h

αm =
−0.32(V − VT − 13)

exp[−(V − VT − 13)/4] − 1

βm =
0.28(V − VT − 40)

exp[(V − VT − 40)/5] − 1

45



αh = 0.128 exp[−(V − VT − VS − 17)/18]

βh =
4

1 + exp[−(V − VT − VS − 40)/5]

where VT = −63 mV , and the inactivation was shifted by 10 mV toward hyperpolarized

values (VS = −10 mV ) to reflect the voltage dependence of Na+ currents in neocortical

pyramidal cells [57]. The peak conductance densities for the INa current was chosen to

be 500pS/µm2.

The delayed rectifier K+ current was modeled by:

IKd = ḡKdn
4(V − EK)

dn

dt
= αn(V )(1 − n) − βn(V )n

αn =
−0.032(V − VT − 15)

exp[−(V − VT − 15)/5] − 1

βn = 0.5 exp[−(V − VT − 10)/40]

The peak conductance densities for the IKd current was chosen to be 100pS/µm2.

The noninactivating K+ current was modeled by:

IM = ḡMn(V − EK)

dn

dt
= αn(V )(1 − n) − βn(V )n

αn =
0.0001(V + 30)

1 − exp[−(V + 30)/9]

46



βn =
−0.0001(V + 30)

1 − exp[(V + 30)/9]

The peak conductance density for the IM current was chosen to be 5pS/µm2.

For each simulation the initial condition of each neuron, i.e. the membrane voltage at

time t = 0, was drawn randomly (uniform distribution) from the interval [-70, -60] mV.

The total synaptic background current, Inoise(t), was a sum of two independent

currents:

Inoise(t) = ge(t)(V − Ee) + gi(t)(V − Ei) ,

where ge(t) and gi(t) are time-dependent excitatory and inhibitory conductances. The

values of respective reversal potentials were Ee = 0 mV and Ei = −75 mV .

The conductances ge(t) and gi(t) were modeled according to [49] as a one-variable

stochastic process similar to an Ornstein-Uhlenbeck process:

dge(t)

dt
= −

1

τe

[ge(t) − ge0] +
√

Deχ1(t)

dgi(t)

dt
= −

1

τi

[gi(t) − gi0] +
√

Diχ2(t)

where ge0 = 0.012 µS and gi0 = 0.057 µS are average conductances, τe = 2.7 ms and τe =

10.5 ms are time constants, De = 0.0067 µS2/s and Di = 0.0083 µS2/s are noise diffusion

constants, χ1(t) and χ2(t) are Gaussian white noise of zero mean and unit standard

deviation.

Since these stochastic processes are Gaussian, they can be integrated by an exact

update rule:

ge(t + ∆t) = ge0 + [ge(t) − ge0] exp(−∆t/τe) + Ae N1(0, 1)

gi(t + ∆t) = gi0 + [gi(t) − gi0] exp(−∆t/τi) + Ai N2(0, 1)

47



where N1(0, 1) and N2(0, 1) are normal random numbers (zero mean, unit SD) and Ae

and Ai are amplitude coefficients given by:

Ae =

√

De τe

2

[

1 − exp

(

−2∆t

τe

)]

Ai =

√

Di τi

2

[

1 − exp

(

−2∆t

τi

)]

.

According to [49], this model captures the spectral and amplitude characteristics of the

input conductances of a detailed biophysical model of a neocortical pyramidal cell that was

matched to intracellular recordings in cat parietal cortex in vivo. Furthermore the ratio

of the average contributions of excitatory and inhibitory background conductances was

chosen to be 5 in accordance with experimental studies during sensory responses [58–60].

The maximum conductances of the synapses were chosen from a Gaussian distribution

with a SD of 70% of its mean (with negative values replaced by values chosen from an

uniform distribution between 0 and two times the mean).

