
Hardness of Low Congestion Routing in Directed

Graphs

Venkatesan Guruswami∗

Department of Computer Science & Engineering

University of Washington

Seattle, WA 98195

venkat@cs.washington.edu

Kunal Talwar
Microsoft Research

Silicon Valley Campus

Mountain View, CA. 94043

kunal@microsoft.com

Abstract

We prove a strong inapproximability result for routing on directed graphs with low conges-
tion. Given as input a directed graph on N vertices and a set of source-destination pairs that
can be connected via edge-disjoint paths, we prove that it is hard, assuming NP doesn’t have
nO(log log n) time randomized algorithms, to route even a 1/NΩ(1/c(N)) fraction of the pairs, even
if we are allowed to use each edge on c(N) paths. Here the congestion c(N) can be any function
in the range 1 6 c(N) 6 α log N/ log log N for some absolute constant α > 0.

The hardness result is in the right ballpark since a factor NO(1/c(N)) approximation algorithm
is known for this problem. An important feature of our result is that it holds with perfect
completeness, and shows hardness of low-congestion routing of instances where all the input
source-destination pairs can be routed on edge-disjoint paths. Consequently, our result also
implies that it is hard to find a routing of all the source-destination pairs that incurs congestion
at most α log N/ log log N , even if there exists an edge-disjoint (i.e., congestion 1) routing of all
the pairs. This shows the optimality, up to constant factors, of the approximation guarantee
of the classic Raghavan-Thompson algorithm based on randomized rounding of the fractional
multicommodity flow solution.

1 Introduction

We prove that the problem of routing a maximum number of given source-destination pairs in a
directed graph with N vertices while incurring congestion at most c(N) on an any edge is hard
to approximate within an NΩ(1/c(N)) factor for all integer valued functions c : N → N satisfying
1 6 c(N) 6 α log N/ log log N . Here α > 0 is an absolute constant, and the hardness holds under
the assumption that NP 6⊂ BPTIME(nO(log log n)). We will refer to this problem of routing on
directed graphs with bounded congestion as DirEDPwC.

An important, desirable feature of our inapproximability result is that it holds with perfect
completeness. Specifically, we show that on input a directed routing instance where all the source-
destination pairs can be routed on edge-disjoint paths (i.e., with no congestion), it is still hard to

∗Supported by NSF CCF-0343672, a Sloan Research Fellowship, and a Packard Fellowship.

1

Electronic Colloquium on Computational Complexity, Report No. 141 (2006)

ISSN 1433-8092

route more than a 1/NΩ(1/c(N)) fraction of the pairs even if congestion c(N) is allowed. Note that
there is also a natural “bicriteria” aspect to this result — it is hard to find a good solution with
congestion c(N) even if a (perfect) solution with much smaller congestion 1 exists. Owing to this
aspect, our result also implies as a corollary a factor Ω(log N/ log log N) hardness for the directed
congestion minimization problem, where one must route all the pairs and the quality of the solution
is measured by the maximum congestion incurred on any edge. This is a slight improvement to the
recent factor Ω(log1−ε N) hardness shown by Andrews and Zhang [5]. But the nice aspect is that this
inapproximability factor is tight up to constant factors since a classic randomized rounding based
algorithm of Raghavan and Thompson [20] achieves an approximation ratio of O(log N/ log log N)
for the congestion minimization problem. We note that for undirected congestion minimization,
there is a still a gap between the O(log N/ log log N) ratio achieved by randomized rounding and
the factor o(log log N) inapproximability result of Andrews and Zhang [3].

1.1 Prior Work

When the congestion c = 1, DirEDPwC is identical to the classic edge-disjoint paths problem. This
was shown to be hard to approximate within a N1/2−ε factor for any ε > 0 [13], and a natural
greedy algorithm is known to achieve an approximation ratio of O(min{N4/5,

√
M) (where M is

the number of edges) [18, 6].

For the DirEDPwC problem with congestion c > 1, factor O(cN1/c) approximation algorithms
based on randomized rounding of the standard multicommodity flow relaxation are known [21, 19].
Hardness results for DirEDPwC with congestion c > 1 have been a lot more mysterious. The
reduction in [13] completely breaks down even when c = 2, and till recently no strong hardness
results were known for the case of c > 1. Spurred by the breakthrough results of Andrews and
Zhang on undirected edge-disjoint paths and congestion minimization [4, 3], a factor (log N)Ω(1/c)

hardness for the above problem on undirected graphs has been shown [2, 14]. This hardness also
holds for directed graphs. While the above-mentioned work [5] on directed congestion minimization

does not address DirEDPwC explicitly, one can deduce a factor 2log1/2−ε N/c hardness result, for any
ε > 0, for DirEDPwC by adapting their proof in a straightforward way.

For directed congestion minimization, Chuzhoy and Naor [8] were the first to obtain a non-
trivial inapproximability result – they established a factor Ω(log log N) hardness result. Prior to
[8], even a factor 2 hardness was not known (a factor (2− ε) hardness is trivial since it is NP-hard
to tell if all source-destination pairs can be routed in an edge-disjoint manner).

1.2 Our Reduction Method

Our result is based on a reduction from general constraint satisfaction problems over large do-
mains. Our proof builds upon the beautiful work of Andrews and Zhang [5] where they showed
a Ω(log1−ε N) hardness for the congestion minimization problem and uses several of their ideas.
A crucial idea in [5] is that of a labeling scheme for grouping vertices which ensures that routes
connecting a source-destinations pair cannot deviate from certain intended “canonical” paths. We
use a simple, more efficient labeling scheme that is one of the contributors to our quantitative
improvements in the inapproximability factor.

Conceptually, our reduction is presented in a rather general framework and can start from an

2

arbitrary constraint satisfaction problem (CSP). We analyze the efficacy of the reduction in this
extreme generality, and quantify its performance in terms of few crucial parameters of the original
CSP. We then plug in appropriate CSPs as starting point to deduce our hardness results. The
benefit of this unified approach is that it clearly highlights what one needs as a starting point from
the CSP in order to obtain strong hardness results for DirEDPwC. For example, when the congestion
is a constant, we are seeking an NΩ(1) inapproximability factor. To obtain this one needs to start
from a hard CSP with soundness that is inverse polynomial in the size of the instance. The 2-
variable CSP underlying Label Cover (or Raz’s parallel repetition theorem), which formed the
starting point of the reduction of Andrews and Zhang [5], does not achieve such small soundness.
A crucial (but quite natural) technique we use is to boost the soundness of a hard CSP using a
derandomized expander-walk based serial repetition. This results in the low soundness CSP which
we then plug into our general reduction to DirEDPwC. Doing this to the standard 2-variable “Label
Cover” CSP gets us a unified NΩ(1/c(N)) inapproximability factor for DirEDPwC for the entire range
1 6 c(N) 6 O(log N/ log log N). However, the constant in the exponent Ω(1/c(N)) is rather small
as it is inherited from the constant in Raz’s parallel repetition theorem.

In order to improve the constant, we start from a different 3-variable CSP. For us, the crucial
feature of this CSP is that the maximum number of satisfying assignments to any of its constraints
is comparable to the inverse of the soundness of the CSP. This gives an improved N1/((9+ε)(c(N)+9))

hardness factor for any desired constant ε > 0. However, the size of this 3-variable CSP, for a
similar size of the domain of the variables, is somewhat larger than the Raz system. This limits the
range of applicability of the improved bound to 1 6 c(N) 6 logβ N for some β > 0 that depends
on ε. The hardness result still holds with perfect completeness.

