
Energy Complexity and Entropy of Threshold

Circuits

Kei Uchizawa1 Rodney Douglas2 Wolfgang Maass3

1 Graduate School of Information Sciences
Tohoku University

2 Institute of Neuroinformatics
University and ETH Zurich

3 Institute for Theoretical Computer Science
Technische Universitaet Graz

Abstract. Circuits composed of threshold gates (McCulloch-Pitts neu-
rons, or perceptrons) are simplified models of neural circuits with the
advantage that they are theoretically more tractable than their biolog-
ical counterparts. However, when such threshold circuits are designed
to perform a specific computational task they usually differ in one im-
portant respect from computations in the brain: they require very high
activity. On average every second threshold gate fires (sets a “1” as out-
put) during a computation. By contrast, the activity of neurons in the
brain is much more sparse, with only about 1% of neurons firing. This
mismatch between threshold and neuronal circuits is due to the partic-
ular complexity measures (circuit size and circuit depth) that have been
minimized in previous threshold circuit constructions. In this article we
investigate a new complexity measure for threshold circuits, energy com-
plexity, whose minimization yields computations with sparse activity. We
prove that all computations by threshold circuits of polynomial size with
entropy O(log n) can be restructured so that their energy complexity
is reduced to a level near the entropy of circuit states. This entropy of
circuit states is a novel circuit complexity measure, which is of interest
not only in the context of threshold circuits, but for circuit complexity
in general. As an example of how this measure can be applied we show
that any polynomial size threshold circuit with entropy O(log n) can be
simulated by a polynomial size threshold circuit of depth 3.

1 Introduction

The active outputs of neurons are stereotypical electrical pulses (action poten-
tials, or ”spikes”). The stereotypical form of these spikes suggests that the output
of neurons is analogous to the ”1” of a threshold gate. In fact, historically and
even currently, threshold circuits are commonly viewed as abstract computa-
tional models for circuits of biological neurons. Nevertheless, it has long been
recognized by neuroscientists that neurons are generally silent, and that infor-
mation processing in the brain is usually achieved with a sparse distribution of

33rd International Colloquium on
Automata, Languages and Programming (ICALP 2006), Italy

neural firing 4. One reason for this sparse activation may be metabolic cost. For
example, a recent biological study on the energy cost of cortical computation
[6] concludes that “The cost of a single spike is high, and this limits, possi-
bly to fewer than 1 %, the number of neurons that can be substantially active
concurrently”. The metabolic cost of the active (’1”) state of a neuron is very
asymmetric. The production of a spike consumes a substantial amount of energy
(about 2.4 × 109 molecules of ATP according to [6]), whereas the energy cost
of the no-spike rest state, is substantially less. In contrast to neuronal circuits,
computations in feedforward threshold circuits (and many other circuit models
for digital computation) have the property that a large portion, usually around
50%, of gates in the circuit output a “1” during any computation. Common ab-
stract measures for the energy consumption of electronic circuits treat the cost
of the two output states 0 and 1 of a gate symmetrically, and focus instead on
the required number of switchings between these two states (see [5] and its ref-
erences, as well as [11]). An exception are [14, 4, 1], which provide Shannon-type
results for the number of gates that output a “1” in Boolean circuits consisting
of gates with bounded fan-in. Circuits of threshold gates (= linear threshold
gates = McCulloch-Pitts neurons) are an important class of circuits that are
frequently used as simplified models for computations in neural circuits [8, 12,
10, 13]. In this paper we consider how investigations of such abstract threshold
circuits can be reconciled with actual activity characteristics of biological neural
networks.

