
Zero Knowledge and Soundness are Symmetric∗

Shien Jin Ong Salil Vadhan

Division of Engineering and Applied Sciences

Harvard University

Cambridge, Massachusetts, USA.

E-mail: {shienjin,salil}@eecs.harvard.edu

November 14, 2006

Abstract

We give a complexity-theoretic characterization of the class of problems in NP having zero-
knowledge argument systems that is symmetric in its treatment of the zero knowledge and the
soundness conditions. From this, we deduce that the class of problems in NP ∩ coNP having
zero-knowledge arguments is closed under complement. Furthermore, we show that a problem
in NP has a statistical zero-knowledge argument system if and only if its complement has a
computational zero-knowledge proof system. What is novel about these results is that they are
unconditional, i.e. do not rely on unproven complexity assumptions such as the existence of
one-way functions.

Our characterization of zero-knowledge arguments also enables us to prove a variety of other
unconditional results about the class of problems in NP having zero-knowledge arguments, such
as equivalences between honest-verifier and malicious-verifier zero knowledge, private coins and
public coins, inefficient provers and efficient provers, and non-black-box simulation and black-box
simulation. Previously, such results were only known unconditionally for zero-knowledge proof
systems, or under the assumption that one-way functions exist for zero-knowledge argument
systems.

Keywords: zero-knowledge argument systems, statistical zero knowledge, complexity classes, clo-
sure under complement, distributional one-way functions.

∗Both the authors were supported by NSF grant CNS-0430336 and ONR grant N00014-04-1-0478.

Electronic Colloquium on Computational Complexity, Report No. 139 (2006)

ISSN 1433-8092

1 Introduction

Zero-knowledge protocols are interactive protocols whereby one party, the prover, convinces another
party, the verifier, that some assertion is true with the remarkable property that the verifier “learns
nothing” other than the fact that the assertion being proven is true. Since their introduction by
Goldwasser, Micali, and Rackoff [GMR89], zero-knowledge protocols have played a central role in
the design and study of cryptographic protocols.

Zero-knowledge protocols come in several flavors, depending on how one formulates the two
security conditions: (1) the zero-knowledge condition, which says that the verifier “learns nothing”
other than the fact the assertion being proven is true, and (2) the soundness conditions, which
says that the prover cannot convince the verifier of a false assertion. In statistical zero knowledge,
the zero-knowledge condition holds regardless of the computational resources the verifier invests
into trying to learn something from the interaction. In computational zero knowledge, we only
require that a probabilistic polynomial-time verifier learn nothing from the interaction.1 Similarly,
for soundness, we have statistical soundness, also known as proof systems, where even a computa-
tionally unbounded prover cannot convince the verifier of a false statement (except with negligible
probability), and computational soundness, also known as argument systems [BCC88], where we
only require that a polynomial-time prover cannot convince the verifier of a false statement. Us-
ing a prefix of S or C to indicate whether the zero knowledge is statistical or computational and
a suffix of P or A to indicate whether we have a proof system or argument system, we obtain
four complexity classes corresponding to the different types of zero-knowledge protocols: SZKP,
CZKP, SZKA, CZKA. More precisely, these are the classes of decision problems Π having the
correponding type of zero-knowledge protocol. In such a protocol, the prover and verifier are given
as common input an instance x of Π, and the prover is trying convince the verifier that x is a yes
instance of Π.

These two security conditions seem to be of very different flavors; zero knowledge is a ‘secrecy’
condition, whereas soundness is more of an ‘unforgeability’ condition. However, in a remarkable
paper, Okamoto [Oka00] showed that they are actually symmetric in the case of statistical security.

Theorem 1.1 ([Oka00]). 2 The class SZKP of problems having statistical zero-knowledge proofs
is closed under complement. That is, Π ∈ SZKP if and only if Π ∈ SZKP.

In a zero-knowledge protocol for proving that a string x is a yes instance of a problem Π, zero
knowledge is required only when x is indeed a yes instance (i.e. the statement being proven is
true) and soundness is required only when x is a no instance (i.e. the statement is false). Thus, by
showing that SZKP is closed under complement, Okamoto established a symmetry between zero
knowledge and soundness, in the case that both security conditions are statistical.

It is natural to ask whether an analogous theorem holds when the security conditions are
computational, i.e. for computational zero-knowledge arguments. If we assume the existence of
one-way functions, then the answer is yes. Indeed, classic results of [GMW91, Nao91, HILL99]
show that every problem in NP has a computational zero-knowledge argument system if one-way
functions exist, and in fact it is known that either one (but not both) of the security conditions
can be made statistical (cf., [NOV06]). (Here, and throughout the paper, we usually restrict

1More precisely, in statistical zero knowledge, we require that the verifier’s view of the interaction can be efficiently
simulated up to negligible statistical distance, whereas in computational zero knowledge, we only require that the
simulation be computationally indistinguishable from the verifier’s view.

2Okamoto’s result was actually for the class of languages having honest-verifier statistical zero-knowledge proofs,
but in [GSV98] it was shown this is the same as the class of languages having general statistical zero-knowledge
proofs.

1

attention to problems in NP, because argument systems are mainly of interest when the prover
can be implemented in polynomial time given a witness of membership, which only makes sense
for problems in NP.3) Thus, if one-way functions exist, symmetry between computational zero
knowledge and computational soundness holds for problems in NP ∩ coNP, by virtue that all
problems in NP ∩ coNP and their complements have computational zero-knowledge arguments
(assuming one-way functions).

In this paper, we establish an unconditional symmetry between computational zero knowledge
and computational soundness:

Theorem 1.2 (Symmetry Theorem).

1. (CZKA vs. co-CZKA) A problem Π ∈ NP ∩ coNP has a computational zero-knowledge
argument system if and only if Π has a computational zero-knowledge argument system.

2. (SZKA vs. CZKP) A problem Π ∈ NP has a statistical zero-knowledge argument system if
and only if Π has a computational zero-knowledge proof system.

Note how the quality of the zero-knowledge condition for Π translates to the quality of the
soundness condition for Π and vice-versa.

1.1 The SZKP–OWF Triplet Characterizations

The Symmetry Theorem is obtained by new characterizations of the classes of problems having
various types of zero-knowledge protocols, and moreover these characterizations treat zero knowl-
edge and soundness symmetrically. These characterizations are a generalization of the “SZK/OWF
Condition” of [Vad04], which says that any problem having a computational zero-knowledge proof
can be described as a problem having a statistical zero-knowledge proof plus a set of yes instances
from which we can construct a one-way function. To characterize argument systems, we will also
allow some additional no instances from which we can construct a one-way function.

To formalize this, we will need the notion of a promise problem, which is simply decision problem
with some inputs excluded. More precisely, a promise problem Π consists of two disjoint sets of
strings (ΠY,ΠN), corresponding to yes and no instances respectively. All of the complexity classes
we are using (e.g. SZKP,CZKP,SZKA,CZKA) generalize to promise problems in the natural
way; completeness and zero knowledge are required for yes instances and soundness is required for
no instances.

Definition 1.3 (SZKP–OWF Triplets). Let Π = (ΠY,ΠN) be a promise problem. We say that
(Π, I, J) is a SZKP–OWF Triplet if the following three conditions hold:

1. The promise problem (ΠY \ I,ΠN \ J) is in SZKP.

2. There exists a polynomial-time computable function fx(y)
def
= f(x, y) such that fx is one-way

for every x ∈ I. That is, there exists a polynomial p(·) such that for every nonuniform
polynomial-time algorithm A, and every x ∈ I,

Pr
[
A(fx(Up(|x|)) ∈ f−1

x (fx(Up(|x|)))
]
≤ neg(|x|).

3Actually polynomial-time provers also make sense for problems in MA, which is a variant of NP where the
verification of witnesses is probabilistic. All of our results easily extend to MA, but we state them for NP for
simplicity.

2

3. There exists a polynomial-time computable function gx(y)
def
= g(x, y) such that gx is one-way

for every x ∈ J . That is, there exists a polynomial q(·) such that for every nonuniform
polynomial-time algorithm A, and every x ∈ J ,

Pr
[
A(gx(Uq(|x|)) ∈ g−1

x (gx(Uq(|x|)))
]
≤ neg(|x|).

We use this to characterize the classes of problems having zero-knowledge protocols as follows.

Theorem 1.4 (SZKP–OWF Triplet Characterization).

1. (SZKP [trivial]) A problem Π ∈ IP has a statistical zero-knowledge proof system if and only
if (Π, ∅, ∅) is a SZKP–OWF Triplet.

2. (CZKP [Vad04]) A problem Π ∈ IP has a computational zero-knowledge proof system if and
only if there exists a set I ⊆ ΠY such that (Π, I, ∅) is a SZKP–OWF Triplet.

3. (CZKA [new]) A problem Π ∈ NP has a computational zero-knowledge argument system if
and only if there exist sets I ⊆ ΠY, J ⊆ ΠY such that (Π, I, J) is a SZKP–OWF Triplet.

4. (SZKA [new]) A problem Π ∈ NP has a statistical zero-knowledge argument system if and
only if there exists a set J ⊆ ΠN such that (Π, ∅, J) is a SZKP–OWF Triplet.

Notice the symmetric roles of the “OWF instances” I and J , with each being empty cor-
responding to a statistical security condition, in zero knowledge and completeness, respectively.
Theorem 1.2 follows immediately from Theorem 1.4 together with the fact that SZKP is closed
under complement (Theorem 1.1).

The advantage of the SZKP–OWF Triplet characterizations is that they reduce the study
of the various forms of zero-knowledge protocols to the study of SZKP together with the study
of the consequences of one-way functions, both of which are by now quite well-developed. Indeed,
we also use these characterizations to prove many other unconditional theorems about the classes
of problems in NP possessing zero-knowledge arguments, such as equivalences between honest-
verifier and malicious-verifier zero knowledge, private coins and public coins, inefficient provers and
efficient provers, and non-black-box simulation and black-box simulation. Previously, such results
were only known unconditionally for zero-knowledge proof systems [Oka00, GSV98, Vad04, NV06],
or were known under the assumption that one-way functions exist for zero-knowledge argument
systems [GMW91, Nao91, HILL99, NOV06].

While our characterizations of CZKA and SZKA (Items 3 and 4) are similar in spirit to
the CZKP characterization of [Vad04] (Item 2), both directions of the implications require new
ingredients that were not present in [Vad04].