If we start from an even “better” CSP, our reduction will yield a factor N
1

(3+ε)(c(N)+O(1)) hard-
ness result. The CSPs shown to hard to approximate by H̊astad and Khot [16] have the correct
parameters to function as our needed starting point, except that they are not k-partite (where each
constraint depends on k variables) which is a structural feature we find useful in our analysis. We
feel that hardness results for CSPs similar to those proved in [16] should continue to hold even with
the restriction of k-partiteness.

1.3 Related work

We note that results similar to this work appear in [7]. Their result for DirEDPwC for small
congestion c was obtained subsequent to an email communication of the statement of our results,
and uses a different approach from their result on congestion minimization. This is unavoidable: the
reductions for hardness of congestion minimization in [5] and in [7] both start from the Raz 2-prover
system, which does not seem to suffice for getting the nΩ(1/c) hardness for small c. The initial focus
of our approach was on getting polynomially large hardness factor for the constant congestion case,
and we confirmed the calculations that our reduction as a bonus also yields a Ω(log N/ log log N)
hardness result for congestion minimization only subsequent to the announcement of such a result
by Chuzhoy and Khanna.

As mentioned earlier, our reduction achieves perfect completeness and shows hardness of find-
ing a low congestion routing even if all source-destination pairs can be routed in an edge-disjoint
manner. The reduction in [7] (for the case of constant congestion) does not have perfect complete-
ness, but instead offers the “unique paths property,” i.e., there is a unique path connecting each of

3

the source-destination pairs in the graph. (The problem with perfect completeness and the unique
paths property is of course trivially solvable in polynomial time.) The imperfect completeness seems
to be inherent to the proof in [7] for the low congestion case, which reduces from the independent
set problem.

2 Background and Definitions

2.1 Constraint Satisfaction Problems

Our hardness result for DirEDPwC is obtained via a reduction from a general constraint satisfaction
problem (CSP). Informally, a CSP over a domain D consists of a collection of constraints on a
universe of variables, where each constraint specifies which subset of values (from the domain D)
to its variables “satisfy” it. The goal is to assign values from D to all the variables in a manner
that maximizes the number of satisfied constraints.

We now give a formal definition that captures the important parameters of a CSP.

Definition 2.1 (General constraint satisfaction problem). An instance of a (promise) constraint
satisfaction problem (CSP) with parameters (M, N, J, p, k, saty, satn) where M, N, J, p, k : N → N

are integer valued functions, and saty, satn : N → [0, 1], consists of the following:

• A set S of at most N variables that take on values from the domain {1, 2, . . . , p}, and a
partition of S into k disjoint parts as S = S1 ∪ S2 ∪ · · ·Sk.

• A set C of at most M constraints, where each constraint is defined on a subset of k variables
containing one variable from each of S1, S2, . . . , Sk, and further, at most J of the pk possible
assignments to those variables satisfy that constraint.

The goal is, given such an instance, to distinguish between the following two cases:

• [Yes instances:] There exists an assignment to the variables that satisfies at least a frac-
tion saty of the constraints. (Note that when saty = 1, such an assignment satisfies all the
constraints, and this is referred to as perfect completeness.)

• [No instances:] Every assignment to the variables satisfies less than a fraction satn of the
constraints.

The parameters saty and satn are called the completeness and soundness of the CSP. We will
sometimes refer to the parameter p as the alphabet size of the CSP, and also call the CSP with
above parameters a p-ary k-partite CSP instance when the rest of the parameters are implicit.

2.2 Convexly Independent vectors

The labeling scheme we use to group vertices uses a collection of vectors with a restricted linear
independence property, defined below.

4

Definition 2.2. A set of vectors v1, . . . , vn over reals is convexly independent if for any i and for
any set of nonnegative coefficients αj > 0, if

∑

j αj = 1 and vi =
∑n

j=1 αjvj, then αi = 1 and
αj = 0 for j 6= i.

Our goal is to construct a large set of convexly independent vectors in a low dimensional space.

Note that we can take vi = ei in R
n, and being linearly independent, this set of vectors is also

convexly independent. Andrews and Zhang show how to do better: let vi be a 0-1 vector with k
3

1’s in R
k, where k is chosen so that

(k
k
3

)

> n. It is easy to verify that the resulting vi’s are convexly

independent and that k is only O(log n).

We now give a simple construction in two dimensions. Given our goal of “convex” independence,
it is natural to turn to one of the simplest convex functions: the squaring function.

Lemma 2.3. For every integer n > 1, the set of vectors v1, v2, . . . , vn ∈ R
2 given by vi = (i, i2) is

convexly independent.

Proof. Suppose that for some set of non-negative coefficients αj > 0 satisfying
∑

αj = 1, it is
the case that vi =

∑

j αjvj . Thus i =
∑

j jαj and i2 =
∑

j j2αj . Rearranging, we get that

(
∑

j αjj)
2 =

∑

j αjj
2. Let a be the vector given by aj =

√
αj and b be given by bj =

√
αjj. Then

we have ‖a‖ = 1 and the above condition translates to (a · b)2 = ‖a‖2‖b‖2. Thus b must be a scalar
multiple of a, which implies that at most one of the αj ’s can be non-zero. Along with the fact
that a · b = i, we conclude that αi = 1 and αj = 0 for j 6= i. Thus the vectors vi are convexly
independent.

3 Reduction from CSP to DirEDPwC

We now describe the reduction. We will show how to transform an instance of a CSP with param-
eters (M, N, J, k, p, saty, satn) to an instance of DirEDPwC.

Thus our starting point is an instance φ of a p-ary k-partite CSP with a set {C1, C2, . . . , Cm}
of M constraints over a set {x1, x2, . . . , xN} of N variables. J is an upper bound on number of
satisfying assignments to any of the constraints and let Bi denote the number of constraints in
which variable xi participates. Let T = maxi Bi.

The reduction will transform Yes instances of the CSP to instances of DirEDPwC where one can
find edge-disjoint paths connection at least a fraction saty of the source-destination pairs. If the
original instance of the CSP is a No instance, then the in the resulting DirEDPwC instance only a
small fraction of source-destination pairs can be routed, even if one allows a large congestion on
the edges.

We shall present the reduction starting from a generic CSP, and plug in suitable CSPs that imply
strong bounds later in Section 5. In addition to the CSP parameters M, N, J, k, p, the reduction
will use three other integer parameters Y, Z, L which will be defined in Section 3.2.

Throughout the paper, the notation [Q] for an integer Q > 1 denotes the set {1, 2, . . . , Q}. We
will typically use i ∈ [N] for a variable index, j ∈ [M] for a constraint index, and q ∈ [p] to refer
to a possible value assigned to a variable. For each q ∈ [p] and for constraint Cj containing xi, let

5

Γijq be the set of satisfying assignments to Cj that set xi to q and let Γiq be the set of all pairs
(Cj , ζ) such that Cj contains xi and ζ ∈ Γijq. Note that ζ is a partial assignment specifying the
values for variables that occur in constraint Cj .