In section 2 we give a precise definition of threshold circuits, and also define
their energy complexity, whose minimization yields threshold circuits that carry
out computations with sparse activity: on average few gates output a “1” during
a computation. In section 2 we also introduce another novel complexity measure,
the entropy of a computation. This measure is interesting for many types of
circuits, beyond the threshold circuits discussed in this paper. It measures the
total number of different patterns of gate states that arise during computations
on different circuits inputs. We show in section 3 that the entropy of circuit states
defines a coarse lower bound for its energy complexity. This result is relevant for
any attempt to simulate a given threshold circuit by another threshold circuit
with lower energy complexity, since the entropy of a circuit is directly linked
to the algorithm that it implements. Therefore, it is unlikely that there exists a
general method permitting any given circuit to be simulated by one with smaller
entropy. In this sense the entropy of a circuit defines a hard lower bound for any
general method that aims to simulate any given threshold circuit using a circuit
with lower energy complexity. However, we will prove in section 3 that there
exists a general method that reduces – if this entropy is O(log n) – the energy
complexity of a circuit to a level near the entropy of the circuit. Since the entropy
of a circuit is a complexity measure that is interesting in its own right, we also
offer in section 4 a first result on the computational power of threshold circuits

4 According to recent data [7] from whole cell recordings in awake animals the spon-
taneous firing rates are on average below 1 Hz.

2

with low entropy. Some open problems related to the new concepts introduced
in this article are listed in section 5.

2 Definitions

A threshold gate g (with weights w1, . . . , wn ∈ R and threshold t ∈ R) outputs
1 for any input X = (x1, . . . , xn) ∈ R

n if
∑n

i=1 wixi ≥ t, otherwise 0. We write
g(X) = sign(

∑n

i=1 wixi − t) where sign(z) = 1 if z ≥ 0 and sign(z) = 0 if
z < 0. As usual we assume that threshold gates operate in discrete time, with
unit delays between gates.

For a threshold gate gi within a feedforward circuit C that receives X =
(x1, . . . , xn) as circuit input, we write gi(X) for the output that the gate gi

gives for this circuit input X (although the actual input to gate gi during this
computation will in general consist of just some variables xi from X , and in
addition, or even exclusively, of outputs of other gates in the circuit C).

We define the energy complexity of a circuit C consisting of threshold gates
g1, . . . , gm to be the expected number of 1’s that occur in a computation, for
some given distribution Q of circuit inputs X , i. e.

ECQ(C) := E[

m
∑

i=1

gi(X)],

where the expectation is evaluated with regard to the distribution Q over X ∈ R
n

(or X ∈ {0, 1}n). Thus, for the case where Q is the uniform distribution over
{0, 1}n, we have ECuniform := 1

2n

∑

X∈{0,1}n

∑m
i=1 gi(X) .

In some cases it is also interesting to consider the maximal energy consumption
of a circuit for any input X , defined by

ECmax(C) := max(

m
∑

i=1

gi(X) : X ∈ R
n).

We define the entropy of a (feedforward) circuit C to be

HQ(C) := −
∑

A∈{0,1}m

PC(A) · log PC(A),

where PC(A) is the probability that the internal gates g1, . . . , gm of the circuit
C assume the state A ∈ {0, 1}m during a computation of circuit C (for some
given distribution Q of circuit inputs X ∈ R

n). We often write Hmax(C) for the
largest possible value that HQ(C) can assume for any distribution on a given
set of circuit states A. If MAX(C) is defined as the total number of different
circuit states that circuit C assumes for different inputs X ∈ R

n, then one has
HQ(C) = Hmax(C) if Q is such that these MAX(C) circuit states all occur
with the same probability, and Hmax(C) is then equal to log2 MAX(C). Thus

3

2Hmax(C) is the maximal number of circuit states that a circuit C assumes for
arbitrary inputs X .

We write size(C) for the number m of gates in a circuit C, and depth(C) for
the length of the longest path in C from an input to its output node (which is
always assumed to be the node gm).

