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Abstract

We consider extensions of the DPLL approach to satisfiability testing that add a version ofmemoiza-
tion, in which formulas that the algorithm has previously shown to be unsatisfiable are remembered for
later use. Suchformula cachingalgorithms have been suggested for satisfiability and stochastic satisfi-
ability (Majercik & Littman, 1998; Bacchus, Dalmao, & Pitassi, 2003b). We formalize these methods
by developing extensions of the fruitful connection that has previously been developed between DPLL
algorithms for satisfiability and tree-like resolution proofs of unsatisfiability. We analyze a number of
variants of these formula caching methods and characterizetheir strength in terms of proof systems.
These proof systems are new and simple, and have a rich structure. We compare them to several studied
proof systems: tree-like resolution, regular resolution,general resolution,Res(k), and Frege systems and
present both simulation and separations. One of our most interesting results is the introduction of a natu-
ral and implementable form of DPLL with caching,FC

W

reason. This system is surprisingly powerful: we
prove that it can polynomially simulate regular resolution, and furthermore, it can produce short proofs
of some formulas that require exponential-size Resolutionproofs.

1 Introduction

Over the last decade, many variations and extensions of DPLLhave been introduced (both for satisfiability
and stochastic satisfiability). A generally useful idea is to store intermediate results for later re-use as the
DPLL tree is searched. The technique ofclause-learning, for which there have been many good implemen-
tations (Marques-Silva & Sakallah, 1996; Zhang, 1997; Moskewicz, Madigan, Zhao, Zhang, & Malik, 2001;
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Zhang, Madigan, Moskewicz, & Malik, 2001) and which has revolutionized practical satisfiability solving,
can be viewed as a form ofmemoization– saving solved subproblems – of DPLL. In clause learning, the
algorithm stores, in the form of learned clauses, partial assignments that force contradictions and uses these
learned clauses to augment the clauses of the original formula. This technique, which can be efficiently
simulated by Resolution, has been studied from the point of view of proof complexity in (Beame, Kautz, &
Sabharwal, 2004). More generally, memoization is useful ina variety of backtracking algorithms. As one
example, (Robson, 1986) uses memoization to speed up a backtracking algorithm for maximum independent
set.

The methods that interest us here involve cachingunsatisfiable residual formulasrather than partial
assignments. They were first defined in (Majercik & Littman, 1998) where DPLL-based algorithms with
caching are studied and implemented to solve large probabilistic planning problems. In that paper, there
were no analytic runtime guarantees, although the empirical results were very promising. More recently,
(Bacchus et al., 2003b; Bacchus, Dalmao, & Pitassi, 2003a) defined DPLL-based algorithms with caching
for counting satisfying assignments and Bayesian inference and gave time and space bounds that are as
good as any known algorithm for these problems in terms of a connectivity measure of the underlying set of
clauses/Bayes network.

Thus, while applications of memoization in many different guises for DPLL has been studied in the
past, this paper is the first to specifically formalize proof systems for SAT based on adding memoization of
residual formulas to DPLL, and to analyze the complexity of these systems. We present several different
ways to introduce caching of unsatisfiable residual formulas into DPLL algorithms. We characterize the
strength of these nondeterministic algorithms in terms of proof systems. Then we compare these proof
systems to each other and to standard proof systems. This gives a fairly complete picture of the relative
strengths of the various approaches.

Many of our results are surprising, since at first glance it seems that adding memoization to DPLL cannot
strengthen the system beyond Resolution. One of our most interesting results is the introduction of a natural
and implementable form of DPLL with caching,FC

W
reason. This system is surprisingly powerful; we prove

that it can produce short proofs of some formulas that require exponential-size Resolution proofs. Thus,
adding formula caching to DPLL is potentially much more powerful than clause learning, as clause learning
is a form of Resolution.

As mentioned above, our results characterize the relative strengths of various extensions of DPLL in
terms of proof systems. Here we continue the fruitful connection between algorithm design and proof
complexity found in the formalization of the DPLL approach to satisfiability testing in terms of tree-like
resolution proofs. In doing so, we view DPLL as a meta-algorithm, as shown in Figure 1, whose input is
a CNF formulaF . As written, the step “choosea literal x” is not fully specified. This is one of many
examples in algorithm design in which there is a single framework or meta-algorithm with a variety of
options for how this meta-algorithm should proceed at a given point in its execution. We can thus think of
this meta-algorithm as anondeterministic algorithm, in which the algorithm expresses as a nondeterministic
choice from among the options. In devising a deterministic algorithm within this framework, the algorithm
designer replaces the nondeterministic choices with deterministic rules.

The nondeterminism only occurs in the step in which the algorithm chooses the branching literalx. To
create a deterministic DPLL algorithm, a deterministic rule must be given for this choice. In the case of
DPLL, such a rule would likely include priority for literalsin unit clauses which is equivalent to including
explicit unit clause propagation. Beyond this simple preference, many such deterministic rules have been
suggested over the years, and the performance of DPLL, empirically, has been found to be quite sensitive to
the choice of this rule.
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DPLL(F ){
If F is empty

Reportsatisfiable andhalt
If F is contains the empty clauseΛ

return
Elsechoosea literalx

DPLL(F |x)
DPLL(F |x)}

Figure 1: Generic DPLL Algorithm.

Since there are unlimited numbers of deterministic versions, it seems impossible to exactly analyze all
possible variants. However, the performance of thenondeterministicversion of this algorithm has been
characterized in terms oftree-like resolution. Tree-like resolution is an example of an abstractpropositional
proof system, which is an efficient method for verifying proofs in propositional logic represented in a given
format. A propositional proof system can be viewed alternatively as a nondeterministic algorithm for ac-
cepting propositional tautologies (or, equivalently, refuting contradictions). Proof complexity studies how
the lengths (sizes) required for such proofs depend on the proof systems being employed. Lower bounds for
the complexity of tree-like resolution refutations (Haken, 1985; Chvátal & Szemerédi, 1988; Ben-Sasson &
Wigderson, 1999; Bonet, Esteban, Galesi, & Johansen, 2000;Bonet & Galesi, 1999; Ben-Sasson, Impagli-
azzo, & Wigderson, 2000) then can be used to prove the limitations of any deterministic instantiation of
DPLL. Although proof complexity studies refutation and proof, as shown in (Achlioptas, Beame, & Molloy,
2004), the time required by backtracking satisfiability algorithms like DPLL is directly dependent on their
efficiency as proof systems. Thus our surprising results on the efficiency of the formula caching variants
viewed as proof systems suggest that formula caching holds promise for satisfiability testing as well.

1.1 Outline of Results

We describe our results in terms of the known hierarchy of resolution-like proof systems: DPLL, which
is equivalent to tree-like resolution; regular resolution(REG; general resolution;Res(k) for eachk ≥ 2;
depth-2 Frege (F2); and extended resolution, which is equivalent to extendedFrege (eF). Most of these
proof systems are axiomatic but as is the case with DPLL, nondeterministic satisfiability algorithms can
also be viewed as proof systems so we often refer to such algorithms as proof systems. Proof systems can
be related by a notion of efficient simulation, called p-simulation, which says that efficient proofs in one
system can be translated to efficient proofs in another system. The definitions of proof complexity, these
proof systems, and p-simulation are given in Section 3.1. The hierarchy above is known to be strict under
p-simulation; in fact, exponential gaps in efficiency are known between each of its levels.

In Section 2, we describe the various variants of memoized DPLL algorithms that constitute formula
caching. We begin with a basic extension of DPLL to include a cache of known unsatisfiable formulas,
calledFC. This checks its input for membership in the cache before proceeding with the recursive call.
We also define extensions of this system that include more complicated, but theoretically still efficiently
implementable, checks than membership to derive algorithms FC

W andFC
WS whereW andS stand for

Weakening and Subsumption, respectively.
In each of these formula caching algorithms, no informationother than the cache contents and an indica-

tion of failure is available as the result of a recursive call. We also consider an extension of these ideas that
allows the recursive call to return more pointed information about the reason for failure. When the resulting
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Proof Systems it Systems it Systems that cannot

System p-simulates cannot p-simulate p-simulate it

FC DPLL REG(Theorem 4.24) DPLL (Corollary 4.18)

FC
WS

DPLL REG(Theorem 4.24) DPLL (Corollary 4.18)

FC
W

reason REG(Theorem 4.9) - Res(k) (Theorem 4.20)

FC
W

nondet REG(Theorem 4.6) - Res(k) (Theorems 4.20, 4.3)

FC
WS

nondet REG(Theorem 4.6) - Res(k) (Theorems 4.20, 4.3)

Figure 2: Relationship of various formula-caching proof systems to other resolution-like proof systems.

algorithm incorporates Weakening and Subsumption we obtain an algorithmFC
W
reason that is quite natural

and is as efficiently implementable asFC
W but which we show to be much more powerful thanFC

W (or
FC

WS).
The formula caching systems with reasons suggest that thereis considerable scope for a clever algorithm

designer to incorporate memoization in ways that cannot be efficiently simulated in the systems above. We
design systems to represent the “ultimate limits” of these forms of memoization,FC

W
nondet andFC

WS
nondet,

in which the algorithm nondeterministically anticipates the cached contradictions that will be Weakened
and/or Subsumed to determine unsatisfiability of its input.It would be highly non-trivial to incorporate
these features into an existing DPLL algorithm. However, wefeel that any algorithm that somehow incor-
porated memoization of cached contradictions into DPLL would probably be efficiently simulated by our
FCnondet systems. Thus, bounds on the strength of theFCnondet systems are bounds on the potential of the
memoization technique.

From their definitions it is clear that as proof systems with the same optionsT for Weakening and
Subsumption,FC

T is p-simulated byFC
T
reason which is in turn p-simulated byFC

T
nondet and if neither

Weakening nor Subsumption is allowed then theFCreason andFCnondet coincide withFC.
In Section 3, after giving a detailed overview of proof complexity definitions and the standard axiomatic

proof systems related to resolution we define our newcontradiction cachingaxiomatic proof systemsCC+T.
We then relate these contradiction caching proof systems totheFC algorithms viewed as proof systems and
show that they are equivalent to the correspondingFC

T
nondet proof systems. In Section 4, we compare these

systems to each other and to the standard resolution-like proof systems. For the most interesting systems,
our results can be summarized in Figure 2. In Section 5, we study a generalization of theCC andFC systems
where we add a simple formR (for Restriction) of the substitution rule, and prove that with this addition, it
is p-equivalent to Extended Frege. We conclude in Section 6 with related results and future directions.