In the forward direction, going from CZKA or SZKA to an SZKP–OWF Triplet, we
combine [Vad04] with the work of Ostrovsky [Ost91] to construct the one-way function on instances
in J . Ostrovsky showed that if a hard-on-average problem has a statistical zero-knowledge argument
system, then (standard) one-way functions exist.4 (This was later generalized to computational
zero knowledge in [OW93].) We use the same construction, but with a slightly different analysis.
In Ostrovsky’s work the hardness of inverting the one-way function is derived from the assumed
(average-case) hardness of the problem having the zero-knowledge protocol, and it is shown to be
hard to invert on yes instances. In our proof, the hardness of inverting the one-way function is

4Ostrovky’s theorem is only stated in terms of only refers to statistical zero-knowledge proofs, but it immediately
extends to arguments.

3

instead derived from a gap between between statistical soundness and computational soundness,
and it is analyzed on no instances.

In the reverse direction, going from an SZKP–OWF Triplet to CZKA or SZKA, there were
more fundamental obstacles in extending the work of [Vad04]. First, the construction of [Vad04]
made use a computationally unbounded prover in an essential way (as did the previous work on
SZKP, such as [Oka00]), whereas argument systems are rather unnatural with unbounded provers
and hence are typically defined with respect to efficient provers. Second, at the time we did not
know of a construction of statistical zero-knowledge arguments for NP from any one-way function,
which is necessary to make use of the one-way functions constructed from the “J instances” in an
SZKP–OWF Triplet. (This is clear when trying to characterize SZKA but it also turns out to
be important for characterizing CZKA.) Fortunately, both of these obstacles have been recently
overcome in [NV06] and [NOV06], respectively.

2 Preliminaries

If X is a random variable taking values in a finite set U , then we write x ← X to indicate that x
is selected according to X. If S is a subset of U , then x ← S means that x is selected according
to the uniform distribution on S. We adopt the convention that when the same random variable
occurs several times in an expression, they refer to a single sample. For example, Pr[f(X) = X]
is defined to be the probability that when x ← X, we have f(x) = x. We write Un to denote the
random variable distributed uniformly over {0, 1}n.

A function µ : N→ [0, 1] is called negligible if µ(n) = n−ω(1). We let neg(n) denote an arbitrary
negligible function (i.e., when we say that f(n) < neg(n) we mean that there exists a negligible
function µ(n) such that for every n, f(n) < µ(n)). Likewise, poly(n) denotes an arbitrary function
f(n) = nO(1).

PPT refers to probabilistic algorithms (i.e., Turing machines) that run in strict polynomial
time. A nonuniform PPT algorithm is a pair (A, z̄), where z̄ = z1, z2, . . . is an infinite sequence of
strings where |zn| = poly(n), and A is a PPT algorithm that receives pairs of inputs of the form
(x, z|x|). (The string zn is the called the advice string for A for inputs of length n.) Nonuniform
PPT algorithms are equivalent to (nonuniform) families of polynomial-sized Boolean circuits.

Statistical Difference. The statistical difference (a.k.a. variation distance) between random

variables X and Y taking values in U is defined to be ∆(X,Y)
def
= maxS⊂U |Pr [X ∈ S]− Pr [Y ∈ S]|.

We say that X and Y are ε-close if ∆(X,Y) ≤ ε. Conversely, we say that X and Y are ε-far if
∆(X,Y) > ε. For basic facts about this metric, see [SV03, Sec 2.3].

Entropy. The entropy of a random variable X is H(X) = Ex←X [log(1/Pr[X = x])]), where here
and throughout the paper all logarithms are to base 2. Intuitively, H(X) measures the amount of
randomness in X on average (in bits). For jointly distributed random variables X and Y , we define
the conditional entropy of X given Y to be

H(X|Y)
def
= E

y←Y
[H(X|Y =y)] = E

(x,y)←(X,Y)

[
log

1

Pr[X = x|Y = y]

]
= H(X,Y)−H(Y).

4

2.1 Promise Problems

Roughly speaking, a promise problem [ESY84] is a decision problem where some inputs are excluded.
Formally, a promise problem is specified by two disjoint sets of strings Π = (ΠY,ΠN), where we
call ΠY the set of yes instances and ΠN the set of no instances. Such a promise problem is
associated with the following computational problem: given an input that is “promised” to lie in
ΠY ∪ ΠN, decide whether it is in ΠY or in ΠN. Note that languages are a special case of promise
problems (namely, a language L over alphabet Σ corresponds to the promise problem (L,Σ∗ \L)).
Thus working with promise problems makes our results more general. Moreover, even to prove our
results just for languages, it turns out to be extremely useful to work with promise problems along
the way.

The complement of a promise problem Π = (ΠY,ΠN) is the promise problem Π = (ΠN,ΠY).
The union of two promise problems Π and Γ is the promise problem Π∪Γ = (ΠY∪ΓY,ΠN∩ΓN). The
intersection of two promise problems Π and Γ is the promise problem Π∩Γ = (ΠY ∩ΓY,ΠN ∪ΓN).

Most complexity classes, typically defined as classes of languages, extend to promise problems
in a natural way, by translating conditions on inputs in the language to be conditions on yes
instances, and conditions on inputs not in the language to be conditions on no instances. For
example, a promise problem Π is in BPP if there is a probabilistic polynomial-time algorithm A
such that x ∈ ΠY ⇒ Pr [A(x) = 1] ≥ 2/3 and x ∈ ΠN ⇒ Pr [A(x) = 0] ≤ 1/3. All complexity
classes in this paper denote classes of promise problems.

We refer the reader to the recent survey of Goldreich [Gol05] for more on the utility and
subtleties of promise problems.

2.2 Auxiliary-Input Cryptographic Primitives

It will be very useful for us to work with cryptographic primitives that are parameterized by an
additional “auxiliary” input x, and where the security condition will hold only if x is in some
particular set I. Indeed, recall that the SZKP–OWF Triplet Characterization refers to such
a variant of the notion of one-way functions (as captured by the definitions below). We use the
terminology and notation for such primitives from [Vad04].

Definition 2.1. An auxiliary-input function ensemble is a collection of functions F = {fx :
{0, 1}p(|x|) → {0, 1}q(|x|)}x∈{0,1}∗ , where p and q are polynomials. We call F polynomial-time com-
putable (or just poly-time), if there is a (deterministic) polynomial-time algorithm F such that for
every x ∈ {0, 1}∗ and y ∈ {0, 1}p(|x|), we have F (x, y) = fx(y).

Definition 2.2 (one-way function on I). An auxiliary-input one-way function on I is a poly-
time auxiliary-input function ensemble F = {fx : {0, 1}p(|x|) → {0, 1}q(|x|)} such that for every
nonuniform PPT A, there exists a negligible function µ such that for all x ∈ I,

Pr
[
A(x, fx(Up(|x|))) ∈ f−1

x (fx(Up(|x|)))
]
≤ µ(|x|).

(We note that since A is nonuniform, it is not essential that we give it the input x, because
it can be hardwired in as advice, but the definition seems more natural as above.) The standard
definition of one-way function is obtained by considering I = {1n : n ≥ 0} and p(n) = n.

Similarly, the notion of computational indistinguishability has an auxiliary-input analogue
(which is widely used in the definition of zero knowledge).

Definition 2.3. An auxiliary-input probability ensemble is a collection of random variables {Xx}x∈{0,1}∗ ,

where Xx takes values in {0, 1}p(|x|) for some polynomial p. We call such an ensemble samplable

5

if there is a probabilistic polynomial-time algorithm M such that for every x, the output M(x) is
distributed according to Xx.

Definition 2.4. Two auxiliary-input probability ensembles {Xx} and {Yx} are computationally
indistinguishable on I ⊆ {0, 1}∗ if for every nonuniform PPT D, there exists a negligible function
µ such that for all x ∈ I,

|Pr [D(x,Xx) = 1]− Pr [D(x, Yx) = 1]| ≤ µ(|x|).

Similarly, we say that {Xx} and {Yx} are statistically indistinguishable on I ⊆ {0, 1}∗ if the above
is required for all functions D (instead of only nonuniform PPT). Equivalently, {Xx} and {Yx}
are statistically indistinguishable on I iff Xx and Yx are µ(|x|)-close for some negligible function
µ and all x ∈ I. We write ≈c and ≈s to denote computational and statistical indistinguishability,
respectively.

Often, we will informally say “Xx and Yx are computationally indistinguishable when x ∈ I”
to mean the ensembles {Xx} and {Yx} are computationally indistinguishable on I.

Now we define auxiliary-input distributionally one-way functions, which are functions that are
hard for PPT algorithms to invert in a distributional manner—that is, given y it is hard for PPT
algorithms to output a random preimage f−1(y). The standard definition of distributionally one-
way function is given by [IL89]; here we give the auxiliary-input analogue.

Definition 2.5 (distributionally one-way function on I). An auxiliary-input distributionally one-
way function on I is a poly-time auxiliary-input function ensemble F = {fx : {0, 1}p(|x|) →
{0, 1}q(|x|)} such that there exists a polynomial p(·) with the property that for every nonuniform
PPT A, the ensembles {(Up(|x|), fx(Up(|x|)))} and {(A(f(Up(|x|))), fx(Up(|x|)))} are 1/p(|x|)-far for
all sufficient long x ∈ I.

Requiring to invert in a distributional manner is a stronger that just finding a preimage,
therefore distributionally one-way functions might seem weaker than one-way functions. How-
ever, Impagliazzo–Levin [IL90] proved that they are in fact equivalent. Like almost all reductions
between cryptographic primitives, this result immediately extends to the auxiliary-input analogue
(using the same proof):

Theorem 2.6 ([IL90]). For every set I ⊆ {0, 1}∗, there exists an auxiliary-input one-way function
on I if and only if there exists an auxiliary-input distributionally one-way function on I.

2.3 Zero-Knowledge Protocols—Brief Introduction

Here we give a brief introduction of the definitions of zero knowledge that we use for the benefit of
our more experienced readers. For a more detailed introduction with complete definitions, refer to
Section 2.4.

In general, we follow the standard definitions of interactive protocols, interactive proofs and
arguments, and zero-knowledge proofs and arguments, as in [Gol01]. The complexity classes that
we use are defined as follows:

• IP denotes the class of promise problems possessing interactive proof systems.

• HV-SZKP and HV-CZKP denote the classes of promise problems have honest-verifier
statistical and computational zero-knowledge proofs, respectively. Analogously, HV-SZKA
and HV-CZKA denote the classes of promise problems have honest-verifier statistical and
computational zero-knowledge arguments, respectively.