We modeled the (short term) dynamics of synapses according to the model pro-

posed in [44], with the synaptic parameters U (use), D (time constant for depression), F

(time constant for facilitation) randomly chosen from Gaussian distributions that model

empirically found data for such connections (see supplementary information). This model

predicts the amplitude Ak of the EPSC for the kth spike in a spike train with interspike

intervals ∆1, ∆2, . . . , ∆k−1 through the equations

Ak = w · uk · Rk

uk = U + uk−1(1 − U)exp(−∆k−1/F )

Rk = 1 + (Rk−1 − uk−1Rk−1 − 1)exp(−∆k−1/D)

with hidden dynamic variables u ∈ [0, 1] and R ∈ [0, 1] whose initial values for the first

48



spike are u1 = U and R1 = 1 (see [61] for a justification of this version of the equations,

which corrects a small error in [44]).

The postsynaptic current for the kth spike in a presynaptic spike train, that had been

generated at time tk, is modeled for t ≥ tk + ∆ (where ∆ is the transmission delay) by

Ak exp(−(t− tk −∆)/τs) with τs = 3ms (τs = 6ms) for excitatory (inhibitory) synapses.

The transmission delays ∆ between neurons were chosen uniformly to be 1.5ms for EE-

connections, and 0.8ms for the other connections. The total synaptic input current

Isyn(t) was modeled by the sum of these currents for all synapses onto a neuron.

Synaptic parameters: Depending on whether a and b were excitatory (E) or in-

hibitory (I), the mean values of the three parameters U, D, F (with D,F expressed in

seconds, s) were chosen according to [45] to be .5, 1.1, .05 (EE), .05, .125, 1.2 (EI), .25,

.7, .02 (IE), .32, .144, .06 (II). The SD of each of these parameters was chosen to be

50% of its mean. The mean of the scaling parameter w (in nA) was chosen to be 70 (EE),

150 (EI), -47 (IE), -47 (II). The SD of the parameter w was chosen to be 70% of its mean

and was drawn from a gamma distribution. In the case of input synapses the parameter

w had a value of 70 nA if projecting onto a excitatory neuron and -47 nA if projecting

onto an inhibitory neuron.

The synaptic weights w of readout neurons were computed by linear regression to

minimize the mean squared error (w ·x(t)− f(t))2 with regard to a specific target output

function f(t) (which is described for each case in the text or figure legends) for a series

of randomly generated time-varying circuit input streams u(t) of length up to 1 second.

Up to 200 such time-varying input streams u(t) were used for training, amounting to at

most 200 seconds of simulated biological time for training the readouts.

The performance of trained readouts was evaluated by measuring the correlation be-

tween w · x(t) and the target function f(t) during separate testing episodes where the

49



circuit received new input streams u(t) (that were generated by the same random process

as the training inputs).

All simulations were carried out with the software package CSIM [62], which is freely

available from http://www.lsm.tugraz.at. It uses a C++-kernel with Matlab interfaces for

input generation and data analysis. As simulation time step we chose 0.5 ms.

4.4 Technical Details to Figure 3

4 randomly generated test input streams, each consisting of 8 spike trains (see Fig. 3A),

were injected into 4 disjoint (but interconnected) subsets of 5 × 5 × 5 = 125 neurons

in the circuit consisting of 600 neurons. Feedbacks from readouts were injected into the

remaining 100 neurons of the circuit. The set of 100 neurons for which the firing activity is

shown in Fig. 3C contained 20 neurons from each of the resulting 5 subsets of the circuit.

Generation of input streams for training and testing: The time-varying firing rate ri(t)

of the 8 Poisson spike trains that represented input stream i was chosen as follows. The

baseline firing rate for streams 1 and 2 (see the lower half of Fig. 3A) was chosen to be

5 Hz, with randomly distributed bursts of 120 Hz for 50 ms. The rates for the Poisson

processes that generated the spike trains for input streams 3 and 4 were periodically

drawn randomly from the two options 30 Hz and 90 Hz. The actual firing rates (i.e. spike

counts within a 30 ms window) resulting from this procedure are plotted in Fig. 3B.

In order to demonstrate that readouts that send feedback into the circuit can just as

well represent neurons within the circuit, we had chosen the readout neurons that send

feedback to be I&F neurons with noise, like the other neurons in the circuit. Each of

them received synaptic inputs from a slightly different randomly chosen subset of neurons

within the circuit. Furthermore the signs of weights of these synaptic connections were

restricted to be positive (negative) for excitatory (inhibitory) presynaptic neurons.

