Electronic Colloguium on Computational Complexity, Report No. 140 (2006)

Formula Caching in DPLL

Paul Beame Russell Impagliazzo
Computer Science and Engineering Computer Science and Engineering
University of Washington University of California
Seattle, WA 98195-2350 USA San Diego, CA 92093-0443 USA
beanme@s. washi ngt on. edu russel |l @s. ucsd. edu
Toniann Pitassi Nathan Segerlirid
Computer Science Department Department of Computer Science
University of Toronto Portland State University
Toronto, ON M5S 1A4 Canada Portland, OR 97207-0751 USA
toni @s.toronto. edu nsegerli @s. pdx. edu

October 27, 2006

Abstract

We consider extensions of the DPLL approach to satisfightéting that add a version ofemoiza-
tion, in which formulas that the algorithm has previously showié¢ unsatisfiable are remembered for
later use. Suclormula cachingalgorithms have been suggested for satisfiability and sitahsatisfi-
ability (Majercik & Littman, 1998; Bacchus, Dalmao, & Pigas2003b). We formalize these methods
by developing extensions of the fruitful connection thad peeviously been developed between DPLL
algorithms for satisfiability and tree-like resolution pfe of unsatisfiability. We analyze a number of
variants of these formula caching methods and charactéréie strength in terms of proof systems.
These proof systems are new and simple, and have a richisute compare them to several studied
proof systems: tree-like resolution, regular resolutgemeral resolutiorRes(k), and Frege systems and
present both simulation and separations. One of our meseisting results is the introduction of a natu-
ral and implementable form of DPLL with cachirfeC'"., ... This system is surprisingly powerful: we
prove that it can polynomially simulate regular resolutiand furthermore, it can produce short proofs
of some formulas that require exponential-size Resolyiioofs.

1 Introduction

Over the last decade, many variations and extensions of DRl been introduced (both for satisfiability
and stochastic satisfiability). A generally useful ideaoistore intermediate results for later re-use as the
DPLL tree is searched. The techniquect#fuse-learningfor which there have been many good implemen-
tations (Marques-Silva & Sakallah, 1996; Zhang, 1997; Meagkz, Madigan, Zhao, Zhang, & Malik, 2001;

*Research supported by NSF CCR-0098066 and ITR-0219468.
fResearch supported by NSF CCR-0098197.

tResearch supported by NSERC and an Ontario PREA Award.
$Research supported by NSF DMS-0100589 and CCR-0098197.

ISSN 1433-8092

Zhang, Madigan, Moskewicz, & Malik, 2001) and which has tationized practical satisfiability solving,
can be viewed as a form efiemoization- saving solved subproblems — of DPLL. In clause learning, th
algorithm stores, in the form of learned clauses, partisiggenents that force contradictions and uses these
learned clauses to augment the clauses of the original farnithis technique, which can be efficiently
simulated by Resolution, has been studied from the poiniest wf proof complexity in (Beame, Kautz, &
Sabharwal, 2004). More generally, memoization is usefal V@ariety of backtracking algorithms. As one
example, (Robson, 1986) uses memoization to speed up a&edky algorithm for maximum independent
set.

The methods that interest us here involve cachingatisfiable residual formulasather than partial
assignments. They were first defined in (Majercik & Littmaf98) where DPLL-based algorithms with
caching are studied and implemented to solve large pras@biplanning problems. In that paper, there
were no analytic runtime guarantees, although the empésalts were very promising. More recently,
(Bacchus et al., 2003b; Bacchus, Dalmao, & Pitassi, 2008@a)et DPLL-based algorithms with caching
for counting satisfying assignments and Bayesian infexearad gave time and space bounds that are as
good as any known algorithm for these problems in terms ohaectivity measure of the underlying set of
clauses/Bayes network.

Thus, while applications of memoization in many differenisgs for DPLL has been studied in the
past, this paper is the first to specifically formalize progftems for SAT based on adding memoization of
residual formulas to DPLL, and to analyze the complexityhufse systems. We present several different
ways to introduce caching of unsatisfiable residual formiméo DPLL algorithms. We characterize the
strength of these nondeterministic algorithms in termsrabpsystems. Then we compare these proof
systems to each other and to standard proof systems. Tlds givairly complete picture of the relative
strengths of the various approaches.

Many of our results are surprising, since at first glancedts®that adding memoization to DPLL cannot
strengthen the system beyond Resolution. One of our masesting results is the introduction of a natural
and implementable form of DPLL with cachin@C\T"e’ason. This system is surprisingly powerful; we prove
that it can produce short proofs of some formulas that regekponential-size Resolution proofs. Thus,
adding formula caching to DPLL is potentially much more pdwithan clause learning, as clause learning
is a form of Resolution.

As mentioned above, our results characterize the relatremgths of various extensions of DPLL in
terms of proof systems. Here we continue the fruitful cotinecbetween algorithm design and proof
complexity found in the formalization of the DPLL approachdgatisfiability testing in terms of tree-like
resolution proofs. In doing so, we view DPLL as a meta-atpani as shown in Figure 1, whose input is
a CNF formulaF'. As written, the stepc¢hoosea literal x” is not fully specified. This is one of many
examples in algorithm design in which there is a single fraork or meta-algorithm with a variety of
options for how this meta-algorithm should proceed at argp@int in its execution. We can thus think of
this meta-algorithm as@ondeterministic algorithmin which the algorithm expresses as a nondeterministic
choice from among the options. In devising a determinidtio@hm within this framework, the algorithm
designer replaces the nondeterministic choices with ohétgstic rules.

The nondeterminism only occurs in the step in which the @lgor chooses the branching literal To
create a deterministic DPLL algorithm, a deterministiceraiust be given for this choice. In the case of
DPLL, such a rule would likely include priority for literala unit clauses which is equivalent to including
explicit unit clause propagation. Beyond this simple preiee, many such deterministic rules have been
suggested over the years, and the performance of DPLL, malpir has been found to be quite sensitive to
the choice of this rule.

DPLL(F){

If F'is empty
Reportsatisfiable andhalt

If F'is contains the empty clause
return

Elsechoose literalx
DPLL(F|.)
DPLL(F[z)}

Figure 1: Generic DPLL Algorithm.

Since there are unlimited numbers of deterministic vessidrseems impossible to exactly analyze all
possible variants. However, the performance of tlhadeterministicversion of this algorithm has been
characterized in terms trfee-like resolution Tree-like resolution is an example of an abstf@opositional
proof systemwhich is an efficient method for verifying proofs in proptsal logic represented in a given
format. A propositional proof system can be viewed altévedt as a nondeterministic algorithm for ac-
cepting propositional tautologies (or, equivalently,utefg contradictions). Proof complexity studies how
the lengths (sizes) required for such proofs depend on thaf pystems being employed. Lower bounds for
the complexity of tree-like resolution refutations (Hak&A85; Chvatal & Szemerédi, 1988; Ben-Sasson &
Wigderson, 1999; Bonet, Esteban, Galesi, & Johansen, et & Galesi, 1999; Ben-Sasson, Impagli-
azzo, & Wigderson, 2000) then can be used to prove the limitatof any deterministic instantiation of
DPLL. Although proof complexity studies refutation and gfcas shown in (Achlioptas, Beame, & Molloy,
2004), the time required by backtracking satisfiabilitycaithms like DPLL is directly dependent on their
efficiency as proof systems. Thus our surprising resultsherefficiency of the formula caching variants
viewed as proof systems suggest that formula caching hotasipe for satisfiability testing as well.

1.1 Outline of Results

We describe our results in terms of the known hierarchy abltg®n-like proof systems: DPLL, which
is equivalent to tree-like resolution; regular resoluti®EG; general resolutionRes(k) for eachk > 2;
depth-2 FregeXs); and extended resolution, which is equivalent to exterfdedie ¢). Most of these
proof systems are axiomatic but as is the case with DPLL, et@ndhinistic satisfiability algorithms can
also be viewed as proof systems so we often refer to suchithliger as proof systems. Proof systems can
be related by a notion of efficient simulation, called p-dimtion, which says that efficient proofs in one
system can be translated to efficient proofs in another systhe definitions of proof complexity, these
proof systems, and p-simulation are given in Section 3.J Hikrarchy above is known to be strict under
p-simulation; in fact, exponential gaps in efficiency arewn between each of its levels.

In Section 2, we describe the various variants of memoizetlD&gorithms that constitute formula
caching. We begin with a basic extension of DPLL to includeaehe of known unsatisfiable formulas,
called FC. This checks its input for membership in the cache beforegeding with the recursive call.
We also define extensions of this system that include moreplicated, but theoretically still efficiently
implementable, checks than membership to derive algosith6Y¥ and FC'V> whereW and S stand for
Weakening and Subsumption, respectively.

In each of these formula caching algorithms, no informatithrer than the cache contents and an indica-
tion of failure is available as the result of a recursive.c@lk also consider an extension of these ideas that
allows the recursive call to return more pointed informatout the reason for failure. When the resulting

3

Proof Systems it Systems it Systems that cannot
System p-simulates cannot p-simulate p-simulate it
FC DPLL REG(Theorem 4.24) DPLL (Corollary 4.18)
FCWs DPLL REG(Theorem 4.24) DPLL (Corollary 4.18)
FCY .on | REG(Theorem 4.9) - Res(k) (Theorem 4.20)
FCWY ;. | REG(Theorem 4.6) - Res(k) (Theorems 4.20, 4.3
FCWVS ... | REG(Theorem 4.6) - Res(k) (Theorems 4.20, 4.3

Figure 2: Relationship of various formula-caching proddtsyns to other resolution-like proof systems.

algorithm incorporates Weakening and Subsumption we mlataialgorithmrC;;,,.,,, that is quite natural

and isS as efficiently implementable BE" but which we show to be much more powerful tha@" (or
FCWS).

The formula caching systems with reasons suggest thatithevasiderable scope for a clever algorithm
designer to incorporate memoization in ways that cannoffimesitly simulated in the systems above. We
design systems to represent the “ultimate limits” of thewens of memoizationfC\Y ., andFC\Y>
in which the algorithm nondeterministically anticipaté® tcached contradictions that will be Weakened
and/or Subsumed to determine unsatisfiability of its ingtitwould be highly non-trivial to incorporate
these features into an existing DPLL algorithm. Howeverfea that any algorithm that somehow incor-
porated memoization of cached contradictions into DPLL lekqurobably be efficiently simulated by our
FC,onde: Systems. Thus, bounds on the strength offGg,,, ;.. Systems are bounds on the potential of the
memoization technique.