6

• SZKP and CZKP are the classes of promise problems possessing statistical and computa-
tional (auxiliary-input) zero-knowledge proofs, respectively. Analogously, SZKA and CZKA
are the classes of promise problems possessing statistical and computational (auxiliary-input)
zero-knowledge arguments, respectively.

We highlight the following points:

1. (Proof vs. argument systems) Interactive argument systems refer to protocols whose sound-
ness condition is computational. That is, only nonuniform PPT cheating provers are guaran-
teed not to be able to convince the verifier of false statements except with negligible probabil-
ity; this is a weaker condition that proof systems, where the soundness condition is required of
all cheating provers instead of just nonuniform PPT ones. Hence, we say that proof systems
have statistical soundness.

2. (Prover complexity) Interactive proofs and interactive arguments, and their zero-knowledge
analogues, allow the honest prover to be computationally unbounded prover, unless we specify
efficient prover, which means a polynomial time honest prover strategy given a witness for
membership. It was shown in [NV06] than for problems in NP, any zero-knowledge proof
system with an unbounded prover can be transformed into one with an efficient prover; we
will show the same for argument systems.

2.4 Zero-Knowledge Protocols—Detailed Introduction

An interactive protocol (A,B) consists of two algorithms that compute the next-message function
of the (honest) parties in the protocol. Specifically, A(x, a, α1, . . . , αk; r) denotes the next message
αk+1 sent by party A when the common input is x, A’s auxiliary input is a, A’s coin tosses are
r, and the messages exchanged so far are α1, . . . , αk. There are two special messages, accept and
reject, which immediately halt the interaction. We say that party A (resp. B) is probabilistic
polynomial time (PPT) if its next-message function can be computed in polynomial time (in |x|+
|a| + |α1| + · · · + |αk|). Sometimes (though not in this section) we will refer to protocols with a
joint output; such an output is specified by a deterministic, polynomial-time computable function
of the messages exchanged.

For an interactive protocol (A,B), we write (A(a), B(b))(x) to denote the random process
obtained by having A and B interact on common input x, (private) auxiliary inputs a and b to
A and B, respectively (if any), and independent random coin tosses for A and B. We call (A,B)
polynomially bounded if there is a polynomial p such that for all x, a, b, the total length of all
messages exchanged in (A(a), B(b))(x) is at most p(|x|) with probability 1. Moreover, if B∗ is any
interactive algorithm, then A will immediately halt and reject in (A(a), B∗(b))(x) if the total length
of the messages ever exceeds p(|x|), and similarly for B interacting with any A∗.

We write viewA(A(a), B(b))(x) to denote A’s view of the interaction, that is a transcript
(x, γ1, γ2, . . . , γt; r), where the γi’s are all the messages exchanged and r is A’s coin tosses. (Sim-
ilarly, we define viewB(A(a), B(b))(x) to denote B’s view of the interaction.) When dealing with
interactive protocol (P, V), we also write 〈P, V 〉(x) to denote V ’s view of the interaction, that is
〈P, V 〉(x) = viewV (P, V)(x). Let transcript(A(a), B(b))(x) denote the messages exchanged in the
protocol including the common input x, i.e., (x, γ1, γ2, . . . , γt).

The number of rounds in an execution of the protocol is the total number of messages exchanged
between A and B, not including the final accept/reject message. We call the protocol (A,B)
public coin if all of the messages sent by B are simply the output of its coin-tosses (independent of the

7

history), except for the final accept/reject message which is computed as a deterministic function
of the transcript. (Such protocols are also sometimes known as Arthur-Merlin games [BM88].)

Definition 2.7 (interactive proofs). An interactive protocol (P, V) is an interactive proof system
for a promise problem Π if are functions c, s : N→ [0, 1] such that 1− c(n) > s(n) + 1/poly(n) and
the following holds:

• (Efficiency) (P, V) is polynomially bounded, and V is computable in probabilistic polynomial
time.

• (Completeness) If x ∈ ΠY, then V accepts in (P, V)(x) with probability at least 1− c(|x|),

• (Soundness) If x ∈ ΠN, then for every P ∗, V accepts in (P ∗, V)(x) with probability at most
s(|x|).

We call c(·) the completeness error and s(·) the soundness error. We say that (P, V) has negligible
error if both c and s are negligible. We say that it has perfect completeness if c = 0. We denote
by IP the class of promise problems possessing interactive proof systems. We denote MA to be
the class of promise problems possessing single-round interactive proof systems; that is, the prover
P just sends a single message to V , and V uses the prover’s message and its own random coins in
deciding whether to accept or reject.

We can think of MA as a generalization of NP where the verification of witnesses is proba-
bilistic. An equivalent definition of IP is the class of problems possessing public-coin interactive
proof systems with perfect completeness and negligible soundness error [GS89, FGM+89].

Definition 2.8 (interactive arguments). We say that (P, V) is an interactive argument system for Π
if the soundness condition in Definition 2.7 holds against all nonuniform PPT P ∗, instead of every
(computationally unbounded) P ∗. Specifically, we require both the efficiency and completeness
conditions in Definition 2.7 to hold, and the new (weaker) soundness condition is as follows:

• (Soundness) If x ∈ ΠN, then for every nonuniform PPT P ∗, V accepts in (P ∗, V)(x) with
probability at most s(|x|).

We denote by IA the class of promise problems possessing interactive argument systems.

Unlike interactive proofs, the complexity-theoretic characterization of IA is not well-studied.
In particular, we do not know if general interactive arguments can be made to have public coin
or to have perfect completeness. The completeness and soundness error, however, can be made
negligibly small by sequential repetition.

There are various notions of zero knowledge, referring to how rich a class of verifier strategies
are considered. The weakest is to consider only the “honest verifier,” the one that follows the
specified protocol.5

Definition 2.9 (honest-verifier zero knowledge). An interactive proof system (P, V) for a promise
problem Π is statistical (resp. computational) honest-verifier zero knowledge if there exists a prob-
abilistic polynomial-time simulator S such that the ensembles {〈P, V 〉(x)} and {S(x)} are statisti-
cally (resp. computationally) indistinguishable on ΠY.

5This is an instantiation of what is called an “honest-but-curious adversary” or “passive adversary” in the literature
on cryptographic protocols.

8

HV-SZKP and HV-CZKP denote the classes of promise problems have honest-verifier sta-
tistical and computational zero-knowledge proofs, respectively. Analogously, HV-SZKA and
HV-CZKA denote the classes of promise problems have honest-verifier statistical and compu-
tational zero-knowledge arguments, respectively.

While honest-verifier zero knowledge is already a nontrivial and interesting notion, crypto-
graphic applications usually require that the zero-knowledge condition holds even if the verifier
deviates arbitrarily from the specified protocol. This is captured by the following definition.

Definition 2.10 (auxiliary-input zero knowledge). 6 An interactive proof system (P, V) for a
promise problem Π is statistical (resp. computational) (auxiliary-input) zero knowledge if for every
PPT V ∗ and polynomial p, there exists a PPT S such that the ensembles

{〈P, V ∗(z)〉(x)} and {S(x, z)} (1)

are statistically (resp. computationally) indistinguishable on the set {(x, z) : x ∈ ΠY, |z| = p(|x|)}.
SZKP and CZKP are the classes of promise problems possessing statistical and computa-

tional (auxiliary-input) zero-knowledge proofs, respectively. Analogously, SZKA and CZKA are
the classes of promise problems possessing statistical and computational (auxiliary-input) zero-
knowledge arguments, respectively.

The auxiliary input z in the above definition allows one to model a priori information that the
verifier may possess before the interaction begins, such as from earlier steps in a larger protocol in
which the zero-knowledge proof is being used or from prior executions of the same zero-knowledge
proof. As a result, auxiliary-input zero knowledge is closed under sequential composition. That is,
if an auxiliary-input zero-knowledge proof is repeated polynomially many times sequentially, then
it remains auxiliary-input zero knowledge [GO94]. Plain zero knowledge (i.e., without auxiliary
inputs) is not closed under sequential composition [GK96], and thus auxiliary-input zero knowledge
is the definition typically used in the literature. In the rest of the paper, we will often drop the
word “auxiliary-input” in reference to auxiliary-input zero knowledge.

Typically, a protocol is proven to be zero knowledge by actually exhibiting a single, universal
simulator that simulates an arbitrary verifier strategy V ∗ by using V ∗ as a subroutine. That is,
the simulator does not depend on or use the code of V ∗ (or its auxiliary input), and instead only
requires black-box access to V ∗. This type of simulation is formalized as follows.

Definition 2.11 (black-box zero knowledge). An interactive proof system (P, V) for a promise
problem Π is statistical (resp. computational) black-box zero knowledge if there exists an oracle
PPT S such that for every nonuniform PPT V ∗, the ensembles

{〈P, V ∗〉(x)}x∈ΠY
and {SV ∗(x,·;·)(x)}x∈ΠY

are statistically (resp. computationally) indistinguishable.

6Our formulation of auxiliary-input zero knowledge is slightly different than, but equivalent to, the definition in
the textbook [Gol01]. We allow V ∗ to run in polynomial time in the lengths of both its input x and its auxiliary
input z, but put a polynomial bound on the length of the auxiliary input. In [Gol01, Sec 4.3.3], V ∗ is restricted
to run in time that is polynomial in just the length of the input x, and no bound is imposed on the length of the
auxiliary input z (so V ∗ may only be able to read a prefix of z). The purpose of allowing the auxiliary input to be
longer than the running time of z is to provide additional nonuniformity to the distinguisher (beyond that which the
verifier has); we do this directly by allowing the distinguisher to be nonuniform in Definition 2.4.

9

Even though the above definition does not explicitly refer to an auxiliary input, the definition
encompasses auxiliary-input zero knowledge because we allow V ∗ to be nonuniform (and thus
the auxiliary input can be hardwired in V ∗ as advice). The work of Barak [Bar01] demonstrated
that non-black-box zero-knowledge arguments can achieve properties (such as simultaneously being
public coin, having a constant number of rounds, and having negligible error) that were known to
be impossible for black-box zero knowledge [GK96]. Nevertheless, our results will show that, when
ignoring efficiency considerations, black-box zero knowledge is as rich as standard, auxiliary-input
zero knowledge; for example, every problem in CZKA has a black-box zero-knowledge argument
system.