The 8 readout neurons that provided feedback were trained to represent in their firing

activity at any time the information in which of input streams 1 or 2 a burst had most

50



recently occurred. If it occurred most recently in input stream 1, they were trained to fire

at 40 Hz, and they were trained not to fire whenever a burst had occurred most recently

in input stream 2. The training time was 200 s (of simulated biological time). After

training, their output was correct 86% of the time (average over 50 s of input streams;

counting the high-dimensional attractor as being in the on-state if the average firing rate

of the 8 readout neurons was above 34 Hz). It was possible to train these readout neurons

to acquire such persistent firing behavior, although they only received input from a circuit

with fading memory, because they were actually trained to acquire the following behavior:

fire whenever the rate in input stream 1 becomes higher than 30 Hz, or if one can detect

in the current state x(t) of the circuit traces of recent high feedback values, provided the

rate of input stream 2 stayed below 30 Hz. Obviously this definition of the learning target

for readout neurons only requires a fading memory of the circuit.

The readouts for the other 3 tasks achieved in 50 tests for new inputs over 1 s (that

had been generated by the same distribution as the training inputs, see the preceding

description) the following average performance:

Task of panel E: Mean correlation: 0.85

Task of panel F: Mean correlation: 0.63

Task of panel G: Mean correlation: 0.86 .

4.5 Technical Details to Figure 4

The same circuit as for Fig. 3 was used. First 2 linear readouts with feedback were

simultaneously trained to become highly active after the occurrence of the cue in the

spike input, and then to linearly reduce their activity, but each within a different time

span (400 versus 600 ms). Their feedback into the circuit consisted of 2 time-varying

analog values (representing time-varying firing rates of 2 population of neurons), which

were both injected (with randomly chosen amplitudes) into the same subset of 350 neurons

in the circuit. Their weights w were trained by linear regression for a total training time

51



of 120 s (of simulated biological time), consisting of 120 runs of length 1 s with randomly

generated input-cues (a burst at 200 Hz for 50 ms) and noise inputs (5 spike trains at 10

Hz).

4.6 Technical Details to Figure 5

Time-varying firing rates for the two input streams (consisting each of 8 Poisson spike

trains) were drawn randomly from values between 10 and 90 Hz. The 16 spike trains

from the 2 input streams, as well as feedback from trained readouts were injected into

randomly chosen subsets of neurons. In contrast to the experiment for Fig. 3, these

circuit inputs were not injected into spatially concentrated clusters of neurons, but to a

sparsely distributed subset of neurons scattered throughout the 3-dimensional circuit. As

a consequence, the firing activity CA(t) of the high-dimensional attractor (see Fig. 5D)

cannot be readily detected from the spike raster in Fig. 5C. Both the linear readout that

sends feedback, and subsequently the other two linear readouts (whose output for a test

input to the circuit is shown in Fig. 5E,F), were trained by linear regression during 140 s

of simulated biological time.

Average performance of linear readouts on 100 new test inputs of length 700 ms (that

had been generated from the same distribution as the training inputs):

Task of panel D: Mean correlation: 0.82

Task of panel E: Mean correlation: 0.71

Task of panel F: Mean correlation: 0.79 .

Control experiments (see Fig. 7) show that the feedback is essential for the performance

of the circuit for these computational tasks.

52



5 Acknowledgments

Comments from Wulfram Gerstner, Stefan Haeusler, Herbert Jaeger, Konrad Koerding,

Henry Markram, Gordon Pipa, Misha Tsodyks, and Tony Zador are gratefully acknowl-

edged. Our computer simulations used software written by Thomas Natschlaeger, Stefan

Haeusler, and Michael Pfeiffer. This research was partially supported by the Austrian

Science Fund FWF, # S9102-N04, and # P17229-N04, and PASCAL, project # IST2002-

506778, of the European Union. The work of Eduardo D. Sontag was partially supported

by NSF grants DMS-0504557 and DMS-0614371.