From their definitions it is clear that as proof systems with same optiong for Weakening and
SubsumptionFCT is p-simulated byFC ..., which is in turn p-simulated byCT ... and if neither
Weakening nor Subsumption is allowed then e, ,,,, andFC,,,,4.; coincide withFC.

In Section 3, after giving a detailed overview of proof coaxily definitions and the standard axiomatic
proof systems related to resolution we define our pemtradiction cachingixiomatic proof systemSC+T.

We then relate these contradiction caching proof systertigetoC algorithms viewed as proof systems and
show that they are equivalent to the correspondifig),, ;., proof systems. In Section 4, we compare these
systems to each other and to the standard resolution-lidef giystems. For the most interesting systems,
our results can be summarized in Figure 2. In Section 5, wiystgeneralization of th€C andFC systems
where we add a simple for (for Restriction) of the substitution rule, and prove théthwvthis addition, it

is p-equivalent to Extended Frege. We conclude in Sectioitférelated results and future directions.

History and Errata

The present paper is based on a conference paper (Beamelibmpa, Pitassi, & Segerlind, 2003) in which

we more prominently used the Restriction ruR),(discussed here in Section 5, in order to efficiently sim-
ulate general resolution. In that paper we incorrectlyneéad that the contradiction caching proof systems
CC and the formula caching proof systef@"V> _involving both Subsumption and Restriction have the

reason

subformula property. It turns out that of these ofl§ and CC+W have the subformula property. The

subformula property, which is also sharedfy, FC", and our revise&C)Y .,

Lemma 4.15 and the resulting exponential separations leetyweof systems.

The fact that Restriction does not have the subformula ptppeakes it much more powerful than we
had anticipated. It was brought to our attention that usorgradiction caching with this rule one can derive
a renaming rule and thus, for example, obtain efficient gradfthe pigeonhole principle, contrary to our
mistaken claim that all of th€C systems, including the strongest o€,+WSR, could be p-simulated by
depth-2 Frege systems. The™rule is in fact quite powerful. We correct our error by progiin Section 5
that CC+WSR is actually p-equivalent to the Extended Frege proof system

In addition to the above changes, we have modified the defisitof the formula caching proof systems
that extendFC so that the algorithms are not required to check the cachadgra formula to the cache)
on each recursive call. This better reflects what one woulith ghoactice but it also seems essential for the
systemFCY to simulate regular resolution as we now show in Lemma 4.9.

reason

is critical for our present

2 Memoization and DPLL: Formula Caching

Memoization means saving previously solved sub-problemdsuaing them to prune a backtracking search.
In the satisfiability algorithms we consider, this will mestoring a list of previously refuted formulas
and checking whether the unsatisfiability of some formul#him list allows us to conclude easily, before
branching, that our current formula is unsatisfiable.

A pure backtracking algorithm usually corresponds to alikeeproof system, since the recursive refu-
tations are done independently and not reused. Our origihgtion was that introducing memaoization
into a backtracking algorithm would move from a tree-likogf system to the corresponding DAG-like
system. However, the real situation turns out to be somemlboa¢ complicated. There are actually several
reasonable ways to introduce memoization into DPLL. Nonthein seem to be equivalent to DAG-like
resolution, and many move beyond resolution.

Basic Formula Caching The basic idea of the simplest memoized version of the DPgbréghm, is as
mentioned above to record the unsatisfiable residual fasfolund over the course of the algorithm in a list
and before applying recursion to include checking the tistee if ' is already known to be unsatisfiable.
This yields the algorithm of Figure 3 whefeis the cache of residual formulas known to be unsatisfiable.
Satisfiability is determined by callingC (F',0).

While we presenEC as a nondeterministic algorithm, one can also view it as glsitnansformation for
deterministic DPLL algorithms. We simply replace the naedministic branching rule with the rule used
by the DPLL algorithm and add some heuristics @ache-AddandCache-Checkhat would decide for the
purposes of memory and time efficiency whether or not to cactestricted formula and would determine
whether it is worthwhile checking the cache. Checking theheavould be particularly simple using some
form of hash table.

This is a straightforward way of adding memoization to DP&imilar to other uses of memoization in
backtracking for other problems. For example, Robson’simarm independent set algorithm maintains a
cache of medium-size subgraphs with known bounds on thetirmen independent set sizes, and checks
if the current subgraph is in the cache.

We call the nondeterministic algorithm above, viewed asoafsystemFC. It is obviously at least as
powerful as DPLL, since the presence of the cache only prorexhes, never creates them.

FC(F, L){
If F'is empty
Reportsatisfiable andhalt
If F' contains the empty clause
return
/I Optionally check ifL trivially implies thatF' is unsatisfiable
Else If Cache-Checknd F'is in L
return
Elsechoosea literal x
FC(Fl,,L)
FC(F|zL)
If Cache-Add
Add Fto L}

Figure 3: The basic Formula Caching algorith@ache-CheclandCache-Adddetermine whether or not to
check the cache faF' or addF' to the cache, respectively.

FCW(F, L){
If F'is empty
Reportsatisfiable andhalt
If F' contains the empty clause
return
/I Optionally check ifL. trivially implies thatF' is unsatisfiable
Else If Cache-Checlknd F' contains all clauses of some formulalin
return }
Elsechoosen literal x
FCY(F).,L)
FCY(FlzL)
If Cache-Add
Add F'to L}

Figure 4. Formula Caching with Weakening

Formula Caching with Weakening Once we have the notion that we are checking the formildgainst a
cache of known unsatisfiable formulas there are other rlatleded checks that we might do. For example,
it may be the case thdt contains all the clauses of some formula in the fistWe can check this in time
that is polynomial as a function of the size of the form#land listL. We call such a test@eakeningest.
This leads to the algorithiiC" given in Figure 4.

Formula Caching with Weakening and Subsumption There is another way that the unsatisfiability of
F can trivially follow from that of some formula ifh. Given clause$’ andD such thatC subsume®, i.e.
C C D, we have thaC is a stronger constraint than. Therefore adding a subsumption test to Weakening
we obtain an algorithm we denok€> where the check whethér trivially implies F' asks‘ls there is a
formulaG in L such that every clause 6f contains a clause af'?” Again this is polynomial as a function
of the sizes off" and L.

Weakening and Subsumption are very natural additions toragized backtracking algorithm. Among
other benefits, they allow a limited amount of “without logggenerality” reasoning in addition to logical

FCYS(F, L){
If F'is empty
Reportsatisfiable andhalt
If F' contains the empty clause
return
I/ Optionally check ifL trivially implies thatF' is unsatisfiable
Else If Cache-Checknd there is & < L such that every clause 6f contains a clause df
return
Elsechoosea literal x
FCY*(F|,.L)
FC"S(Flz.L)
If Cache-Add
Add F'to L}

Figure 5: Formula Caching with Weakening and Subsumption

implications of the constraints, because branches doadniay earlier ones get pruned. To see how they
can capture such “without loss of generality” reasonings itonvenient to consider another context. For
example, consider a simple backtracking algorithm for figdan independent sét of size k in a graph
G, branching on a node with one neighborV (z) = {y}. We will argue informally, using a memoized
backtracking algorithm with Weakening and Subsumptioat thithout loss of generality, the algorithm
should includez in the set. The algorithm first branches on whethee S, then on whethey € S,
exploring thex € S branch first. The branckh € S forcesy ¢ S, so the sub-problem is to find an
independent set of size— 1 in G — {z,y}. Assume that this recursive search fails. The branch S,
y ¢ Sis to find an independent set of siken G — {z,y}, a strengthening of the failed branch that gets
pruned by Weakening and Subsumption. The final branghS,y € S is to find an independent set of size
k—1in G—{z,y} — N(y) where, again a strengthening of the failed branch. Only thedh wherer € S
gets recursively explored.

As the above example illustrates, when we have Weakeningsabdumption, the order in which the
algorithm explores branches matters. So, in addition totarehénistic branching rule, we would need a
heuristic to determine the order of branches to construeterchinistic version oFC"/.

Formula Caching with Returned Reasons for Unsatisfiability One drawback of even the strongest basic
systemFCV® is that some potentially useful information about unsatisé formulas may be available to be
learned but may be lost on the return from a recursive caliekample, if for some formul&’ the restricted
formula F'|,, has a small unsatisfiable subformdlaand F'|z has a small unsatisfiable subformutathen

F will have a small subformula whose restrictions undemdz containG and H respectively. However,
FCWS will learn the formula containing all of’, not just this subformula. In order to take advantage of
this kind of information we can augment the algorithm witheturn value consisting of a formula giving a
“reason” thatF is unsatisfiable. We describe this as an extensidrCf in Figure 6. We will see that this

is strong enough to simulate regular resolution efficiently

Formula Caching with Nondeterministic Rules Given that we are using a cache of unsatisfiable formu-
las to prove that a formula is unsatisfiable, we may wish tdyajye rules such as weakening, or subsump-
tion a little earlier in the process so that we can be moreieffiat generating formulas that we previously

FcW

reason

(F, L){

If F'is empty
Reportsatisfiable andhalt

If F' contains the empty clause
return (A)

I/ Optionally check if. trivially implies thatF is unsatisfiable

Else If Cache-CheckndF' contains every clause of some formulalin
Selectsome such formuld in L

return (J)
Elsechoosea literalz

G <_FCY‘\L(Lson(F‘|-’lClL)

H <;ch\éason(F‘|E!L)

I /\CGFﬂGﬁH ¢
J—INAcenni(@VO)N@TVCO)ANcean@VO)A Ncemg(@ Vv C)
If Cache-Add

AddJto L
return (J)}

Figure 6: Formula Caching with returned reasons for urfsatbisity.

have seen to be unsatisfiable. We could for example allowigfogithm to nondeterministically apply weak-
ening at any point in the algorithm. This is a generalizatibrthe usual pure literal rule of DPLL which
allows one to remove clauses containing a literal that acounty positively (or only negatively) in the for-
mula. (Of course, a bad early choice of weakening may suggisfiability when that is not the case,
but the system will remain be sound for proofs of unsatiditghi Similarly, we can define an algorithm
FCWS .. that, as well as allowing the removal of clauses, also allamsclause of” to be weakened by
adding extra literals to it. We give a descriptionFd."> ., in Figure 7; the other algorithms can be obtained
by deleting appropriate lines.

