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Abstract. In this paper we ask the question whether the extended Frege proof
system EF satisfies a weak version of the deduction theorem. We prove that
if this is the case, then complete disjoint NP-pairs exist. On the other hand, if
EF is an optimal proof system, then the weak deduction theorem holds for EF .
Hence the weak deduction property for EF is a natural intermediate condition
between the optimality of EF and the completeness of its canonical pair. We
also exhibit two conditions that imply the completeness of the canonical pair of
Frege systems.

1 Introduction

Although disjoint NP-pairs were already introduced into complexity theory in
the 80’s by Grollmann and Selman [GS88] it was only during recent years that
disjoint NP-pairs have fully come into the focus of complexity-theoretic re-
search (cf. e.g. [Pud03,GSSZ04,GSS05,GSZ06]). This interest mainly stems from
the applications of disjoint NP-pairs to such different areas as cryptography
[GS88,HS92] and propositional proof complexity [Raz94,Pud03,Kra04,Bey04].

Similarly as for other promise classes it is not known whether the class of all
disjoint NP-pairs contains pairs that are complete under the appropriate reduc-
tions. This question, posed by Razborov [Raz94], is one of the most prominent
open problems in the field. On the positive side, it is known that the existence
of optimal proof systems suffices to guarantee the existence of complete pairs
[Raz94]. More towards the negative, a body of sophisticated relativization re-
sults underlines the difficulty of the problem. Glaßer et al. [GSSZ04] provided an
oracle under which there exist complete disjoint NP-pairs. On the other hand,
they also constructed an oracle relative to which there exist complete pairs but
optimal proof systems do not exist.

Further information on the problem is provided by a number of different
characterizations. Glaßer, Selman, and Sengupta [GSS05] obtained a condition
in terms of uniform enumerations of machines and also proved that the question
of the existence of complete pairs receives the same answer under reductions of
different strength. Additionally, the problem was characterized by provability
conditions in propositional proof systems and shown to be robust under an
increase of the number of components from two to arbitrary constants [Bey06b].

In this paper we exhibit several sufficient conditions for the existence of
complete disjoint NP-pairs which involve properties of concrete proof systems
such as Frege systems and their extensions. In particular, we link the problem
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on complete pairs with the question whether the extended Frege proof system
satisfies a weak version of the deduction property. The deduction theorem for
propositional logic explains how a proof of a formula ψ from an extra hypothesis
ϕ is transformed to a proof of ϕ→ ψ. This property is known to hold for Frege
systems [BB93], but fails for extended or substitution Frege systems as neither
the extension nor the substitution rule is sound. We therefore relax the condition
by requiring the extra hypothesis ϕ to be tautological.

Whether this weakened version of the deduction property holds for EF
appears to be a natural problem of intermediate strength between the problems
on the existence of optimal proof systems and complete NP-pairs. Namely, from
the existence of optimal proof systems we infer the deduction property for
some extension of EF , and this in turn implies the existence of complete NP-
pairs. Conversely, it is not clear whether any of the opposite implications is
valid. While the deduction property for EF relates to the completeness of the
canonical EF -pair, we also exhibit two conditions that imply the completeness
of the canonical pair of Frege systems. In particular, we demonstrate that the
existence of complete NP-pairs is tightly connected with the question whether
EF is indeed more powerful than ordinary Frege systems.

The paper is organized as follows. In Sect. 2 we provide some background
information on propositional proof systems and disjoint NP-pairs. In Sect. 3 we
define and discuss different versions of the deduction property. Section 4, after
a series of lemmas, contains the main results connecting the deduction property
for strong systems with the existence of complete NP-pairs. Finally, in Sect. 5
we conclude with some open problems.

2 Preliminaries

Propositional Proof Systems. Propositional proof systems were defined in a
very general way by Cook and Reckhow in [CR79] as polynomial time functions
P which have as its range the set of all tautologies. A string π with P (π) = ϕ

is called a P -proof of the tautology ϕ. By P `≤m ϕ we indicate that there is a
P -proof of ϕ of size ≤ m.