References

[1] R. J. Douglas, C. Koch, M. Mahowald, K. Martin, and H. Suarez. Recurrent excita-

tion in neocortical circuits. Science, 269(5226):981–985, 1995.

[2] S. Grossberg. How does the cerebral cortex work? development, learning, atten-

tion, and 3D vision by laminar circuits of visual cortex. Behavioral and Cognitive

Neuroscience Reviews, 2:47–76, 2003.

[3] D. V. Buonomano and M. M. Merzenich. Temporal information transformed into a

spatial code by a neural network with realistic properties. Science, 267:1028–1030,

Feb. 1995.

[4] W. Maass and E. D. Sontag. Neural systems as nonlinear filters. Neural Computation,

12(8):1743–1772, 2000.

[5] W. Maass, T. Natschläger, and H. Markram. Real-time computing without stable

states: A new framework for neural computation based on perturbations. Neural

Computation, 14(11):2531–2560, 2002.

53



[6] S. Häusler and W. Maass. A statistical analysis of information processing properties

of lamina-specific cortical microcircuit models. Cerebral Cortex, 2007. [Epub ahead

of print].

[7] A. Destexhe and E. Marder. Plasticity in single neuron and circuit computations.

Nature, 431:789–795, 2004.

[8] W. Maass, T. Natschläger, and H. Markram. Fading memory and kernel properties of

generic cortical microcircuit models. Journal of Physiology – Paris, 98(4–6):315–330,

2004.

[9] M. I. Leon and M. N. Shadlen. Representation of time by neurons in the posterior

parietal cortex of the macaque. Neuron, 38(2):317–322, 2003.

[10] K. Hikosaka and M. Watanabe. Delay activity of orbital and lateral prefrontal neu-

rons of the monkey varying with different rewards. Cerebral Cortex, 10(3):263–267,

2000.

[11] L. Tremblay and W. Schultz. Modifications of reward expectation-related neuronal

activity during learning in primate orbitofrontal cortex. J Neurophysiol, 83(4):1877–

1885, 2000.

[12] W. Schultz, L. Tremblay, and J. R. Hollerman. Changes in behavior-related neuronal

activity in the striatum during learning. Trends Neurosci, 26(6):321–328, 2003.

[13] X. J. Wang. Synaptic reverberation underlying mnemonic persistent activity. Trends

Neurosci., 24(8):455–463, 2001.

[14] M. E. Mazurek, J. D. Roitman, J. Ditterich, and M. N. Shadlen. A role for neural

integrators in perceptual decision making. Cerebral Cortex, 13(11):1257–1269, 2003.

54



[15] G. Major, R. Baker, E. Aksay, B. Mensh, H. S. Seung, and D. W. Tank. Plasticity

and tuning by visual feedback of the stability of a neural integrator. Proc Natl Acad

Sci, 101(20):7739–7744, 2004.

[16] M.N. Shadlen and J.I. Gold. The neurophysiology of decision-making as a window on

cognition. In M. S. Gazzaniga, editor, The Cognitive Neurosciences, pages 1229–1241.

MIT Press, 3rd edition, 2005.

[17] H. Jäger and H. Haas. Harnessing nonlinearity: predicting chaotic systems and saving

energy in wireless communication. Science, 304:78–80, 2004.

[18] P. Joshi and W. Maass. Movement generation with circuits of spiking neurons. Neural

Computation, 17(8):1715–1738, 2005.

[19] E. L. White. Cortical Circuits. Birkhaeuser, Boston, 1989.

[20] O. Sporns and R. Kötter. Motifs in brain networks. PLOS Biology, 2:1910–1918,

2004.

[21] F. Rieke, D. Warland, R. R. D. van Steveninck, and W. Bialek. SPIKES: Exploring

the Neural Code. MIT Press, Cambridge, MA, 1997.

[22] J. D. Cowan. Statistical mechanics of neural nets. In E. R. Caianiello, editor, Neural

Networks, pages 181–188. Springer, Berlin, 1968.

[23] M. A. Cohen and S. Grossberg. Absolute stability of global pattern formation and

parallel memory storage by competitive neural networks. IEEE Trans. Systems, Man,

and Cybernetics, 13:815–826, 1983.