Fc\rlzvosndet(Fi L){

If F'is empty

Reportpossibly satisfiable andhalt
/INon-deterministic reverse weakening
Remove some subset of clauseg ¢possibly none)
/INon-deterministic reverse subsumption
For each clause of', add some variables (possibly none)
/I Check if L trivially implies that F'is unsatisfiable
If F' contains the empty claugeor F'isin L

return
Elsechoose a literat:

FCYX)S'rLdet(Flva)

FCronder(Flz.L)

nondet

Add F'to L}

Figure 7: Formula caching with nondeterministic applicatof Weakening and Subsumption.

If FCWVS . . completes without reporting thdt is possibly satisfiable theR will be unsatisfiable. It is

nondet

immediate that as a refutation syst&@""'>

WS i IS at least as powerful &CYYS. It could possibly be more
p0\\//vverful, since the weakened formula is remembered for tege. SimilarlyFCY . efficiently simulates
FC™.

It may seem that some of these new systems allowing nondeistim manipulation ofF" itself are a
little unnatural. However, we shall see that they corredpdinectly to the extremely natural contradiction
caching inference systems for unsatisfiable CNF formulas we define in the next section. Also, rea-
soning about such systems covers many algorithms that mearehes based on reasoning that identifies
unnecessary constraints, e.g, the pure literal rule oeitegalization to autarchs (Monien & Speckenmeyer,
1985), or deleting a node of degree 2 or less from a 3-colgringlem. While such weakening only guides
the choice of branching variables in a pure backtrackingcke@aching the simplified formula may make
a more dramatic difference. In fact, we shall see #@{ ., is surprisingly powerful; in particular it is
capable of refuting formulas that are hard for systems moweepful than resolution.

3 Axiomatic Proof Systems

3.1 Proof Complexity

We review the basic definitions of proof complexity and gieeng important examples of propositional
proof systems. Propositional proof complexity is often wiedi in terms of proofs of tautologies but, singe
is a tautology if and only if- is unsatisfiable, propositional proof systems are equiigistated in terms
of proofs of unsatisfiability (refutations) of propositarformulas. Furthermore, following the usual argu-
ments that it suffices to decide satisfiability for CNF forasjlwe obtain the following standard definition.

DeFINITION 3.1. A proposition proof systenfor refuting CNF formulas is a polynomial time algorithm
V (a verifier) such that for all CNF formulag, ¢ is unsatisfiable if and only if there exists a strifig(a
V-refutation ofy) such thatv accepts inputyp, IT).

This definition is very similar to the standard definition ariiers for NP except that it allows the
algorithm’s running time to be polynomial in the sizeléfand does not place any limit on this size. We
often specify a proof system simply by describing a format for itg-refutations, assuming that this format
is easy to check.

The following definition allows us to define and compare tHieiehcy or power of proof systems.

DEFINITION 3.2. Given a proof systei for refuting unsatisfiable CNF formulas, let(F') be the minimum
size (length) of &-refutation of F. For two refutation/proof systems; andV,, we say thawv/, p-simulates
V. if for every unsatisfiable formul#’, if there is aV; refutation of £’ of lengths, then there is also &5
refutation of F' of size polynomial irs and the size of’. V; andV, are p-equivalentf V; p-simulatesvy
and converselyy, p-simulatesv;.

Any complete (deterministic or nondeterministic) algamit A for SAT corresponds to a propositional
proof systemV 4 whose refutations have size essentially equal to the rgniiine of A on unsatisfiable
formulas: TheV 4-refutation of such a formuld’ is a transcript of the execution of that fails to find
an assignment foF'. (The transcript size is actually the product of the time #rel space used by the
algorithm.)V 4 simply checks that this transcript correctly follows For simplicity we used itself to refer
to this proof system. One such example is DPLIDRLL refutationof an unsatisfiablé” is a complete
DPLL search tree on input.

A resolutionrefutation of a CNF formula” is a sequence of clausés, ..., C,. = A whereA is the
empty clause and eadly is either a clause of' or follows from two previous clauses;, Cj, for j, k < 4

9

by theresolution rulewhich says that for any variable and any disjunctions of literald and B one can
derive the claus€A Vv B). from clauseg A Vv z) and(B V —z). (This derivation is called ‘resolving arf
and(A Vv B) is called the resolvent.) Since Resolution is sound and &etmft forms a propositional proof
system for refuting CNF formulas.

The inferences in the resolution refutation form a direchegiclic graph (DAG): the nodes are the
Ci,...,C. = A and for eachC; derived fromC; and C, there are edges fror@; to C; andCy,. A
tree-like resolutiorrefutation is a Resolution refutation in which this grapihfie a directed tree (each node
has in-degree at most one). Itis well known that as a proaésy®PLL is equivalent to tree-like resolution,
cf. (Urquhart, 1995).

Another natural special case of resolution is cafeglilar resolution In a regular resolution refutation,
if a clauseC; is the result of resolving away a variablethen no clause derived frofi; can contain the
variablez, i.e. there is no path in the graph of inferences between lauses that are the result of resolving
on the same variable. Optimal tree-like resolution refatet are regular. Regular resolution is therefore
at least as efficient as DPLL but it also covers the originali®&utnam proof system (Davis & Putnam,
1960) and can be exponentially more efficient than DPLL (B@tel., 2000). In turn, general resolution
can be exponentially more efficient than regular resolufidiekhnovich, Johannsen, Pitassi, & Urquhart,
2001).

One can define more general inference systems for refutirgfGhhulas by allowing inference on more
complex objects than clauses. In particular, for posititegerk, Res(k) is a proof system that is a system
of inferences like resolution but it allowsDNF formulas as objects instead of clauses. In this sysbemet
is an inference rule derivingA Vv By V...V By) from (AV (z1 A ... x)) and(By V —x1), ..., (B V ~xk)
and rules for the distributive lawsRes(1) is easily seen to be the same as resolution. It is known tiat fo
anyk, Res(k + 1) can be exponentially more efficient thRes(k) (Segerlind, Buss, & Impagliazzo, 2002).

More general still is the following systeth, which is a standard depth-2 refutation system (sometimes
called depth-2 Frege) for CNF formulas defined in (Pitassi§uhart, 1995). Note that, unlike resolution,
which has an implied conjunction between its clauseg,ineach formula in the proof is self-contained and
is itself a CNF formula.

DerINITION 3.3. (Pitassi & Urquhart, 1995)F; is a refutation system for CNF formulas. Letenote a
variable; let A and B denote a disjunction of literals, and Iét and G denote CNF formulasF; has a
single axiom schem#z A), and the following 5 rules:

RO: ANANF — AANF

R1: F—-FAB

R2: (AVB)ANF — AANF

R3: (AANF),(BANF)— (AVB)AF
R4 FA(x),GA(T)— FAG

An F, refutation of a CNF formula is sequence of CNF formula8j, F», ..., F,. = F, each of which is
either an axiom or follows from previous formulas by one effh inference rules.

Cook and Reckhow, who originally formalized proof comptegxdefined two of the most important and
general classes of proof systems, Frege and Extended Fieafs fCook & Reckhow, 1977 fregeproofs
follow the pattern of standard axiomatic inference systasi F, above. However, they allow arbitrary

10

propositional logic formulas rather than being restridiedepth-2 formulas. (As shown in (Cook & Reck-
how, 1977), any sound and implicationally complete setsfgfence rules yield equivalent proof systems.)
This ability to allow more complicated intermediate formsilyields a proof system that is exponentially
more powerful tharf;, (Buss, 1987; Beame, Impagliazzo, Krajicek, Pitassill#y & Woods, 1992).

Finally, in addition to the proof rules of Frege systefagtended Fregeroofs allow the introduction of
new extensiorvariables to stand for entire formulas as the proof proce&lss introduction is standard in
mathematical arguments. Extension variables may maked prach more concise and can be viewed as
allowing Boolean circuits as objects in proofs. Simply aflog these extension variables is very powerful:
By augmenting ordinary resolution with an extension rulee aerives a proof system called Extended
Resolution which is equivalent in power to Extended Freg®psystems.

3.2 Contradiction Caching Inference Systems

We now define several inference systems for unsatisfiabhauiais that are closely related to some of the
formula caching algorithms in the previous section. Thexctgj of these proof systems will be conjunctive
normal form (CNF) formulas. CNF formulas will be assumed &dets of clauses and clauses will be
assumed to be sets of literals so the order of clauses anr@ldi within each clause is immaterial. In the
following, z, ¥, z denote literals which can be variables or their negationg; will denote CNF formulas
andC, D, E will denote clauses. (A clause also can be viewed as sim@e cha CNF formula.) The
(unsatisfiable) empty clause will be denotked

DEerINITION 3.4. Given a formulap and literal = (or), the formulay|, (respectivelyy|z) denotes the
simplified CNF formula in which all clauses containing@respectivelyr) have been removed and all clauses
containingZ (respectivelyr) are shortened by eliminating that literal. More generalijjven a sequence of
literals zyz, for example, we write|,,. = ¢|.|,|. and for a clause” we identifyC with the sequence of
negations of the literals i’ and definep|~ to be the restriction of in which every literal ofC' has been
set to false.

We define several related proof systems for showing that GixRdlas are unsatisfiable based on the
following inference rules.

1. Axiom 4 A

2. Branching ¢|.,¢|z - ¢ wherez is any variable ang is any CNF formula.
3a. Limited Weakening A 4 A A ¢ wherey is any CNF formula.

3. Weakening ¢ -1 ¢ A ¢ wherey andiy are any CNF formulas.

4. Subsumption o A C 4 o A D whereD C C are clauses and is any CNF formula.

DEFINITION 3.5. A CC (contradiction cachinglefutation of a CNF formuld” is a sequence, ..., ps =

F of CNF formulas such that each for < > 1 follows fromy;, j < i using one of the proof rules (1)-(3a):

Axiom, Branching, and Weakening. If in addition we allow edorms of the Weakening rule (3), or the
Subsumption proof rule (4), we denote the system by someratinh of CC+ some combination of letters

W andS.