The construction will be composed of ZL blobs, indexed by (z, l) where z ∈ [Z] and l ∈ L,
where L is a set of L labels that is closed under a certain addition operator. Each blob will consist
of N variable gadgets, one for each variable in the CSP. For each variable xi, we give a randomized
construction of a gadget called Gz,l

i that we describe in detail below. Recall that Bi 6 T denotes

the number of occurrences of xi in the constraints. The variable gadget Gz,l
i has a matching M

(i)
z,l

consisting of Y JBi special edges ei
z,l,s = (ui

z,l,s, v
i
z,l,s) for s ∈ [Y JBi] — the vertex ui

z,l,s (resp. vi
z,l,s)

will be referred to as the left (resp. right) endpoint of the edge ei
z,l,s.

In each blob, these disjoint matchings will be strung together by k intermediate levels of connec-
tor vertices in a random way as described below. Let τ = (Cj , ζ, y) be a (constraint,assignment,y)
triple where ζ satisfies Cj and y ∈ [Y] is arbitrary; we call such a triple an accepting interaction. For

each t ∈ [k+1] and each accepting interaction τ , we have a connector vertex wz,l,t
τ . For a variable xi

in Vt and q ∈ [p], we define a set W
(i)
z,l,q of these connector vertices as follows: the set W

(i)
z,l,q consists

of all the connector vertices wz,l,t
(Cj ,ζ,y) such that Cj uses the variable xi and the assignment ζ assigns

value q to xi, i.e. the pair (Cj , ζ) belongs to the set Γiq. Thus the cardinality of W
(i)
z,l,q is Y |Γiq|

and thus
∑

q∈[p] |W
(i)
q,z | 6 Y JBi. Now comes the crucial interconnection of the different matchings

via the connector vertices. For each q ∈ [p], pick independently and uniformly at random a

subset S
(i)
z,l,q of the matching M

(i)
z,l of size |W (i)

z,l,q|. Connect the left endpoints of the edges in S
(i)
z,l,q

to the vertices W
(i)
z,l,q via a random matching. If the left endpoint of an edge in S

(i)
z,l,q is connected

to the vertex labeled wz,l,t
τ , then the right endpoint of that edge is connected to the corresponding

node wz,l,t+1
τ . Moreover, we will call this special edge as fz,l,i

τ . Note that the collection of the edges

fz,l,i
(Cj ,ζ,y) as (Cj , ζ) ranges over Γiq and y ranges over Y is precisely the sub-matching S

(i)
z,l,q of M

(i)
z,l .

This defines a blob for every z, l. We now define how to connect the various blobs. Let
A 6 MJY be the number of accepting interactions, and let v1, . . . , vA be the set of convexly
independent vectors from Lemma 2.3. Note that each vi ∈ [A] × [A2]. We let vτ denote the vector
associated with the accepting interaction τ , under some fixed one-one mapping of the accepting
interactions into [A].

We define the label set L as L = [2AZ] × [2A2Z]. The addition operation on L is defined
to be coordinate wise addition modulo the appropriate modulus. Formally, for (a, b) ∈ L and
(a′, b′) ∈ L, their sum (a, b)+ (a′ + b′) ∈ L is defined to be ((a+ a′− 1) mod (2AZ)+1, (b+ b′− 1)
mod (2A2Z) + 1).

For each z ∈ [Z], l ∈ L and each accepting interaction τ , we connect the connector vertex

wz,l,k+1
τ to the connector vertex wz+1,l+vτ ,1

τ .

Finally, we add sources Sj,y,l and destination Tj,y,l. For each j, y, l and each accepting interaction

τ involving Cj and y, we connect Sj,y,l to w1,l+vτ ,1
τ and connect wZ,l+Zvτ ,k+1

τ to Tj,y,l. This completes
the construction.

Note that the graph on blobs is a layered graph, where each edge goes from a blob in layer z to
a blob in layer (z + 1).

6

3.1 Canonical paths

Let σ = (τ, l) = (Cj , ζ, y, l) be a tuple where τ = (Cj , ζ, y) is an accepting interaction and l ∈ L is a
label. We call such a tuple a labeled interaction. Thus for each labeled interaction σ = (Cj , ζ, y, l),
we have a canonical path from Sj,y,l to Tj,y,l that passes through the blobs (z, l + zvτ). We refer to
it as P [σ] or P [j, ζ, y, l].

3.2 The parameters

The reduction above used several parameters such as Y, Z and L. The analysis will use some other
parameters such as r, ρ, X, etc. We now specify how these are picked, in the order of dependence.

Let ε > 0 be a fixed constant, and n denote the asymptotic size parameter. Let c = c(n) be
the congestion that we are seeking hardness for, and set b = c + 1. For some integer p > b, suppose
that we start with a p-ary k-partite CSP with completeness saty and soundness satn. Let M and
N denote the number of variables and constraints respectively, and let J be an upper bound on the
number of satisfying assignments to any constraint. Further, Bi denotes the number of constraints
that variable i participates in.

Here is how the rest of the parameters are defined.

r = (5ck
satn)−1 (stands for the inapproximability ratio guaranteed by the reduction when saty = 1)

Y = max

(

1,

⌈

2(c + 1)pk−1

J

⌉)

ρ = max(4pkJr, (Y J)
1

c+1)

Xi = Y JBi (for i ∈ [N])

X = max
i

Xi

Ai = Xi/ρ

Z = 8Mrρc+1

L = [2MY JZ] × [2M2Y 2J2Z]

L = |L| = 4(MY J)3Z2 .

Note that
∑N

i=1 Bi = kM . For now, the reader may find it easier to think of the congestion c
as a large constant.

We finish this section by arguing about the completeness of this reduction. The soundness anal-
ysis appears in Section 4. Finally, in section 5, we use this reduction starting with an appropriate
CSP, and show that for this choice, we get the desired hardness.

3.3 Completeness

Suppose the CSP instance φ has an assignment, say η, that satisfies satyM of the constraints. Then
we claim that at least satyMY L of source-destination pairs can be routed on edge-disjoint paths.
We claim that for each Cj that is satisfied by η, all the pairs (Sj,y,l, Tj,y,l) where Cj is satisfied by
η, y ∈ [Y] and l ∈ L can be routed on edge-disjoint paths. Indeed, let Cj be satisfied by η and let ζ

7

be the projection of η to the variables that participate in constraint Cj . Then, for each y ∈ [Y] and
each l ∈ L, use the canonical path P [j, ζ, y, l] to connect Sj,y,l to Tj,y,l. Since the various ζ’s used
are projections of a single satisfying assignment η, the paths are edge disjoint by construction.

Lemma 3.1 (Completeness). Suppose that φ is a Yes instance. Then one can route at least a
fraction saty of all the MY L source-destination pairs on edge-disjoint paths, i.e., with congestion 1.
In particular, if the original CSP had perfect completeness (saty = 1) then all the source-destination
pairs can be connected via edge-disjoint paths.

Thus our reduction from CSP to DirEDPwC preserves perfect completeness. We will only apply
this reduction with CSPs that are hard even with perfect completeness (this is done in Section 5).
Therefore, our hardness results for DirEDPwC show that it is impossible to route more than a small
fraction of the input pairs with congestion c, even if one is promised that all pairs can be routed
via edge-disjoint paths.

3.4 Size of the DirEDPwC instance

Lemma 3.2 (Reduction Complexity). The above reduction produces a graph with at most O(T)
vertices and edges and runs in time polynomial in T where T = M7p4kr3k(4pkJr)3b, assuming that
the parameters choices satisfy J 6 2bpk−1 6 (4pkJr)b.