History and Errata

The present paper is based on a conference paper (Beame, Impagliazzo, Pitassi, & Segerlind, 2003) in which
we more prominently used the Restriction rule (R), discussed here in Section 5, in order to efficiently sim-
ulate general resolution. In that paper we incorrectly claimed that the contradiction caching proof systems
CC and the formula caching proof systemFC

WS
reason involving both Subsumption and Restriction have the

subformula property. It turns out that of these onlyCC andCC+W have the subformula property. The
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subformula property, which is also shared byFC, FC
W, and our revisedFC

W
reason, is critical for our present

Lemma 4.15 and the resulting exponential separations between proof systems.
The fact that Restriction does not have the subformula property makes it much more powerful than we

had anticipated. It was brought to our attention that using contradiction caching with this rule one can derive
a renaming rule and thus, for example, obtain efficient proofs of the pigeonhole principle, contrary to our
mistaken claim that all of theCC systems, including the strongest one,CC+WSR, could be p-simulated by
depth-2 Frege systems. The “R” rule is in fact quite powerful. We correct our error by proving in Section 5
thatCC+WSR is actually p-equivalent to the Extended Frege proof system.

In addition to the above changes, we have modified the definitions of the formula caching proof systems
that extendFC so that the algorithms are not required to check the cache (oradd a formula to the cache)
on each recursive call. This better reflects what one would doin practice but it also seems essential for the
systemFC

W
reason to simulate regular resolution as we now show in Lemma 4.9.

2 Memoization and DPLL: Formula Caching

Memoization means saving previously solved sub-problems and using them to prune a backtracking search.
In the satisfiability algorithms we consider, this will meanstoring a list of previously refuted formulas
and checking whether the unsatisfiability of some formula inthe list allows us to conclude easily, before
branching, that our current formula is unsatisfiable.

A pure backtracking algorithm usually corresponds to a tree-like proof system, since the recursive refu-
tations are done independently and not reused. Our originalintuition was that introducing memoization
into a backtracking algorithm would move from a tree-like proof system to the corresponding DAG-like
system. However, the real situation turns out to be somewhatmore complicated. There are actually several
reasonable ways to introduce memoization into DPLL. None ofthem seem to be equivalent to DAG-like
resolution, and many move beyond resolution.

Basic Formula Caching The basic idea of the simplest memoized version of the DPLL algorithm, is as
mentioned above to record the unsatisfiable residual formulas found over the course of the algorithm in a list
and before applying recursion to include checking the list to see ifF is already known to be unsatisfiable.
This yields the algorithm of Figure 3 whereL is the cache of residual formulas known to be unsatisfiable.
Satisfiability is determined by callingFC(F ,∅).

While we presentFC as a nondeterministic algorithm, one can also view it as a simple transformation for
deterministic DPLL algorithms. We simply replace the nondeterministic branching rule with the rule used
by the DPLL algorithm and add some heuristics forCache-AddandCache-Checkthat would decide for the
purposes of memory and time efficiency whether or not to cachea restricted formula and would determine
whether it is worthwhile checking the cache. Checking the cache would be particularly simple using some
form of hash table.

This is a straightforward way of adding memoization to DPLL,similar to other uses of memoization in
backtracking for other problems. For example, Robson’s maximum independent set algorithm maintains a
cache of medium-size subgraphs with known bounds on their maximum independent set sizes, and checks
if the current subgraph is in the cache.

We call the nondeterministic algorithm above, viewed as a proof system,FC. It is obviously at least as
powerful as DPLL, since the presence of the cache only prunesbranches, never creates them.
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FC(F , L){
If F is empty

Reportsatisfiable andhalt
If F contains the empty clauseΛ

return
// Optionally check ifL trivially implies thatF is unsatisfiable
Else If Cache-CheckandF is inL

return
Elsechoosea literalx

FC(F |x,L)
FC(F |x,L)
If Cache-Add

AddF toL}

Figure 3: The basic Formula Caching algorithm.Cache-CheckandCache-Adddetermine whether or not to
check the cache forF or addF to the cache, respectively.

FC
W(F , L){

If F is empty
Reportsatisfiable andhalt

If F contains the empty clauseΛ
return

// Optionally check ifL trivially implies thatF is unsatisfiable
Else If Cache-CheckandF contains all clauses of some formula inL

return }
Elsechoosea literalx

FC
W(F |x,L)

FC
W(F |x,L)

If Cache-Add
AddF toL}

Figure 4: Formula Caching with Weakening

Formula Caching with Weakening Once we have the notion that we are checking the formulaF against a
cache of known unsatisfiable formulas there are other natural related checks that we might do. For example,
it may be the case thatF contains all the clauses of some formula in the listL. We can check this in time
that is polynomial as a function of the size of the formulaF and listL. We call such a test aWeakeningtest.
This leads to the algorithmFC

W given in Figure 4.

Formula Caching with Weakening and Subsumption There is another way that the unsatisfiability of
F can trivially follow from that of some formula inL. Given clausesC andD such thatC subsumesD, i.e.
C ⊂ D, we have thatC is a stronger constraint thanD. Therefore adding a subsumption test to Weakening
we obtain an algorithm we denoteFC

WS where the check whetherL trivially implies F asks“Is there is a
formulaG in L such that every clause ofG contains a clause ofF?” Again this is polynomial as a function
of the sizes ofF andL.

Weakening and Subsumption are very natural additions to a memoized backtracking algorithm. Among
other benefits, they allow a limited amount of “without loss of generality” reasoning in addition to logical
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FC
WS(F , L){

If F is empty
Reportsatisfiable andhalt

If F contains the empty clauseΛ
return

// Optionally check ifL trivially implies thatF is unsatisfiable
Else If Cache-Checkand there is aG ∈ L such that every clause ofG contains a clause ofF

return
Elsechoosea literalx

FC
WS(F |x,L)

FC
WS(F |x,L)

If Cache-Add
AddF toL}

Figure 5: Formula Caching with Weakening and Subsumption

implications of the constraints, because branches dominated by earlier ones get pruned. To see how they
can capture such “without loss of generality” reasoning, itis convenient to consider another context. For
example, consider a simple backtracking algorithm for finding an independent setS of sizek in a graph
G, branching on a nodex with one neighborN(x) = {y}. We will argue informally, using a memoized
backtracking algorithm with Weakening and Subsumption, that without loss of generality, the algorithm
should includex in the set. The algorithm first branches on whetherx ∈ S, then on whethery ∈ S,
exploring thex ∈ S branch first. The branchx ∈ S forcesy 6∈ S, so the sub-problem is to find an
independent set of sizek − 1 in G − {x, y}. Assume that this recursive search fails. The branchx 6∈ S,
y 6∈ S is to find an independent set of sizek in G − {x, y}, a strengthening of the failed branch that gets
pruned by Weakening and Subsumption. The final branchx 6∈ S, y ∈ S is to find an independent set of size
k−1 inG−{x, y}−N(y) where, again a strengthening of the failed branch. Only the branch wherex ∈ S
gets recursively explored.

As the above example illustrates, when we have Weakening andSubsumption, the order in which the
algorithm explores branches matters. So, in addition to a deterministic branching rule, we would need a
heuristic to determine the order of branches to construct a deterministic version ofFC

WS.

Formula Caching with Returned Reasons for Unsatisfiability One drawback of even the strongest basic
system,FC

WS is that some potentially useful information about unsatisfiable formulas may be available to be
learned but may be lost on the return from a recursive call. For example, if for some formulaF the restricted
formulaF |x has a small unsatisfiable subformulaG andF |x has a small unsatisfiable subformulaH then
F will have a small subformula whose restrictions underx andx containG andH respectively. However,
FC

WS will learn the formula containing all ofF , not just this subformula. In order to take advantage of
this kind of information we can augment the algorithm with a return value consisting of a formula giving a
“reason” thatF is unsatisfiable. We describe this as an extension ofFC

W in Figure 6. We will see that this
is strong enough to simulate regular resolution efficiently.

Formula Caching with Nondeterministic Rules Given that we are using a cache of unsatisfiable formu-
las to prove that a formula is unsatisfiable, we may wish to apply the rules such as weakening, or subsump-
tion a little earlier in the process so that we can be more efficient at generating formulas that we previously
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FC
W

reason(F , L){
If F is empty

Reportsatisfiable andhalt
If F contains the empty clauseΛ

return (Λ)
// Optionally check ifL trivially implies thatF is unsatisfiable
Else If Cache-CheckandF contains every clause of some formula inL

Selectsome such formulaJ in L
return (J)

Elsechoosea literalx
G←FC

W

reason(F |x,L)
H ←FC

W

reason(F |x,L)
I ←

∧

C∈F∩G∩H
C

J ← I ∧
∧

C∈(G∩H)\I
(x ∨ C)(x ∨ C) ∧

∧

C∈G\H
(x ∨ C) ∧

∧

C∈H\G
(x ∨ C)

If Cache-Add
Add J toL

return (J)}

Figure 6: Formula Caching with returned reasons for unsatisfiability.

have seen to be unsatisfiable. We could for example allow the algorithm to nondeterministically apply weak-
ening at any point in the algorithm. This is a generalizationof the usual pure literal rule of DPLL which
allows one to remove clauses containing a literal that occurs only positively (or only negatively) in the for-
mula. (Of course, a bad early choice of weakening may suggestsatisfiability when that is not the case,
but the system will remain be sound for proofs of unsatisfiability.) Similarly, we can define an algorithm
FC

WS
nondet that, as well as allowing the removal of clauses, also allowsany clause ofF to be weakened by

adding extra literals to it. We give a description ofFC
WS
nondet in Figure 7; the other algorithms can be obtained

by deleting appropriate lines.