[24] J. J. Hopfield. Neurons with graded response have collective computational properties

like those of two-state neurons. Proc. Nat. Acad. Sci. USA, 81:3088–3092, 1984.

[25] P. Dayan and L. F. Abbott. Theoretical Neuroscience: Computational and Mathe-

matical Modeling of Neural Systems. MIT-Press, 2001.

55



[26] R. A. Legenstein and W. Maass. Edge of chaos and prediction of computational

power for neural microcircuit models. submitted for publication, 2006.

[27] J. E. Savage. Models of Computation: Exploring the Power of Computing. Addison-

Wesley (Reading, MA), 1998.

[28] W. Maass and H. Markram. Theory of the computational function of microcircuit

dynamics. In S. Grillner and A. M. Graybiel, editors, The Interface between Neurons

and Global Brain Function, Dahlem Workshop Report 93. MIT Press, 2006. in press.

[29] M. S. Branicky. Universal computation and other capabilities of hybrid and contin-

uous dynamical systems. Theoretical Computer Science, 138:67–100, 1995.

[30] H. Siegelmann and E. D. Sontag. Analog computation via neural networks. Theo-

retical Computer Science, 131(2):331–360, 1994.

[31] H. Siegelmann and E. D. Sontag. On the computational power of neural nets. Journal

of Computer and System Sciences, 50:132–150, 1995.

[32] P. Orponen. A survey of continuous-time computation theory. In D.-Z. Du and K.-I.

Ko, editors, Advances in Algorithms, Languages, and Complexity, pages 209–224.

Kluwer Academic Publishers, 1997.

[33] J.-J. E. Slotine and W. Li. Applied Nonlinear Control. Prentice Hall, 1991.

[34] E. D. Sontag. Mathematical Control Theory. Springer-Verlag, 1998.

[35] S. Haykin. Neural Networks: A Comprehensive Foundation. Prentice Hall, New

Jersey, 2nd edition, 1999.

[36] W. Maass and P. Orponen. On the effect of analog noise in discrete-time analog

computations. Neural Computation, 10:1071–1095, 1998.

56



[37] W. Maass and E. Sontag. Analog neural nets with Gaussian or other common

noise distribution cannot recognize arbitrary regular languages. Neural Computa-

tion, 11:771–782, 1999.

[38] W. Maass and H. Markram. On the computational power of recurrent circuits of

spiking neurons. Journal of Computer and System Sciences, 69(4):593–616, 2004.

[39] B. Schölkopf and A. J. Smola. Learning with Kernels. MIT Press, Cambridge, MA,

2002.

[40] J. J. Hopfield. Neural networks and physical systems with emergent collective com-

putational abilities. Proc. Nat. Acad. Sci. USA, 79:2554–2558, 1982.

[41] D. J. Amit and N. Brunel. Model of global spontaneous activity and local structured

activity during delay periods in the cerebral cortex. Cerebral Cortex, 7(3):237–252,

1997.

[42] C. D. Brody, R. Romo, and A. Kepecs. Basic mechanisms for graded persistent

activity: discrete attractors, continuous attractors, and dynamic representations.

Curr Opin Neurobiol, 13(2):204–211, 2003.

[43] A. Destexhe, M. Rudolph, and D. Pare. The high-conductance state of neocortical

neurons in vivo. Nat. Rev. Neurosci., 4(9):739–751, 2003.

[44] H. Markram, Y. Wang, and M. Tsodyks. Differential signaling via the same axon of

neocortical pyramidal neurons. PNAS, 95:5323–5328, 1998.

[45] A. Gupta, Y. Wang, and H. Markram. Organizing principles for a diversity of

GABAergic interneurons and synapses in the neocortex. Science, 287:273–278, 2000.

[46] G. Major, R. Baker, E. Aksay, H. S. Seung, and D. W. Tank. Plasticity and tuning

of the time course of analog persistent firing in a neural integrator. Proc Natl Acad

Sci, 101(20):7745–7750, 2004.