Efficient provers. Although we define interactive arguments without restricting the computa-
tional resource the honest prover, it is natural to do since the cheating provers are restricted to be
PPT. Hence, interactive arguments are most interesting when considering problems in NP, because
for these problems, we can restrict the honest prover to be PPT given a witness of membership.
To formalize this idea, we define witness relations for problems in NP.

Let W ⊆ {0, 1}∗ × {0, 1}∗ be a relation. Let problem ΠW = (ΠW
Y ,ΠW

N), where ΠW
Y =

{x | ∃w s.t. (x,w) ∈ W} and ΠW
N = ΠW

Y . For (x,w) ∈ W , we say that w is an NP-witness for x.
Recall that the class NP is the class of problems Π such that Π = ΠW for a relation W that is
decidable in time polynomial in the first input (i.e., x). If Π = ΠW is an NP problem then we say
that W is an NP-relation for Π.

To define witness relations for problems in MA, we generalize our relation W as follows: Let
W ⊆ {0, 1}∗ × {0, 1}∗ × {0, 1}∗ be a relation. Define WY = {(x,w) : Prr[(x,w, r) ∈ W] ≥ 2/3}
and WN = {(x,w) : Prr[(x,w, r) ∈ W] ≤ 1/3}. Let problem ΠW = (ΠW

Y ,ΠW
N), where ΠW

Y =
{x | ∃w s.t. (x,w) ∈ WY} and ΠW

N = {x | ∀w s.t. (x,w) ∈ WN}. For (x,w) ∈ WY, we say that w is
an MA-witness for x. The class MA is the class of problems Π such that Π = ΠW for a relation
W that is decidable in time polynomial in the first input (i.e., x). If Π = ΠW is an MA problem
then we say that W is an MA-relation for Π.

In an interactive protocol (P, V) for problem Π ∈ NP (resp. Π ∈MA), prover P is an efficient
prover if P (w) is computable by a probabilistic polynomial-time algorithm when (x,w) ∈W , where
W is an NP-relation (resp. MA-relation) for Π. We note that MA has an equivalent formulation as
the class of problems having efficient-prover argument systems (cf., [BLV06]). This means defining
efficient provers can be done, without loss of generality, for only problems in MA.

Remarks on the definitions. Our definitions mostly follow the now-standard definitions of
zero-knowledge proofs as presented in [Gol01], but we highlight the following points:

1. (Prover complexity) Interactive proofs and interactive arguments, and their zero-knowledge
analogues, allow the honest prover to be computationally unbounded, unless we specify ef-
ficient prover. It was shown in [NV06] than for problems in NP (actually, also MA), any
zero-knowledge proof system with an unbounded prover can be transformed into one with an
efficient prover; we will show the same for argument systems.

2. (Promise problems) As has been done numerous times before (e.g. [GK93, SV03]), we extend
all of the definitions to promise problems Π = (ΠY,ΠN) in the natural way, i.e., conditions
previously required for inputs in the language (e.g. completeness and zero knowledge) are now
required for all yes instances, and conditions previously required for inputs not in the language
(e.g., soundness) are now required for all no instances. Similarly, all of our complexity classes

10

(e.g., CZKA, SZKP and BPP) are classes of promise problems. These extensions to promise
problems are essential for formalizing our arguments, but all the final characterizations and
results we derive about CZKA automatically hold for the corresponding class of languages,
simply because languages are a special case of promise problems.

3. (Nonuniform formulation) As has become standard, we have adopted a nonuniform formula-
tion of zero knowledge, where the computational indistinguishability has to hold even with
respect to nonuniform distinguishers and is universally quantified over all yes instances. Uni-
form treatments of zero knowledge are possible (see [Gol93] and [BLV06, Apdx. A]), but the
definitions are much more cumbersome. We do not know whether analogues of our results
hold for uniform zero knowledge, and leave that as a problem for future work.

4. (Strict polynomial-time simulators) In this version, we restrict our attention to zero knowl-
edge with respect to simulators that run in strict polynomial time. In fact, our techniques
actually imply an equivalence between defining the zero-knowledge classes (e.g., CZKA and
HV-CZKA) in terms of expected vs. strict polynomial-time simulators. (This equivalence
is achieved following a similar line of reasoning as [Vad04].) Details are deferred to the final
version of the paper.

2.5 1-out-of-2-Binding Commitments

We now introduce the notion of
(2
1

)
-binding commitments that will play a central role in establishing

our results. These are commitment schemes with two sequential and related stages such that in
each stage, the sender commits to and reveals a value.

Definition 2.12. A 2-phase commitment scheme (S,R), with security parameter n, consists of
four interactive protocols: (S1

c , R1
c) the first commitment stage, (S1

r , R1
r) the first reveal stage,

(S2
c , R2

c) the second commitment stage, and (S2
r , R2

r) the second reveal stage. For us, both reveal
phases will always be noninteractive, consisting of a single message from the sender to the receiver.
Throughout, both parties receive the security parameter 1n as input.

1. In the first commitment stage, S1
c receives a private input σ(1) ∈ {0, 1} and a sequence of coin

tosses rS . At the end, S1
c and R1

c receive as common output a commitment z(1). (Without
loss of generality, we can assume that z(1) is the transcript of the first commitment stage.)

2. In the first reveal stage, S1
r and R1

r receive as common input the commitment z(1) and a bit
σ(1) ∈ {0, 1} and S1

r receives as private input rS . At the end, S1
r and R1

r receive a common
output τ . (Without loss of generality, we can assume that τ is the concatenation of z(1) and
the transcript of first reveal stage, and includes R1

r ’s decision to accept or reject.)

3. In the second commitment stage, S2
c and R2

c both receive the common input τ ∈ {0, 1}∗,
and S2

c receives a private input σ(2) ∈ {0, 1} and the coin tosses rS . S2
c and R2

c receive as
common output a commitment z(2). (Without loss of generality, we can assume that z(2) is
the concatenation of τ and the transcript of the second commitment stage.)

4. In the second reveal stage, S2
r and R2

r receive as common input the commitment z(2) and a
bit σ(2) ∈ {0, 1}, and S2

r receives as private input rS. At the end, R2
r accepts or rejects.

11

We require that the 2-phase commitment scheme (S,R) satisfies the following two properties.

• (Perfect Correctness) For all σ(1), σ(2) ∈ {0, 1}, if both S and R are honest, then R accepts
in both phase with probability 1.

• S = (S1, S2) = ((S1
c , S1

r), (S2
c , S2

r)) and R = (R1, R2) = ((R1
c , R

1
r), (R

2
c , R

2
r)) are computable

in probabilistic polynomial time.

We say that (S,R) is public coin if it is public coin for R.

Note that instead of providing S with decommitment values as private outputs of the commit-
ment phases, we simply provide it with the same coin tosses throughout (so it can recompute any
private state from the transcripts of the previous phases).

As for standard commitment schemes, we define the security of the sender in terms of a hiding
property. Loosely speaking, the hiding property for a 2-phase commitment scheme says that both
commitment phases are hiding. Note that since the phases are run sequentially, the hiding property
for the second commitment stage is required to hold even given the receiver’s view of the first stage.

Definition 2.13 (hiding). 2-phase commitment scheme (S,R), with security parameter n, is sta-
tistically hiding if for all adversarial receiver R∗,

1. The views of R∗ when interacting with the sender in the first phase on any two messages are
statistically indistinguishable. That is, for all σ(1), σ̃(1) ∈ {0, 1},

{
viewR∗(S1

c (σ(1)), R∗)(1n)
}

n∈N

≈s

{
viewR∗(S1

c (σ̃(1)), R∗)(1n)
}

n∈N

.

2. The views of R∗ when interacting with the sender in the second phase are statistically in-
distinguishable no matter what the sender committed to in the first phase. That is, for all
σ(1), σ(2), σ̃(2) ∈ {0, 1},

{
viewR∗(S2

c (σ(2)), R∗)(Λ, 1n)
}

n∈N

≈s

{
viewR∗(S2

c (σ̃(2)), R∗)(Λ, 1n)
}

n∈N

,

where Λ = transcript(S1(σ(1)), R∗)(1n).

We define computationally hiding is an analogous manner, relaxing statistical indistinguishability
to require only computational indistinguishability for the receiver’s view in the two phases.

We stress that the second condition of the above hiding definition (Definition 2.13) requires
that the view of receiver in the second phase be indistinguishable for any two messages even given
the transcript of the first phase, Λ = transcript(S1(σ(1)), R∗)(1n).

Loosely speaking, the binding property says that at least one of the two commitment phases is
binding. In other words, for every sender S∗, there is at most one “bad” phase j ∈ {1, 2} such that
given a commitment z(j), S∗ can open z(j) successfully both as σ(1) and σ̃(1) 6= σ with nonnegligible
probability. Actually, we allow this bad phase to be determined dynamically by S∗. Moreover, we
require that the second phase be statistically binding if the sender breaks the first phase.

12

Definition 2.14 (1-out-of-2-binding). 2-phase commitment scheme (S,R), with security parameter
n, is computationally

(2
1

)
-binding if there exist a set B of first-phase transcripts and a negligible

function ε(n) such that:

1. For every (even unbounded) sender S∗, the first-phase transcripts in B make the second phase
statistically binding. That is, for all S∗ and every τ ∈ B, with probability at least 1 − ε(n)
over z(2) = (S∗, R2

c)(τ), there is at most one value σ(2) ∈ {0, 1} such that S∗ can convince R2
r

to accept in the second reveal stage on common input z(2) and σ(2).

2. ∀ nonuniform PPT S∗,7 S∗ succeeds in the following game with probability at most ε(n) for
all sufficiently large n:

(a) S∗ and R1
c interact and output a first-phase commitment z(1).

(b) S∗ outputs two full transcripts τ and τ̃ of both phases with the following three properties:

• Transcripts τ and τ̃ both start with prefix z(1).

• The transcript τ contains a successful opening of z(1) to the value σ(1) ∈ {0, 1} using
a first-phase transcript not in B, and R1

r and R2
r both accept in τ .

• The transcript τ̃ contains a successful opening of z(1) to the value σ̃(1) ∈ {0, 1} using
a first-phase transcript not in B, and R1

r and R2
r both accept in τ̃ .

(c) S∗ succeeds if all of the above conditions hold and σ(1) 6= σ̃(1).

We define statistically
(2
1

)
-binding is an analogous manner, requiring that Condition 2 holds for

all (even computationally unbounded) adversarial senders S∗ instead of just efficient (nonuniform
PPT) ones.