FC
WS

nondet(F , L){
If F is empty

Reportpossibly satisfiable andhalt
//Non-deterministic reverse weakening
Remove some subset of clauses ofF (possibly none)
//Non-deterministic reverse subsumption
For each clause ofF , add some variables (possibly none)
// Check if L trivially implies that F is unsatisfiable
If F contains the empty clauseΛ orF is inL

return
Elsechoose a literalx

FC
WS

nondet(F |x,L)
FC

WS

nondet(F |x,L)
AddF toL}

Figure 7: Formula caching with nondeterministic application of Weakening and Subsumption.

If FC
WS
nondet completes without reporting thatF is possibly satisfiable thenF will be unsatisfiable. It is
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immediate that as a refutation systemFC
WS
nondet is at least as powerful asFC

WS. It could possibly be more
powerful, since the weakened formula is remembered for later use. Similarly,FC

W
nondet efficiently simulates

FC
W.
It may seem that some of these new systems allowing nondeterministic manipulation ofF itself are a

little unnatural. However, we shall see that they correspond directly to the extremely natural contradiction
caching inference systems for unsatisfiable CNF formulas that we define in the next section. Also, rea-
soning about such systems covers many algorithms that prunesearches based on reasoning that identifies
unnecessary constraints, e.g, the pure literal rule or its generalization to autarchs (Monien & Speckenmeyer,
1985), or deleting a node of degree 2 or less from a 3-coloringproblem. While such weakening only guides
the choice of branching variables in a pure backtracking search, caching the simplified formula may make
a more dramatic difference. In fact, we shall see thatFC

W
nondet is surprisingly powerful; in particular it is

capable of refuting formulas that are hard for systems more powerful than resolution.

3 Axiomatic Proof Systems

3.1 Proof Complexity

We review the basic definitions of proof complexity and give some important examples of propositional
proof systems. Propositional proof complexity is often defined in terms of proofs of tautologies but, sinceϕ
is a tautology if and only if¬ϕ is unsatisfiable, propositional proof systems are equivalently stated in terms
of proofs of unsatisfiability (refutations) of propositional formulas. Furthermore, following the usual argu-
ments that it suffices to decide satisfiability for CNF formulas, we obtain the following standard definition.

DEFINITION 3.1. A proposition proof systemfor refuting CNF formulas is a polynomial time algorithm
V (a verifier) such that for all CNF formulasϕ, ϕ is unsatisfiable if and only if there exists a stringΠ (a
V-refutation ofϕ) such thatV accepts input(ϕ,Π).

This definition is very similar to the standard definition of verifiers for NP except that it allows the
algorithm’s running time to be polynomial in the size ofΠ and does not place any limit on this size. We
often specify a proof systemV simply by describing a format for itsV-refutations, assuming that this format
is easy to check.

The following definition allows us to define and compare the efficiency or power of proof systems.

DEFINITION 3.2. Given a proof systemV for refuting unsatisfiable CNF formulas, letsV(F ) be the minimum
size (length) of aV-refutation ofF . For two refutation/proof systemsV1 andV2, we say thatV2 p-simulates
V1 if for every unsatisfiable formulaF , if there is aV1 refutation ofF of lengths, then there is also aV2

refutation ofF of size polynomial ins and the size ofF . V1 andV2 are p-equivalentif V1 p-simulatesV2

and conversely,V2 p-simulatesV1.

Any complete (deterministic or nondeterministic) algorithmA for SAT corresponds to a propositional
proof systemVA whose refutations have size essentially equal to the running time ofA on unsatisfiable
formulas: TheVA-refutation of such a formulaF is a transcript of the execution ofA that fails to find
an assignment forF . (The transcript size is actually the product of the time andthe space used by the
algorithm.)VA simply checks that this transcript correctly followsA. For simplicity we useA itself to refer
to this proof system. One such example is DPLL; aDPLL refutationof an unsatisfiableF is a complete
DPLL search tree on inputF .

A resolutionrefutation of a CNF formulaF is a sequence of clausesC1, . . . , Cr = Λ whereΛ is the
empty clause and eachCi is either a clause ofF or follows from two previous clausesCj, Ck for j, k < i
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by theresolution rulewhich says that for any variablex and any disjunctions of literalsA andB one can
derive the clause(A ∨ B). from clauses(A ∨ x) and(B ∨ ¬x). (This derivation is called ‘resolving onx’
and(A ∨B) is called the resolvent.) Since Resolution is sound and complete it forms a propositional proof
system for refuting CNF formulas.

The inferences in the resolution refutation form a directedacyclic graph (DAG): the nodes are the
C1, . . . , Cr = Λ and for eachCi derived fromCj andCk there are edges fromCi to Cj andCk. A
tree-like resolutionrefutation is a Resolution refutation in which this graph forms a directed tree (each node
has in-degree at most one). It is well known that as a proof system DPLL is equivalent to tree-like resolution,
cf. (Urquhart, 1995).

Another natural special case of resolution is calledregular resolution. In a regular resolution refutation,
if a clauseCi is the result of resolving away a variablex then no clause derived fromCi can contain the
variablex, i.e. there is no path in the graph of inferences between two clauses that are the result of resolving
on the same variable. Optimal tree-like resolution refutations are regular. Regular resolution is therefore
at least as efficient as DPLL but it also covers the original Davis-Putnam proof system (Davis & Putnam,
1960) and can be exponentially more efficient than DPLL (Bonet et al., 2000). In turn, general resolution
can be exponentially more efficient than regular resolution(Alekhnovich, Johannsen, Pitassi, & Urquhart,
2001).

One can define more general inference systems for refuting CNF formulas by allowing inference on more
complex objects than clauses. In particular, for positive integerk, Res(k) is a proof system that is a system
of inferences like resolution but it allowsk-DNF formulas as objects instead of clauses. In this system there
is an inference rule deriving(A∨B1 ∨ . . .∨Bk) from (A∨ (x1 ∧ . . . xk)) and(B1 ∨¬x1), . . . , (Bk ∨¬xk)
and rules for the distributive laws.Res(1) is easily seen to be the same as resolution. It is known that for
anyk, Res(k + 1) can be exponentially more efficient thanRes(k) (Segerlind, Buss, & Impagliazzo, 2002).

More general still is the following systemF2 which is a standard depth-2 refutation system (sometimes
called depth-2 Frege) for CNF formulas defined in (Pitassi & Urquhart, 1995). Note that, unlike resolution,
which has an implied conjunction between its clauses, inF2, each formula in the proof is self-contained and
is itself a CNF formula.

DEFINITION 3.3. (Pitassi & Urquhart, 1995)F2 is a refutation system for CNF formulas. Letx denote a
variable; letA andB denote a disjunction of literals, and letF andG denote CNF formulas.F2 has a
single axiom schema,(x ∧ x), and the following 5 rules:

R0’: A ∧A ∧ F → A ∧ F

R1’: F → F ∧B

R2’: (A ∨B) ∧ F → A ∧ F

R3’: (A ∧ F ), (B ∧ F )→ (A ∨B) ∧ F

R4’: F ∧ (x),G ∧ (x)→ F ∧G

AnF2 refutation of a CNF formulaF is sequence of CNF formulas,F1, F2, . . . , Fr = F , each of which is
either an axiom or follows from previous formulas by one of theF2 inference rules.

Cook and Reckhow, who originally formalized proof complexity, defined two of the most important and
general classes of proof systems, Frege and Extended Frege proofs (Cook & Reckhow, 1977).Fregeproofs
follow the pattern of standard axiomatic inference systemsas inF2 above. However, they allow arbitrary
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propositional logic formulas rather than being restrictedto depth-2 formulas. (As shown in (Cook & Reck-
how, 1977), any sound and implicationally complete sets of inference rules yield equivalent proof systems.)
This ability to allow more complicated intermediate formulas yields a proof system that is exponentially
more powerful thanF2, (Buss, 1987; Beame, Impagliazzo, Kraj́ıček, Pitassi, Pudlák, & Woods, 1992).

Finally, in addition to the proof rules of Frege systems,Extended Fregeproofs allow the introduction of
newextensionvariables to stand for entire formulas as the proof proceeds. This introduction is standard in
mathematical arguments. Extension variables may make a proof much more concise and can be viewed as
allowing Boolean circuits as objects in proofs. Simply allowing these extension variables is very powerful:
By augmenting ordinary resolution with an extension rule, one derives a proof system called Extended
Resolution which is equivalent in power to Extended Frege proof systems.

3.2 Contradiction Caching Inference Systems

We now define several inference systems for unsatisfiable formulas that are closely related to some of the
formula caching algorithms in the previous section. The objects of these proof systems will be conjunctive
normal form (CNF) formulas. CNF formulas will be assumed to be sets of clauses and clauses will be
assumed to be sets of literals so the order of clauses and of literals within each clause is immaterial. In the
following, x, y, z denote literals which can be variables or their negations,ϕ,ψ will denote CNF formulas
andC,D,E will denote clauses. (A clause also can be viewed as simple case of a CNF formula.) The
(unsatisfiable) empty clause will be denotedΛ.

DEFINITION 3.4. Given a formulaϕ and literal x (or x), the formulaϕ|x (respectivelyϕ|x) denotes the
simplified CNF formula in which all clauses containingx (respectivelyx) have been removed and all clauses
containingx (respectivelyx) are shortened by eliminating that literal. More generally, given a sequence of
literals xyz, for example, we writeϕ|xyz = ϕ|x|y|z and for a clauseC we identifyC with the sequence of
negations of the literals inC and defineϕ|C to be the restriction ofϕ in which every literal ofC has been
set to false.

We define several related proof systems for showing that CNF formulas are unsatisfiable based on the
following inference rules.

1. Axiom: a Λ

2. Branching: ϕ|x, ϕ|x a ϕ wherex is any variable andϕ is any CNF formula.

3a. Limited Weakening: Λ a Λ ∧ ψ whereψ is any CNF formula.