57



[47] R. A. Legenstein, C. Näger, and W. Maass. What can a neuron learn with spike-

timing-dependent plasticity? Neural Computation, 17(11):2337–2382, 2005.

[48] J. Wickens and R. Kötter. Cellular models of reinforcement. In J. C. Houk, J. L.

Davis, and D. G. Beiser, editors, Models of Information Processing in the Basal

Ganglia. MIT Press, Cambridge, 1998.

[49] A. Destexhe, M. Rudolph, J. M. Fellous, and T. J. Sejnowski. Fluctuating synap-

tic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience,

107(1):13–24, 2001.

[50] A. Destexhe and D. Pare. Impact of network activity on the integrative properties

of neocortical pyramidal neurons in vivo. J. Neurophysiol., 81(4):1531–1547, 1999.

[51] D. A. Hoffman, J. C. Magee, C. M. Colbert, and D. Johnston. K+ channel regula-

tion of signal propagation in dendrites of hippocampal pyramidal neurons. Nature,

387(6636):869–875, 1997.

[52] J. C. Magee and D. Johnston. Characterization of single voltage-gated Na+ and

Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons. J. Physiol., 487

(Pt 1):67–90, 1995.

[53] J. Magee, D. Hoffman, C. Colbert, and D. Johnston. Electrical and calcium signaling

in dendrites of hippocampal pyramidal neurons. Annu. Rev. Physiol., 60:327–346,

1998.

[54] G. J. Stuart and B. Sakmann. Active propagation of somatic action potentials into

neocortical pyramidal cell dendrites. Nature, 367(6458):69–72, 1994.

[55] R. D. Traub and R. Miles. Neuronal Networks of the Hippocampus. Cambridge Univ.

Press, Cambridge, UK, 1991.

58



[56] Z. T. Mainen, J. Joerges, J. R. Huguenard, and T. J. Sejnowski. A model of spike

initiation in neocortical pyramidal neurons. Neuron, 15(6):1427–1439, 1995.

[57] J. R. Huguenard, O. P. Hamill, and D. A. Prince. Developmental changes in Na+

conductances in rat neocortical neurons: appearance of a slowly inactivating compo-

nent. J. Neurophysiol., 59:778–795, 1988.

[58] J. Anderson, I. Lampl, I. Reichova, M. Carandini, and D. Ferster. Stimulus depen-

dence of two-state fluctuations of membrane potential in cat visual cortex. Nature

Neuroscience, 3(6):617–621, 2000.

[59] L. J. Borg-Graham, C. Monier, and Y. Fregnac. Visual input evokes transient and

strong shunting inhibition in visual cortical neurons. Nature, 393(6683):369–373,

1998.

[60] J. A. Hirsch, J. M. Alonso, R. C. Reid, and L. M. Martinez. Synaptic integration in

striate cortical simple cells. J. Neurosci., 18(22):9517–9528, 1998.

[61] W. Maass and H. Markram. Synapses as dynamic memory buffers. Neural Networks,

15:155–161, 2002.

[62] T. Natschläger, H. Markram, and W. Maass. Computer models and analysis tools

for neural microcircuits. In R. Kötter, editor, Neuroscience Databases. A Practical

Guide, chapter 9, pages 123–138. Kluwer Academic Publishers (Boston), 2003.

59



Figure 1: Computational architectures considered in Theorems 1 and 2. (A) A fixed

circuit C whose dynamics is described by the system (3). (B) An arbitrary given nth

order dynamical system (4) with external input u(t). (C) If the input v(t) to circuit C is

replaced by a suitable feedback K(x(t), u(t)), then this fixed circuit C can simulate the

dynamic response z(t) of the arbitrarily given system shown in B, for any input stream

u(t). (D) Arbitrary given finite state machine (FSM) A with l states. (E) A noisy fading

memory system with feedback can reliably reproduce the current state A(t) of the given

FSM A, except for time points t shortly after A has switched its state.