11

4 The Relative Complexity of Caching Proof Systems

Figure 8 shows the relative complexity of our two new typesathing systems compared with stan-
dard proof systems related to resolution. Two proof systeiitisin the same box indicate that they are
p-equivalent. An arrow from proof syste¥fy to V; indicates thaV, p-simulates/;. An dashed arrow with

a slash fronV; to V, indicates thaV/; does not p-simulat¥s.

In order to present a more manageable view of the hierarclpyanff systems, we concentrate on the
main systems only in Figure 8. In particular, we could havespnted more variations of ti€ and CC
systems, augmented with every possible subséi\gfS}. However, becaus#’, and S are tractable, we
chose to include either botif¢*¥> and CC+WS) or neither of themRC andCC). In practice, this makes
sense since adding both to the system is nearly as efficiemtdisg only one. However, when we state our
simulations and separations, we will present the weakestilple system necessary for any upper bound,
and the strongest possible system for the lower bounds.

4.1 Simulations between Proof Systems

Immediately from their definitions, we have the followingsga-simulations.
Proposition 4.1. LetT C {W, S}, and letT’ C T. Then we have the following simulations:

. CC+T p-simulatesCC+T".

T/
nondet*

. FCT . 4e: P-sSimulatestC

T/
reason*

p-simulatesC

reason

. FCT p-simulatestC™".

T
reason*

1
2
3. FC;,
4
5. FCY et P-SimulatestC

It is clear that the basi€C proof system can efficiently simulate the execution of any.DRIgorithm,
and thus can p-simulate tree-like resolution proofs. (Thim# and Limited Weakening together simulate
the action at the leaves and the Branch rule simulates tienaat the internal nodes of the proof.) Also,
becausd-C is a generalization of DPLLEC p-simulates DPLL. Thus we have the following lemma.

Lemma 4.2. BothCC and FC p-simulate DPLL.
We now show how th&C andCC systems are related to each other.

Theorem 4.3. For any T C {W, S}, CC+T is p-equivalent t&C . .. In particular,

nonde

1. CCis p-equivalent td-C.

2. CC4+W is p-equivalent td&=C

nondet*

3. CC+WS is p-equivalent t&-CV>

nondet*

Proof. We first do the forward directions: We construct e&¢IiT proof to consist of the formulas in the
cache o C .., execution in the order in which they were added. To show@atan efficiently simulate
FC, observe that in an execution BE, each recursive call adds precisely one formuld tand each such

formula F' is derivable either because it contains the empty clauard therefore follows from the Axiom

12

Extended Frege
CC+WSR
A

I
AN
I
1

Y

Depth 2 Frege

CC+WSs
WS R
FC hondet o
A
|
—
N [
cctw T
W |
! w
FCnondet - FCreason

>

Regular
Resolution(REG)

Tree Resolution(DPLL)

Figure 8: The Relative Complexity of Caching Proof SysteBalid arcs denote p-simulation. Dashed arcs
with slashes denote exponential separation.

13

of CC via one step of Limited Weakening, or as the resulfdf and F'|z being in L and therefore follows
via one Branching step. SimilarlgC+W can p-simulatéC"Y . .. andCC+WS can p-simulatéC'V> . .
If some formulaF”’ was derivable from¥ by nondeterministic Weakening, then this can be simulated b
a weakening step diC+W. Similarly, nondeterministic subsumption can be simuldig a subsumption
step of CC+WS. Thus it is left to show thakC] ., can p-simulateCC+T.

Let F' be the goal formula foEC+T which will be the input forFC! ... Draw the directed acyclic
graph (DAG) of inferences in thi€EC+T proof with edges directed from each formula back to its an-
tecedents. Remove all formulas in the proof that are nothadale from the goal formul&’; by construc-
tion, this is still aCC+T derivation of . We apply induction on the size 6fC+T derivations and assume
by induction that at each point in a post-order traversahisf DAG, the cachd. of FC! ... contains the
formulas for all Branching nodes in the DAG that have beely fexplored up to this point.

The FCT ... algorithm will follow a depth-first traversal of this DAG andake a recursive call to
FCT . 4: on the input formula, and on the formula for each child of ahdrgree two (Branching) node in
the DAG. Lety be such a formula. We describe the execution of the recuesiV&C] (¢, L):

Consider the path of out-degree one nodes in the DAG frota the first nodey that containsA or
is the result of a Branching inference (out-degree 2).o(Hlready containg\ then this path is empty and
¥ = ¢|,.) This (possibly empty) path contains only inferenced int is easy to see that any sequence of
Weakening inferences in@C+W derivation can be simulated by a single instance of the rnenakénistic
reverse weakening fromto in FC\Y . . any sequence of Subsumption inferences irCiGie-S derivation
can be simulated by a single instance of the nondeterninissierve subsumption frogto ¢, and that any
interleaved sequence of Weakening and Subsumption irdfiesén aCC-+WS derivation can be simulated by
a single instance of nondeterministic reverse weakenitigyfed by nondeterministic reverse subsumption
in FCYS . .. Thus, in any cas&C . . can produce the sameas in theCC+T derivation.

If the formulay> containsA (it is an axiom or follows fromA by Limited Weakening) then the call
FC naer (9, L) will return without finding a satisfying assignmentgo If the node with the formula in
the DAG is the result of a Branching inference and has beénduplored then by the inductive assumption
¢ is in the cachd. and the callFC] ...(¢, L) will return without finding a satisfying assignment for
Otherwisey is the result of Branching inference on some variableit has not yet been fully explored. We
can suppose without loss of generality that the depth-fiassetsal visits the node labeled, before|s.
Then sincey is not in the cache, the execution B, (¢, L) can choose this literat and therefore

nondet

make recursive calls t6C/ ... (¥, L), followed by FCT ... («|z, L). By the inductive hypothesis both
calls return without finding a satisfying assignment and fmfthulas to the cache for all fully explored
branching nodes below them. FinalRC . .(p, L) adds the formulab to the cache, finishes exploring
the descendants @f and returns without finding a satisfying assignmentgorThis yields the claimed
property forL as a result of this recursive call. The number of recursiVie chFC is at most the size

nondet

of the CC+T derivation and each recursive call can be efficiently siteola O

We prove that botl€ C andCC+W have thesubformula propertyvhich can be useful for understanding
the structure of proofs. It does not seem tG&t-WS has the subformula property; one symptom of this is
the fact that in a&CC+WS proof, it is possible to branch on a variablanore than once along a path in the
proof DAG.

DEFINITION 4.4. A CNF formulaF is asubformulaof another CNF formula? if every clause of ' is con-
tained in some clause 6. A CNF refutation syste has thesubformula propertyf for any unsatisfiable
formula F there is a refutation of” of size at mosty (F') such that every line is a sub-formula bf

Lemma 4.5. CC and CC+W have the subformula property.

14

Proof. Let y be derived fromp; andy- via a sound inference rule. The rulenimnotondf for every clause
C'in 1 Or vy, there is a claus€” in ¢ that containg”. It is easy to check that all rules @fC andCC+W
are monotone, and thus any derivatiorCia or CC+W is monotone. Now from this it is easy to see that the
subformula property holds. Suppose for sake of contramtidthat that we have @C+W (or CC) refutation
of F, and further assume that some intermediate forrmauia not a subformula of".

Then there is there is some clausef F' that is not contained in any clause@f But this contradicts
our monotonicity condition. O

Next we will prove thalCC+W has at least the power of regular resolution.
Theorem 4.6. CC+W p-simulates regular resolution.

Proof. LetC = C1,...,Cs = A be aregular resolution refutation 61 The structure of this refutation can
be revealed by viewing the refutation as a directed acychplyP. Each node inP corresponds to a clause
from C; the root node (the node with indegree 0) corresponds tortigyeclauseC; = A, and each leaf
node (nodes with outdegree 0) corresponds to a clause ftolirclauseCy, is derived from clause§’; and
Cj in C, then there are directed edges fraipto C; and fromC), to C.

For each claus€’ in the refutation, defin&”’(C') to be the set of variables queried at descendants of the
node corresponding 10 in P. By the read-once property éf, any variable in/’(C') cannot appear on any
path from the root t@' in P. For each such clausg, defineF'# to be the CNF formula consisting of the
clauses of'|7 having variables only iV’ (C').

We will show how to derive the sequené&#c,, ..., F#c, = F#a which will be enough to derivé’
in one more step sincE is (at worst) a weakening df#,.

If C'is a clause of, i.e. aleaf in the proof, theA'#¢ contains the empty clause and we can derive it
in two steps using the Axiom and Weakening.

Suppose”’ = (A V B) is the resolvent of A vV z) and (B V) in the proof and that we already have
derivedF#(AVx) andF#(sz).

Since every literal iC" = (A v B) appears on every/some path from the root to the node obr-
responding toC', no variable inA or B appears inV’(A Vv z) or in V(B V T). ThereforeF# 4.
does not contain any variable frof and F'# g,z does not contain any variable from. Therefore
F#t(ava) |5 = F#ave)

Now every clause of # 4v,) = F'#(ava) |5 is aclause 0F|m by definition. Furthermore, since

V(A Vv x) is a subset o¥/’(C), each clause of # 4., is also entirely defined oi’(C). Therefore by

one step of Weakening frofi# 4., we derive the CNF formula consisting of the clauseﬂ?fm =

(F|z)lz that only contain variables i’ (C). Similarly by one step of Weakening froffi# .z, we can

derive the CNF formula consisting of the clausefw = (Fl|z)|. that only contain the variables in

V'(C). Finally, using the Branching rule we derivé# . O

CC+W is equivalent toFCY . . which does not seem to be particularly implementable. As e w
see in Section 4.2, if we consider only the baB&" proof systems we will not be able to match the
power of regular resolution. However, when we augment féaoaching by having it return the reason for
unsatisfiability as well as the mere fact of unsatisfiahilite can still efficiently simulate regular resolution
(and much more as we will see shortly). To do this we first méeefollowing observations about the

execution offCW

reason*

W .
reason, ON INPUtE” as a

The label of a node associated

DEFINITION 4.7. Define thedynamic programming DAGf an execution ofC
(directed acyclic) graph with a node for each recursive cadide byFC"’

reason*

15

with a recursive call for formuld” is a pair (F’, J'). Some nodes will also be tagged with variable names.
The graph is built as the algorithm proceeds. Consider threzation of a recursive call of”. We have the
following cases:

e If F’ containsA then label the node withF’, A); the node will have no out-edges and therefore will
be a sink in the DAG.

e If Cache-Check was true for this call and a reasénhfor the unsatisfiability ofF” was found and
returned from the cache then label the ndd€, J’). There must have been some previous recursive
call on F” on which Cache-Add was true that causEdo be placed in the cache. Add an edge from
(F',J") to the node for the recursive call dfi’. (It is possible that™”’ = F”.)

e Otherwise, letr be the literal chosen for branching. Tag the node fdrwith this variable. Add an
edge (the left edge) to a node for the recursive calFdp, finish that recursive call, add an edge (the
right edge) to a node for the recursive call &1z, and label the node for this call of’ with the pair
(F',J") whereJ' is the reason returned by the call on inp#it.