3. Weakening: ϕ a ϕ ∧ ψ whereϕ andψ are any CNF formulas.

4. Subsumption: ϕ ∧ C a ϕ ∧D whereD ⊆ C are clauses andϕ is any CNF formula.

DEFINITION 3.5. A CC (contradiction caching)refutation of a CNF formulaF is a sequenceϕ1, . . . , ϕs =
F of CNF formulas such that eachϕi for i > 1 follows fromϕj , j < i using one of the proof rules (1)-(3a):
Axiom, Branching, and Weakening. If in addition we allow some forms of the Weakening rule (3), or the
Subsumption proof rule (4), we denote the system by some combination ofCC+ some combination of letters
W andS.

11



4 The Relative Complexity of Caching Proof Systems

Figure 8 shows the relative complexity of our two new types ofcaching systems compared with stan-
dard proof systems related to resolution. Two proof systemswithin the same box indicate that they are
p-equivalent. An arrow from proof systemV2 to V1 indicates thatV2 p-simulatesV1. An dashed arrow with
a slash fromV1 to V2 indicates thatV1 does not p-simulateV2.

In order to present a more manageable view of the hierarchy ofproof systems, we concentrate on the
main systems only in Figure 8. In particular, we could have presented more variations of theFC andCC

systems, augmented with every possible subset of{W,S}. However, becauseW , andS are tractable, we
chose to include either both (FC

WS andCC+WS) or neither of them (FC andCC). In practice, this makes
sense since adding both to the system is nearly as efficient asadding only one. However, when we state our
simulations and separations, we will present the weakest possible system necessary for any upper bound,
and the strongest possible system for the lower bounds.

4.1 Simulations between Proof Systems

Immediately from their definitions, we have the following easy p-simulations.

Proposition 4.1. LetT ⊆ {W,S}, and letT′ ⊆ T. Then we have the following simulations:

1. CC+T p-simulatesCC+T′.

2. FC
T
nondet p-simulatesFC

T′

nondet.

3. FC
T
reason p-simulatesFC

T′

reason.

4. FC
T p-simulatesFC

T′
.

5. FC
T
nondet p-simulatesFC

T
reason.

It is clear that the basicCC proof system can efficiently simulate the execution of any DPLL algorithm,
and thus can p-simulate tree-like resolution proofs. (The Axiom and Limited Weakening together simulate
the action at the leaves and the Branch rule simulates the action at the internal nodes of the proof.) Also,
becauseFC is a generalization of DPLL,FC p-simulates DPLL. Thus we have the following lemma.

Lemma 4.2. BothCC andFC p-simulate DPLL.

We now show how theFC andCC systems are related to each other.

Theorem 4.3. For anyT ⊆ {W,S}, CC+T is p-equivalent toFC
T
nondet. In particular,

1. CC is p-equivalent toFC.

2. CC+W is p-equivalent toFC
W
nondet.

3. CC+WS is p-equivalent toFC
WS
nondet.

Proof. We first do the forward directions: We construct eachCC+T proof to consist of the formulas in the
cache ofFC

T
nondet execution in the order in which they were added. To show thatCC can efficiently simulate

FC, observe that in an execution ofFC, each recursive call adds precisely one formula toL and each such
formulaF is derivable either because it contains the empty clauseΛ and therefore follows from the Axiom

12



Depth 2 Frege

CC+WS

FC
nondet
WS

Tree Resolution(DPLL)
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Figure 8: The Relative Complexity of Caching Proof Systems.Solid arcs denote p-simulation. Dashed arcs
with slashes denote exponential separation.
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of CC via one step of Limited Weakening, or as the result ofF |x andF |x being inL and therefore follows
via one Branching step. Similarly,CC+W can p-simulateFC

W
nondet, andCC+WS can p-simulateFC

WS
nondet.

If some formulaF ′ was derivable fromF by nondeterministic Weakening, then this can be simulated by
a weakening step ofCC+W. Similarly, nondeterministic subsumption can be simulated by a subsumption
step ofCC+WS. Thus it is left to show thatFC

T
nondet can p-simulateCC+T.

Let F be the goal formula forCC+T which will be the input forFC
T
nondet. Draw the directed acyclic

graph (DAG) of inferences in thisCC+T proof with edges directed from each formula back to its an-
tecedents. Remove all formulas in the proof that are not reachable from the goal formulaF ; by construc-
tion, this is still aCC+T derivation ofF . We apply induction on the size ofCC+T derivations and assume
by induction that at each point in a post-order traversal of this DAG, the cacheL of FC

T
nondet contains the

formulas for all Branching nodes in the DAG that have been fully explored up to this point.
The FC

T
nondet algorithm will follow a depth-first traversal of this DAG andmake a recursive call to

FC
T
nondet on the input formula, and on the formula for each child of an out-degree two (Branching) node in

the DAG. Letϕ be such a formula. We describe the execution of the recursivecall FC
T
nondet(ϕ,L):

Consider the path of out-degree one nodes in the DAG fromϕ to the first nodeψ that containsΛ or
is the result of a Branching inference (out-degree 2). (Ifϕ already containsΛ then this path is empty and
ψ = ϕ|x.) This (possibly empty) path contains only inferences inT. It is easy to see that any sequence of
Weakening inferences in aCC+W derivation can be simulated by a single instance of the nondeterministic
reverse weakening fromϕ toψ in FC

W
nondet, any sequence of Subsumption inferences in theCC+S derivation

can be simulated by a single instance of the nondeterministic reserve subsumption fromϕ toψ, and that any
interleaved sequence of Weakening and Subsumption inferences in aCC+WS derivation can be simulated by
a single instance of nondeterministic reverse weakening followed by nondeterministic reverse subsumption
in FC

WS
nondet. Thus, in any case,FC

T
nondet can produce the sameψ as in theCC+T derivation.

If the formulaψ containsΛ (it is an axiom or follows fromΛ by Limited Weakening) then the call
FC

T
nondet(ϕ,L) will return without finding a satisfying assignment toϕ. If the node with the formulaψ in

the DAG is the result of a Branching inference and has been fully explored then by the inductive assumption
ψ is in the cacheL and the callFC

T
nondet(ϕ,L) will return without finding a satisfying assignment forϕ.

Otherwiseψ is the result of Branching inference on some variablex but has not yet been fully explored. We
can suppose without loss of generality that the depth-first traversal visits the node labeledψ|x beforeψ|x.
Then sinceψ is not in the cache, the execution ofFC

T
nondet(ϕ,L) can choose this literalx and therefore

make recursive calls toFC
T
nondet(ψ|x, L), followed byFC

T
nondet(ψ|x, L). By the inductive hypothesis both

calls return without finding a satisfying assignment and addformulas to the cache for all fully explored
branching nodes below them. Finally,FC

T
nondet(ϕ,L) adds the formulaψ to the cache, finishes exploring

the descendants ofϕ and returns without finding a satisfying assignment forϕ. This yields the claimed
property forL as a result of this recursive call. The number of recursive calls of FC

T
nondet is at most the size

of theCC+T derivation and each recursive call can be efficiently simulated.

We prove that bothCC andCC+W have thesubformula propertywhich can be useful for understanding
the structure of proofs. It does not seem thatCC+WS has the subformula property; one symptom of this is
the fact that in aCC+WS proof, it is possible to branch on a variablex more than once along a path in the
proof DAG.

DEFINITION 4.4. A CNF formulaF is asubformulaof another CNF formulaG if every clause ofF is con-
tained in some clause ofG. A CNF refutation systemV has thesubformula propertyif for any unsatisfiable
formulaF there is a refutation ofF of size at mostsV(F ) such that every line is a sub-formula ofF .

Lemma 4.5. CC andCC+W have the subformula property.
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Proof. Letϕ be derived fromϕ1 andϕ2 via a sound inference rule. The rule ismonotoneif for every clause
C in ϕ1 or ϕ2, there is a clauseC ′ in ϕ that containsC. It is easy to check that all rules ofCC andCC+W

are monotone, and thus any derivation inCC or CC+W is monotone. Now from this it is easy to see that the
subformula property holds. Suppose for sake of contradiction that that we have aCC+W (or CC) refutation
of F , and further assume that some intermediate formulaG is not a subformula ofF .

Then there is there is some clauseC of F that is not contained in any clause ofG. But this contradicts
our monotonicity condition.

Next we will prove thatCC+W has at least the power of regular resolution.

Theorem 4.6. CC+W p-simulates regular resolution.

Proof. Let C = C1, ..., Cs = Λ be a regular resolution refutation ofF . The structure of this refutation can
be revealed by viewing the refutation as a directed acyclic graphP . Each node inP corresponds to a clause
from C; the root node (the node with indegree 0) corresponds to the empty clauseCs = Λ, and each leaf
node (nodes with outdegree 0) corresponds to a clause fromF . If clauseCk is derived from clausesCi and
Cj in C, then there are directed edges fromCk toCi and fromCk toCj .

For each clauseC in the refutation, defineV ′(C) to be the set of variables queried at descendants of the
node corresponding toC in P . By the read-once property ofP , any variable inV ′(C) cannot appear on any
path from the root toC in P . For each such clauseC, defineF#C to be the CNF formula consisting of the
clauses ofF |C having variables only inV ′(C).

We will show how to derive the sequenceF#C1
, . . . , F#Cs = F#Λ which will be enough to deriveF

in one more step sinceF is (at worst) a weakening ofF#Λ.
If C is a clause ofF , i.e. a leaf in the proof, thenF#C contains the empty clause and we can derive it

in two steps using the Axiom and Weakening.
SupposeC = (A ∨ B) is the resolvent of(A ∨ x) and(B ∨ x) in the proof and that we already have

derivedF#(A∨x) andF#(B∨x).
Since every literal inC = (A ∨ B) appears on every/some path from the root to the node ofP cor-

responding toC, no variable inA or B appears inV ′(A ∨ x) or in V ′(B ∨ x). ThereforeF#(A∨x)

does not contain any variable fromB andF#(B∨x) does not contain any variable fromA. Therefore
F#(A∨x)|B = F#(A∨x).

Now every clause ofF#(A∨x) = F#(A∨x)|B is a clause ofF |
(A∨B∨x)

by definition. Furthermore, since

V ′(A ∨ x) is a subset ofV ′(C), each clause ofF#(A∨x) is also entirely defined onV ′(C). Therefore by
one step of Weakening fromF#(A∨x) we derive the CNF formula consisting of the clauses ofF |

(A∨B∨x)
=

(F |C)|x that only contain variables inV ′(C). Similarly by one step of Weakening fromF#(B∨x) we can
derive the CNF formula consisting of the clauses ofF |

(A∨B∨x)
= (F |C)|x that only contain the variables in

V ′(C). Finally, using the Branching rule we deriveF#C .