Proof systems are compared according to their strength by simulations in-
troduced in [CR79]. A proof system Q p-simulates a proof system P (denoted
by P ≤p Q), if there exists a function that computes in polynomial time from
a P -proof a Q-proof of the same formula. A proof system is called p-optimal if
it p-simulates all proof systems. Whether or not p-optimal proof systems exist
is an open problem posed by Kraj́ıček and Pudlák [KP89].

A prominent example of a class of proof systems is provided by Frege systems

which are usual textbook proof systems based on axioms and rules. In the
context of propositional proof complexity these systems were first studied by
Cook and Reckhow [CR79] and it was proven there that all Frege systems, i.e.,
systems using different axiomatizations and rules, are polynomially equivalent.

Augmenting Frege systems by the possibility to abbreviate complex formulas
by propositional variables we arrive at the extended Frege proof system EF . This
extension rule might further reduce the proof size, but it is not known whether
EF is really stronger than ordinary Frege systems. Both Frege and the extended
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Frege system are very strong systems for which no non-trivial lower bounds to
the proof size are currently known.

Another way to enhance the power of Frege systems is to allow substitu-
tions not only for axioms but also for all formulas that have been derived in
Frege proofs. Augmenting Frege systems by this substitution rule leads to the
substitution Frege system SF . The extensions EF and SF were introduced by
Cook and Reckhow [CR79]. While it was already proven there that EF is sim-
ulated by SF , the converse simulation is considerably more involved and was
shown independently by Dowd [Dow85] and Kraj́ıček and Pudlák [KP89]. For
more detailed information on Frege systems and its extensions we refer to the
monograph [Kra95].

Under the notion of line based proof systems we subsume all proof systems
that have as proofs sequences of formulas, and formulas in such a sequence are
derived from earlier formulas in the sequence by the rules available in the proof
system. In particular, Frege systems and its extensions are line based in this
sense. Line based proof systems P can be enhanced by additional axioms in two
different ways. Namely, we can form a proof system P + Φ augmenting P by a
polynomial time computable set Φ of tautologies as new axiom schemes. This
means that formulas from Φ as well as substitution instances of these formulas
can be freely introduced as new lines in P +Φ -proofs. In contrast to this we use
the notation P ∪ Φ for the proof system that extends P only by formulas from
Φ but not by their substitution instances as new axioms. In our applications
the set Φ will mostly be printable, meaning that it is even possible to generate
the formulas from Φ in polynomial time.

Disjoint NP-Pairs. A pair (A,B) is called a disjoint NP-pair if A,B ∈ NP

and A ∩B = ∅. Grollmann and Selman [GS88] defined the following reduction
between disjoint NP-pairs (A,B) and (C,D): (A,B) ≤p (C,D) if there exists a
polynomial time computable function f such that f(A) ⊆ C and f(B) ⊆ D.

The link between disjoint NP-pairs and propositional proof systems was
established by Razborov [Raz94], who associated a canonical disjoint NP-pair
(Ref(P ),SAT∗) with a proof system P , where the first component Ref(P ) =
{(ϕ, 1m) |P `≤m ϕ} contains information about proof lengths in P and SAT∗ =
{(ϕ, 1m) | ¬ϕ ∈ SAT} is a padded version of SAT. This canonical pair is linked
to the automatizablility and the reflection property of the proof system [Pud03].
Simulations between proof systems are reflected in reductions between canonical
pairs as the next easy, but useful proposition shows:

Proposition 1 (Pudlák [Pud03]). If P and Q are proof systems with P ≤p

Q, then the canonical pair of P is ≤p-reducible to the canonical pair of Q.