We say that a formulé& is astrengtheningf a formulaH if and only if H is a weakening of.

Lemma 4.8. In the dynamic programming DAG for an executiorFat" ... (F, (), if a nodew is labeled
(F',J") then

(a) J'is the reason returned on the associated recursive cali’oim this execution,
(b) if v has outdegree 1 then it points to a node labgled, .J') of outdegree 2, and
(c) J'is a strengthening of”.

Proof. Part (a) is immediate from the definition. Part (b) followscs any node of outdegree 1 points to a
node for a call in which a formula was placed in the cache, whitdy happens at branching nodes.

We prove part (c) by induction starting at the nodes of outgle® in the dynamic programming DAG.
Nodes of outdegree 0 have labéls', A) such thatF” containsA. This clearly satisfies (c). We now have
two cases:

The node labeledF”’, J') has outdegree 1 and results from a cache hit that retufheBince this is a
cache hit,F” must be a weakening of so (c) holds.

The node labeledF”, J') has outdegree 2 and results from combining the recursile feal /|, and
F’|z. This node is tagged with the variableinand the two nodes it points to are labelgd|.,G’) and
(F'|z, H') for someG’ and H'. We apply the inductive hypothesis to each of these nodgsarticular, all
clauses inG’ are inF’|, and all clauses if{’ are inF’|z. By construction, if a claus€ occurs inG’ but
not H' thenC'is in F’|, and(C V T) must be a clause if”. Similarly if a clauseC' occurs inH’ but not
G’ then(C' V z) must be a clause ifi”. If C occurs in bothG’ and H' then it occurs in botl#”|,, and F'|z.
Therefore eithe” occurs inF’ or both(C' Vv z) and(C' Vv T) occur inF’. Therefore by the construction of
J'intheFCYW . code, every clause of is in F” and (c) holds. O

reason

Theorem 4.9. FCW

reason

p-simulates regular resolution.

Proof. We follow the general pattern of the proof of Theorem 4.6. Wsatibe an execution ¢iC . -

on input ' so that the dynamic programming DAG of tRE)Y . execution is essentially the same as the
regular resolution DAG refuting’ (and is constructed as a depth-first search of that DAG). Mozeisely,

16

we will prove inductively that the branching nodes of the ayic programming DAG are in a 1-1 corre-
spondence with the non-sink nodes of the regular resol&@ such that a node labeled by cladsén the
regular resolution DAG corresponds to a branching node latikl (7|5, Jp) such that (1)D containsC,

(2) D is disjoint fromV’(C) (and thus, by (1) and (2] #¢ is a strengthening aF'|3), (3) Jp is a strength-
ening of F'#, and (4)Jp is in the cache when the call for that node completes. Sindeehyma 4.8(b)
nodes of outdegree 1 can only occur singly between pairstdegtee 2 nodes, this will show that the size
of the dynamic programming DAG will be linear in the size ok ttegular resolution DAG. The theorem
will follow since the running time oFCYY,.is polynomial in the size of its dynamic programming DAG
and the size of the input formula since it has one node for ezmirsive call.

To define the execution, we follow the depth-first search efrégular resolution DAG from the root
labeledA. In this executionCache-Addwill aways be true. Observe that the initial call €Y . is on
the formulaF'|; = F as required for the roots to correspond. Consider a nodéethloefor which the
corresponding recursive call afij; has been made byCY ... If C is a clause off" then for anyD
extendingC, F'|;; will contain A and the corresponding node will be a sink in the dynamic @ogning
DAG. If C' is a derived clause of the regular resolution proof thers- (A Vv B) is the resolvent of some
pair of clauseg A v z) and (B V T) where(B V) is the first of the two children of' to be explored in
the depth-first search of the regular resolution DAG. In tkecation of FC)Y, . . on input F'|5, we select
Cache-Checko be false;x to be the literal chosen, ar@iache-Addo be true. (We can still choosesince
its variable is inV’’(C') which is disjoint fromD.)

FCW ... Will first make a recursive call 00F|5)|.. By the argument in the proof of Theorem 4.6,
(F|z)|z is a weakening of'# pyz). SinceD containsC' and the variables il are disjoint fromV’(C'),
(F|p)|. contains all clauses if¥'|7)|, onV'(C). Therefore, sinc&”’ (B V) is asubset oV ’'(C), (F|p)|.
is a weakening of'# 7). Also, any variable i{D v 7) but not(B Vv 7) is disjoint fromV’(B V T).

If (B V) is a clause in the proof that has not yet been explored theraweaply the above argument
inductively for (B Vv 7) and the call onﬂm = (Flp)|. to return some/p:.

If (B Vv 7) is a clause in the proof that has previously been explored Itlyethe inductive hypothesis
that node is labeled by a pdif|5, J5/) such thatD’ is disjoint fromV’(B v T), J5 is a strengthening of
F#pyz, andJ is in the cache. Therefore on the c@ll|5)[, we selectCache-Checko be true. In this
caseF'|5|, will be a weakening of/» so we select/p: to be returned from the cache as the reason for the
unsatisfiability ofF'|5. Thus the node in the dynamic programming DAG for this CAlls) |,
will be Iabeled(F\m, Jpr) and return.

After the return from the call oF'|5)|., the same argument is applied to the other cal(Bfy;)|z to
derive that it returns dp~ that is a strengthening df# 4./,)-

Thus the reasongp, and.Jp« returned from the two recursive calls strengttiest gy z) and F'# 4v.),
respectively. Then, by construction, the clauses of thedite./p = J that is returned from the call ofi|5
are defined oV'(C) = {z} UV'(AV z) U V(B Vv T) and by Lemma 4.8(c) they are containedFify.
SinceD is an extension of that is disjoint fromV’(C'), F#¢ is precisely the set of all clauses Bf that
are defined oiv’(C) and thusJp is a strengthening of #¢ as required. Sinc€ache-Adds true,.Jp will
be in the cache when this call returns. O

- F’(sz)

The following lemma shows that, can p-simulateCC+WS, and therefore all of the caching systems
introduced so far can be p-simulated By.

Lemma 4.10. F, p-simulatesCC+WS.

Proof. We want to show thaf, can p-simulateCC+WS. Technically speaking, the axioth and any
clause containing it cannot be derived because it is noesgmtable. Still, we can show inductively how

17

to efficiently convert anyCC+WS refutation of a CNF formula of that does not contain Weakening is
equivalent to R1’, and Subsumption is equivalent to R2'. W&t how the base case that any clause in the
CC+WS refutation not containings whose antecedent(s) contadincan be derived. Observe that removing
A in the CC+WS refutation requires a branching rule that creates clanges:z, among others, which can
be derived inF,. The clauses A —x can be augmented by Weakening (R1’) to produce the corresmpn
formula in theCC+WS refutation. Since we have the base case as well as Weakemin§ubsumption it

is left to show how to simulate Branching. We want to show howlérive some formuld' from F'|, and

Flz in F2. Assume thaf" has the following form:

(@VD)N...AN(xVD;))NZVE)N...N(TVE,)NG.

ThenF|zis equal to(D1) A ... A (Dj;) NG, andF|, is equal to(E) A ... A (E) AG.
FromDi;ADyA...ADjand(zAZ), derive(DyVz)A...A(D;Vx)A(ZT)AG, by repeated applications

of R1’ and R3'. Similarly, fromE; A Es A ... A Ej, and(z AT), derive(Ey VE)A ... A (ExVT) A (x) AG.

Now use R2" and R4’ to derivé’ as desired. O

4.2 Separations between Proof Systems

In this section, we will show that DPLL cannot p-simulate rettee most basic caching systeri§, andCC.
We also show thatC\Y, . polynomial size refutations of CNFs that are known to regjeikponential size
resolution andRes(k) refutations.

The idea behind most of our lower bounds is as follows. Suppbat we want to show that some
resolution-like systerR cannot p-simulate a particular caching system, céll MVe will begin with a CNF
formula F' that has a small proof iR, but such that if we replace each variableFirby a small conjunction
of variables and distribute to again obtain a CNF formulantthe resulting formulat”, now requires large
R-proofs. On the other hand, we will show that the cachingesyst can proveF”’ efficiently whenever it
can proveF efficiently. Thus ifC can efficiently prover, then it will follow that £ is our formula that has
shortC-proofs, but that requires large-proofs. We proceed formally below.

DEFINITION 4.11. Thesize (or width) of clauseC' is the number of literals irC". Theclause-width(or
simplywidth) of a CNF formulaF is the maximum width of any of its clauses.

DEFINITION 4.12. Let F be a CNF formula. We can define a new formalg*) in variables{z; ; : i €
[n],j € [k]} by replacing every claus€ € F' by a conjunction of clauses correspondingtavith the sub-
stitutionz; «— z; 1A+ - -Az; ,, and distributing the result to form clauses. That is?idnd V are the indices of

variables occurring positively and negativelydhthenC' is replaced bY\(jlwnj\P\)E[kNP‘ (\/iep Zij; V Vien Ve m)

Note that ifC' has at most positive literals then it is replaced by at mdst clauses each of size at most
dk. Thus ifF' has at mostl positive literals per clause theR("*) has size at most?*! times the size af..

DEFINITION 4.13. Let 7 be a partial assignment to the variables (which we identify with the sequence
of literals on those variables made true by the assignmeén®. say that a partial assignmefitto the z
variables isequivalentto = if and only if for everyi,

(i) if zjisinmthenz; jisin forall j € [k];
(i) if z; is in 7 then there is somg ; in 7,

(iii) if neither x; not; is in then none of the; ; norz; ; is in 7.

18

The following lemma follows from the definitions.