CC+W is equivalent toFC
W
nondet which does not seem to be particularly implementable. As we will

see in Section 4.2, if we consider only the basicFC
T proof systems we will not be able to match the

power of regular resolution. However, when we augment formula caching by having it return the reason for
unsatisfiability as well as the mere fact of unsatisfiability, we can still efficiently simulate regular resolution
(and much more as we will see shortly). To do this we first make the following observations about the
execution ofFC

W
reason.

DEFINITION 4.7. Define thedynamic programming DAGof an execution ofFC
W
reason on inputF as a

(directed acyclic) graph with a node for each recursive callmade byFC
W
reason. The label of a node associated
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with a recursive call for formulaF ′ is a pair (F ′, J ′). Some nodes will also be tagged with variable names.
The graph is built as the algorithm proceeds. Consider the execution of a recursive call onF ′. We have the
following cases:

• If F ′ containsΛ then label the node with(F ′,Λ); the node will have no out-edges and therefore will
be a sink in the DAG.

• If Cache-Check was true for this call and a reasonJ ′ for the unsatisfiability ofF ′ was found and
returned from the cache then label the node(F ′, J ′). There must have been some previous recursive
call onF” on which Cache-Add was true that causedJ ′ to be placed in the cache. Add an edge from
(F ′, J ′) to the node for the recursive call onF”. (It is possible thatF ′′ = F ′.)

• Otherwise, letx be the literal chosen for branching. Tag the node forF ′ with this variable. Add an
edge (the left edge) to a node for the recursive call onF ′|x, finish that recursive call, add an edge (the
right edge) to a node for the recursive call onF ′|x, and label the node for this call onF ′ with the pair
(F ′, J ′) whereJ ′ is the reason returned by the call on inputF ′.

We say that a formulaG is astrengtheningof a formulaH if and only ifH is a weakening ofG.

Lemma 4.8. In the dynamic programming DAG for an execution ofFC
W
reason(F, ∅), if a nodev is labeled

(F ′, J ′) then

(a) J ′ is the reason returned on the associated recursive call onF ′ in this execution,

(b) if v has outdegree 1 then it points to a node labeled(F ′′, J ′) of outdegree 2, and

(c) J ′ is a strengthening ofF ′.

Proof. Part (a) is immediate from the definition. Part (b) follows since any node of outdegree 1 points to a
node for a call in which a formula was placed in the cache, which only happens at branching nodes.

We prove part (c) by induction starting at the nodes of outdegree 0 in the dynamic programming DAG.
Nodes of outdegree 0 have labels(F ′,Λ) such thatF ′ containsΛ. This clearly satisfies (c). We now have
two cases:

The node labeled(F ′, J ′) has outdegree 1 and results from a cache hit that returnedJ ′. Since this is a
cache hit,F ′ must be a weakening ofJ ′ so (c) holds.

The node labeled(F ′, J ′) has outdegree 2 and results from combining the recursive calls for F ′|x and
F ′|x. This node is tagged with the variable inx and the two nodes it points to are labeled(F ′|x, G

′) and
(F ′|x,H

′) for someG′ andH ′. We apply the inductive hypothesis to each of these nodes. Inparticular, all
clauses inG′ are inF ′|x and all clauses inH ′ are inF ′|x. By construction, if a clauseC occurs inG′ but
notH ′ thenC is in F ′|x and(C ∨ x) must be a clause inF ′. Similarly if a clauseC occurs inH ′ but not
G′ then(C ∨ x) must be a clause inF ′. If C occurs in bothG′ andH ′ then it occurs in bothF ′|x andF ′|x.
Therefore eitherC occurs inF ′ or both(C ∨ x) and(C ∨ x) occur inF ′. Therefore by the construction of
J ′ in theFC

W
reason code, every clause ofJ ′ is in F ′ and (c) holds.

Theorem 4.9. FC
W
reason p-simulates regular resolution.

Proof. We follow the general pattern of the proof of Theorem 4.6. We describe an execution ofFC
W
reason

on inputF so that the dynamic programming DAG of theFC
W
reason execution is essentially the same as the

regular resolution DAG refutingF (and is constructed as a depth-first search of that DAG). Moreprecisely,
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we will prove inductively that the branching nodes of the dynamic programming DAG are in a 1-1 corre-
spondence with the non-sink nodes of the regular resolutionDAG such that a node labeled by clauseC in the
regular resolution DAG corresponds to a branching node withlabel(F |D, JD) such that (1)D containsC,
(2)D is disjoint fromV ′(C) (and thus, by (1) and (2),F#C is a strengthening ofF |D), (3)JD is a strength-
ening ofF#C , and (4)JD is in the cache when the call for that node completes. Since byLemma 4.8(b)
nodes of outdegree 1 can only occur singly between pairs of outdegree 2 nodes, this will show that the size
of the dynamic programming DAG will be linear in the size of the regular resolution DAG. The theorem
will follow since the running time ofFC

W
reason is polynomial in the size of its dynamic programming DAG

and the size of the input formula since it has one node for eachrecursive call.
To define the execution, we follow the depth-first search of the regular resolution DAG from the root

labeledΛ. In this executionCache-Addwill aways be true. Observe that the initial call ofFC
W
reason is on

the formulaF |Λ = F as required for the roots to correspond. Consider a node labeled C for which the
corresponding recursive call onF |D has been made byFC

W
reason. If C is a clause ofF then for anyD

extendingC, F |D will contain Λ and the corresponding node will be a sink in the dynamic programming
DAG. If C is a derived clause of the regular resolution proof thenC = (A ∨ B) is the resolvent of some
pair of clauses(A ∨ x) and(B ∨ x) where(B ∨ x) is the first of the two children ofC to be explored in
the depth-first search of the regular resolution DAG. In the execution ofFC

W
reason on inputF |D, we select

Cache-Checkto be false,x to be the literal chosen, andCache-Addto be true. (We can still choosex since
its variable is inV ′(C) which is disjoint fromD.)

FC
W
reason will first make a recursive call on(F |D)|x. By the argument in the proof of Theorem 4.6,

(F |C)|x is a weakening ofF#(B∨x). SinceD containsC and the variables inD are disjoint fromV ′(C),
(F |D)|x contains all clauses in(F |C)|x onV ′(C). Therefore, sinceV ′(B∨x) is a subset ofV ′(C), (F |D)|x
is a weakening ofF#(B∨x). Also, any variable in(D ∨ x) but not(B ∨ x) is disjoint fromV ′(B ∨ x).

If (B ∨ x) is a clause in the proof that has not yet been explored then we can apply the above argument
inductively for(B ∨ x) and the call onF |

(D∨ x)
= (F |D)|x to return someJD′ .

If (B ∨ x) is a clause in the proof that has previously been explored then by the inductive hypothesis
that node is labeled by a pair(F |

D
′ , J

D
′) such thatD′ is disjoint fromV ′(B ∨ x), J

D
′ is a strengthening of

F#B∨x, andJ
D

′ is in the cache. Therefore on the call(F |D)|x we selectCache-Checkto be true. In this
caseF |D|x will be a weakening ofJD′ so we selectJD′ to be returned from the cache as the reason for the
unsatisfiability ofF |D. Thus the node in the dynamic programming DAG for this call(F |D)|x = F |

(D∨ x)

will be labeled(F |
(D∨ x)

, JD′) and return.

After the return from the call on(F |D)|x, the same argument is applied to the other call on(F |D)|x to
derive that it returns aJD′′ that is a strengthening ofF#(A∨x).

Thus the reasonsJD′ andJD′′ returned from the two recursive calls strengthenF#(B∨x) andF#(A∨x),
respectively. Then, by construction, the clauses of the formulaJD = J that is returned from the call onF |D
are defined onV ′(C) = {x} ∪ V ′(A ∨ x) ∪ V ′(B ∨ x) and by Lemma 4.8(c) they are contained inF |D.
SinceD is an extension ofC that is disjoint fromV ′(C), F#C is precisely the set of all clauses ofF |D that
are defined onV ′(C) and thusJD is a strengthening ofF#C as required. SinceCache-Addis true,JD will
be in the cache when this call returns.

The following lemma shows thatF2 can p-simulateCC+WS, and therefore all of the caching systems
introduced so far can be p-simulated byF2.

Lemma 4.10.F2 p-simulatesCC+WS.

Proof. We want to show thatF2 can p-simulateCC+WS. Technically speaking, the axiomΛ and any
clause containing it cannot be derived because it is not representable. Still, we can show inductively how
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to efficiently convert anyCC+WS refutation of a CNF formula of that does not containΛ. Weakening is
equivalent to R1’, and Subsumption is equivalent to R2’. We first show the base case that any clause in the
CC+WS refutation not containingΛ whose antecedent(s) containΛ can be derived. Observe that removing
Λ in theCC+WS refutation requires a branching rule that creates clausesx ∧ ¬x, among others, which can
be derived inF2. The clausesx ∧ ¬x can be augmented by Weakening (R1’) to produce the corresponding
formula in theCC+WS refutation. Since we have the base case as well as Weakening and Subsumption it
is left to show how to simulate Branching. We want to show how to derive some formulaF from F |x and
F |x in F2. Assume thatF has the following form:

(x ∨D1) ∧ . . . ∧ (x ∨Dj) ∧ (x ∨ E1) ∧ . . . ∧ (x ∨Ek) ∧G.

ThenF |x is equal to(D1) ∧ . . . ∧ (Dj) ∧G, andF |x is equal to(E1) ∧ . . . ∧ (Ek) ∧G.
FromD1∧D2∧ . . .∧Dj and(x∧x), derive(D1∨x)∧ . . .∧(Dj∨x)∧(x)∧G, by repeated applications

of R1’ and R3’. Similarly, fromE1 ∧E2∧ . . .∧Ek and(x∧x), derive(E1 ∨x)∧ . . .∧ (Ek ∨x)∧ (x)∧G.
Now use R2’ and R4’ to deriveF as desired.