Proof. The number of source-destination pairs in the produced instance is MY L, each of which has
at most J canonical paths of length O(kZ) connecting them. Therefore, the total number of edges in
the graph is O(kZJMY L). Let us now recall the value of the parameters from Section 3.2. Under
the assumption J 6 2bpk−1 6 (4pkJr)b, we have ρ = 4pkJr and Y J 6 4bpk−1 = O(bpk−1).
We have Z = 8Mrρb and L = 4M3(Y J)3Z2. Therefore, kZJMY L = O(kM4(Y J)4Z3) =
O(kM7(Y J)4r3ρ3b) = O(kM7p4kr3(4pkJr)3b). The time complexity of the reduction is clearly
polynomial in the size of the graph it produces.

4 Soundness of the reduction

We now show that if no assignment satisfies more than a small fraction of the constraints, then it
is impossible to route many of the (Sj,y,l, Tj,y,l) paths, even if congestion c is allowed. This part is
complicated with several steps and using several of the ideas developed by Andrews and Zhang [5].

4.1 All paths are (nearly) canonical

For a blob (z, l), let z be its layer and l be its label. Consider the graph GL formed by shrinking
each blob (z, l) to a single node. We say a path P passes through blob (z, l) in G if its image in GL

passes through the vertex (z, l). Recall that Gl is a layered graph, with each edge from a node (z, l)
going to a node in layer (z +1). The sources connect to layer 1 and all edges entering a destination
originate in layer Z.

Consider an arbitrary path from Sj,y,l to Tj,y,l. Our choice of labels guarantees the following:

8

Lemma 4.1. The set of blobs that a path from Sj,y,l to Tj,y,l passes through is identical to that of
some canonical path P [j, ζ, y, l], i.e., equals {(z, l + zvτ) | 1 6 z 6 Z} where τ = (Cj , ζ, y).

Proof. Let P be a path from Sj,y,l to Tj,y,l. Since the graph Gl is layered, with Z layers separating
the source from the destination, the path P passes through exactly Z blobs. Let hi be the number
of hops in P that go from some blob (z, l′) to (z + 1, l′ + vi), where z ∈ Z, l′ ∈ L. Let (Z, l′′)
be the last blob that P passes through. Since there is an edge from (Z, l′′) to Tj,y,l, there is some
canonical path P [j, ζ, y, l] that uses blob (Z, l′′) and thus l′′ ≡ l+Zvτ for some accepting interaction
τ corresponding to (Cj , y). Also l′′ ≡ l +

∑

i hivi. Thus Zvτ ≡ ∑

i hivi. While the above equality
is modulo the grid dimensions 2nZ × 2n2Z, the fact that each vi ∈ [n] × [n2] implies that it holds
over integers as well. Since

∑

i hi = Z, and the vi’s are convexly independent, it must be the case
that hτ = Z and hτ ′ = 0 for τ ′ 6= τ . The claim follows.

Let P be a path from Sj,y,l to Tj,y,l. The above claim implies that P corresponds to some

canonical path P̂ and hence to a labeled interaction σ = (Cj , ζ, y, l). For a variable xi that this
constraint participates in, we say that this labeled interaction highlights the value q given by ζ to
xi. If the path P is routed, we shall say that the labeled interaction σ is routed.

Note that the path P can deviate from the canonical path P̂ = P [σ] within a blob. Call a path
deviant in blob (z, l) if it is not canonical within this blob. Also note that the only edges going

from blob (z, l′) to (z + 1, l′ + vτ) leave the connector vertex wz,l′,k+1
τ . Thus P cannot deviate from

P̂ in its last special edge in any blob. We record this fact as

Lemma 4.2. A path P that is deviant in blob (z, l) cannot deviate from the last special edge on
the corresponding canonical path in this blob.

Recall that we wish to show that any routing of MY L/r demands leads to congestion c + 1
somewhere. We do this by looking at the labeled interactions corresponding to a routing. Consider
a set S of labeled interactions with |S| at least MY L/r. We shall show that with high probability,
routing all interactions in S causes congestion c + 1 somewhere. We can then use a union bound
over all subsets S to establish the claim. The next few definitions are with respect to a particular
set of routed labeled interactions S.

Definition 4.3 (Heaviness and Lightness). Call a (variable,value)-pair heavy in blob (z, l) if more
than A = X/ρ of the routed labeled interactions highlight it.

We say a labeled interaction σ is heavy in blob (z, l) if for all its variables xi, the value q
highlighted by this path is heavy in the blob. We say σ is light in blob (z, l) if it is not heavy.

4.2 Bounding flow on light paths

We first bound the total light flow through any blob.

Lemma 4.4. The total number of routed labeled interactions σ that are light in a blob (z, l) is at
most MY/4r.

Proof. Consider a particular blob (z, l). For any variable xi, the total number of labeled interactions
that can be light because of it is at most pAi, since for each light value α of variable xi, at most

9

Ai unlabeled interactions that highlight value α for xi can be routed. Thus the total light flow
through the blob is at most

∑

i pAi. Recalling that Ai = Y JBi/ρ, and that
∑

i Bi = kM , the total
amount of light flow through is blob is no more than MY (pkJ/ρ) 6 MY/4r.

4.3 Bounding flow on heavy paths

Definition 4.5. We call a variable overambiguous in blob (z, l) if it is heavy for at least b =
c + 1 different values in this blob. A blob (z, l) is called overambiguous if some variable in it is
overambiguous. A blob that is not overambiguous is called unambiguous.

We bound the flow on heavy paths as follows. We first use the soundness of the CSP to show
that the heavy flow through any unambiguous blob is at most MY/4r (Lemma 4.7). Next we show
that each overambiguous blob gives some probability of leading to a congested edge (Lemma 4.10).
Finally, a simple counting argument shows that if the total flow routed is at least MY/r, then there
are many overambiguous blobs (Lemma 4.9). This will imply an upper bound on the probability
of there being no congested edge.

4.4 Unambiguous blobs

Lemma 4.6. Suppose that φ is a no instance. Then for every unambiguous blob, the number of
routed labeled interactions that are heavy in it is at most MY

4r .

Proof. Assume the contrary and suppose that at least MY/4r heavy labeled interactions are routed
through an unambiguous blob (z, l). Thus there are at least M/4r constraints Cj such that some
labeled interaction corresponding to Cj is heavy in this blob; we will call such a Cj heavy. Now
consider the assignment ζ resulting from picking a random heavy value for each variable in this
blob. The assignment ζ satisfies a particular heavy constraint Cj with probability at least 1/ck.
Thus the expected number of constraints satisfied by this assignment is at least M/(4rck). On
the other hand, the soundness of the CSP implies that this can be no more than Msatn. Thus
r > (4cksatn)−1. This however contradicts the definition of r.

From Lemmas 4.4 and 4.6, we conclude

Lemma 4.7. Suppose that φ is a no instance. Then for any unambiguous blob (z, l) the number
of routed labeled interactions that pass through (z, l) is at most MY

2r .

4.5 Overambiguous blobs

Let S be a set of unlabeled interaction such that routing S makes a blob (z, l) overambiguous. We
first lower bound the probability that the canonical paths corresponding to S will cause congestion
b = c + 1 in blob (z, l).