3 Construction of Threshold Circuits with Sparse

Activity

Obviously, the number of 1’s in a computation limits the number of states that
the circuit can assume:

HQ(C) ≤ log(# of circuit states A that C assumes)

≤ log

ECmax(C)
∑

j=0

(

size(C)

j

)

≤ log(size(C)ECmax(C)) = ECmax(C) · log size(C)

(for sufficiently large values of ECmax(C) and size(C); log always stands for log2

in this paper). Hence

ECmax(C) ≥ HQ(C)/ log size(C) . (1)

In fact, this argument shows that

ECmax(C) ≥ Hmax(C)/ log size(C) . (2)

Every Boolean function f : {0, 1}n → {0, 1} can be computed by a threshold
circuit C of depth 2 that represents its disjunctive normal form, in such a way
that for every circuit input X at most a single gate on level 1 outputs a 1. This
circuit C has the property that ECmax(C) = 2 and HQ(C) = log(size(C) − 1)
for a suitable distribution Q of circuit inputs. Hence it is in some cases possible
to achieve ECmax(C) < HQ(C), and the factor log size(C) in (1) and (2) cannot
be eliminated or significantly reduced.

Threshold circuits that represent a Boolean function f in its disjunctive nor-
mal form allow us to compute any Boolean function with a circuit C that achieves
ECmax(C) = 2. However these circuits C have in general exponential size in n.
Therefore, the key question is whether one can also construct polynomial size
circuits C with small ECQ or ECmax. Because of the a-priori bounds (1) and
(2), this is only possible for those functions f that can be computed with a low
entropy of circuit states. The following results show that, on the other hand, the
existence of a circuit C that computes f with Hmax(C) = O(log n) is sufficient to
guarantee the existence of a circuit that computes f with low energy complexity.

4

Theorem 1. Assume that a Boolean function f : {0, 1}n → {0, 1} can be com-
puted by some polynomial size threshold circuit C with Hmax(C) = O(log n).
Then f can also be computed by some polynomial size threshold circuit C′ with

ECmax(C
′) ≤ Hmax(C) + 1 = O(log n). (3)

Furthermore, if Q is any distribution of inputs X ∈ {0, 1}n, then it is possible
to construct a polynomial size threshold circuit C′′ with

ECQ(C′′) ≤
HQ(C)

2
+ 1 = O(log n). (4)

Remark 1. The proof below shows that the following more general statements
hold for any function f and any distribution Q:

If f can be computed by some arbitrary (feedforward) threshold circuit C,
then f can also be computed by a threshold circuit C ′ with size(C ′) ≤ 2Hmax(C),
depth(C ′) ≤ size(C)+1, Hmax(C

′) ≤ Hmax(C), and ECmax(C
′) ≤ Hmax(C)+1.

Furthermore, f can also be computed by a threshold circuit C ′′ with size(C ′′)
≤ 2Hmax(C), depth(C ′′) ≤ size(C) + 1, HQ(C′′) ≤ HQ(C), and ECQ(C′′) ≤
HQ(C)

2 + 1.

Remark 2. The assumption Hmax(C) = O(log n) is satisfied by standard con-
structions of threshold circuits for many commonly considered functions f . Ex-
amples are all symmetric functions (hence in particular PARITY of n bits),
COMPARISON of binary numbers, and BINARY ADDRESSING (routing) where
the first k input bits represent an address for one of the 2k subsequent input
bits (thus n = k + 2k). In fact, to the best of our knowledge there is no function
known which can be computed by polynomial size threshold circuits, but not by
polynomial size threshold circuits C with Hmax(C) = O(log n).

Proof of Theorem 1 The proof is split up into a number of Lemmata (Lemma 1 –
6). The idea is first to simulate in Lemma 1 the given circuit C by a threshold
decision tree (i.e., by a decision tree T with threshold gates at its nodes, see
Definition 1) that has at most 2Hmax(C) leaves. Then this threshold decision tree
is restructured in Lemma 3 in such a manner that every path in the tree from
the root to a leaf takes at most log(# of leaves) times, hence in this case at most
Hmax(C) times, the right branch at an internal node. Obviously such an asym-
metric cost measure is of interest when one wants to minimize an asymmetric
complexity measure such as EC, which assigns different costs to gate outputs
0 and 1. Finally, we show in Lemma 5 that the computations of the resulting
threshold decision tree can be simulated by a threshold circuit where some gate
outputs a “1” whenever the simulated path in the decision tree moves into the
right subtree at an internal node of the tree. The proof of this Lemma 5 has to
take into account that the control structures of decision trees and circuits are
quite different: A gate in a decision tree is activated only when the computation
path happens to arrive at the corresponding node of the decision tree, but a gate
in a threshold circuit is activated in any computation of that circuit. Hence a

5

threshold decision tree with few threshold gates that output “1” does not au-
tomatically yield a threshold circuit with low energy complexity. However, we
show that all gates in the simulating threshold circuit that do not correspond to
a node in the decision tree where the right branch is chosen, receive an additional
input with a strongly negative weight (see Lemma 4), so that they output a “0”
when they get activated.