Lemma 4.14. Letw be a partial assignment to thevariables on which CNF formul#’ is defined, and let
be an equivalent assignment to theariables. Ther{ F("%))|. = (F|,) %),

Lemma 4.15. If V is any of the systen®C, CC+W, FC, FCW, or FCY__ . then for any unsatisfiable CNF

reason’

formula F with at mostd positive literals per clause, ther, (F("*)) < 2k3+2 . 5y (F).

Proof. CC and CC+W have the subformula property by Lemma 488" has the subformula property
by construction ancEC‘T"e’ason has the subformula property by Lemma 4.8(c). Since the sutish F (")
increases the size of each sub-formuladby at most &?*! factor it suffices to prove an upper bound on
the number of clauses in a refutation/of**) as a function of that of".

First, given aCC or CC+W refutationII of F of lengths we show how to derive all clauses Bf"*)
using at mostk inference steps. Consider the rules used in the course oéfilationTI.
(1) Clearly A(MF) = A.
(2) If the inference rule il is Weakenings - ¢ A ¢ and we have already("*) then we getp("*)
@) A (k) also by Weakening and the latter (ip A)("*) by definition. Further, if the Weakening
inference inll is Limited then the same will hold true iA(*).
(3) Suppose that clause € II follows from ¢|, and |z using Branching and the substitutionas=
z1 A ... Az, (We have dropped the indicé$rom both ther andz variables for convenience.) Fore [k],
let F; = oW, . andG; = o[, . = AsaboveF, = ™|, . = (¢|,)"¥). Furthermore,

as abovel = (plz)") = ()| for anyj € [k]. SinceG contains no occurrences of, ...,z for
j € [k] we can also write&5' = G|.,..., , = ¢""¥|=., .., = G;. We wish to derives"*) from F}, and
G = Gy = ... = Gg. Todo this we apply the Branching rutimes, derivingF,_; from F; andGy, using

variablez, Fj,_o from Fj,_, and Fj,_, using variablexr;_,, etc. until finally we obtain the desired clause
using the branching rule applied 1§ andG;.

Next we will show the same result f6iC)",,..,.. The argument foFC" is a simplification of this proof
and the result foFC follows because it is equivalent €C. Given a refutation of a formul& in FCW, ..,
we show how to obtain aRC)Y . refutation of F("¥) of size at most(k) times that ofF" by replacing
each branch on a variableof F' by a sequence of branches on the variable®or j < [k]. (Again we
drop the indiceg on thex andz variables for convenience.) More precisely, #ebe a CNF formula, and
let T be the dynamic programming DAG explored EQ‘T"S’GSW as it is refutingF. T¥) will denote the
corresponding dynamic programming DAG that we show can &ated byrCY, . asitis refutingF"("\).

We will define an execution creatingZ”*) so that for any partial assignmentto the = variables
defining a node () in T" corresponding to a recursive call @i, there is an equivalent assignmeitr)
defining a nodes(7) in T'(Ak) such that for every formul& cached inl” when exploring node(r) the
corresponding formul&("*) is cached ifl""*) and if J is the reason returned atr), J("*) is returned at
o(m). We prove this by induction over the execution that yiélds

Let = be an assignment that corresponds to a node iWe define an equivalent assignmet) that

we will correspond to a node @ "*) recursively as follows:
e If 7 is the empty assignment the(ir) is also empty.

e If 7 corresponds to nodein T with left child corresponding tax and right child corresponding to
7Z thenz(mz) = z(m)zy - -+ 2z anNdz(7T) = z(m)21 - - - 2k—1Zk-

e If m corresponds to nodein T with left child corresponding taZ and right child corresponding to
mx thenz(nZ) = z(m)z; andz(nz) = z(m)z1 - - - 2.

19

By the above definitiory () is equivalent tar. The node () will be a node inT("*) that corresponds to
z(m).

Assume that the inductive hypothesis holds for all nodessehexecution completed before thatof
v(m) in the execution definin@’ (precedev in the post-order traversal @) wherer is a partial assignment
to thex variables. Ifv has out-degree 0 iii’ thenA is in F|, and will also be inF)|,y = (F|;)"*)
so both calls retura. If v has out- degree 1 i’ then it corresponds to a cache hit and some strengthening
J of F|, was found in the cache b§CYY ..., for the call onF|,. By the inductive hypothesis]("*) will
be in the cache for the corresponding call Bf**)|, ., and will be a strengthening df"*)|, . In this
call selectCache-Checko be true and select"*) to be returned from the cache. It remains to consider
what happens whemhas out-degree 2. We have two cases: the left child corréspoma recursive call on
F|., and right child corresponds to a recursive callfofz, or vice versa. In the execution creatifi§y*)
of FC‘T"e’ason the query of x at node will be replaced by a sequence of queries to the variafjles . , z; in
order.

First, assume thatis the left (first) branch and is the right (second) branch i starting aw, In 7(*)
each positive literak; will be assigned before the corresponding negative liteydtied and thus there
will be a subtree in the DAG (¥ of k + 1 leaves with a long left branch corresponding to the assignme
z(m)z1 - - - 2, and a series of short right branches corresponding to assigisz(7)z; - - - z;_1Z; for j € [k].

In particular,T("*) contains nodes(rx) and(nZ) as defined above.

By definition of FCYY, . .., someG is the reason returned at nodérz) and someH is the reason
returned at node(nZ) where, by Lemma 4.87 and H are strengthenings df|., and F'|,z, respectively.
In completing the execution for node the formula

J= AN CA N @voa@ve)yn N\ @voyn N\ (@vo)

CEF|.NGNH CE(GNH)\F|x CEeG\H CeH\G

is returned. We want to show that"*) is returned at nodé(r) in T*).

By the induction hypothesig;("*) is returned at nod&(wz) which corresponds to assignmedtitrz) =
2(m)z1 - -- 2. Similarly, H®) is returned at node(nZ) which corresponds to assignmex(‘r:rx) =
z(m)z1 -+ zx-1Zk. By the properties off and H, G"¥) and H"¥) are strengthenings df("¥)|, ., and
F(A"?)|z ~7) respectively. Without loss of generality we can assumettiege were added to the cache as
well.

By the above Lemma(F|.,)"¥) = FO)|_ v and (F|qz) ") = FR|, . For all subsequently
considered assignments$r)z; - - - z;_1%Z; for j < k, observe thaIF(A’“>|Z(,T)21-2;_17; contains all clauses
of the formula F("¥) |(xz)- (If there is a claused in F (k) \Z (»z) that Was shortened from a clause in
FOR)|, oy then(A v z;) is in FR)|,) for everyj < k and thusA is in FR) [,y . =) Thus at the
call corresponding ta(m)z; - - - zj—1%;, we seleciCache-Checko be true and obtain a cache hit from the
reasonH ("*) so these nodes & (") result in immediate contradictions f&iC)Y,..... We do not bother
to cache the intermediate reasons returned at these notlethertomputation returns to nodgr). By
the above Lemmaii("®) = (J[,)") = JAR)|_ o and similarly HM) = (J]z) (M) = JOR| o1t
follows thatJ"¥) is returned at nodé(r) since the variables; will be added to the returned reasons up
the tree from nodes(7x) ando(nT) to o(m) to exactly mimic the result of the substitutionafA ... A zj
for x.

The second case to consider is whahcorresponds to the left child efandra corresponds to the right
child of v in T. In this case the proof proceeds in much the same way, extapiow the subtree @F(*)
has one long right branch corresponding to the assignaient; - - - z; andk left branches corresponding

20

to assignments(m)z; --- z;_1%; for j € [k], for a total ofk + 1 leaves. In this case, the leafr7)
corresponding to assignmentrz) = z(m)z; will be traversed first and its returned reason will causéeac
hits for leaves with assignmentgr)z; - -- z;_1%Z; for j > 1. The only other leaf that will be explored is
the leafo(rz) corresponding to assignmeritrz). The remaining reasoning is completely analogous to the
first case. The overall result follows by induction. O

Corollary 4.16. Let {F'} be a family of unsatisfiable CNF formulas with at mdspositive literals per
clause where? is n®M).

e If {F} has polynomial-size DPLL proofs th¢#("¥)} has polynomial-siz€C proofs.
e If {F} has polynomial-size regular resolution proofs tHgi("**)} has polynomial-siz€ C+W proofs.

We first use this corollary to show th&C can be exponentially more powerful than DPLL. Ben-Sasson,
Impagliazzo, and Wigderson (Ben-Sasson et al., 2000),rgkriag a construction of Bonet et al. (Bonet
et al., 2000), defined certagraph-pebbling tautologie®eb s 1 to separate tree-like from regular resolu-
tion.

Lemma 4.17. Given a directed acyclic graptr of in-degree 2 withn edges and subsefs and T' of its
vertices, ifPebg s 1 is unsatisfiable thescc(Pebg,s,r) = O(m).

Proof. (Sketch) The contradiction form dPeb s has two variables per vertexof G, 20 and 2], and
the statement that can be pebbled is represented by the claugev z}). The tautology represents the
statement that: (1) all nodes fcan be pebbled; (2) if both predecessors of a node can begoebbén so
can the node itself; and (3) no nodelican be pebbled. We observe that this formula is derived hgidis
substitutionz, = 20 v 2! from a simpler formulaP; s+ where we represent the ability to pebble naede

by a single variabler,. That is, Pebg s = Pévé)T The formulaF¢ s 7 can be proved unsatisfiable in a
linear number of steps by unit propagation following a togital sort fromS to 7. Therefore it follows
immediately inCC. Although this is an(Vv2) substitution, by negating variables and using the closure
property ofCC under disjoint(A2) substitution of Lemma 4.15 and the fact that each clauge;of r has
constant sizePebg s, also has a linear size proof GC. O

Theorem 4.18. DPLL cannot p-simulat&C nor CC.

Proof. Ben-Sasson, Impagliazzo, and Wigderson (Ben-Sasson €08D) show that for suitable choices
of directed acyclic graph& with O(n) edges, and setS and 7', the tree-like resolution complexity of
Pebg g7 is 24"/ 198m) - This combined with Lemma 4.17 proves that DPLL cannot putite CC (nor
FQ). O

We now use Corollary 4.16 together with results of (Segdrdihal., 2002) to separate ti€+W proof
system fromRes(k) for any constank.