Let α1, . . . , αb be b values for xi such that (xi, αq) is heavy in (z, l). Recall that Xi = Y JBi is

the number of special edges in M
(i)
z,l where Bi 6 T is the number of occurrences of variable xi in the

constraints Cj , j ∈ [M]. For convenience, we shall omit the subscript i in the rest of this section

10

and use A and X to refer to Ai and Xi respectively. For q ∈ [b], the heaviness of (xi, αq) implies
that there is a set Sq ⊂ S of A labeled interactions that highlight value αq for xi in (z, l). Thus for

each q, by construction, the set of special edges in M
(i)
z,l used by (the canonical paths corresponding

to) the labeled interactions in Sq is a uniformly random subset of size A. Thus for a given special
edge ei

z,l,s, the probability that it gets used by a labeled interaction in Sq, for some q, is (A/X).

Thus with probability (A/X)b, ei
z,l,s is used by a labeled interaction from each of the sets Sq, and

hence suffers congestion b.

Intuitively, since the events ”edge ei
z,l,s has congestion b” are negatively correlated, the proba-

bility that none of these events occurs is no larger than what it would be if they were independent.
The latter probability is at most (1− (A/X)b)X = (1−1/ρb)X 6 e−X/ρb

6 e−Y J/ρb
. More formally,

let Bs
q denote the event that edge ei

z,l,s gets used by a labeled interaction in Sq. For each q, the
events {Bs

q : s ∈ [Y JB]} are negatively associated (see e.g. [10]). Further, for q 6= q′ and any

s, s′, the events Bs
q and Bs′

q′ are independent. Therefore the events {∩qB
s
q : s ∈ [Y JB]} are also

negatively associated (proposition 7 in [10]). Finally note that the event ∩qB
s
q is precisely the event

that edge ei
z,l,s has congestion b. We conclude that with probability at least (1− e−Y J/ρb

), at least
one edge get congestion b in a canonical routing of S. In other words, for any give set of labeled
interactions S, the canonical paths corresponding to it have a probability (1 − exp(−Y J/ρb)) of
causing congestion b at each overambiguous blob. For our choice of parameters, Y J/ρb 6 1, so that
this probability is at least Y J

2ρb .

We note that the above argument only involves the coin tosses for variable xi.

Next we entertain the possibility of deviant paths. For a particular one of these paths P [σ] =
P [j, ζ, y, l′], we will first bound the probability of there being a deviant path P avoiding ei

z,l,s. Recall
that our CSP instance was k-partite; let xi belong to part Vt. If t = k, Lemma 4.2 implies that P
cannot avoid ei

z,l,s. We thus assume that t 6= k. Let us fix the coin tosses for all parts other than

Vk. Recall that the deviant path P must enter the blob (z, l) at node wz,l,1
Cj ,ζ,y and leave the blob

using node wz,l,k+1
Cj ,ζ,y . Consider the set Wbad of connector nodes wz,l,k

τ ′ reachable from wz,l,1
Cj ,ζ,y with

τ ′ 6= (Cj , ζ, y); since the connector nodes and the left endpoints of the special edges have outdegree
one, and the right endpoints have outdegree at most p, there are no more than pk−1 nodes in Wbad.
For a node wz,l,k

τ ′ in Wbad, it has a path to node wz,l,k+1
Cj ,ζ,y only if it uses the same matching edge as

σ for its variable in Vk. This happens with probability no more than 1/Xi 6 1/(Y J). Taking a
union bound over nodes in Wbad, the probability that there is a deviant path P within this blob is

at most pk−1

Y J .

Thus amongst the c + 1 canonical paths that congest edge ei
z,l,s, the expected number that can

deviate is at most (c+1)pk−1

Y J . For our choice of parameters, this expectation is at most a half, and
hence with probability at least 1/2, none of these paths can find a deviation.

Thus with probability at least 1
2(Y J

2ρb), some edge in this blob has congestion c + 1, for any set

of (possibly deviant) paths P that correspond to S. Moreover, since x > 1 − e−x, we have shown
that:

Lemma 4.8. Let (z, l) be a blob that is overambiguous with respect to a set S of labeled interactions.
Then with probability at least (1− exp(−Y J

4ρb)) over the coin tosses in the blob, any routing of S has

an edge with congestion (c + 1).

11

4.6 Putting it together

We first use an averaging argument to show that if the total flow is large, there must be several
overambiguous blobs.

Lemma 4.9. Let S be a set of MY L/r labeled interactions and suppose that φ is a no instance.
Then there are at least ZL/2r overambiguous blobs.

Proof. Consider a particular layer z∗ ∈ [Z]. Because of the layered structure of the graph, each
labeled interaction σ ∈ S must pass through some blob (z∗, l), l ∈ L. From Lemma 4.7, at most
MY L/2r of the σ’s could be routed through unambiguous blobs. Thus the flow through overam-
biguous blobs in this layer is at least MY L/2r. Since each blob can allow at most MY flow through
it, there must be at least L/2r overambiguous blobs in this layer. Moreover, this is true for each
z∗ ∈ [Z], and we get a total of ZL/2r overambiguous blobs.

We next combine Lemmas 4.8 and 4.9 to show the following.

Lemma 4.10. Let S be a set of MY L/r labeled interactions and suppose that φ is a no instance.
Except with probability at most exp(−Y JZL

8rρb) over the coin tosses of the reduction, every routing of

S causes congestion (c + 1).

Proof. By Lemma 4.9, there must be at least ZL/2r overambiguous blobs. By Lemma 4.8, the
probability that any one of these blobs avoids congestion (c + 1) is at most exp(−Y J

4ρb). Since the
coin tosses in the blobs are independent, the probability of avoiding congestion everywhere is at
most exp(−Y JZL

8rρb).

Taking a union bound over the at most 2MY LJ possible sets S, the probability that there is any
routing with small congestion is exponentially small for Z = 8rρbM . Thus we have shown that:

Theorem 4.11 (Soundness). If φ is a no instance, then with high probability over the coin tosses
of the reduction, it is not possible to route more than MY L/r of the source-destination pairs, even
allowing for congestion c.

We conclude this section by noting that Lemmas 3.1, 3.2 and Theorem 4.11, together with the
value of the gap r = 1

5cksatn
, abstract all that we will need about the reduction in the next section.

5 Using the reduction

In this section, we state and obtain the hardness results for constraint satisfaction problems with
certain parameters. These will then be plugged into the above reduction to deduce inapproxima-
bility results for routing on directed graphs.

12

5.1 Derandomized Serial Repetition

The most obvious way to boost the soundness of an instance I of a hard CSP with parameters
(M ′, N ′, J, p, `, 1, s) instance I is to consider the t-fold repetition of I which has N ′ = Nt variables
(t copies for each of the original variables) and has a constraint for each t-tuple of constraints in
I, with the i’th copy of the variables participating in the i’th constraint of each tuple. This yields
a CSP with much smaller soundness s = s′t, but unfortunately its large number M ′t of constraints
precludes getting meaningful hardness results when t is large.

A more size efficient transformation is to not consider all t-tuples but rather consider all tuples
corresponding to length t walks1 in a sparse D-regular graph G with M ′ vertices (that correspond
to the constraints of I). This will yield a collection of M ′Dt−1 constraints, which is much smaller
than M ′t for D � M . Of course, one cannot argue that the soundness is now as small as s′t.
However, if G is a good “expander”, one can show that the soundness is not much larger. This is
based on Lemma 5.2 below that asserts a “strong hitting property” of random walks on expanders
(versions of this lemma appear in several papers such as [9, 17], see also [1, Chap. 9]). In what
follows, we use the following terminology:

Definition 5.1. An n-vertex graph (possibly with multiple edges) an (n, d, λ)-graph if it is d-regular
and its adjacency matrix has eigenvalues d = λ1 > λ2 > · · · > λn, and max{λ2, |λn|} 6 λ.