4.2 Separations between Proof Systems

In this section, we will show that DPLL cannot p-simulate even the most basic caching systems,FC andCC.
We also show thatFC

W
reason polynomial size refutations of CNFs that are known to require exponential size

resolution andRes(k) refutations.
The idea behind most of our lower bounds is as follows. Suppose that we want to show that some

resolution-like systemR cannot p-simulate a particular caching system, call itC. We will begin with a CNF
formulaF that has a small proof inR, but such that if we replace each variable inF by a small conjunction
of variables and distribute to again obtain a CNF formula, then the resulting formula,F ′, now requires large
R-proofs. On the other hand, we will show that the caching systemC can proveF ′ efficiently whenever it
can proveF efficiently. Thus ifC can efficiently proveF , then it will follow thatF ′ is our formula that has
shortC-proofs, but that requires largeR-proofs. We proceed formally below.

DEFINITION 4.11. Thesize (or width) of clauseC is the number of literals inC. Theclause-width(or
simplywidth) of a CNF formulaF is the maximum width of any of its clauses.

DEFINITION 4.12. LetF be a CNF formula. We can define a new formulaF (∧k) in variables{zi,j : i ∈
[n], j ∈ [k]} by replacing every clauseC ∈ F by a conjunction of clauses corresponding toC with the sub-
stitutionxi ← zi,1∧· · ·∧zi,k and distributing the result to form clauses. That is, ifP andN are the indices of

variables occurring positively and negatively inC thenC is replaced by
∧

(j1,...j|P |)∈[k]|P |

(

∨

i∈P zi,ji
∨

∨

i∈N

∨

j∈[k] zi,j
)

.

Note that ifC has at mostd positive literals then it is replaced by at mostkd clauses each of size at most
dk. Thus ifF has at mostd positive literals per clause thenF (∧k) has size at mostkd+1 times the size ofF .

DEFINITION 4.13. Let π be a partial assignment to thex variables (which we identify with the sequence
of literals on those variables made true by the assignment).We say that a partial assignmentπ̂ to thez
variables isequivalentto π if and only if for everyi,

(i) if xi is in π thenzi,j is in π̂ for all j ∈ [k];

(ii) if xi is in π then there is somezi,j in π̂;

(iii) if neither xi notxi is in π then none of thezi,j nor zi,j is in π̂.
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The following lemma follows from the definitions.

Lemma 4.14. Letπ be a partial assignment to thex variables on which CNF formulaF is defined, and let
π̂ be an equivalent assignment to thez variables. Then(F (∧k))|π̂ = (F |π)(∧k).

Lemma 4.15. If V is any of the systemsCC, CC+W, FC, FC
W, or FC

W
reason, then for any unsatisfiable CNF

formulaF with at mostd positive literals per clause, thensV(F (∧k)) ≤ 2kd+2 · sV(F ).

Proof. CC andCC+W have the subformula property by Lemma 4.5,FC
W has the subformula property

by construction andFC
W
reason has the subformula property by Lemma 4.8(c). Since the substitution F (∧k)

increases the size of each sub-formula ofF by at most akd+1 factor it suffices to prove an upper bound on
the number of clauses in a refutation ofF (∧k) as a function of that ofF .

First, given aCC or CC+W refutationΠ of F of lengths we show how to derive all clauses ofΠ(∧k)

using at mostsk inference steps. Consider the rules used in the course of therefutationΠ.
(1) ClearlyΛ(∧k) = Λ.
(2) If the inference rule inΠ is Weakeningϕ a ϕ ∧ ψ and we have alreadyϕ(∧k) then we getϕ(∧k) a
ϕ(∧k) ∧ ψ(∧k) also by Weakening and the latter is(ϕ ∧ ψ)(∧k) by definition. Further, if the Weakening
inference inΠ is Limited then the same will hold true inΠ(∧k).
(3) Suppose that clauseϕ ∈ Π follows from ϕ|x andϕ|x using Branching and the substitution isx =
z1 ∧ . . .∧ zk. (We have dropped the indicesi from both thex andz variables for convenience.) Forj ∈ [k],
let Fj = ϕ(∧k)|z1...zj

andGj = ϕ(∧k)|z1...zj−1zj
. As above,Fk = ϕ(∧k)|z1...zk

= (ϕ|x)(∧k). Furthermore,
as aboveG = (ϕ|x)(∧k) = ϕ(∧k)|zj

for any j ∈ [k]. SinceG contains no occurrences ofz1, . . . , zk for
j ∈ [k] we can also writeG = G|z1...zj−1

= ϕ(∧k)|zjz1...zj−1
= Gj . We wish to deriveϕ(∧k) from Fk and

G = G1 = . . . = Gk. To do this we apply the Branching rulek times, derivingFk−1 from Fk andGk using
variablezk, Fk−2 from Fk−1 andFk−1 using variablexk−1, etc. until finally we obtain the desired clause
using the branching rule applied toF1 andG1.

Next we will show the same result forFC
W
reason. The argument forFC

W is a simplification of this proof
and the result forFC follows because it is equivalent toCC. Given a refutation of a formulaF in FC

W
reason,

we show how to obtain anFC
W
reason refutation ofF (∧k) of size at mostO(k) times that ofF by replacing

each branch on a variablex of F by a sequence of branches on the variableszj for j ∈ [k]. (Again we
drop the indicesi on thex andz variables for convenience.) More precisely, letF be a CNF formula, and
let T be the dynamic programming DAG explored byFC

W
reason as it is refutingF . T (∧k) will denote the

corresponding dynamic programming DAG that we show can be created byFC
W
reason as it is refutingF (∧k).

We will define an execution creating aT (∧k) so that for any partial assignmentπ to thex variables
defining a nodev(π) in T corresponding to a recursive call onF |π, there is an equivalent assignmentz(π)
defining a nodêv(π) in T (∧k) such that for every formulaG cached inT when exploring nodev(π) the
corresponding formulaG(∧k) is cached inT (∧k) and ifJ is the reason returned atv(π), J (∧k) is returned at
v̂(π). We prove this by induction over the execution that yieldsT .

Let π be an assignment that corresponds to a node inT . We define an equivalent assignmentz(π) that
we will correspond to a node ofT (∧k) recursively as follows:

• If π is the empty assignment thenz(π) is also empty.

• If π corresponds to nodev in T with left child corresponding toπx and right child corresponding to
πx thenz(πx) = z(π)z1 · · · zk andz(πx) = z(π)z1 · · · zk−1zk.

• If π corresponds to nodev in T with left child corresponding toπx and right child corresponding to
πx thenz(πx) = z(π)z1 andz(πx) = z(π)z1 · · · zk.
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By the above definitionz(π) is equivalent toπ. The nodêv(π) will be a node inT (∧k) that corresponds to
z(π).

Assume that the inductive hypothesis holds for all nodes whose execution completed before that ofv =
v(π) in the execution definingT (precedev in the post-order traversal ofT ) whereπ is a partial assignment
to thex variables. Ifv has out-degree 0 inT thenΛ is in F |π and will also be inF (∧k)|z(π) = (F |π)(∧k)

so both calls returnΛ. If v has out-degree 1 inT then it corresponds to a cache hit and some strengthening
J of F |π was found in the cache byFC

W
reason for the call onF |π. By the inductive hypothesis,J (∧k) will

be in the cache for the corresponding call onF (∧k)|z(π) and will be a strengthening ofF (∧k)|z(π). In this
call selectCache-Checkto be true and selectJ (∧k) to be returned from the cache. It remains to consider
what happens whenv has out-degree 2. We have two cases: the left child corresponds to a recursive call on
F |πx and right child corresponds to a recursive call onF |πx, or vice versa. In the execution creatingT (∧k)

of FC
W
reason the query of x at nodev will be replaced by a sequence of queries to the variablesz1, . . . , zk in

order.
First, assume thatx is the left (first) branch andx is the right (second) branch inT starting atv, In T (∧k)

each positive literalzj will be assigned before the corresponding negative literalis tried and thus there
will be a subtree in the DAGT (∧k) of k + 1 leaves with a long left branch corresponding to the assignment
z(π)z1 · · · zk and a series of short right branches corresponding to assignmentsz(π)z1 · · · zj−1zj for j ∈ [k].
In particular,T (∧k) contains nodeŝv(πx) andv̂(πx) as defined above.

By definition of FC
W
reason, someG is the reason returned at nodev(πx) and someH is the reason

returned at nodev(πx) where, by Lemma 4.8,G andH are strengthenings ofF |πx andF |πx, respectively.
In completing the execution for nodev, the formula

J =
∧

C∈F |π∩G∩H

C ∧
∧

C∈(G∩H)\F |π

(x ∨ C)(x ∨ C) ∧
∧

C∈G\H

(x ∨ C) ∧
∧

C∈H\G

(x ∨ C)

is returned. We want to show thatJ (∧k) is returned at nodêv(π) in T (∧k).
By the induction hypothesis,G(∧k) is returned at nodêv(πx) which corresponds to assignmentz(πx) =

z(π)z1 · · · zk. Similarly, H(∧k) is returned at nodêv(πx) which corresponds to assignmentz(πx) =
z(π)z1 · · · zk−1zk. By the properties ofG andH, G(∧k) andH(∧k) are strengthenings ofF (∧k)|z(πx) and

F (∧k)|z(πx) respectively. Without loss of generality we can assume thatthese were added to the cache as
well.