Finally, we show in Lemma 6 that the threshold decision tree can be restruc-
ture alternatively, so that the average number of times when a computation path
takes the right subtree at a node remains small (instead of the maximal number
of taking the right subtree). This manouvre yields the proof of the second part
of the claim of Theorem 1.

Definition 1 A threshold decision tree(called a linear decision tree in [2]) T is
a binary tree in which each internal node has two children, a left and a right
one, and is labeled by a threshold gate that is applied to the input X ∈ {0, 1}n

for the tree. All the leaves of threshold decision trees are labeled by 0 or 1. To
compute the output of a threshold decision tree T on an input X we apply the
following procedure from the root until reaching a leaf: we go left if the gate at
a node outputs 0, otherwise we go right. If we reach a leaf labeled by l ∈ {0, 1},
then l is the output of T for input X.

Note that the threshold gates in a threshold decision tree are only applied to
input variables from the external input X ∈ {0, 1}n, not to outputs of preceding
threshold gates. Hence it is obvious that computations in threshold decision
trees have a quite different structure from computations in threshold circuits,
although both models use the same type of computational operation at each
node.

The depth of a threshold decision tree is the maximum number of nodes from
the root to a leaf. We assign binary strings to nodes of T in the usual manner:

– ĝε denotes the root of the tree (where ε is the empty string)
– For a binary string s, let ĝs◦0 and ĝs◦1 be the left and right child of the node

with label ĝs, where ◦ denotes concatenation of strings.

For example, the ancestors of a node ĝ1011 are ĝε, ĝ1, ĝ10 and ĝ101. Let ST be
the set of all binary strings s that occur as indices of nodes ĝs in a threshold
decision tree T . Then all the descendants of node ĝs in T can be represented as
ĝs◦∗ for s ◦ ∗ ∈ ST .

The given threshold circuit C can be simulated in the following way by a
threshold decision tree:

Lemma 1. Let C be a threshold circuit computing a function f : {0, 1}n →
{0, 1} with m gates. Then one can construct a threshold decision tree T with at
most 2Hmax(C) leaves and depth(T) ≤ m which computes the same function f .

Proof Assume that C consists of m gates. We number the gates g1, . . . , gm of
C in topological order. Since gi receives the circuit input X and the outputs of

6

gj only for j < i as its inputs, we can express the output gi(X) of gi for circuit

input X =< x1, . . . , xn > as gi(X) = sign(
∑n

j=1 wi
jxj +

∑i−1
j=1 wi

gj
gj(X) + ti) ,

where wi
gj

is the weight which gi applies to the output of gj in circuit C.
Let S be the set of all binary strings of length up to m − 1. We define thresh-

old gates ĝs : X → {0, 1} for s ∈ S by ĝs(X) = sign(
∑n

j=1 w
|s|+1
j xj + ts) with

ts =
∑|s|

j=1 w
|s|+1
gj sj + t|s|+1, where sj is the j-th bit of string s and |s| is the

length of s. Obviously these gates ĝs are variations of gate gi with different
built-in assumptions s about the outputs of preceding gates.