3 Main Results

In this section, we elaborate upon the SZKP–OWF Triplet Characterization Theorem (Thm. 1.4).
Specifically, we state four theorems giving a variety of equivalent characterizations of the classes
SZKP, CZKP, CZKA, and SZKA. The ones for CZKA and SZKA are new; the others follow
from previous work, but are given for comparison. In addition to establishing Theorem 1.4 and
hence Theorem 1.2, these theorems show an equivalence between problems having only honest-
verifier zero-knowledge protocols, problems having an SZKP–OWF Triplet, and problems with
(malicious-verifier) zero-knowledge protocols having desirable properties like an efficient prover,
perfect completeness, public coins, and black-box simulation. We note that these characterizations
refer only to the classes of problems, but do not necessarily preserve other efficiency measures like
round complexity.

For ease of reference, we restate the SZKP–OWF Triplet characterization—Definition 1.3 in
the Introduction—below.

Definition 3.1 (SZKP–OWF Triplet Characterization, Restatement of Definition 1.3). Let
Π = (ΠY,ΠN) be a promise problem. We say that (Π, I, J) is a SZKP–OWF Triplet if the
following three conditions hold:

1. The promise problem (ΠY \ I,ΠN \ J) is in SZKP.

7Definitions of cryptographic primitives in the literature often use the reverse order of quantifiers, asking that for
every (nonuniform) PPT adversary S∗, there exists a negligible function ε(n) such that the success probability of S∗

is at most ε(n). However, the two resulting definitions turn out to be equivalent [Bel02].

13

2. There exists an auxiliary input one-way function F on I.

3. There exists an auxiliary input one-way function G on J .

The following two previously known theorems give unconditional characterizations of zero-
knowledge proofs.

Theorem 3.2 (SZKP Characterization Theorem, [Oka00, GSV98, NV06]). For every problem
Π ∈ IP, the following conditions are equivalent.

1. Π ∈ SZKP.

2. Π ∈ HV-SZKP.

3. (Π, ∅, ∅) is a SZKP–OWF Triplet.

4. Π has a statistical zero-knowledge proof system with a black-box simulator, public coins, and
perfect completeness. Furthermore, if Π ∈ NP, the proof system has an efficient prover.

Theorem 3.3 (CZKP Characterization Theorem, [Vad04, NV06]). For every problem Π ∈ IP,
the following conditions are equivalent.

1. Π ∈ CZKP.

2. Π ∈ HV-CZKP.

3. There exists a set I ⊆ ΠY such that (Π, I, ∅) is a SZKP–OWF Triplet.

4. Π has a computational zero-knowledge proof system with a black-box simulator, public coins,
and perfect completeness. Furthermore, if Π ∈ NP, the proof system has an efficient prover.

We give analogous characterizations for zero-knowledge arguments:

Theorem 3.4 (CZKA Characterization Theorem). For every problem Π ∈ NP, the following
conditions are equivalent.

1. Π ∈ CZKA.

2. Π ∈ HV-CZKA.

3. There exists sets I ⊆ ΠY and J ⊆ ΠN such that (Π, I, J) is a SZKP–OWF Triplet.

4. Π has a computational zero-knowledge argument system with a black-box simulator, public
coins, perfect completeness, and an efficient prover.

Theorem 3.5 (SZKA Characterization Theorem). For every problem Π ∈ NP, the following
conditions are equivalent.

1. Π ∈ SZKA.

2. Π ∈ HV-SZKA.

3. There exists a set J ⊆ ΠN such that (Π, ∅, J) is a SZKP–OWF Triplet.

4. Π has a statistical zero-knowledge argument with a black-box simulator, public coins, perfect
completeness, and an efficient prover.

14

We prove Theorems 3.4 and 3.5 in Section 4.4. Notice that in these theorems involving zero-
knowledge arguments, we have restricted Π to be in NP (in contrast to Theorems 3.2 and 3.3,
which only restrict to IP). The reason for this is that argument systems are mainly interesting
when the honest prover runs in polynomial time given a witness for membership (otherwise the
protocol would not even be sound against prover strategies with the same resources as the honest
prover), and such efficient provers only make sense for problems in NP (or actually, MA, to which
our results generalize easily).8 In fact our theorems above show that for problems in NP, a zero-
knowledge protocol without an efficient prover can be converted into one with an efficient prover
(by the equivalence of Items 1 and 4 in Theorems 3.2 to 3.5 above).

4 Characterization of Zero-Knowledge Protocols

The steps providing unconditional characterizations of zero-knowledge protocols are as follows.

1. We show that every problem possessing a (honest-verifier) zero-knowledge protocols satisfies
the SZKP–OWF Triplet characterization. Depending on the zero knowledge and sound-
ness guarantee, the types of SZKP–OWF Triplet characterization will differ (in whether
the sets I and J of one-way function instances are empty or nonempty). This extends the un-
conditional characterization work of [Vad04] from zero-knowledge proof systems to the more
general zero-knowledge argument systems, and is in Section 4.1.

2. Next, we show that every problem satisfying the SZKP–OWF Triplet characterization
yields a type of instance-dependent commitment scheme. This is based on the techniques
of [NOV06, NV06], and is in Section 4.2.

3. Finally, we show that every problem in NP having the same type of instance-dependent com-
mitment scheme allow us construct zero-knowledge argument systems with desirable prop-
erties like perfect completeness, black-box zero knowledge, public coin, and efficient prover.
This is also based on the techniques of [NOV06, NV06], and is in Section 4.3.

4.1 From Zero-Knowledge Protocols to SZKP–OWF Triplet Characterization

In this section, we show that problems possessing (honest verifier) zero-knowledge arguments sat-
isfy the SZKP–OWF Triplet characterization. Specifically, we prove that for every problem Π
having a zero-knowledge argument, there exists sets I ⊆ ΠY and J ⊆ ΠN such that (Π, I, J) is
a SZKP–OWF Triplet. The main difference from [Vad04] is that [Vad04] characterizes only
zero-knowledge proofs and has J = ∅. Intuitively, this set J that we use in our SZKP–OWF
Triplet characterization represents the “statistical imperfection” of some no instances due to the
computational soundness property of arguments as compared to statistical soundness of proofs.

Lemma 4.1 (SZKP–OWF Triplet Characterization of HV-CZKA and HV-SZKA). If prob-
lem Π is in HV-CZKA, then there exists sets I ⊆ ΠY and J ⊆ ΠN such that (Π, I, J) is a
SZKP–OWF Triplet. Moreover, for Π ∈ HV-SZKA, we can take J = ∅.

8In fact, we suspect that our results can be generalized to any problem with a public-coin interactive argument
system, in particular including all of IP, and we will explore this extension for the final version of the paper. A
motivation for this is that there are interesting argument systems where the honest prover is not efficient in the usual
sense of having a fixed polynomial running time, e.g. the CS proofs and universal arguments of [Mic94, BG02].

15

Proof Idea. Fix an instance x of the problem Π ∈ HV-CZKA. We will now describe on an
intuitive level how we determine whether or not to place x in the sets I and J . From the simulator
S on input x, we define a simulation-based prover PS and a simulation-based verifier VS . On a
high level, PS replies with the same conditional probability as the prover in the output of S, and
VS sends its messages with the same conditional probability as the verifier in the output of S. Now
we make the following observations:

1. The interaction between PS and VS is identical to the output of the simulator S, on every x.

2. By the zero-knowledge condition, we have that 〈PS , VS〉 is computationally indistinguishable
from 〈P, V 〉, when x ∈ ΠY.

3. By assuming, without loss of generality, that the simulator always outputs accepting tran-
scripts, we conclude that PS makes VS accepts with probability 1, on every x.

Now, we consider a statistical measure of how “similar” VS is to V (on instance x, when
interacting with simulation-based prover PS). Using this statistical measure (given in the full
proof), we define sets I and J as follows:

• I contains instances x ∈ ΠY for which VS is statistically different from V .

• J contains instances x ∈ ΠN for which VS is statistically similar to V .

Now the proof that this gives a SZKP–OWF Triplet proceed as follows:

1. On I, we have that VS is statistically different from V . Nevertheless, by the zero-knowledge
condition (as noted above), VS is computationally similar to V . This enables us to construct
one-way functions for instances in I, as shown in [Vad04].

2. On J , we have that VS is statistically similar to V . Combining this with the fact that PS will
always convince VS to accept (as noted above), we conclude that PS convinces V to accept
with high probability. By computational soundness of (P, V), it must be the case that PS is
not PPT. Using techniques from Ostrovsky [Ost91], this allows us to convert the simulator
S into a distributional one-way function fS.9 The result of Impagliazzo–Levin [IL90] then
allows us to construct one-way functions from distributional one-way functions (even on an
instance-by-instance basis, as we require).

3. To see that (ΠY \ I,ΠN \ J) ∈ SZKP, observe the following: For those yes instances not in
I—that is, instances in ΠY \ I—the simulated verifier VS is statistically similar to V . And
for those no instances not in J—that is, instances in ΠN \ J—the simulated verifier VS is
statistically different from V . This gap in the statistical properties allows us to reduce promise
problem (ΠY \ I,ΠN \ J) to one of the complete problems for SZKP [SV03, GV99, Vad04].

Proof. Let (P, V) be a zero-knowledge argument system for Π, with simulator S. We now proceed
as in the proof of [Vad04] and modify our interactive protocol (P, V) to satisfy following (standard)
additional properties.

9If fS is not distributionally one-way, then PS can be made to be efficient, hence contradicting the computational
soundness of (P, V). Interestingly, Ostrovsky [Ost91] uses the assumption that fS is not distributionally one-way to
invert the simulator S on the yes instances, and conclude that Π is not “hard-on-average”. Although we use similar
techniques as [Ost91], we instead invert S on the no instances to contradict the computational soundness of (P, V).

16

• The completeness error c(|x|) and soundness error s(|x|) are both negligible. This can be
achieved by standard error reduction via (sequential) repetition.

• On every input x, the two parties exchange 2`(|x|) messages for some polynomial `, with
the verifier sending even-numbered messages and sending all of its r(|x|) ≥ |x| random coin
tosses in the last message. Having the verifier send its coin tosses at the end does not affect
soundness because it is after the prover’s last message, and does not affect honest-verifier zero
knowledge because the simulator is anyhow required to simulate the verifier’s coin tosses.