Proof. Let f compute the simulation of P by Q. Then the reduction is given
by (ϕ, 1m) 7→ (ϕ, 1p(m)) where p is a polynomial bounding the running time of
f . ut

More information on the connection between disjoint NP-pairs and propo-
sitional proof systems can be found in [Pud03,Bey04,Bey06a,GSZ06].
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3 Deduction Properties for Frege Systems

The deduction theorem of propositional logic states that in a Frege system F a
formula ψ is provable from a formula ϕ if and only if ϕ → ψ is provable in F .
Because proof complexity is focusing on the length of proofs it is interesting to
analyse how the proof length is changing in the deduction theorem. An F -proof
of ϕ → ψ together with the axiom ϕ immediately yields the formula ψ with
one application of modus ponens. Therefore it is only interesting to ask for the
increase in proof length when constructing a proof of ϕ → ψ from an F -proof
of ψ with the extra axiom ϕ. This was analysed in detail in [Bon93,BB93].

The main application of the deduction property is to simplify proofs of com-
plex formulas. Namely, to prove an implication ϕ → ψ it suffices to construct
a proof of ψ from ϕ. In particular, ϕ can be any formula and is not necessarily
a tautology. It is clear that such a deduction property is doomed to fail for
strong systems like EF or SF that can immediately produce substitution in-
stances from ϕ. For instance, by one application of the substitution rule we get
SF ∪ {p} ` q, whereas p→ q is not even a tautology.

Aiming in particular at such strong proof systems we therefore restrict ϕ to
tautologies and make the following general definition.

Definition 2. A line based proof system P allows efficient deduction if there

exists a polynomial p such that for all finite sets Φ of tautologies P ∪ Φ `≤m ψ

implies P `≤p(m+m′) (
∧

ϕ∈Φ ϕ) → ψ where m′ = |
∧

ϕ∈Φ ϕ|.

This efficient deduction property is known to hold for Frege systems (cf.
[BB93]):

Theorem 3 (Deduction theorem for Frege systems). Every Frege system

F allows efficient deduction.

Proof. For every F -rule

Ri =
ψ1 . . . ψr

ψ

we fix an F -proof πi of the tautology ((q → ψ1) ∧ . . . ∧ (q → ψr)) → (q → ψ).
In particular, for r = 0 this also includes the case that Ri is an axiom scheme.

Let ϕ1, . . . , ϕn be tautologies and let (θ1, . . . , θk) be a proof of ψ of size
m in the system F ∪ {ϕ1, . . . , ϕn}. Let m′ =

∑n
i=1 |ϕi|. By induction on j we

construct proofs of the implications

(
n
∧

i=1

ϕi) → θj .

We distinguish two cases on how the formula θj was derived.
If θj is one of the formulas from {ϕ1, . . . , ϕn}, then we get (

∧n
i=1 ϕi) → θj

in a proof of size O(m′).
If θj was inferred from θj1, . . . , θjr

by the F -rule Ri, then we can get from
πi an F -proof of size O(m′ + |θj| +

∑r
l=1 |θjl

|) of the tautology

(((
n
∧

i=1

ϕi) → θj1) ∧ . . . ∧ ((
n
∧

i=1

ϕi) → θjr
)) → ((

n
∧

i=1

ϕi) → θj) .
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Combining all the earlier proved implications (
∧n

i=1 ϕi) → θjl
, l = 1, . . . , r by

conjunctions and using modus ponens we get the desired implication (
∧n

i=1 ϕi) →
θj in a proof of size O(m+m′). ut

A still weaker form of the deduction property is given in the next definition.

Definition 4. A line based proof system P allows weak deduction if the follow-

ing condition holds. For all printable sets Φ ⊆ TAUT there exists a polynomial

p such that for all finite subsets Φ0 ⊆ Φ we can infer from P ∪ Φ0 `≤m ψ that

P `≤p(m+m′) (
∧

ϕ∈Φ0
ϕ) → ψ where m′ = |

∧

ϕ∈Φ0
ϕ|.

In Definition 2 we allowed a fixed polynomial increase for the proof size
in the transformation of a proof from ψ to the implication (

∧

ϕ∈Φ0
ϕ) → ψ,

whereas in the weak deduction property this polynomial might depend on the
choice of the extra axioms Φ. This weakening of the deduction property allows
us to show the following proposition.