Let T be the threshold decision tree consisting of gates ĝs for s ∈ S. That
is, gate ĝε = g1 is placed at the root of T . We let the left child of ĝs be ĝs◦0

and the right child of ĝs be ĝs◦1. We let each ĝs with |s| = m − 1 have a leaf
labeled by 0 as left child and a leaf labeled 1 as right child. Since ĝs computes
the same function as g|s|+1 if the preceding gates gi output si for 1 ≤ i ≤ |s|,
T computes the same function f as C. We then remove all leaves from T for
which the associated paths correspond to circuit states A ∈ {0, 1}m that do not
occur in C for any circuit input X ∈ {0, 1}n. This reduces the number of leaves
in T to 2Hmax(C). Finally, we iteratively remove all nodes without children, and
replace all nodes below which there exists just a single leaf by a leaf. In this way
we arrive again at a binary tree. ut

We now introduce a cost measure cost(T) for trees T , that like the energy
complexity for circuits, measures for threshold decision trees how often a thresh-
old gate outputs a 1 during a computation:

Definition 2 We denote by cost(T) the maximum number of times where a path
from the root to a leaf in a binary tree T goes to the right. If T is a leaf, then
cost(T) = 0.

We will show later, in Lemma 5, that one can simulate any threshold decision
tree T ′ by a threshold circuit CT ′ with ECmax(CT ′) ≤ cost(T ′) + 1. Hence it
suffices for the proof of Theorem 1 to simulate the threshold decision tree T
resulting from Lemma 1 by another threshold decision tree T ′ for which cost(T ′)
is small. This is done in Lemma 4, where we will construct a tree T ′ that reduces
cost(T ′) down to another cost measure rank(T). This measure rank(T) always
has a value ≤ log(# of leaves of T) according to Lemma 2, hence rank(T) ≤
Hmax(C) for the tree T constructed in Lemma 1.

Definition 3 The rank of a binary tree T is defined inductively as follows:

– If T is a leaf then rank(T) = 0.
– If T has subtrees Tl and Tr then

rank(T) =

rank(Tl), if rank(Tl) > rank(Tr)
rank(Tr) + 1, if rank(Tl) = rank(Tr)
rank(Tr), if rank(Tl) < rank(Tr) .

7

Lemma 2. Let T be any binary tree. Then rank(T) ≤ log(# of leaves of T).
ut

Lemma 3. Let T be a threshold decision tree computing a function f : {0, 1}n →
{0, 1}. Then f can also be computed by a threshold decision tree T ′ which has the
same depth and the same number of leaves as T , and which satisfies cost(T ′) =
rank(t).

Proof Let T consist of gates gs for s ∈ ST . We define T s as the subtree of T
whose root is gs. Let T s

l (respectively, T s
r) denote the left(right) subtree below

the root of T s. We modify T inductively by the following procedure, starting
at the nodes gs of largest depth. If cost(T s

l) < cost(T s
r), we replace gs by its

complement, and swap the left subtree and the right subtree. The complement of
gs is here another threshold gate g that outputs 1 if and only if gs outputs 0. Such
gate g exists since

∑n

i=1 wixi < t ⇔
∑n

i=1(−wi)xi > −t ⇔
∑n

i=1(−wi)xi ≥ t′

for another threshold t′ (which always exists if the xi assume only finitely many
values). Let T̂ s be the threshold decision tree which is produced from T s by this
procedure. By construction it has the following properties:

– If the children of gs both are both leaves, then we have cost(T̂ s) = 1.
– Otherwise,

cost(T̂ s) =

cost(T̂ s
l), if cost(T̂ s

l) > cost(T̂ s
r)

cost(T̂ s
r) + 1, if cost(T̂ s

l) = cost(T̂ s
r)

cost(T̂ s
r), if cost(T̂ s

l) < cost(T̂ s
r) ,

where T̂ s has subtrees T̂ s
l and T̂ s

r .

Since this definition coincides with the definition of the rank, we have constructed
a tree T ′ with cost(T ′) = rank(T). This procedure preserves the function that
is computed, the depth of the tree, and the number of leaves. ut

We now show that the threshold decision tree that was constructed in Lemma 3
can be simulated by a threshold circuit with low energy complexity. As a prepa-
ration we first observe in Lemma 4 that one can “veto” any threshold gate g
through some extra input. This will be used in Lemma 5 in order to avoid the
event that gates in the simulating circuit that correspond to gates in an inactive
path of the simulated threshold decision tree increase the energy complexity of
the resulting circuit.