• On every input x, the simulator always outputs accepting transcripts, where we call a sequence
γ of 2` messages an accepting transcript on x if all of the verifier’s messages are consistent
with its coin tosses (as specified in the last message), and the verifier would accept in such
an interaction.

For a transcript γ, we denote by γi the prefix of γ consisting of the first i messages. For
readability, we often drop the input x from the notation, e.g. using ` = `(|x|), 〈P, V 〉 = 〈P, V 〉(x),
etc. Thus, in what follows, 〈P, V 〉i and Si are random variables representing prefixes of transcripts
generated by the real interaction and simulator, respectively, on a specified input x.

We define the simulation-based prover, denoted as PS , as follows: Given an execution prefix γ2i,
for i = 1, 2, . . . , `− 1, prover PS responses as follows.

1. If simulator S(x) outputs a transcript that begins with γ2i with probability 0, then PS replies
with a dummy message.

2. Otherwise, PS replies according with the same conditional probability as the prover in
the output of the simulator. That is, it replies with a string β with probability pβ =
Pr [S(x)2i+1 = γ2i ◦ β|S(x)2i = γ2i] .

Following [AH91, PT96, GV99, Vad04], we consider the following quantity:

h(x) =
∑̀

i=1

[H(S2i(x)) −H(S2i−1(x))] , (2)

where H(·) denotes the Shannon entropy. (For a random variable X, its Shannon entropy is
H(X) = Ex←X [log(1/Pr[X = x])].) How close the value of h(x) gets to r is a measure of how close
the “simulated verifier” is from the honest verifier (when interacting with PS). This is because of
the following claim.

Claim 4.2 ([AH91, PT96, GV99]). For every x, and every prover strategy P ′, we have

∑̀

i=1

[
H(〈P ′, V 〉2i(x))−H(〈P ′, V 〉2i−1(x))

]
= r.

The above sum measures the total entropy contributed by the honest verifier’s messages, and it
is natural that this should equal the number of coin tosses of the honest verifier. (Recall that the
honest verifier reveals its coin tosses at the end.)

Now, we define the sets I and J as follows:

I = {x ∈ ΠY : h(x) < r − 1}, and (3)

J = {x ∈ ΠN : h(x) > r − 2}. (4)

The following three claims are implicit in [Vad04]; for completeness we include their proofs in
Section A.1.

17

Claim 4.3. Problem (ΠY \ I,ΠN \ J) ∈ SZKP.

Claim 4.4. There exists an auxiliary input one-way function on I.

Claim 4.5. For Π ∈HV-SZKA, we can take I = ∅.

The main novelty in our analysis is the following claim:

Claim 4.6. There exists an auxiliary input one-way function on J .

Proof of Claim. From the definition of J , we have that h(x) > r−2 for every x ∈ J . The
following lemma will allow us to show that the probability that the simulation-based
prover PS convinces V on any x ∈ J is nonnegligible.

Lemma 4.7 ([AH91, PT96, GV99]). For every x, if δ = Pr[(PS , V)(x) = accept], then

h(x) =
∑̀

i=1

[H(S2i(x))−H(S2i−1(x))] ≤ r − log

(
1

δ

)
.

Thus on J , we have

Pr[(PS , V)(x) = accept] ≥ 1/4, (5)

since h(x) ≥ r − 2 on these instances. This will not be enough to contradict the
soundness since (P, V) is only computationally sound and PS is inefficient. Here we use
an idea from Ostrovsky [Ost91]. If we can invert the simulator, then PS ’s replies can be
approximated efficiently. By the computational soundness of (P, V), this is impossible,
so the simulator must be a one-way function.

More precisely, we define gx as follows:

gx(i, ω)
def
= (x, i, S(x;ω)i). (6)

Note that gx is a polynomial-time computable function. For a given x, if gx is not
“distributionally” one-way (see Definition 2.5), then we can devise an efficient cheating
prover strategy, call it P̃ , that efficiently “simulates” our simulation-based prover PS

upto negligible statistical error. The way to do this is to feed a given transcript pre-
fix γ2j (after the verifier has responded), into the inversion algorithm of gx to obtain
the simulation-based prover response. In doing so, we contradict the computational
soundness property of (P, V). The above idea is captured by following proposition.

Lemma 4.8 ([Ost91]). Let G
def
= {gx(i, ω)}, where gx(i, ω) is as in (6). For every set

K ⊆ {0, 1}∗, if G is not an auxiliary-input distributionally one-way function on K, then
for every polynomial p(·), there exists a probabilistic polynomial-time prover P̃ such that
that it can simulate the replies of the simulation-based prover PS within statistical error
1/p(|x|) for infinitely many x ∈ K. In particular,

∣∣∣Pr[(P̃ , V)(x) = accept]− Pr[(PS , V)(x) = accept]
∣∣∣ < 1/p(|x|),

for infinitely many x ∈ K.

18

By Lemma 4.8, if G = {gx} is not distributionally one-way on J , we can take J =

K to get
∣∣∣Pr[(P̃ , V)(x) = accept]− Pr[(PS , V)(x) = accept]

∣∣∣ < 1/p(|x|), for infinitely

many x ∈ J . We also know from (5) that Pr[(PS , V)(x) = accept] ≥ 1/4 for all x ∈ J ,
combining with the above inequality yields

Pr[(P̃ , V)(x) = accept] > 1/4 − 1/p(|x|) > 1/8,

for infinitely many x ∈ J . This contradicts the computational soundness of (P, V).
Therefore, gx must be distributionally one-way on J .

To get a standard one-way function from gx, we use the work of Impagliazzo–
Levin [IL90] that shows that one-way functions can be constructed out of distribu-
tionally one-way function. This is stated in Theorem 2.6, but for ease of reference, we
restate it in the following lemma.

Lemma 4.9 (Restatement of Theorem 2.6, [IL90]). For every set K ⊆ {0, 1}∗, there
exists an auxiliary-input one-way function on K if and only if there exists an auxiliary-
input distributionally one-way function on K.

This establishes Claim 4.6 above. �

Lemma 4.1 follows from Claims 4.3, 4.4, 4.5 and 4.6 above. �

4.2 From SZKP–OWF Triplet Characterization to Instance-Dependent Com-

mitment Schemes

In this section, we show that the SZKP–OWF Triplet characterization for Π can be used
to get instance-dependent commitments for Π. These instance-dependent commitments differ
from [Vad04] and are more similar in flavor to those in [NV06] in that we have an efficient sender,
but we pay the price of having a more complicated

(
2
1

)
-binding commitment schemes.

Roughly speaking, these
(2
1

)
-binding commitment schemes are commitment schemes that have

two phases, each consisting of a commit stage and a reveal stage. (Standard commitment schemes
have only one phase.) In the first phase, the sender commits to and reveals one value v1, and
subsequently, in the second phase, the sender commits to and reveals a second value v2. We require
that both phases are hiding, but only that one of them is binding. That is, the binding property
only requires that with high probability, the sender will be forced to reveal the correct committed
value in at least one of the phases (but which of the two phases can be determined dynamically by
the malicious sender). We formally define

(2
1

)
-binding commitment schemes in Section 2.5.

What we are doing in this step of conversion—from SZKP–OWF Triplet characterization
to instance-dependent commitment schemes—is analogous to what was done in [NV06] for zero-
knowledge proofs. In particular, they showed that problems possessing zero-knowledge proofs have
a commitment scheme—specifically, an instance-dependent collection of 2-phase commitments—
that is statistically binding. A natural extension to zero-knowledge arguments, which we prove,
is to obtain commitments that are computationally binding. To do this extension, we use the
machinery of [NOV06] that yields a statistically hiding and computationally binding collection of
2-phase commitments from any one-way function.

Before proceeding to the instance-dependent commitment characterizations of zero-knowledge
protocols, we define the hiding and binding properties of a collection of 2-phase instance-dependent
commitment schemes.

19

Definition 4.10. A collection of 2-phase commitment schemes C = {Com1, · · · ,Comt} is said to
be:

• Statistically (resp. computationally) hiding if at least one of the commitments in the collection
C is statistically (resp. computationally) hiding.

• Statistically (resp. computationally) binding if all the commitments in the collection C are
statistically (resp. computationally)

(2
1

)
-binding.

• Public coin if all all the commitments in the collection C are public coin.

The asymmetry in the hiding and binding definitions above arises from the need in constructing
zero-knowledge protocols from collections of 2-phase commitments schemes (cf., [NV06, NOV06]).
Next, we characterize problems in terms of instance-dependent commitments.

Definition 4.11 (Instance-Dependent Commitment Characterization). Problem Π = (ΠY,ΠN)
has a instance-dependent collection of 2-phase commitments if there exists a polynomial-time
computable algorithm that maps an instance x to a collection of 2-phase commitment schemes
Cx = {Com1,x, · · · ,Comt,x} such that:

x ∈ ΠY ⇒ Cx is hiding;

x ∈ ΠN ⇒ Cx is binding.

We will explicitly specify whether the hiding and binding properties are statistical or computa-
tional unless it is clear from context. In addition, the instance-dependent collection of 2-phase
commitments is said to be public coin if Cx is public coin for all x ∈ ΠY ∪ΠN.

We now state the characterization of problems possessing zero-knowledge proofs from [NV06],
and extend them to zero-knowledge arguments. Keep in mind that problems Π having zero-
knowledge proofs imply there exists a set I ⊆ ΠN such that (Π, I, ∅) is a SZKP–OWF Triplet
(cf., Theorems 3.2 and 3.3), whereas problems Π having zero-knowledge arguments imply there
exists sets I ⊆ ΠY and J ⊆ ΠN such that (Π, I, J) is a SZKP–OWF Triplet (cf., Lemma 4.1).

Lemma 4.12 (Commitment Characterization of CZKP and SZKP, [NV06]10). Let Π = (ΠY,ΠN)
be any problem. If there exists a set I ⊆ ΠN such that (Π, I, ∅) is a SZKP–OWF Triplet,
then Π has a instance-dependent collection of 2-phase commitments that is computationally hiding,
statistically binding and public coin. Moreover, if I = ∅, then the collection of commitments is
statistically hiding.

Our extension to argument is the following:

Lemma 4.13 (Commitment Characterization of CZKA and SZKA). Let Π = (ΠY,ΠN) be any
problem. If there exists sets I ⊆ ΠY and J ⊆ ΠN such that (Π, I, J) is a SZKP–OWF Triplet,
then Π has a instance-dependent collection of 2-phase commitments that is computationally hiding,
computationally binding and public coin. Moreover, if I = ∅, then the collection of commitments
is statistically hiding.