By the above Lemma,(F |πx)(∧k) = F (∧k)|z(πx) and(F |πx)(∧k) = F (∧k)|z(πx). For all subsequently

considered assignmentsz(π)z1 · · · zj−1zj for j < k, observe thatF (∧k)|z(π)z1·zj−1zj
contains all clauses

of the formulaF (∧k)|z(πx). (If there is a clauseA in F (∧k)|z(πx) that was shortened from a clause in
F (∧k)|z(π) then(A ∨ zj) is in F (∧k)|z(π) for everyj ≤ k and thusA is in F (∧k)|z(π)z1·zj−1zj

.) Thus at the
call corresponding toz(π)z1 · · · zj−1zj , we selectCache-Checkto be true and obtain a cache hit from the
reasonH(∧k) so these nodes ofT (∧k) result in immediate contradictions forFC

W
reason. We do not bother

to cache the intermediate reasons returned at these nodes until the computation returns to nodêv(π). By
the above Lemma,G(∧k) = (J |x)(∧k) = J (∧k)|z(πx), and similarlyH(∧k) = (J |x)(∧k) = J (∧k)|z(πx). It
follows thatJ (∧k) is returned at nodêv(π) since the variableszj will be added to the returned reasons up
the tree from nodeŝv(πx) andv̂(πx) to v̂(π) to exactly mimic the result of the substitution ofz1 ∧ . . . ∧ zk
for x.

The second case to consider is whenπx corresponds to the left child ofv andπx corresponds to the right
child of v in T . In this case the proof proceeds in much the same way, except that now the subtree ofT (∧k)

has one long right branch corresponding to the assignmentz(π)z1 · · · zk andk left branches corresponding
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to assignmentsz(π)z1 · · · zj−1zj for j ∈ [k], for a total ofk + 1 leaves. In this case, the leafv̂(πx)
corresponding to assignmentz(πx) = z(π)z1 will be traversed first and its returned reason will cause cache
hits for leaves with assignmentsz(π)z1 · · · zj−1zj for j > 1. The only other leaf that will be explored is
the leafv̂(πx) corresponding to assignmentz(πx). The remaining reasoning is completely analogous to the
first case. The overall result follows by induction.

Corollary 4.16. Let {F} be a family of unsatisfiable CNF formulas with at mostd positive literals per
clause wherekd is nO(1).

• If {F} has polynomial-size DPLL proofs then{F (∧k)} has polynomial-sizeCC proofs.

• If {F} has polynomial-size regular resolution proofs then{F (∧k)} has polynomial-sizeCC+W proofs.

We first use this corollary to show thatCC can be exponentially more powerful than DPLL. Ben-Sasson,
Impagliazzo, and Wigderson (Ben-Sasson et al., 2000), generalizing a construction of Bonet et al. (Bonet
et al., 2000), defined certaingraph-pebbling tautologiesPebG,S,T to separate tree-like from regular resolu-
tion.

Lemma 4.17. Given a directed acyclic graphG of in-degree 2 withm edges and subsetsS andT of its
vertices, ifPebG,S,T is unsatisfiable thensCC(PebG,S,T ) = O(m).

Proof. (Sketch) The contradiction form ofPebG,S,T has two variables per vertexv of G, z0
v andz1

v , and
the statement thatv can be pebbled is represented by the clause(z1

v ∨ z
1
v). The tautology represents the

statement that: (1) all nodes inS can be pebbled; (2) if both predecessors of a node can be pebbled, then so
can the node itself; and (3) no node inT can be pebbled. We observe that this formula is derived by disjoint
substitutionxv = z0

v ∨ z
1
v from a simpler formulaPG,S,T where we represent the ability to pebble nodev

by a single variablexv. That is,PebG,S,T = P
(∨2)
G,S,T . The formulaPG,S,T can be proved unsatisfiable in a

linear number of steps by unit propagation following a topological sort fromS to T . Therefore it follows
immediately inCC. Although this is an(∨2) substitution, by negating variables and using the closure
property ofCC under disjoint(∧2) substitution of Lemma 4.15 and the fact that each clause ofPG,S,T has
constant size,PebG,S,T also has a linear size proof inCC.

Theorem 4.18.DPLL cannot p-simulateFC nor CC.

Proof. Ben-Sasson, Impagliazzo, and Wigderson (Ben-Sasson et al., 2000) show that for suitable choices
of directed acyclic graphsG with O(n) edges, and setsS andT , the tree-like resolution complexity of
PebG,S,T is 2Ω(n/ log n). This combined with Lemma 4.17 proves that DPLL cannot p-simulate CC (nor
FC).

We now use Corollary 4.16 together with results of (Segerlind et al., 2002) to separate theCC+W proof
system fromRes(k) for any constantk.

In order to separate Resk+1 fromRes(k), Segerlind, Buss, and Impagliazzo (Segerlind et al., 2002)de-
fine an unsatisfiable CNF formulaGOP (G) for any undirected graphG (describing thegraph ordering prin-
ciple onG) and prove that, althoughGOP (G) always has polynomial-size regular resolution refutations,
there is an infinite family of graphsG such that for any constantk, GOP (G)(∧k+1) requires exponential-
sizeRes(k) refutations. More precisely, givenG = (V,E) with |V | = n, definen(n − 1) variablesxu,v

for all u 6= v which are intended to represent a transitive, irreflexive, anti-symmetric relation on the vertices
of G. Thus we have clauses(xu,v ∨ xv,u) for antisymmetry and(xu,v ∨ xv,w ∨ xu,w) for transitivity for all
distinctu, v,w ∈ V . The graph ordering principle forG states that any such relation must have an element
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that is locally minimal inG. Thus to represent the negation of this principle for eachv ∈ V we add the
clause

∨

(u,v)∈E xu,v. The number of positive literals per clause is at most the maximum degree of the graph
G.

Theorem 4.19. (Segerlind et al., 2002) For any positive integerk, there are constantsc > 0 and εk > 0,
and an infinite family of graphs{G} such thatGOP (G) has regular resolution refutations of sizeO(nc)
wheren = n(G), andGOP (G)(∧k) hasRes(k) refutations of sizeO(nc), butGOP (G)(∧k+1) requires
Res(k) refutations of size2Ω(nεk ).

Theorem 4.20.For any positive integerk, there are formulas with polynomial-sizeCC+W refutations and
polynomial-sizeFC

W
reason refutations that require exponential-sizeRes(k) refutations.

Proof. Consider the family of polynomial-size formulasGOP (G)(∧k+1). By Theorem 4.19, the formulas
GOP (G) have polynomial size regular resolution refutations. Also, in Theorem 4.19, sinceGOP (G)(∧k+1)

hasRes(k + 1) refutations of sizeO(nc), (k + 1)d is polynomial inn = n(G) whered is the maximum
degree ofG. Therefore, by Corollary 4.16, the formulasGOP (G)(∧k+1) have polynomial-sizeCC+W

refutations and polynomial sizeFC
W
reason refutations. On the other hand by Theorem 4.19 they require

exponential-sizeRes(k) refutations.

We will now show that the returned reasons are essential to the good properties ofFC
W
reason by showing

thatFC
WS cannot p-simulate regular resolution. In particular, consider the family ofGT formulas, defined

in (Bonet & Galesi, 1999), which separate regular resolution from tree resolution. These were the inspiration
for theGOP formulas defined above. In particular for anyn theGTn formula includes all clauses of
GOP (Kn) whereKn is the complete graph onV = {1, ..., n} together withtotality clauses(xi,j ∨xj,i) for
eachi 6= j. As shown in (Bonet & Galesi, 1999), like the formulasPebG,S,T above, these formulas have
polynomial-size regular resolution refutations but require exponential-size tree resolution refutations.

WriteG aWS H iff H follows fromG solely via Weakening and Subsumption. We observe the follow-
ing simple properties ofaWS.

Proposition 4.21. (a) aWS is transitive, i.e. ifF aWS G andG aWS H thenF aWS H.

(b) If F aWS H andG aWS H thenF ∧G aWS H .

(c) For any literalx, if G aWS H thenG|x aWS H|x.

Proof. Parts (a) and (b) follow immediately from the definition. Suppose thatx is a literal andG aWS H.
If C ∈ G|x then neitherx norx appears inC and eitherC or (C ∨ x) appears inG. If C ∈ G then there is
someD ∈ H with D ⊆ C D ∈ H|x. If (C ∨ x) ∈ G then there is someD ∈ H with D ⊆ (C ∨ x) and
thusD|x ⊆ C andD|x ∈ H|x. Thus (c) follows.

Let unitprop(H) be the formula obtained fromH after applying unit propagations toH.

Lemma 4.22. If G aWS H then there is a restrictionπ such thatG|π aWS unitprop(H) andG|π has no
unit clauses.

Proof. Assume thatΛ /∈ unitprop(H) for otherwise the lemma follows immediately withG|π = unitprop(G).
Otherwise letπ be the set of assignments that are made during unit propagation onH. By Proposition 4.21
we haveG|π aWS unitprop(H). If x is a unit clause inG|π then, sinceΛ /∈ unitprop(H), unitprop(H)
must containx as a unit clause which is a contradiction.
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We will be interested in formulasG = GTn|σ andH = GTn|τ such thatG aWS H. Using Lemma 4.22
we will only need to study this whenG andH have no unit clauses andH does not contain the empty clause.

Observe that ifG = GTn|σ has no unit clauses and does not contain the empty clause thenσ must be
transitively closed and so we can identifyσ with a partial order<σ onV .

Given a partial order<σ onV define

• σi = {j ∈ V | i <σ j}.

• minimal(σ) = {i | 6 ∃j ∈ V, j <σ i},

• tops(σ) = {k | ∀i ∈ minimal(σ), i <σ k}, and

• prune(σ) to be<σ restricted toV − tops(σ).

Lemma 4.23. If G = GTn|σ aWS H = GTn|τ andG andH do not containΛ or any unit clause then
prune(σ) = prune(τ).

Proof. For any pairj, k ∈ V , if j andk are incomparable in<σ thenG contains the clause(xj,k
∨

xk,j)
which must also appear inH sinceH does not containΛ or a unit clause. Thereforej andk are incomparable
in <τ .

SinceG does not containΛ or a unit clause,G contains a non-minimality clauseCi =
∨

j∈V −σi xj,i of
size at least 2 for eachi ∈ minimal(σ). ThereforeH must contain a clauseDi ⊆ Ci with at least two
positive literals whose last coordinate isi. This can only be the non-minimality clauseDi =

∨

j∈V −τ i xj,i

and thusi ∈ minimal(τ) andσi ⊆ τ i. Since anyj /∈ σi is incomparable toi in<σ, it must be incomparable
to i in <τ soj /∈ τ i. Thereforeminimal(σ) = minimal(τ) and each such minimal element hasσi = τ i.
Furthermore by definitiontops(σ) = tops(τ).