Lemma 4. Let g(x1, . . . , xn) = sign(
∑n

i=1 wixi − t) be a threshold gate. Then
one can construct a threshold gate g′ using an additional input xn+1 which has
the following property:

g′(x1, . . . , xn, xn+1) =

{

0, if xn+1 = 1
g(x1, . . . , xn), if xn+1 = 0 .

Proof We set wn+1 := −(
∑n

i=1 |wi| + |t| + 1). Apart from that g ′ uses the
same weights and threshold as g. It is obvious that the resulting gate g ′ has the
desired property. ut

8

Lemma 5. Let T be a threshold decision tree which consists of k internal nodes
and which computes a function f . Then one can construct a threshold circuit CT

with ECmax(CT) ≤ cost(T) + 1 that computes the same function f . In addition
CT satisfies depth(CT) ≤ depth(T) + 1 and size(CT) ≤ k + 1.

Proof We can assume without loss of generality that every leaf with label 1 in T
is the right child of its parent (if this is not the case, swap this leaf with the right
subtree of the parent, and replace the threshold gate at the parent node like in
the proof of Lemma 3 by another threshold gate that always outputs the negation
of the former gate; this procedure does not increase the cost of the tree, nor its
depth or number of internal nodes). Let now gs(X) = sign(

∑n

j=1 ws
jxj − ts)

be the threshold gate in T at the node with label s ∈ ST . Let ws
n+1 be the

weight constructed in Lemma 4 for an additional input which can force gate gs

to output 0. Set W := max{|ws
n+1| : s ∈ ST }.

The threshold circuit CT that simulates T has a gate g ′
s for every gate gs in

T , and in addition an OR-gate which receives inputs from all gates g ′
s so that

gs has a leaf with label 1 (according to our preceding remark this leaf is reached
whenever the gate gs at node s ∈ ST gets activated and gs outputs a 1). We make
sure that any gate g ′

s in CT outputs 1 for a circuit input X if and only if the gate
gs in T gets activated for this input X , and outputs 1. This implies that only
gates g′

s in CT can output 1 that correspond to gates gs in T with output 1 that
lie on the single path of T that gets activated for the present circuit input X .
Hence this construction automatically ensures that ECmax(CT) ≤ cost(T) + 1
(where the “+1”arises from the additional OR-gate in CT).

In order to achieve this objective, g ′
s gets additional inputs from all gates g ′

s̃

in CT so that s̃ is a proper prefix of s. The weight for the additional input from
g′s̃ is −W if s̃ ◦ 0 is a prefix of s, and W otherwise. In addition the threshold of
g′s is increased by ls ·W , where ls is the number of 1′s in the binary string s. In
this way g′

s can output 1 if and only if gs outputs 1 for the present circuit input
X, and all gates gs̃ of T for which gs lies in the right subtree below gs̃ output 1,
and all gates ĝs̃ of T for which gs lies in the left subtree below gs̃ output 0. Thus
g′s outputs 1 if and only if the path leading to gate gs gets activated in T and
gs outputs 1. ut

The proof of the first claim of Theorem 1 follows now immediately from the
Lemmata 1–5. Note that the number k of internal nodes in a binary tree is equal
to (# of leaves)−1, hence k ≤ 2Hmax(C) − 1 in the case of the decision tree T
resulting from applications of Lemma 1 and Lemma 3. This yields size(CT) ≤
2Hmax(C) for the circuit CT that is constructed in Lemma 5 for this tree T .

The proof of the second claim of Theorem 1 follows by applying the subse-
quent Lemma 6 instead of Lemma 3 to the threshold decision tree T resulting
from Lemma 1.

Lemma 6. Let T be a threshold decision tree computing f : {0, 1}n → {0, 1}.
Then for any given distribution Q of circuit inputs, there exists a threshold de-
cision tree T ′ computing f such that the expected number of 1’s with regard to
Q is at most HQ(C)/2.

9

Proof Let P (s) be the probability (with regard to Q) that gate gs outputs 1.
We construct T ′ by modifying T inductively (starting at the nodes of the largest
depth m in T) through the following procedure: If P (s) > 1/2, replace gs by a
threshold gate which computes its negation and swap the left and right subtree
below this node.