10Although [NV06, Theorem 2.4] states the computational analogue by requiring Π ∈ CZKP, they actually proved
the implication for all problems Π with the property that there exists a set I ⊆ ΠN with (Π, I, ∅) being a SZKP–OWF
Triplet, which is in fact equivalent to saying that Π is in CZKP for problems Π ∈ IP [Vad04].

20

To prove Lemma 4.13, we note that Π′ = (ΠY,ΠN \ J) satisfies the condition of Lemma 4.12,
namely there exists a set I ⊆ ΠN such that (Π′, I, ∅) is a SZKP–OWF Triplet. This gives
us a collection of 2-phase commitments that is hiding on ΠY and statistically binding on ΠN \
J . To extend the binding property of this collection to J , we will need another collection of 2-
phase commitments that is binding on J and hiding on ΠY. We construct this collection from
the auxiliary-input one-way function on J using a result from [NOV06] in a way made precise
in Lemma 4.14 below. Having these two collections of commitments, we will need to combine
these collections in order to obtain a single collection of commitments that is hiding on ΠY and
computationally binding on ΠN; this combination process is made precise in Lemma 4.15.

Lemma 4.14 (implicit in [NOV06]). For every set J ⊆ {0, 1}∗, if there is an auxiliary-input one-
way function on J , then problem (J, J) has a instance-dependent collection of 2-phase commitments
that is statistically hiding, computationally binding and public coin.

Continuing from our intuition above, we now have two collection of 2-phase commitments; the
first collection is hiding on ΠY, and binding on ΠN \ J , and second collection is hiding on J ⊇ ΠY

and binding on J . Let problems Π′ = (ΠY,ΠN \ J) and Γ′ = (J, J). Observe that what we need
is a single collection of 2-phase commitments that is hiding on ΠY = Π′Y ∩ Γ′Y and binding on
ΠN = Π′N ∪ Γ′N. The next lemma enables us to achieve this.

Lemma 4.15. If problems Π = (ΠY,ΠN) and Γ = (ΓY,ΓN) each have instance-dependent collection

of 2-phase commitments, then the promise problem Π ∩ Γ
def
= (ΠY ∩ ΓY,ΠN ∪ ΓN) has an instance-

dependent collection of 2-phase commitments with the following properties.

• If the collections of 2-phase commitments for Π and Γ are both statistically (resp. compu-
tationally) hiding, then the collection of 2-phase commitments for Π ∩ Γ is also statistically
(resp. computationally) hiding.

• If either of the collections of 2-phase commitments for Π and Γ is statistically (resp. compu-
tationally) binding, then the collection of 2-phase commitments for Π ∩ Γ is also statistically
(resp. computationally) binding.

• If the collection of 2-phase commitments for Π and Γ are both public coin, then so is the
collection of 2-phase commitments for Π ∩ Γ.

Proof. Let Cx = {Comx,1,Comx,2, · · · ,Comx,t} and C′x = {Com′x,1,Com′x,2, · · · ,Com′x,t′} be instance-
dependent collections of 2-phase commitments for Π and Γ respectively. We will construct a new
instance-dependent collection of 2-phase commitments for Π ∩ Γ via the following operation that
combines two 2-phase commitments.

For two 2-phase commitments Com and Com′ we can construct a new 2-phase com-
mitment scheme, denoted as Com × Com′, that runs Com and Com′ in parallel. For
each phase, we commit to the same bit for both schemes. That is, to commit to a bit
σ ∈ {0, 1} in the first phase of Com× Com′, we commit to σ in the first phases of both
Com and Com′, running them in parallel. In addition, to commit to some other bit
λ ∈ {0, 1} in the second phase of Com × Com′, we do a similar operation—that is, we
commit to λ in the second phases of both Com and Com′, running them in parallel.

The new instance-dependent collection of 2-phase commitments for Π∩Γ is Dx = {Comx,i×Com′x,j :
i ∈ [t], j ∈ [t′]}. The following claim regarding the hiding and binding properties of Com × Com′

will help us establish our lemma.

21

Claim 4.16. For any 2-phase commitments Com and Com′, Com× Com′ is:

1. Hiding, if both Com and Com′ are hiding.

2.
(2
1

)
-binding, if either one of Com or Com′ is

(2
1

)
-binding.

The above claim would imply our lemma because (i) both collections Cx and C′x being hiding, in
the sense of Definition 4.10, means that there exists i ∈ [t] and j ∈ [t′] such that both Comi,x and
Com′i,j are hiding, and by Claim 4.16, Comx,i× Com′x,j is hiding and hence, Dx is hiding. And (ii),
either of Cx or C′x being binding, in the sense of Definition 4.10, means that either commitments
Comx,i’s are

(
2
1

)
-binding for all i ∈ [t], or commitments Com′x,j’s are

(
2
1

)
-binding for all j ∈ [t′]. In

either case, Claim 4.16 gives us that Comx,i × Com′x,j is
(2
1

)
-binding for all i ∈ [t] and j ∈ [t′], and

so Dx is binding.

Proof of Claim. The hiding property (Item 1), follows from a standard hybrid argument.
Intuitively, our new scheme is

(
2
1

)
-binding (Item 2) because to break Comi × Com′j in

both phases, we will have to break both Comi and Com′j in both phases (since our new
scheme specifies that we have to commit to the same bit for both Com and Com′). Since
one of Com or Com′ is

(2
1

)
-binding, we have a contradiction.

To formalize this intuition, let the binding sets for Com and Com′ be B and B′,
respectively. Assume, without loss of generality, that Com is

(2
1

)
-binding. Our new

binding set will be all first-phase transcripts (τ, τ ′) (recall that we are running Com

and Com′ in parallel) with τ ∈ B. Note that we do not care about if τ ′ is in B′ or not
since Com′ has no binding guarantee. It is now clear that any adversary that breaks the(2
1

)
-binding property of Com × Com′ can be easily transformed into an adversary that

breaks the
(2
1

)
-binding property of Com by simulating Com′ on its own. �

This completes our proof of Lemma 4.15. �

Proof of Lemma 4.13. First, note that Π′ = (ΠY,ΠN \ J) satisfies the condition of Lemma 4.12,
namely there exists a set I ⊆ ΠN such that (Π′, I, ∅) is a SZKP–OWF Triplet. By Lemma 4.12,
Π′ has an instance-dependent collection of 2-phase commitment that is computationally hiding and
statistically binding. (If I = ∅, this collection is statistically hiding.)

By Lemma 4.14, we know that (J, J) has an instance-dependent collection of 2-phase commit-
ment that is statistically hiding and computationally binding. Applying Lemma 4.15 yields our
result as ΠY = ΠY ∩ J , and ΠN = (ΠN \ J) ∪ J . �

4.3 From Instance-Dependent Commitment Schemes to Zero-Knowledge Pro-

tocols

Having obtained collections of 2-phase commitments from the previous section, we now use these
commitments to construct zero-knowledge protocols with desirable properties like perfect complete-
ness, black-box zero knowledge, public coin, and efficient prover. The zero-knowledge protocol that
we use is similar to [NV06], where they use it to obtain zero-knowledge proof systems. Because we
are dealing with argument systems, the analysis that we need follows from [NOV06], which uses
the same protocol of [NV06] to obtain zero-knowledge argument systems.

22

Lemma 4.17 ([NV06, NOV06]). If problem Π = (ΠY,ΠN) ∈ NP has an instance-dependent
collection of 2-phase commitments that is statistically (resp. computationally) hiding and compu-
tationally binding, then Π has a statistical (resp. computational) zero-knowledge argument system
(P, V) with the following properties.

1. Protocol (P, V) has an efficient prover.

2. Protocol (P, V) is black-box zero knowledge.

3. Protocol (P, V) has perfect completeness.

4. Protocol (P, V) is public coin if the collection of 2-phase commitments is public coin.

The above lemma constraints Π to be in NP, since it deals with zero knowledge protocols that
has an efficient prover. It can be extended to MA, which has an equivalent formulation as the
class of problems having efficient-prover argument systems (cf., [BLV06]).

We suspect that our results can be extended to all problems having public coin interactive argu-
ment systems (in particular this includes all of IP), and in particular show that the zero-knowledge
property never requires a prover of higher complexity than the original, non-zero-knowledge argu-
ment systems. We note that there are interesting interactive arguments with provers that are not ef-
ficient in the standard sense of running in a fixed polynomial-time—these include CS proofs [Mic94]
and universal arguments [BG02]. We will explore such extensions for the final version of the paper.

4.4 Putting It All Together

We now show how our lemmas imply our main theorems from Section 3. We restate Theorems 3.4
and 3.5, adding the Commitment Characterization (cf., Lemmas 4.12 and 4.13) as an equivalent
characterization.

Theorem 4.18 (CZKA Characterization Theorem, Restatement of Theorem 3.4). For every
problem Π ∈ NP, the following conditions are equivalent.

1. Π ∈ CZKA.

2. Π ∈ HV-CZKA.

3. There exists sets I ⊆ ΠY and J ⊆ ΠN such that (Π, I, J) is a SZKP–OWF Triplet.

4. Π has an instance-dependent collection of 2-phase commitments that is computationally hid-
ing, computationally binding and public coin.

5. Π has a public-coin computational zero-knowledge argument with a black-box simulator, perfect
completeness, and an efficient prover.

Theorem 4.19 (SZKA Characterization Theorem, Restatement of Theorem 3.5). For every prob-
lem Π ∈ NP, the following conditions are equivalent.

1. Π ∈ SZKA.

2. Π ∈ HV-SZKA.

3. There exists a set J ⊆ ΠN such that (Π, ∅, J) is a SZKP–OWF Triplet.

23

4. Π has an instance-dependent collection of 2-phase commitments that is statistically hiding,
computationally binding and public coin.

5. Π has a public-coin statistical zero-knowledge argument with a black-box simulator, perfect
completeness, and an efficient prover.

Proof of Theorems 4.18 and 4.19. The implications for both theorems are captured by the same
lemmas, so we can conveniently state them together.

(1) ⇒ (2) and (5) ⇒ (1) is trivial from definition.

(2) ⇒ (3) is Lemma 4.1.

(3) ⇒ (4) is Lemma 4.13.

(4) ⇒ (5) is Lemma 4.17. This is the only step that needs Π ∈ NP.
�

24

References

[AH91] William Aiello and Johan H̊astad. Statistical zero-knowledge languages can be recog-
nized in two rounds. Journal of Computer and System Sciences, 42(3):327–345, 1991.