In order to separate Resk+1 frdRes(k), Segerlind, Buss, and Impagliazzo (Segerlind et al., 2082)
fine an unsatisfiable CNF formu@@O P (G) for any undirected grap&' (describing theraph ordering prin-
ciple on G) and prove that, althougOP(G) always has polynomial-size regular resolution refutagjon
there is an infinite family of graph&' such that for any constait GOP(G)"*+1) requires exponential-
sizeRes(k) refutations. More precisely, give® = (V, E) with |V| = n, definen(n — 1) variablesz,, ,,
for all u # v which are intended to represent a transitive, irrefleximéi:symmetric relation on the vertices
of G. Thus we have claus€s, ., V 7 ,,) for antisymmetry andz, , V Ty V 2,,.,) fOr transitivity for all
distinctu, v,w € V. The graph ordering principle f@r states that any such relation must have an element

21

that is locally minimal inG. Thus to represent the negation of this principle for each V' we add the
clauseV .\ ck Zu,v- The number of positive literals per clause is at most theimasn degree of the graph
G.

Theorem 4.19. (Segerlind et al., 2002) For any positive integerthere are constants > 0 ande; > 0,
and an infinite family of graph$G} such thatGOP(G) has regular resolution refutations of sizg(n°)
wheren = n(G), and GOP(G)"*) hasRes(k) refutations of sized(n¢), but GOP(G)" 1) requires
Res(k) refutations of siz@2("™*),

Theorem 4.20. For any positive integek, there are formulas with polynomial-sizeC+W refutations and
polynomial-sizeFC"Y refutations that require exponential-siRes(k) refutations.

reason

Proof. Consider the family of polynomial-size formul&OP(G)"¥+1), By Theorem 4.19, the formulas
GOP(G) have polynomial size regular resolution refutations. Alsd@heorem 4.19, sinc60P(G)("F+1)
hasRes(k + 1) refutations of sizeD(n¢), (k + 1)? is polynomial inn = n(G) whered is the maximum
degree ofG. Therefore, by Corollary 4.16, the formulagOP(G)"*+1) have polynomial-sizeCC+W
refutations and polynomial sizeCY, . refutations. On the other hand by Theorem 4.19 they require
exponential-sizdes(k) refutations. O

We will now show that the returned reasons are essentiaktgabd properties dfCYY, ... by showing

thatFCW> cannot p-simulate regular resolution. In particular, édesthe family of GT formulas, defined
in (Bonet & Galesi, 1999), which separate regular resafutiom tree resolution. These were the inspiration
for the GOP formulas defined above. In particular for anythe GT,, formula includes all clauses of
GOP(K,)wherek, is the complete graph o = {1, ..., n} together withotality clausegz; ; \VV ;) for
eachi # j. As shown in (Bonet & Galesi, 1999), like the formul&sb. s above, these formulas have
polynomial-size regular resolution refutations but reguxponential-size tree resolution refutations.
Write G 1w s H iff H follows from G solely via Weakening and Subsumption. We observe the fellow
ing simple properties ofiyys.

Proposition 4.21. (a) -y is transitive, i.e. ifF 4y g G andG -wgs H thenF -y g H.
(b) If F 4yws HandG "ws H thenF' AG dws H .
(c) Forany literalz, if G “wgs H thenG|, “ws H|y.

Proof. Parts (a) and (b) follow immediately from the definition. $ape that: is a literal andG -y s H.
If C' € G|, then neither: nor = appears irC and eitherC or (C' Vv 7) appears irG. If C' € G then there is
someD € HwithD C C D € H|,. If (CV7T) e G then there is som® ¢ H with D C (C v 7) and
thusD|, C C andD|, € H|,. Thus (c) follows. O

Let unitprop(H) be the formula obtained frorH after applying unit propagations fd.

Lemma 4.22. If G Hw s H then there is a restrictionr such thatG|, -y g unitprop(H) and G|, has no
unit clauses.

Proof. Assume that\ ¢ unitprop(H) for otherwise the lemma follows immediately with, = unitprop(G).
Otherwise letr be the set of assignments that are made during unit propagati/. By Proposition 4.21
we haveG |, -ws unitprop(H). If x is a unit clause ir7|; then, since\ ¢ unitprop(H), unitprop(H)
must contaire as a unit clause which is a contradiction. O

22

We will be interested in formula§ = GT,,|, andH = GT,|, such thatG 4y s H. Using Lemma 4.22
we will only need to study this whe@ and H have no unit clauses aridl does not contain the empty clause.

Observe that it7 = GT,|, has no unit clauses and does not contain the empty clause threrst be
transitively closed and so we can identifywith a partial ordex, onV'.

Given a partial ordex, on V' define

et ={jeV]i<,j}

e minimal(o) ={i| Aj€V,j <, i},

e tops(o) = {k | Vi € minimal(c),i <, k}, and
e prune(o) to be<, restricted toV — tops(o).

Lemma 4.23.If G = GT,|, ‘ws H = GT,|. andG and H do not containA or any unit clause then
prune(o) = prune(T).

Proof. For any pairj,k € V, if j andk are incomparable irc, thenG contains the clauser; ;. \/ =y ;)
which must also appear i sinceH does not contair or a unit clause. Thereforeandk are incomparable
in <.

SinceG does not contairh or a unit clause contains a non-minimality clausg; = ¢y _,i z;; Of
size at least 2 for eache€ minimal(o). ThereforeH must contain a claus®; C C; with at least two
positive literals whose last coordinateiisThis can only be the non-minimality claugg = \/;cy i z;;
and thus € minimal(7) ando® C 7*. Since anyj ¢ o' is incomparable toin <,, it must be incomparable
toiin <, soj ¢ 7'. Thereforeminimal(c) = minimal(7) and each such minimal element hes= 7°.
Furthermore by definitiotops(o) = tops(7).

If j <, kandj,k € V — tops(o) then there is somee minimal(o) such that £, k. Thereforei is
incomparable to both andk in <,. ThereforeG will contain two clauses of size 2 that are the restrictions
of the transitivity clauses for the triplg, j, k), namely(—z; ; V x; ;) and(—zy; V z; ;). These clauses must
also appear iif and the only possible sources for them are the same tratysdiauses inGT,,. Therefore
Jj<rk.

Therefore for allj, k € V —tops(o) =V —tops(1), j <, kifand only if j <, k and thugprune(o) =
prune(T). O

Theorem 4.24. Any FC'W® refutation of GT}, requires at leas2” 2 nodes.

Proof. We show that there are at lea®t—2 distinct residual formulas in any such refutation, with the
property that no two of them can be inferred using Weakenimd) Subsumption from the same residual
subformula.

For any restrictiorp such thatG'T;, |, does not inferA via unit propagation, the transitive closuye,
of the relation defined by forms a partial ordek ,-. Call a branch point in affCVs executionnovelif
(1) the residual formul@ T, |, at the branch point does not infarby unit propagation and (2) it branches
on a variabler; ; such that and; are in different connected components of the Hasse diagsaoceated
with <,-. Observe that if only» — 2 novel branch points have been made on a path thes(c*) = 0.
Furthermore, every consistent branch can be extendedtuwiitains at least — 2 novel branch points and
the restrictions defining these branches are inconsistent with each otherefdre there are at leazt—2
of them at the novelty level — 2 and their transitive closuresall haveprune(o) =<, and disagree about
the relative order of some pair of elements.

23

Let H = GT,|, be the residual formula at a novel branch point and assunie&itha GT,, |, infers
H using Weakening and Subsumption. Applying Lemma 4.22 waiokd formulaG’ = G|, for the
restriction’ such thatunitprop(H) = H|., G' 4ws unitprop(H), andG’ does not have an empty or
unit clause. Let be the restriction that is the combination efand «’ and letr be the restriction that
is the combination op andx’. By constructions andr correspond to partial orders di,...,n}. By
Lemma 4.23 we must have,= prune(r) = prune(o) =<,.

Now if G is added tal before H in the execution of V> then eitherG is in the subtree belol or
there is some variable; ; on whichm andp disagree. If the latter were to occur, the correspondingreied
restrictionso andr would retain this disagreement, ard and<. would disagree about the relative order
of i andj. This would contradict the requirement that=<,. Therefore any such claugewould have to
be in the subtree belo. Since these subtrees are disjoint for every paand H’ of our set of clauses at
novelty leveln — 2, the theorem follows. O

Corollary 4.25. FCY> does not polynomially simulate regular resolution.

Thus even the strongest of the basic formula caching systenas strong enough to efficiently simulate
regular resolution. In fact, these systems cannot effigiesitnulate theorderedregular resolution method
defined in the original paper of Davis and Putnam (Davis & Botn1960) since, as shown in (Bonet &
Galesi, 1999), the formulaST,, are provable in ordered regular resolution.

However, as we saw earlier, if we augment formula cachingawriy it return the reason for unsatisfia-
bility as well as the mere fact of unsatisfiability, to obt&@’, ..., then we can not only efficiently simulate
regular resolution but also can efficiently refute formuteest require exponential siZes(k) refutations.

5 Contradiction Caching Systems with 0-1 Substitution

In a preliminary version of this work (Beame et al., 2003),deéined an additional rule for tHeC andFC
systems that was called the restriction rule. To be comgistih earlier terminology, we should have called
this rule the 0-1 substitution rule.

DEFINITION 5.1. The restriction rule (also called the 0-1 substitution fuie a CC system allowsy|,, (or
©|z) to be inferred fromp.

We define the letter “R” to denote the 0-1 substitution (ottrietion) rule. ThusCC+WSR is the
contradiction caching system that includes weakeningsauiption and restriction.

We mistakenly claimed thaC+WSR was no more powerful than depth-2 Frege systems. In fact, we
show below that the restriction rule is surprisingly poweérin fact adding it makes the system p-equivalent
to Extended Frege systems. The proof of this follows the papBuss (Buss, 1995) where he shows that
a standard Frege system plus 0-1 substitution is p-equivadeExtended Frege. In (Pitassi & Urquhart,
1995), Buss's result was further refined to show that evenpéhe® Frege system plus 0-1 substitution is
p-equivalent to Extended Frege.

DEFINITION 5.2. (Pitassi & Urquhart, 1995)S, 1 7> is a refutation system for CNF formulas. It contains
the axiom and rules aof; plus the 0-1 substitution rule.

The following two lemmas show th&C-+WSR is p-equivalent to Extended Frege.

Lemma 5.3. (Pitassi & Urquhart, 1995)S, 1 F» is p-equivalent to Extended Frege.