Let costQ(s) be the expected number of times where one goes to the right in
the subtree of T ′ whose root is the node labeled by s. By construction we have
P (s) ≤ 1/2 for every gate gs in T ′. Furthermore we have:

– If |s| = m − 1 then costQ(s) = P (s).
– If 0 ≤ |s| < m − 1, then P (s) ≤ 1/2 and

costQ(s) = P (s) + P (s)costQ(s ◦ 1) + (1 − P (s))costQ(s ◦ 0) .

One can prove by induction on |s| that costQ(s) ≤ HQ(s)/2 for all s ∈ ST ′ , where
HQ(s) is the entropy of states of the ensemble of gates of T ′ in the subtree below
gate gs.

For the induction step one uses the convexity of the log-function, which implies

that P (s) = −P (s) · (−1) = −P (s) · log P (s)+(1−P (s))
2 ≤

− P (s)
(

log(P (s))+log(1−P (s))
2

)

, and the fact that P (s) ≤ 1 − P (s) to show that

costQ(s) ≤ P (s) + P (s) ·
HQ(s ◦ 1)

2
+ (1 − P (s)) ·

HQ(s ◦ 0)

2

≤ −P (s) ·

(

log P (s) + log(1 − P (s))

2

)

+

P (s)
HQ(s ◦ 1)

2
+ (1 − P (s)) ·

HQ(s ◦ 0)

2

≤ −
P (s)

2
log P (s) −

(1 − P (s))

2
log(1 − P (s)) + P (s)

HQ(s ◦ 1)

2

+(1− P (s))
HQ(s ◦ 0)

2
≤

HQ(s)

2
.

ut

Remark 3. The results of this section can also be applied to circuits that compute
arbitrary functions f : D → {0, 1} for some arbitrary finite set D ⊆ R

n (instead
of {0, 1}n). For domains D ⊆ R

n of infinite size a different proof would be
needed, since then one can no longer replace any given threshold gate by another
threshold gate that computes its negation (as used in the proofs of Lemma 3,
Lemma 5, and Lemma 6).

4 On the Computational Power of Circuits with Low

Entropy

The concepts discussed in this article raise the question which functions f :
{0, 1}n → {0, 1} can be computed by polynomial size threshold circuits C with

10

Hmax(C) = O(log n). There is currently no function f in P (or even in NP)
known for which this is provably false. But the following result shows that if all
functions that can be computed by polynomial size threshold circuits of bounded
depth can be computed by a circuit C of the same type which satisfies in addition
Hmax(C) = O(log n), then this implies a collapse of the depth hierarchy for
polynomial size threshold circuits.

Theorem 2. Assume that a function f : {0, 1}n → {0, 1} (or f : R
n → {0, 1})

can be computed by a threshold circuit C with polynomially in n many gates and
Hmax(C) = O(log n) . Then one can compute f with a polynomial size threshold
circuit C′ of depth 3.

Proof According to Lemma 1 there exists a threshold decision tree T with
polynomially in n many leaves and depth(T) ≤ size(C). Design (similarly as in
[2]) for each path p from the root to a leaf with output 1 in T a threshold gate
gp on layer 2 of C ′ that outputs 1 if and only if this path p becomes active in T .
The output gate on layer 3 of C ′ is simply an OR of all these gates gp. ut

5 Discussion

In this article we introduced an energy complexity measure for threshold cir-
cuits that reflects the biological fact that the firing of a neuron consumes more
energy than its non-firing. We also have provided methods for restructuring a
given threshold circuit with high energy consumption by a threshold circuit that
computes the same function, but with brain-like sparse activity. Theorem 1 im-
plies that the computational power of such circuits is quite large. The resulting
circuits with sparse activity may help us to elucidate the way in which circuits
of neurons are designed in biological systems. In fact, the structure of computa-
tions in the threshold circuits with sparse activity that were constructed in the
proof of Theorem 1 is reminiscent of biological results on the structure of com-
putations in cortical circuits of neurons, where there is concern for the selection
of different pathways (“dynamic routing”) in dependence of the stimulus [9]. In
addition our constructions provide first steps towards the design of algorithms
for future extremely dense VLSI implementations of neurally inspired circuits,
where energy consumption and heat dissipation become critical factors.