[Bar01] Boaz Barak. How to go beyond the black-box simulation barrier. In Proceedings of the
42nd Annual Symposium on Foundations of Computer Science, pages 106–115, 2001.

[BCC88] Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclosure proofs of
knowledge. Journal of Computer and System Sciences, 37(2):156–189, 1988.

[Bel02] Mihir Bellare. A note on negligible functions. Journal of Cryptology, 15(4):271–284,
2002.

[BG02] Boaz Barak and Oded Goldreich. Universal arguments and their applications. In Pro-
ceedings of the 17th Annual IEEE Conference on Computational Complexity, pages
194–203, 2002.

[BLV06] Boaz Barak, Yehuda Lindell, and Salil Vadhan. Lower bounds for non-black-box zero
knowledge. Journal of Computer and System Sciences, 72(2):321–391, 2006. Extended
abstract in FOCS ‘04.

[BM88] László Babai and Shlomo Moran. Arthur-Merlin games: A randomized proof system and
a hierarchy of complexity classes. Journal of Computer and System Sciences, 36:254–
276, 1988.

[ESY84] Shimon Even, Alan L. Selman, and Yacov Yacobi. The complexity of promise problems
with applications to public-key cryptography. Information and Control, 61(2):159–173,
May 1984.

[FGM+89] Martin Fürer, Oded Goldreich, Yishay Mansour, Michael Sipser, and Stathis Zachos.
On completeness and soundness in interactive proof systems. In Silvio Micali, editor,
Advances in Computing Research, volume 5, pages 429–442. JAC Press, Inc., 1989.

[GK93] Oded Goldreich and Eyal Kushilevitz. A perfect zero-knowledge proof system for a
problem equivalent to the discrete logarithm. Journal of Cryptology, 6:97–116, 1993.

[GK96] Oded Goldreich and Hugo Krawczyk. On the composition of zero-knowledge proof
systems. SIAM Journal on Computing, 25(1):169–192, 1996.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof systems. SIAM Journal on Computing, 18(1):186–208, 1989.

[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their
validity or all languages in NP have zero-knowledge proof systems. Journal of the ACM,
38(1):691–729, 1991.

[GO94] Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge proof
systems. Journal of Cryptology, 7(1):1–32, 1994.

[Gol93] Oded Goldreich. A uniform-complexity treatment of encryption and zero-knowledge.
Journal of Cryptology, 6(1):21–53, 1993.

25

[Gol01] Oded Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University
Press, 2001.

[Gol05] Oded Goldreich. On promise problems (a survey in memory of Shimon Even [1935-
2004]). Technical Report TR05–018, Electronic Colloquium on Computational Com-
plexity, February 2005.

[GS89] Shafi Goldwasser and Michael Sipser. Private coins versus public coins in interactive
proof systems. Advances in Computing Research: Randomness and Computation, 5:73–
90, 1989.

[GSV98] Oded Goldreich, Amit Sahai, and Salil Vadhan. Honest verifier statistical zero-
knowledge equals general statistical zero-knowledge. In Proceedings of the 30th Annual
ACM Symposium on Theory of Computing, pages 399–408, 1998.

[GV99] Oded Goldreich and Salil Vadhan. Comparing entropies in statistical zero-knowledge
with applications to the structure of SZK. In Proceedings of the 14th Annual IEEE
Conference on Computational Complexity, pages 54–73, 1999.

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudoran-
dom generator from any one-way function. SIAM Journal on Computing, 28(4):1364–
1396, 1999.

[IL89] Russell Impagliazzo and Michael Luby. One-way functions are essential for complexity
based cryptography. In Proceedings of the 30th Annual Symposium on Foundations of
Computer Science, pages 230–235, 1989.

[IL90] Russell Impagliazzo and Leonid A. Levin. No better ways to generate hard NP instances
than picking uniformly at random. In Proceedings of the 31st Annual Symposium on
Foundations of Computer Science, pages 812–821, 1990.

[Mic94] Silvio Micali. CS proofs. In Proceedings of the 35th Annual Symposium on Foundations
of Computer Science, pages 436–453, 1994.

[Nao91] Moni Naor. Bit commitment using pseudorandomness. Journal of Cryptology, 4(2):151–
158, 1991.

[NOV06] Minh Nguyen, Shien Jin Ong, and Salil Vadhan. Statistical zero-knowledge arguments
for NP from any one-way function. In Proceedings of the 47th Annual Symposium on
Foundations of Computer Science, 2006.

[NV06] Minh-Huyen Nguyen and Salil Vadhan. Zero knowledge with efficient provers. In Pro-
ceedings of the 38th Annual ACM Symposium on Theory of Computing, 2006.

[Oka00] Tatsuaki Okamoto. On relationships between statistical zero-knowledge proofs. Journal
of Computer and System Sciences, 60(1):47–108, 2000.

[Ost91] Rafail Ostrovsky. One-way functions, hard on average problems, and statistical zero-
knowledge proofs. In Proceedings of the 6th Annual Structure in Complexity Theory
Conference, pages 133–138, 1991.

26

[OW93] Rafail Ostrovsky and Avi Wigderson. One-way functions are essential for non-trivial
zero-knowledge. In Proceedings of the 2nd Israel Symposium on Theory of Computing
Systems, pages 3–17, 1993.

[PT96] Erez Petrank and Gábor Tardos. On the knowledge complexity of NP. In Proceedings
of the 37th Annual Symposium on Foundations of Computer Science, pages 494–503,
1996.

[SV03] Amit Sahai and Salil Vadhan. A complete problem for statistical zero knowledge.
Journal of the ACM, 50(2):196–249, 2003.

[Vad04] Salil Vadhan. An unconditional study of computational zero knowledge. In Proceedings
of the 45th Annual IEEE Symposium on Foundations of Computer Science (FOCS ‘04),
pages 176–185, 2004. Full version to appear in SIAM J. Computing Special Issue on
Randomness & Complexity.

27

A Characterization of Zero-Knowledge Protocols

A.1 From Zero-Knowledge Protocols to SZKP–OWF Triplet Characterization

We restate and prove Claims 4.3, 4.4 and 4.5 in Section 4.1.

Claim A.1 (Restatement of Claim 4.3). Problem (ΠY \ I,ΠN \ J) ∈ SZKP.

Before proving the above claim, we first define the conditional entropy of two jointly distributed
random variables as follows: For jointly distributed random variables X and Y , we define the
conditional entropy of X given Y to be

H(X|Y)
def
= E

y←Y
[H(X|Y =y)] = E

(x,y)←(X,Y)

[
log

1

Pr[X = x|Y = y]

]
= H(X,Y)−H(Y).

Proof of Claim. We note the following lemma.

Lemma A.2 ([Vad04]). Consider the problem Conditional Entropy Approxima-
tion = (CEAY,CEAN), where CEAY = {((X,Y), r) : H(X|Y) ≥ r} and CEAN =
{((X,Y), r) : H(X|Y) ≤ r − 1}. Here (X,Y) is a samplable joint distribution specified
by two circuits that use the same coin tosses. Conditional Entropy Approxima-
tion is complete for SZKP.

We prove our claim by reducing (ΠY \ I,ΠN \ J) to Conditional Entropy Ap-
proximation. Given input x, we construct circuits that sample from the following
(joint) random variables.

(X,Y): Select i ← {1, . . . , `(|x|)}, choose random coin tosses ω ← {0, 1}r(|x|) for the
simulator, and output (S2i(x;ω), S2i−1(x;ω)).

When x ∈ ΠY \ I, we have h(x) ≥ r − 1 and hence

H(X|Y) =
1

`

∑̀

i=1

H(S2i|S2i−1) ≥
r − 1

`
.

And when x ∈ ΠN \ J , we have have h(x) ≤ r − 2 and we get

H(X|Y) =
1

`

∑̀

i=1

H(S2i|S2i−1) ≤
r − 2

`
.

This is what we need to prove, except the entropy gap is only 1/`. This can be
increased to 1 by taking ` independent samples from the joint distribution. That is, we
define (X,Y) = ((X1, . . . ,X`), (Y1, . . . , Y`)), where the (Xi, Yi)’s are independent copies
of (X,Y). Since (ΠY \I,ΠN \J) reduces to Conditional Entropy Approximation,
Lemma A.2 gives us that (ΠY \ I,ΠN \ J) ∈ SZKP. �

Claim A.3 (Restatement of Claim 4.4). There exists an auxiliary input one-way function on I.

Proof of Claim. We note the following lemma.

28

Lemma A.4 ([Vad04]). Let I ⊆ {0, 1}∗ be any set. Assume that there exists a
polynomial-time computable mapping that maps x to samplable joint distributions (X,Y)
and a parameter r such that H(X|Y) ≤ r − 1, but H(X ′|Y ′) ≥ r for some (X ′, Y ′) in-
distinguishable from (X,Y). Then there exists an auxiliary-input one-way function on
I.

When x ∈ ΠY, then S is computationally indistinguishable from 〈P, V 〉. So (X,Y),
as defined in the proof of Claim 4.3 above, is indistinguishable from (X ′, Y ′) = (〈P, V 〉2L, 〈P, V 〉2L−1),
where L denotes a uniform random element of {1, . . . , `}.

By Claim 4.2, we have:

H(X ′|Y ′) =
1

`

∑̀

i=1

H(〈P, V 〉2i|〈P, V 〉2i−1) =
r

`
,

for all x ∈ ΠY. And when x ∈ I ⊆ ΠY, we have have h(x) < r − 1 and hence:

H(X|Y) =
1

`

∑̀

i=1

H(S2i|S2i−1) <
r − 1

`
.

Again, like in the proof of Claim 4.3, we can increase the entropy gap between
H(X ′|Y ′) and H(X|Y) to 1. Finally, we apply Lemma A.4 to establish our claim. �

Claim A.5 (Restatement of Claim 4.5). For Π ∈ HV-SZKA, we can take I = ∅.

Proof of Claim. For Π ∈ HV-SZKA, the output of the simulator S(x) is statistically
close to 〈P, V 〉(x) for every x ∈ ΠY. This implies that I = ∅, since for every x ∈ ΠY,
we have

h(x) >
∑̀

i=1

[H(〈P, V 〉2i(x))−H(〈P, V 〉2i−1(x))] − neg(|x|) = r − neg(|x|),

the last equality following Claim 4.2. �

29

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