Lemma 5.2. Let G = (V, E) be an (n, d, λ)-graph, and let t > 1 be an integer. Let S0, . . . , St be
arbitrary subsets of V such that |Si| 6 αn for i = 0, 1, . . . , t. Then the fraction of length t walks in
G whose i’th vertex belongs to Si−1 for each i = 1, 2, . . . , t + 1 is at most α(α + λ/d)t.

A couple of remarks on the specifics of the lemma are in order compared to the version in
[1]. The bound in [1] is stated for the case when all the sets Si are the same, but it applies with
essentially no change in proof when we have different sets for different steps of the random walk.
The bound above is also a little stronger than the one stated in [1], so we give a quick overview
of the main steps without details of the calculations. The fraction of such walks can be shown
to be at most α‖PtAPt−1A · · ·AP0‖2 where A is the normalized adjacency matrix of G, Pi is a
diagonal matrix with 1’s in the positions corresponding to Si for 0 6 i 6 t, and the matrix norm
is defined by ‖C‖2 = supy 6=0 ‖Cy‖2/‖y‖2. Using P 2

i = Pi and ‖XY ‖2 6 ‖X‖2‖Y ‖2, we have

‖PtAPt−1A · · ·AP0‖2 6
∏t−1

i=0 ‖Pi+1APi‖2. One can show that ‖Pi+1APi‖2 6 (α + λ/d), and this
yields the claimed bound.

The above shows that (n, d, λ)-graphs with λ � d are useful for derandomized serial repetition.
For example, if λ/d 6 α, then at most (2α)t+1 of the length t random walks in G fall inside a
particular “bad” set Si for every step i. While explicit constructions of such graphs are known,
since our reduction to DirEDPwC is anyway randomized, we will use the following randomized
construction which offers the advantage of a lot of flexibility with the parameters.2

1The length of a walk is the number of edges in the walk, so a length t walk is a sequence of t + 1 vertices
v0, v1, . . . , vt where (vi, vi+1) is an edge for 0 6 i 6 t − 1.

2The eigenvalue bound stated is worse than the 2
√

d for Ramanujan graphs since we want a result that also applies
when d grows with n. For d = 2o(

√
n), Friedman [12] has shown that a 3

√

d upper bound holds with high probability,
and for constant d, λ 6 2

√

d − 1 + ε with high probability [11]. We use a weaker bound that holds for all d. Using a
better bound will only improve the additive O(1) constant in our N1/(9+ε)(c+O(1)) hardness factor.

13

Proposition 5.3 (Friedman [12]). For all large enough integers d, n with d even and d 6 n, the
following holds. Consider a random d-regular (multi)-graph G on n-vertices picked as follows: Pick
d/2 uniformly at random permutations π1, . . . , πd/2 on [n]. Form a graph with vertex set [n] and

edge set {(i, πj(i)), (i, π
−1
j (i)) | i ∈ [n], 1 6 j 6 d/2}. Then, with probability at least 3/4, G is an

(n, d, 2d7/8)-graph.

With the expander background in place, we are now ready to state and sketch the proof of our
application to CSPs.

Lemma 5.4. For any integer “repetition parameter” t > 1, there is a randomized reduction that,
with probability at least 3/4, maps instances of a p-ary `-partite CSP with parameters

(M ′, N ′, J, p, `, 1, s)

into instances of a p-ary t`-partite CSP with parameters

(M 6 M ′(2/s)8t, N = N ′t, J t, p, `t, 1, (2s)t) .

The reduction runs in time bounded by a polynomial in M ′(2/s)8t.

Proof. The reduction uses a random D-regular graph G on M ′ vertices where D = 256d1/s8e
(so that 2/D1/8 6 s). This is the only randomized part of the reduction. By Proposition 5.3,
G is a (M ′, D, 4D3/4)-graph. Now on input a `-partite CSP instance I ′ on N ′ variables and M ′

constraints, form a t`-partite CSP instance I on tN ′ variables (t copies for each variable). There
are M ′ · Dt−1 constraints in I, one for each t-tuple of the original constraints that correspond to
length t− 1 random walks on G. A constraint of I is satisfied iff all of the t constituent constraints
in its tuple are satisfied. The i’th constraint in a tuple uses the i’th copy of the respective variables
(so I is indeed t` partite). The number of satisfying assignments per constraint of I is clearly at
most J t.

Clearly, if I ′ is satisfiable, then giving the same assignment as a variable v to all its t copies
satisfies all the constraints of I. This shows that perfect completeness is preserved.

For the soundness analysis, suppose I ′ is at most s-satisfiable. Let σ = (σ1, σ2, . . . , σt) be an
arbitrary assignment to the variables of the instance I, where σi, 1 6 i 6 t, is the assignment to
the set of i’th copies of the variables. For 1 6 i 6 t, let Si−1 be the subset of [M ′] that corresponds
to constraints satisfied by σi. By the soundness assumption, note that |Si|/M ′ 6 s for each i,
0 6 i 6 t−1. The fraction of constraints of I that are satisfied by the assignment σ is precisely the
fraction of length t−1 random walks in G whose i’th vertex belongs to Si−1 for each i = 1, 2, . . . , t.
By Lemma 5.2 this fraction is at most s(s + 2/D1/8)t−1 6 s(2s)t−1 < (2s)t.

5.2 Hard CSPs from Raz two prover systems

The following result is a cornerstone of inapproximability theory and has served as a very useful
starting point for numerous reductions It follows by applying the Raz parallel repetition theorem
to a standard 2 prover 1 round proof system implied by the PCP theorem, and is often stated as
the hardness of a problem called Label Cover.

14

Theorem 5.5. There exists an absolute constant γ, 0 < γ < 1, such that for all large enough
integer valued functions p : N → N, the CSP with parameters (nlog p, nlog p, p, p, 2, 1, 1/pγ)
is not decidable in time polynomial in the size of the instance, unless NP ⊆ DTIME(nO(log p(n))).
(Here we used the shorthand p = p(n).)

In particular, using the above, one can get quasi NP-hardness for a soundness of 1/2O(log1−ε M)

as a function of the number of constraints for any desired constant ε > 0. One can also get NP-
hardness for a arbitrarily small constant soundness. But the above does not yield a polynomially
small soundness of 1/M ε for some ε > 0. For this we boost the soundness using the expander walk
technique discussed in Section 5.1.

For an integer valued function c : N → N satisfying 1 6 c(n) 6 log n, we start with a hard
instance of the above CSP for the choice

p(n) = 5 · (2c(n)2)2/γ . (1)

We then perform the derandomized serial repetition of Lemma 5.4 on such a CSP with repetition
parameter

t =

⌈

log n

c(n)

⌉

. (2)

This proves the hardness of a CSP with parameters

(

M 6 nlog p(2p)8t, N = tnlog p, J = pt, p, k = 2t, 1, (2/pγ)t
)

. (3)

In what follows, we use the shorthand c = c(n). For the above choice, we have (4pkJr)b > 2bpk−1:
indeed b = c+1 > 2, so Jb > pk > bpk−1. Moreover, J = pk/2 6 2bpk−1. Therefore, by Lemma 3.2,
the size (number of vertices) S of the graph produced by the reduction on the resulting CSP satisfies

S = O(M7p4kkr3(4pkJr)3b) 6 nO(log p)pO(kc) = pO(log n+kc)
6 pO(kc)

where we used the parameter values from (3), in the last step we used the fact that kc = 2tc >

2 log n, and in the first inequality we used the fact that gap r is given by

r =
1

5cksatn
=

pγk/2

5ck2k/2
6 pγk/2 .