If j <σ k andj, k ∈ V − tops(σ) then there is somei ∈ minimal(σ) such thati 6<σ k. Thereforei is
incomparable to bothj andk in <σ. ThereforeG will contain two clauses of size 2 that are the restrictions
of the transitivity clauses for the triple(i, j, k), namely(¬xi,j ∨xi,k) and(¬xk,i∨xj,i). These clauses must
also appear inH and the only possible sources for them are the same transitivity clauses inGTn. Therefore
j <τ k.

Therefore for allj, k ∈ V − tops(σ) = V − tops(τ), j <σ k if and only if j <τ k and thusprune(σ) =
prune(τ).

Theorem 4.24.AnyFC
WS refutation ofGTn requires at least2n−2 nodes.

Proof. We show that there are at least2n−2 distinct residual formulas in any such refutation, with the
property that no two of them can be inferred using Weakening and Subsumption from the same residual
subformula.

For any restrictionρ such thatGTn|ρ does not inferΛ via unit propagation, the transitive closure,ρ∗,
of the relation defined byρ forms a partial order<ρ∗ . Call a branch point in anFC

WS executionnovel if
(1) the residual formulaGTn|ρ at the branch point does not inferΛ by unit propagation and (2) it branches
on a variablexi,j such thati andj are in different connected components of the Hasse diagram associated
with <ρ∗ . Observe that if onlyn − 2 novel branch points have been made on a path thentops(σ∗) = ∅.
Furthermore, every consistent branch can be extended untilit contains at leastn−2 novel branch points and
the restrictionsρ defining these branches are inconsistent with each other. Therefore there are at least2n−2

of them at the novelty leveln− 2 and their transitive closuresσ all haveprune(σ) =<σ and disagree about
the relative order of some pair of elements.
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Let H = GTn|ρ be the residual formula at a novel branch point and assume that G = GTn|π infers
H using Weakening and Subsumption. Applying Lemma 4.22 we obtain a formulaG′ = G|π′ for the
restrictionπ′ such thatunitprop(H) = H|π′ , G′ aWS unitprop(H), andG′ does not have an empty or
unit clause. Letσ be the restriction that is the combination ofπ andπ′ and letτ be the restriction that
is the combination ofρ andπ′. By constructionσ andτ correspond to partial orders on{1, . . . , n}. By
Lemma 4.23 we must have<τ= prune(τ) = prune(σ) =<σ.

Now if G is added toL beforeH in the execution ofFC
WS then eitherG is in the subtree belowH or

there is some variablexi,j on whichπ andρ disagree. If the latter were to occur, the corresponding extended
restrictionsσ andτ would retain this disagreement, and<σ and<τ would disagree about the relative order
of i andj. This would contradict the requirement that<τ=<σ. Therefore any such clauseG would have to
be in the subtree belowH. Since these subtrees are disjoint for every pairH andH ′ of our set of clauses at
novelty leveln− 2, the theorem follows.

Corollary 4.25. FC
WS does not polynomially simulate regular resolution.

Thus even the strongest of the basic formula caching systemsis not strong enough to efficiently simulate
regular resolution. In fact, these systems cannot efficiently simulate theorderedregular resolution method
defined in the original paper of Davis and Putnam (Davis & Putnam, 1960) since, as shown in (Bonet &
Galesi, 1999), the formulasGTn are provable in ordered regular resolution.

However, as we saw earlier, if we augment formula caching by having it return the reason for unsatisfia-
bility as well as the mere fact of unsatisfiability, to obtainFC

W
reason then we can not only efficiently simulate

regular resolution but also can efficiently refute formulasthat require exponential sizeRes(k) refutations.

5 Contradiction Caching Systems with 0-1 Substitution

In a preliminary version of this work (Beame et al., 2003), wedefined an additional rule for theCC andFC

systems that was called the restriction rule. To be consistent with earlier terminology, we should have called
this rule the 0-1 substitution rule.

DEFINITION 5.1. The restriction rule (also called the 0-1 substitution rule) in a CC system allowsϕ|x (or
ϕ|x) to be inferred fromϕ.

We define the letter “R” to denote the 0-1 substitution (or restriction) rule. ThusCC+WSR is the
contradiction caching system that includes weakening, subsumption and restriction.

We mistakenly claimed thatCC+WSR was no more powerful than depth-2 Frege systems. In fact, we
show below that the restriction rule is surprisingly powerful; in fact adding it makes the system p-equivalent
to Extended Frege systems. The proof of this follows the paper of Buss (Buss, 1995) where he shows that
a standard Frege system plus 0-1 substitution is p-equivalent to Extended Frege. In (Pitassi & Urquhart,
1995), Buss’s result was further refined to show that even a depth-2 Frege system plus 0-1 substitution is
p-equivalent to Extended Frege.

DEFINITION 5.2. (Pitassi & Urquhart, 1995)S0,1F2 is a refutation system for CNF formulas. It contains
the axiom and rules ofF2 plus the 0-1 substitution rule.

The following two lemmas show thatCC+WSR is p-equivalent to Extended Frege.

Lemma 5.3. (Pitassi & Urquhart, 1995)S0,1F2 is p-equivalent to Extended Frege.
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Lemma 5.4. CC+WSR is p-equivalent toS0,1F2.

Proof. We first show thatCC+WSR can p-simulateS0,1F2. The axiom,(x ∧ x) can be derived from the
axiom ofCC plus an application of Branching. Rule R0’ is implicit in theCC system, because CNF formulas
are viewed as sets of clauses in theCC systems. Rule R1’ is equivalent to Weakening; Rule R2’ is equivalent
to Subsumption; and clearly the substitution rules are equivalent. It is left to show how to simulate rules R3’
and R4’.

First, we show how to simulate Rule R4’. Given(F ∧x), and(G∧x) we want to derive(F ∧G). First,
apply Weakening to obtain(F ∧G ∧ x) and(F ∧G ∧ x). Apply the Restriction rule to obtain(F ∧G)|x
from (F ∧G∧x). Similarly apply the Restriction rule to obtain(F ∧G)|x from (F ∧G∧x). Finally apply
Branching to obtain(F ∧G) as desired.

Lastly, rule R3’ can be simulated as follows. GivenA∧F andB∧F , we want to derive(A∨B)∧F . If
A∨B contains some literalx andB containsx then we apply Subsumption to derivex∧F andx∧F and then
rules R4’ followed by R0’ (already simulated) to deriveF , and finally Weakening to derive(A ∨ B) ∧ F .
Similarly, if eitherA or B contains bothx andx then we can deriveF by Restriction onx andx and
Branching to returnF and then Weakening as above. Otherwise, suppose thatB = (l1 ∨ l2 ∨ ... ∨ lk ∨B

′)
whereB′ consists of the literals ofB that are contained inA. We need to derive(A ∨ l1 ∨ ... ∨ lk) ∧ F .

For eachi = 1, . . . , k, apply Weakening to derive

li ∧ F (ai)

fromB ∧ F . Next, apply Restriction and Branching to derive

(A ∨ l1) ∧ (A ∨ l1) ∧ F (b)

from (A ∧ F ). (Restriction is only required ifF contains instances ofl1 or l1; in this case we apply
Restriction underl1 andl1, which yieldsA ∨ F |l1 andA ∨ F |l1 sinceA does not containl1 or l1, and then
Branching in order to derive (b).) Next, we apply Subsumption to derive

(l1) ∧ (A ∨ l1) ∧ F (b1)

from (b). Similarly, apply Restriction and Branching followed by Subsumption to derive

(l1) ∧ (l2) ∧ (A ∨ l1 ∨ l2) ∧ F (b2)

from (b1). Continue in this way (applying Restriction and Branchingfollowed by Subsumption) to derive

(l1) ∧ · · · ∧ (lk) ∧ (A ∨ l1 ∨ l2 ∨ · · · ∨ lk) ∧ F. (bk)

Now by repeated application of Rule R4’ (which we have already shown how to simulate), we can eventually
derive(A ∨ l1 ∨ l2 ∨ · · · ∨ lk) ∧ F from (bk) and (ai), i = 1, · · · , k, as desired.

In the other direction, we want to show howS0,1F2 can p-simulateCC+WSR. We have already proven
thatF2 can p-simulateCC+WS. From this it is easy to see thatS0,1F2 can p-simulateCC+WSR, because
the substitution rules are equivalent.
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6 Conclusions and Open Problems

In this paper, we have initiated a study of the proof complexity of DPLL proofs augmented with various
forms of formula caching. As we have discovered, the complexity of DPLL with caching is surprisingly
subtle and counterintuitive. Naively, we expected that adding caching capabilities to tree-like resolution
would give us the power of general resolution. However, thisintuition is very wrong. In fact, we were
unable to come up with any natural and efficiently implementable version of caching that could p-simulate
resolution. On the other hand, we were able to define a simple and theoretically implementable version of
DPLL with formula caching (FC

W
reason), that is sometimes exponentially more powerful than both Resolution

and Res(k)! Can these advantages be translated to practice? A challenging task would be to develop
an implementation of a variant ofFC

W
reason that would be competitive against state-of-the-art complete

satisfiability solvers.
A number of open problems remain. Most notable are the connections to Resolution. What is the

weakest, if any, of these caching systems that can p-simulate Resolution? It would be particularly interesting
if this could be shown for theFC

W
reason proof system. In the reverse direction, can any of the basicFC, FC

W,
or FC

WS systems be p-simulated by resolution or even regular resolution? Secondly, what is the relationship
between clause learning and formula caching? Because any clause learning proof is a Resolution proof,
FC

W
reason can be much more powerful than clause learning. But what about the reverse direction? Does

FC
W
reason p-simulate clause learning. Thirdly, isCC+WS p-equivalent toF2? We were able to show thatF2

p-simulatesCC+WS, but what about the reverse direction? In particular, can R4’ be simulated byCC+WS?
Finally, how do these systems compare with the backtrackingmodels introduced in (Alekhnovich, Borodin,
Buresh-Oppenheim, Impagliazzo, Magen, & Pitassi, 2005) for solving satisfiability?
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