Figure 2: Organization of input- and output streams for the 3 computational tasks

considered in the computer simulations. Each input stream consisted of multiple spike

trains, that provided synaptic inputs to individually chosen subsets of neurons in the

recurrent circuit (which is indicated by a gray rectangle). In (A) and (C) these input

streams consisted of multiple Poisson spike trains with a time-varying firing rate ri(t). In

(B) the input consisted of a burst (“cue”) in one spike train (which marks the beginning of

a time interval) and independent Poisson spike train (“noise”) in the other input channels.

The actual outputs of the readouts (that were trained individually for each computational

task) in panels (A, B, C) is shown in Figures 3, 4, 5.

Figure 3: State-dependent real-time processing of 4 independent input streams in a

generic cortical microcircuit model. (A) 4 input streams, consisting each of 8 spike trains

generated by Poisson processes with randomly varying rates ri(t), i = 1, . . . , 4 (rates

plotted in (B); all rates are given in Hz). The 4 input streams and the feedback were

injected into disjoint sets of neurons in the circuit. (C) Resulting firing activity of 100

out of the 600 I&F neurons in the circuit. Spikes from inhibitory neurons marked in red.

(D) Target activation times of the high-dimensional attractor (blue shading), spike trains

of 2 of the 8 I&F neurons that were trained to create the high-dimensional attractor by

60



sending their output spike trains back into the circuit, and average firing rate of all 8

neurons (lower trace). (E and F) Performance of linear readouts that were trained to

switch their real-time computation task in dependence of the current state of the high-

dimensional attractor: output 2 · r3(t) instead of r3(t) if the high-dimensional attractor is

on (E), output r3(t)+r4(t) instead of |r3(t)−r4(t)| if the high-dimensional attractor is on

(F). (G) Performance of linear readout that was trained to output r3(t) · r4(t), showing

that another linear readout from the same circuit can simultaneously carry out nonlinear

computations that are invariant to the current state of the high-dimensional attractor.

Figure 4: Representation of time for behaviorally relevant time spans in a generic

cortical microcircuit model. (A) Afferent circuit input, consisting of a cue in one channel

(red) and random spikes (freshly drawn for each trial) in the other channels. (B) Re-

sponse of 100 neurons from the same circuit as in Fig. 3, which has here two co-existing

high-dimensional attractors. The autonomously generated periodic bursts with a periodic

frequency of about 8 Hz are not related to the task, and readouts were trained to become

invariant to them. (C and D) Feedback from two linear readouts that were simultane-

ously trained to create and control two high-dimensional attractors. One of them was

trained to decay in 400 ms (C), and the other in 600 ms (D) (scale in nA is the average

current injected by feedback into a randomly chosen subset of neurons in the circuit). (E)

Response of the same neurons as in (B), for the same circuit input, but with feedback

from a different linear readout that was trained to create a high-dimensional attractor

that increases its activity and reaches a plateau 600 ms after the occurrence of the cue

in the input stream. (F) Feedback from the linear readout that creates this continuous

high-dimensional attractor.

Figure 5: A model for analog real-time computation on external and internal variables

in a generic cortical microcircuit (consisting of 600 conductance based HH-neurons). (A

61



and B) Two input streams as in Fig. 3; their firing rates r1(t), r2(t) are shown in (B).

(C) Resulting firing activity of 100 neurons in the circuit. (D) Performance of a neural

integrator, generated by feedback from a linear readout that was trained to output at

any time t an approximation CA(t) of the integral
∫ t

0
(r1(s)− r2(s))ds over the difference

of both input rates. Feedback values were injected as input currents into a randomly

chosen subset of neurons in the circuit. Scale in nA shows average strength of feedback

currents (also in panel H). (E) Performance of linear readout that was trained to output

0 as long as CA(t) stayed below 0.83 nA, and to output r2(t) once CA(t) had crossed

this threshold, as long as CA(t) stayed above 0.66 nA (i.e., in this test run during the

shaded time periods). (F) Performance of linear readout trained to output r1(t)−CA(t),

i.e. a combination of external and internal variables, at any time t (both r1 and CA

normalized into the range [0, 1]). (G) Response of a randomly chosen neuron in the

circuit for 10 repetitions of the same experiment (with input spike trains generated by

Poisson processes with the same time-course of firing rates), showing biologically realistic

trial-to-trial variability. (H) Activity traces of a continuous attractor as in (D), but in 8

different trials for 8 different fixed values of r1 and r2 (shown on the right).