The new concepts and results of this article suggest a number of interesting
open problems in computational complexity theory. At the beginning of section 3
we showed that the energy complexity of a threshold circuit that computes some
functions f cannot be less than the a-priori bound given by the minimal circuit
entropy required for computing such a function. This result suggests that the
entropy of circuit states required for various practically relevant functions should
be investigated. Another interesting open problem is the tradeoff between energy
complexity and computation speed in threshold circuits, both in general and
for concrete computational problems. Finally, we consider that both the energy
complexity and the entropy of threshold circuits are concepts that are of interest
in their own right. They give rise to interesting complexity classes that have not

11

been considered previously in computational complexity theory. In particular,
it may be possible to develop new lower bound methods for circuits with low
entropy, thereby enlarging the reservoir of lower bound techniques in circuit
complexity theory.

6 Acknowledgments

We would like to thank Michael Pfeiffer, Pavel Pudlak and Robert Legenstein
for helpful discussions, Kazuyuki Amano and Eiji Takimoto for their advice,
and Akira Maruoka for making this collaboration possible. This work was par-
tially supported by the Austrian Science Fund FWF, project # P15386, project
S9102-N04, and projects # FP6-015879 (FACETS) and FP6-2005-015803
(DAISY) of the European Union.

References

1. O. V. Cheremisin. (2003). On the activity of cell circuits realising the system of
all conjunctions. Discrete Mathematics and Applications, 13(2):209–219.

2. H. D. Gröger and G. Turán. (1991). On linear decision trees computing Boolean
functions. Lecture Notes in Computer Science, 510:707–718.

3. A. Hajnal, W. Maass, P. Pudlak, M. Szegedy, and G. Turan.(1993) Threshold
circuits of bounded depth. Journal of Computer and System Sciences, 46:129–154.

4. 0. M. Kasim-Zade. (1992). On a measure of the activeness of circuits made of
functional elements (Russian). Mathematical problems in cybernetics, 4:218–228,
“Nauka”, Moscow, see Math. Reviews MR1217502 (94c:94019).

5. G. Kissin. (1991). Upper and lower bounds on switching energy in VLSI. J. of
Assoc. for Comp. Mach., 38:222–254.

6. P. Lennie. (2003). The cost of cortical computation. Current Biology, 13:493–497.
7. T. W. Margrie, M. Brecht, and B. Sakmann. (2002). In vivo, low-resistance, whole-

cell recordings from neurons in the anaesthetized and awake mammalian brain.
Pflugers Arch., 444(4):491–498.

8. M. Minsky. and S. Papert. (1988). Perceptrons: An Introduction to Computational
Geometry. MIT Press, Cambridge, MA.

9. B. A. Olshausen, C. H. Anderson, and D. C. V. Essen. (1995). A multiscale dynamic
routing circuit for forming size- and position-invariant object representations. J.
Comput. Neurosci., 2(1):45–62.

10. I. Parberry. (1994). Circuit Complexity and Neural Networks. MIT Press.
11. J. H. Reif and A. Tyagi. (1990) Energy complexity of optical computations. In

Proceedings of the Second IEEE Symposium on Parallel and Distributed Processing
(December 1990), 14–21.

12. V. P. Roychowdhury, K. Y. Siu, and A. Orlitsky. (1994). Theoretical Advances in
Neural Computation and Learning. Kluwer Academic, Boston.

13. K. Y. Siu, V. Roychowdhury, and T. Kailath. (1995). Discrete Neural Computation;
A Theoretical Foundation. Information and System Sciences Series. Prentice-Hall.

14. M. N. Weinzweig. (1961). On the power of networks of functional elements,
(Dokl.Akad.Nauk SSSR 139(1961),320-323 (Russian). in English: Sov.Phys.Dokl,
6:545–547, see Math. Reviews MR0134413 (24 #B466).

12