By our choice of p in (1), we also have r > pγk/4. It follows that as a function of the number of
vertices S of the graph, the gap r satisfies r > SΩ(γ/c). Therefore, we get the desired polynomial
hardness as a function of the congestion.

Let us now bound S as a function of n (this also serves as a bound on the running time of the
reduction from the CSP to the directed routing instance). We have

S 6 pO(log n+kc)
6 pO(log n) = c(n)O(γ−1 log n) = nO(γ−1 log c(n)) .

When c(n) = log n, we have S = nO(log log n), and so we get a superconstant SΩ(γ/c) factor inap-
proximability result for congestion c (as a function of S) up to Ω(log S

log log S).

The preceding discussion therefore implies the following hardness result for DirEDPwC:

15

Theorem 5.6 (Hardness of DirEDPwC). There exist absolute constants α0, γ0 > 0 such that for
every integer-valued function c : N → N satisfying 1 6 c(n) 6 log n (and computable in time
polynomial in n), the following holds unless NP ⊆

⋃

d BPTIME(nd log c(n)). Given a directed graph
G on S 6 nO(log c(n)) vertices with source-destination pairs (si, ti), 1 6 i 6 k, it is impossible to
distinguish between the following cases in time polynomial in S:

• [Yes Instances:] There are edge-disjoint paths connecting all the si-ti pairs.

• [No Instances:] For c = c(n), any routing of more than a fraction 1/Sγ0/c of the si-ti pairs
uses some edge at least c + 1 times. That is, with congestion c, at most a fraction S−γ0/c of
the si-ti pairs can be routed.

Using the choice c(n) = log n, we get a gap of (log S)Ω(1) for congestion c(S) = Θ
(

log S
log log S

)

.

This implies a factor Ω(log S/ log log S) hardness for the congestion minimization problem, which we
record formally below. This slightly improves the (log S)1−ε inapproximability shown by Andrews
and Zhang [5]. The improvement is due to our choice of label set, which is based on Lemma 2.3
and is much smaller than the choice made in [5], and consequently yields smaller routing instances.

Corollary 5.7 (Hardness of congestion minimization). Assume that NP 6⊆ ⋃

d BPTIME(nd log log n).
There is an absolute constant a0 > 0 such that given a directed graph on S vertices with source-
destination pairs (si, ti), 1 6 i 6 k, it is impossible to distinguish between the following cases in
time polynomial in S:

• [Yes Instances:] There are edge-disjoint paths connecting all the si-ti pairs.

• [No Instances:] Every routing of all the the si-ti pairs incurs congestion more than a0 log S
log log S

on some edge.

We note that given a target congestion function c′ = c′(S), one needs to choose an appropriate
function c(n) so that the value c(n) is equal to c′(S) = c′(c(n)O(γ−1 log n)). For any c′ such that
1 6 c′(S) 6 O(γ log S/ log log S), this can be done. Indeed for a given n, such a c = c(n) can be
found using binary search in the interval [1, log n], since S is monotonically increasing in c.

5.3 CSPs with better soundness vs. alphabet size trade-off

The previous result has the drawback that it yields a rather poor constant in the exponent of
the SΩ(1/c) inapproximability factor. An inspection of the above calculation reveals that the main
source of this weak bound is the large number J of satisfying assignments compared to the inverse
of the soundness 1/satn for the CSP which is reduced to the DirEDPwC instance. In turn, this is
inherited from the Raz two prover system (Theorem 5.5) where the number of satisfying assignments
per constraint is p whereas the soundness is 1/pγ for a tiny value of γ > 0.

To improve the constants, we need to start from a CSP with a better relation between J and the
soundness. While better trade-offs should be possible by using more sophisticated CSPs (including
possibly a variant of the CSPs constructed by H̊astad and Khot [16]), we will use the following
result.

16

Theorem 5.8. There exists an absolute constant λ < ∞ such that for all integer valued functions
p : N → N that takes prime values, the p-ary 3-partite CSP with parameters

(

nλ log p2pλ
, nλ log p2pλ

, 2p2, p, 3, 1,
3

p

)

is not decidable in time polynomial in the size of the instance, unless NP ⊆ DTIME(2p(n)O(1)
nO(log p(n))).

(Here we used the shorthand p = p(n).)

This can be proved using the powerful (and by now standard) paradigm involving suitable tests
on Long Code based encodings of answers in the Raz 2-prover system which are then analyzed using
Fourier techniques [15]. In particular, the result above can be obtained using p-ary Long Codes
where p is a prime, and each test checks whether a certain linear combination of three variables
equals one of two possible values modulo p. We omit the details here.

Note that since the bound on number M of constraints of the instance is at least 2p(n)O(1)
, and

p(n) is larger than the congestion parameter c(n), the largest congestion for which we will get a
hardness result by this approach the soundness as a function of M is at most 1/ logγ M for some
small γ > 0.

We will now use the above CSP to obtain a hardness factor of Ω(S
1

(9+ε)(c+9)) for DirEDPwC with
congestion c, for any desired constant ε > 0, that is valid for congestion c = c(S) in the range
1 6 c 6 (log S)α(ε) for some constant α(ε) > 0.

Let L = L(ε) > 16/ε be a large enough integer as a function of ε. For an integer valued
function c : N → N satisfying 1 6 c(n) 6 (log n)1/6λL, we start with a hard instance of the CSP
from Theorem 5.8 choosing p = p(n) to be any prime in the range [5 · (6c(n)3)L, 10 · (6c(n)3)L].

Note that for this choice p = O(log1/2λ n), so that nλ log p2pλ
6 p2λ log n.

As we did with the Raz based CSP earlier, we then boost the soundness using the expander-
based derandomized serial repetition on such a CSP with repetition parameter

t =

⌈

2λL log n

c(n)

⌉

. (4)

This proves the hardness of a CSP with parameters
(

M 6 p2λ log np8t, N 6 tp2λ log n, J = (2p2)t, p, k = 3t, 1, (6/p)t
)

. (5)

In what follows, we use the shorthand c = c(n). For the above choice, we have (4pkJr)b > 2bpk−1:

indeed b = c+1 > 2, so Jb = (2p2k/3)b > p4k/3 > bpk−1. Hence ρ = 4pkJr. Moreover, J = 2
k
3 p

2k
3 6

2pk−1 6 2bpk−1. Therefore, by Lemma 3.2, the size (number of vertices) S of the graph produced
by the reduction on the resulting CSP satisfies S = O(M7p4kkr3(4pkJr)3b). The gap r is given by

r = (5cksatn)−1 = pk/3

5ck6k/3 , so by our choice of p, we have

p(1−1/L)k/3
6 r 6 pk/3 . (6)

Let us now try and bound S in terms of r. To this end, we will bound each of the quantities J, M
that figure in the bound for S = O(M7p4kkr3(4pkJr)3b). We have

J = (2p2)k/3 = p
k
3
(2+ 1

log p
)
6 r(1+2/L)(2+1/L)

6 r2+ε

17

using (6), p > 2L, and L > 16/ε. We have

M 6 p8k/3p2λ log n
6 r8(1+2/L)r(1+2/L)c/L

6 r8+ε(c+1) ,

using L > 16/ε.