24

Lemma 5.4. CC+WSR is p-equivalent ta&, 1 F>.

Proof. We first show thaCC+WSR can p-simulateS, F». The axiom,(z A T) can be derived from the
axiom of CC plus an application of Branching. Rule RO’ is implicit in ti€ system, because CNF formulas
are viewed as sets of clauses in @esystems. Rule R1’ is equivalent to Weakening; Rule R2’ isvadent
to Subsumption; and clearly the substitution rules arevedgnt. It is left to show how to simulate rules R3’
and R4'.

First, we show how to simulate Rule R4’. GivéR A), and(G A T) we want to derivé F' A G). First,
apply Weakening to obtaitF’ A G A z) and(F' A G A). Apply the Restriction rule to obtai(? A G)|,,
from (F' A G A x). Similarly apply the Restriction rule to obtajti’ A G)|z from (' A G AT). Finally apply
Branching to obtaif F’ A G) as desired.

Lastly, rule R3’ can be simulated as follows. Givémn\ F' andB A F', we want to derivé AV B) A F. If
AV B contains some literal and B containsz then we apply Subsumption to derive, F' andz A F' and then
rules R4’ followed by RO’ (already simulated) to deri¥g and finally Weakening to derived vV B) A F.
Similarly, if either A or B contains bothe andz then we can derivé” by Restriction onx andz and
Branching to returrf” and then Weakening as above. Otherwise, supposéstiail; Vi V ... VI, vV B')
whereB’ consists of the literals aB that are contained id. We need to derivéA V i1 V... V I;) A F.

Foreach =1,...,k, apply Weakening to derive

LiNF (al)
from B A F. Next, apply Restriction and Branching to derive
(AVI)A(AVIL)ANF (b)

from (A A F). (Restriction is only required if" contains instances df or Iy; in this case we apply
Restriction undet; andi;, which yieldsA v F|;, andA v F'|;, sinceA does not contaity orly, and then
Branching in order to derive (b).) Next, we apply Subsumptmderive

(I)ANAVI)ANFE (b))
from (b). Similarly, apply Restriction and Branching folled by Subsumption to derive
I)ANI)ANAVIEVI)AF (bg)
from (b;). Continue in this way (applying Restriction and Branchiojpwed by Subsumption) to derive
TN AU)AAVEVI V- VI)AF (b)

Now by repeated application of Rule R4’ (which we have alyesttbwn how to simulate), we can eventually
derive(AV I VigV---Vig) A F from (b)) and (8),7 =1, -, k, as desired.

In the other direction, we want to show h& ; 7> can p-simulatéCC+WSR. We have already proven
that 7> can p-simulateCC4+WS. From this it is easy to see th&g ; 7> can p-simulateCC+WSR, because
the substitution rules are equivalent. O

25

6 Conclusions and Open Problems

In this paper, we have initiated a study of the proof compegf DPLL proofs augmented with various
forms of formula caching. As we have discovered, the conigylexf DPLL with caching is surprisingly
subtle and counterintuitive. Naively, we expected thatimgl¢aching capabilities to tree-like resolution
would give us the power of general resolution. However, thigition is very wrong. In fact, we were
unable to come up with any natural and efficiently implemieletaersion of caching that could p-simulate
resolution. On the other hand, we were able to define a sinmalateeoretically implementable version of
DPLL with formula cachingkCY, ...), that is sometimes exponentially more powerful than batkdRition
and Res(k)! Can these advantages be translated to practice? A chialietask would be to develop
an implementation of a variant &fC\Y, . that would be competitive against state-of-the-art coteple
satisfiability solvers.

A number of open problems remain. Most notable are the caimmscto Resolution. What is the
weakest, if any, of these caching systems that can p-siemRlasolution? It would be particularly interesting
if this could be shown for theCYY, . proof system. In the reverse direction, can any of the e@jdC",
or FCS systems be p-simulated by resolution or even regular réspfi Secondly, what is the relationship
between clause learning and formula caching? Because angeclearning proof is a Resolution proof,
FCW, ... can be much more powerful than clause learning. But whattaiheureverse direction? Does
FCW ... P-simulate clause learning. Thirdly, &+WS p-equivalent taF,? We were able to show tha
p-simulatesCC+WS, but what about the reverse direction? In particular, carbR4imulated byCC+WS?
Finally, how do these systems compare with the backtraakiadels introduced in (Alekhnovich, Borodin,

Buresh-Oppenheim, Impagliazzo, Magen, & Pitassi, 20063d&ving satisfiability?

7 Acknowledgements

We would like to thank Sasha Razborov for bringing the ermothe conference version of this paper and
the likely greater power of the Restriction rule to our atitemand for other helpful comments.

References

Achlioptas, D., Beame, P., & Molloy, M. (2004). A sharp threkl in proof complexity.Journal of Com-
puter and System Sciencé$§(2), 238—-268.

Alekhnovich, A., Borodin, A., Buresh-Oppenheim, J., Imi@ayo, R., Magen, A., & Pitassi, T. (2005).
Towards a model for backtracking and dynamic programming.Proceedings Twentieth Annual
IEEE Conference on Computational Complexgp. 308-322, San Jose, CA.

Alekhnovich, M., Johannsen, J., Pitassi, T., & Urquhart(2001). An exponential separation between reg-
ular and general resolution. Tech. rep. TR01-56, Eleatr@uilloquium in Computation Complexity,
http://ww. eccc.uni-trier.deleccc/.

Bacchus, F., Dalmao, S., & Pitassi, T. (2003a). Algorithmd aomplexity results for #sat and bayesian
inference. InProceedings 44th Annual Symposium on Foundations of Camfaiencepp. 340—
351, Boston, MA. IEEE.

Bacchus, F., Dalmao, S., & Pitassi, T. (2003b). DPLL with iag: A new algorithm for #SAT and
Bayesian inference. Tech. rep. TR03-003, Electronic @Qailam in Computation Complexity,
http://ww. eccc.uni-trier.del/eccc/.

26

Beame, P., Impagliazzo, R., Krajicek, J., Pitassi, TdI&y P., & Woods, A. (1992). Exponential lower
bounds for the pigeonhole principle. Rroceedings of the Twenty-Fourth Annual ACM Symposium
on Theory of Computingp. 200-220, Victoria, B.C., Canada.

Beame, P., Impagliazzo, R., Pitassi, T., & Segerlind, NO®0 Memoization and DPLL: Formula Caching
proof systems. IProceedings Eighteenth Annual IEEE Conference on ConipattComplexity
pp. 225-236, Aarhus, Denmark.

Beame, P., Kautz, H., & Sabharwal, A. (2004). Towards urtdeding and harnessing the potential of clause
learning. Journal of Artificial Intelligence Research2, 319-351.

Ben-Sasson, E., Impagliazzo, R., & Wigderson, A. (2000). alNgptimal separation of treelike and
general resolution. Tech. rep. TR00-005, Electronic Gpllom in Computation Complexity,
http://ww. eccc. uni-trier.del/eccc/.

Ben-Sasson, E., & Wigderson, A. (1999). Short proofs areomar resolution made simple. Proceedings
of the Thirty-First Annual ACM Sympaosium on Theory of Coingupp. 517-526, Atlanta, GA.

Bonet, M. L., Esteban, J. L., Galesi, N., & Johansen, J. (R0@n the relative complexity of resolution
refinements and cutting planes proof syste®I\M Journal on Computing®0(5), 1462—-1484.

Bonet, M. L., & Galesi, N. (1999). A study of proof search aitfums for resolution and polynomial cal-
culus. InProceedings 40th Annual Symposium on Foundations of CanfoatenceNew York,NY.
IEEE.

Buss, S. (1995). Some remarks on the lengths of propositnafs. Archive for Mathematical Logi@4,
377-394.

Buss, S. R. (1987). Polynomial size proofs of the pigeonipoleciple. Journal of Symbolic Logic57,
916-927.

Chvatal, V., & Szemerédi, E. (1988). Many hard examplasrésolution. Journal of the ACM35(4),
759-768.

Cook, S. A., & Reckhow, R. A. (1977). The relative efficiendypoopositional proof systemslournal of
Symbolic Logig44(1), 36-50.

Davis, M., & Putnam, H. (1960). A computing procedure for wfifecation theory.Communications of the
ACM, 7, 201-215.

Haken, A. (1985). The intractability of resolutioheoretical Computer Sciencgd, 297-305.

Majercik, S. M., & Littman, M. L. (1998). Using caching to sellarger probabilistic planning problems.
In Proceedings of the 14th AAAIp. 954-959.

Marques-Silva, J. P., & Sakallah, K. A. (1996). Grasp — a nearch algorithm for satisfiability. IRro-
ceedings of the International Conference on Computerdhidesign pp. 220-227, San Jose, CA.
ACM/IEEE.

Monien, B., & Speckenmeyer, E. (1985). Solving satisfifiln less tharn2™ steps. Discrete Applied
Mathematics10(3), 287-295.

Moskewicz, M. W., Madigan, C. F., Zhao, Y., Zhang, L., & Mali&. (2001). Chaff: Engineering an efficient
SAT solver. InProceedings of the 38th Design Automation Confereppe530-535, Las Vegas, NV.
ACM/IEEE.

Pitassi, T., & Urquhart, A. (1995). The complexity of the Blgjcalculus. SIAM Journal on Discrete
Mathematics8(3), 464—483.

27

Robson, J. M. (1986). Algorithms for maximum independets.skurnal of Algorithms7(3), 425-440.

Segerlind, N., Buss, S., & Impagliazzo, R. (2002). A switghiemma for small restrictions and lower
bounds fork-DNF resolution. InProceedings 43nd Annual Symposium on Foundations of Cemput
ScienceVancouver, BC. IEEE.

Urguhart, A. (1995). The complexity of propositional predBulletin of Symbolic Logicl(4), 425-467.

Zhang, H. (1997). Sato: An efficient propositional prover.Proceedings of the International Conference
on Automated Deduction, LNAYol. 1249, pp. 272-275.

Zhang, L., Madigan, C. F., Moskewicz, M. H., & Malik, S. (2Q01Efficient conflict driven learning in
a boolean satisfiability solver. IRroceedings of the International Conference on Computded
Design pp. 279-285, San Jose, CA. ACM/IEEE.

28

ECCC ISSN 1433-809
http://eccc.hpi-web.de/