Figure 6: Emulation of a finite state machine (FSM) by a noisy fading memory

system with feedback according to Theorem 5. (A) Underlying open loop system with

noisy pattern detectors F̂1, . . . , F̂k and suitable fading memory readouts Ĥ1, . . . , Ĥl (which

may also be subject to noise). (B) Resulting noise-robust emulation of an arbitrary given

FSM by adding feedback to the system in panel A. The same readouts as in A (denoted

CL − Ĥj(t) in the closed loop) now encode the current state of the simulated FSM.

Figure 7: Evaluation of the dependence of the performance of the circuit in Fig. 5 on

the feedback strength (i.e., on the mean amplitude of current injection from the readout

back into neurons in the circuit). For each feedback strength that was evaluated, the

62



readouts were trained and tested for this feedback strength like for the preceding exper-

iments. Error bars in B-D denote standard error. These control experiments show that

the feedback is essential for the performance of the circuit.

63



Figure 1:

64



Figure 2:

65



1
10
20
30

Input spike trains

0

50

100

Firing rates of the 4 input streams
r
1
(t)

r
2
(t)

r
3
(t)

r
4
(t)

50

100
Circuit response (shown for 100 out of 600 neurons)

0

50

100

Target behavior and performance of high−dimensional attractor

0

100

200

State dependent signal amplification

2 ⋅ r
3

r
3

observed

0

100

200
State dependent computational operation

r
3
 + r

4
|r

3
 − r

4
|

observed

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5000

10000

Product of r
3
(t) and r

4
(t)

time (s)

A

B

C

D

E

F

G

Figure 3:

66



External input consisting of a cue (red) and noise (black)

20
40

60
80

100
Circuit response (shown for 100 out of 600 neurons)

0

0.5

1

1.5

nA

Time course of a continuous attractor with decay time of 400 msec

target
observed

0

0.5

1

1.5

nA

Time course of a continuous attractor with decay time of 600 msec

20
40

60
80

100
Response of the same circuit with a different high−dimensional attractor

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1

1.5

time (s)

nA

Time course of continuous attractor trained to reach plateau after 600 msec

A

B

C

D

E

F

Figure 4:

67



0
5

10
15

Circuit inputs

0

50

100

Input rates

r
1
(t)

r
2
(t)

20

40

60

80

100
Circuit response (shown for 100 out of 600 conductance based HH neurons

0.4

0.8

1.2

nA

Activation CA(t) of continuous attractor

target
observed

0

50

100

Switch of second readout between r
2
(t) and 0, depending on CA(t)

r
2
(t)

0 0.1 0.2 0.3 0.4 0.5 0.6
−0.5

0
0.5

1

time (s)

Computation of r
1
(t) − CA(t) by third readout

0.2 0.4 0.6

1

5

10

time (s)

tr
ia

l n
o.

Response variability to fixed stimulus

0 0.1 0.2 0.3 0.4

−2

0

2

4

time (s)

Integration of evidence by continuous attractor

nA

 
 
70
50
30
10
−10 
−30 
−50 
−70 

r
1
 − r

2
 (Hz)

A

B

C

D

E

F

G H

Figure 5:

68



Figure 6:

69



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

2

4

6

time (s)

nA

Typical temporal evolution of continuous attractor readout for 0% feedback

target
observed

−100 0 100 200 300 400 500 600
0.4

0.6

0.8

1
Performance of continuous attractor readout (shown in panel D of figure 4)

feedback strength (%)

co
rr

el
at

io
n

−100 0 100 200 300 400 500 600
0.5

0.6

0.7

0.8

0.9

Performance of switching readout (shown in panel E of figure 4)

feedback strength (%)

co
rr

el
at

io
n

−100 0 100 200 300 400 500 600
0.4

0.6

0.8

1

Performance of third readout (shown in panel F of figure 4)

feedback strength (%)

co
rr

el
at

io
n

Figure 7:

70