Moreover, p4k 6 r12(1+ 2
L

)
6 r12+2ε. The remaining term k(4pk)3b in the bound for S is surely

at most 215kb 6 p15kb/ log p 6 p2εk(c+1) 6 r8ε(c+1). Combining these bounds, we conclude that

S = O(M7p4kr3k(4pk)3b(Jr)3b) = O
(

r7(8+εb)r15+2εr8εbr(3+ε)3b
)

= O
(

r9b+71+18εb+6ε
)

= O
(

r(9+18ε)(b+8)
)

.

Therefore with ε′ = 18ε, S = O(r(9+ε′)(c+9)). We conclude that the gap as a function of the

size of the graph is given by r = Ω(S
1

(9+ε′)(c+9)).

The running time of the reduction is polynomial in S, and thus by the above calculation is
pO(kc) = pO(log n) = nO(log c(n)). By the preceding discussion, we can conclude the following hardness
result.

Theorem 5.9. For every constant ε > 0, there exists a constant β = β(ε) > 0 such that for
every integer-valued function c : N → N satisfying 1 6 c(n) 6 logβ n (and computable in time
polynomial in n), the following holds unless NP ⊆

⋃

d BPTIME(nd log c(n)). Given a directed graph
G on S 6 nO(log c(n)) vertices with source-destination pairs (si, ti), 1 6 i 6 k, it is impossible to
distinguish between the following cases in time polynomial in S:

• [Yes Instances:] There are edge-disjoint paths connecting all the si-ti pairs.

• [No Instances:] For c = c(n), any routing of more than a fraction S
− 1

(9+ε)(c+9) of the si-ti
pairs uses some edge at least c + 1 times. That is, with congestion c, at most a fraction

S
− 1

(9+ε)(c+9) of the si-ti pairs can be routed.

6 Concluding remarks and an open question

We showed a factor NΩ(1/c(N)) inapproximability factor for DirEDPwC with congestion paramater
c(N) in the range 1 6 c(N) 6 α log N/ log log N for some absoluate constant α > 0. For constant

congestion, we showed a hardness factor of roughly N
1

(9+ε)c . An obvious open question is whether

the hardness factor can be improved to N
1

(1+ε)(c+1) , which would essentially match the best known
algorithms that achieve an approximation ratio of O(cN1/c). Note that for c = 1, such a N1/(2+ε)

hardness factor is known [13]. As mentioned in the introduction, one should be able to get a

N
1

(3+ε)(c+O(1)) hardness factor using our methods by plugging in a better CSP as starting point for
our reduction. Reducing the multiplicative factor from 3+ ε all the way to 1+ ε appears to require
additional new ideas, and remains an interesting open question.

Acknowledgments. We thank Joel Friedman for useful discussions on the spectral properties of
random regular graphs, and communicating Proposition 5.3 to us.

18

References

[1] N. Alon and J. Spencer. The Probabilistic Method. John Wiley and Sons, Inc., 1992.

[2] M. Andrews, J. Chuzhoy, S. Khanna, and L. Zhang. Hardness of the undirected edge-disjoint
paths problem with congestion. In Proceedings of the 46th Annual IEEE Symposium on Foun-
dations of Computer Science, pages 226–244, 2005.

[3] M. Andrews and L. Zhang. Hardness of the undirected congestion minimization problem. In
Proceedings of the 37th Annual ACM Symposium on Theory of Computing, pages 284–293,
2005.

[4] M. Andrews and L. Zhang. Hardness of the undirected edge-disjoint paths problem. In
Proceedings of the 37th Annual ACM Symposium on Theory of Computing, pages 276–283,
2005.

[5] M. Andrews and L. Zhang. Logarithmic hardness of the directed congestion minimization
problem. In Proceedings of the 38th Annual ACM Symposium on Theory of Computing, pages
517–526, 2006.

[6] C. Chekuri and S. Khanna. Edge disjoint paths revisited. In Proceedings of the 14th Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 628–637, 2003.

[7] J. Chuzhoy and S. Khanna. Hardness of directed routing with congestion. ECCC Technical
Report TR06-109, 2006.

[8] J. Chuzhoy and J. Naor. New hardness results for congestion minimization and machine
scheduling. In Proceedings of the 36th Annual ACM Symposium on Theory of Computing,
pages 28–34, 2004.

[9] A. Cohen and A. Wigderson. Dispersers, deterministic amplification, and weak random sources
(extended abstract). In Proceedings of the 30th Annual IEEE Symposium on Foundations of
Computer Science, pages 14–19, 1989.

[10] D. P. Dubhashi and D. Ranjan. Balls and bins: A study in negative dependence. Random
Structures and Algorithms, 13(2):99–124, 1998.

[11] J. Friedman. A proof of Alon’s second eigenvalue conjecture and related problems. CoRR,
cs.DM/0405020, 2004.

[12] J. Friedman. A note on the second eigenvalue of regular graphs. Manuscript (personal com-
munication), 2006.

[13] V. Guruswami, S. Khanna, R. Rajaraman, F. B. Shepherd, and M. Yannakakis. Near-optimal
hardness results and approximation algorithms for edge-disjoint paths and related problems.
J. Comput. Syst. Sci., 67(3):473–496, 2003.

[14] V. Guruswami and K. Talwar. Hardness of low-congestion routing in undirected graphs.
Manuscript, May 2005.

[15] J. H̊astad. Some optimal inapproximability results. Journal of the ACM, 48(4):798–859, 2001.

19

[16] J. H̊astad and S. Khot. Query efficient PCPs with perfect completeness. Theory of Computing,
1(7):119–148, 2005.

[17] R. Impagliazzo and D. Zuckerman. How to recycle random bits. In Proceedings of the 30th
Annual IEEE Symposium on Foundations of Computer Science, pages 248–253, 1989.

[18] J. M. Kleinberg. Approximation algorithms for disjoint paths problems. PhD thesis, MIT, May
1996.

[19] S. G. Kolliopoulos and C. Stein. Approximating disjoint-path problems using greedy algorithms
and packing integer programs. In Proceedings of the 6th International Conference on Integer
Programming and Combinatorial Optimization, pages 153–168, 1998.

[20] P. Raghavan and C. D. Thompson. Randomized rounding: a technique for provably good
algorithms and algorithmic proofs. Combinatorica, 7(4):365–374, 1987.

[21] A. Srinivasan. Improved approximations for edge-disjoint paths, unsplittable flow, and related
routing problems. In Proceeedings of the 38th Annual Symposium on Foundations of Computer
Science, pages 416–425, 1997.

20

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

	Introduction
	Prior Work
	Our Reduction Method
	Related work

	Background and Definitions
	Constraint Satisfaction Problems
	Convexly Independent vectors

	Reduction from CSP to DirEDPwC
	Canonical paths
	The parameters
	Completeness
	Size of the DirEDPwC instance

	Soundness of the reduction
	All paths are (nearly) canonical
	Bounding flow on light paths
	Bounding flow on heavy paths
	Unambiguous blobs
	Overambiguous blobs
	Putting it together

	Using the reduction
	Derandomized Serial Repetition
	Hard CSPs from Raz two prover systems
	CSPs with better soundness vs. alphabet size trade-off

	Concluding remarks and an open question