Proposition 5. Optimal line based proof systems have the weak deduction prop-

erty.

Proof. Let P be an optimal line based proof system and let Φ be a printable
set of tautologies. Then P ∪ Φ is a well defined proof system which by the
optimality of P is simulated by P . Hence we have polynomial size P -proofs of
all formulas from Φ. Given a finite set Φ0 and a P ∪ Φ0-proof π of a formula ψ
we can therefore first derive all formulas from Φ0 in polynomial size P -proofs
and concatenate this with π. This results in a polynomial size P -proof of ψ
from which we easily obtain a polynomial size P -proof of

∧

ϕ∈Φ0
ϕ→ ψ. ut

It is, however, not clear if optimal proof system also have the seemingly
stronger efficient deduction property.

4 Is the Canonical Pair of EF Complete?

In this section the proof systems EF ∪ Φ for polynomial time computable sets
Φ of tautologies will play an important role. As explained earlier, this notation
means that in contrast to the usual axiom schemes of EF we are only allowed
to use formulas from Φ but not their substitution instances in EF ∪ Φ-proofs.

For substitution Frege systems such a restriction does not make sense as
the substitution rule immediately allows to produce all substitution instances
of Φ. However, we make the following different and somewhat technical defini-
tion. Let Φ(p̄) be again a polynomial time computable set of tautologies in the
possibly infinite sequence of variables p̄. Let q̄ be another infinite sequence of
propositional variables such that p̄ and q̄ do not share any common elements.
Then we denote by SF ∪q̄ Φ(p̄) the following proof system P . The system P is
the substitution Frege system SF augmented by the additional axioms Φ, but
with the following restriction: each P -proof may only use the extra axioms from
Φ, if the variables q̄ do not appear in the P -proof.

Our first lemma shows that every disjoint NP-pair is reducible to the canon-
ical pair of such an extension of SF .
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Lemma 6. For every disjoint NP-pair (A,B) there exists a polynomial time

constructible sequence of formulas ϕn(p̄) in the variables p̄, such that differ-

ent formulas ϕn do not share any variables. Let q̄ be another infinite sequence

of variables without any elements from p̄. Then (A,B) is ≤p-reducible to the

canonical pair of the proof system SF ∪q̄ {ϕn(p̄) | n ≥ 0}.

Proof. Let (A,B) be a disjoint NP-pair. Similarly as in Cook’s proof of the NP-
completeness of SAT [Coo71], we can construct in polynomial time propositional
formulas ψn(x̄, ȳ) such that ψn(ā, ȳ) is satisfiable if and only if ā ∈ A. Similarly,
we build such propositional formulas θn(x̄, z̄) for B. We choose the variables of
ψn(x̄, ȳ) and θn(x̄, z̄) in such a way that the input variables x̄ are the common
variables of ψn and θn, and the auxiliary variables ȳ and z̄ are distinct. Moreover,
the variables of the formulas ψn and θn are chosen distinct for different n, and
all variables x̄, ȳ, and z̄ are contained in the sequence of variables p̄ which are
distinct from the variables q̄. We define the sequence ϕn as

ϕn = ψn(x̄, ȳ) → ¬θn(x̄, z̄) .

Let P denote the system SF ∪q̄ {ϕn(p̄) | n ≥ 0}. We claim that the reduction
from (A,B) to (Ref(P ),SAT∗) is given by

a 7→ (¬θ|a|(ā, z̄), 1
p(|a|))

for some suitable polynomial p. To see the correctness of the reduction let first
a be an element from A of length n. As ψn represents A there exists a witness b̄
such that ψn(ā, b̄) is a tautological formula. The P -proof of ¬θn(ā, z̄) proceeds
as follows. First we use the axiom ψn(x̄, ȳ) → ¬θn(x̄, z̄) and substitute the
variables x̄ and ȳ by ā and b̄, respectively, obtaining

ψn(ā, b̄) → ¬θn(ā, z̄) .

As ψn(ā, b̄) is a true propositional formula without variables we can provide
a polynomial size Frege proof for it. An application of modus ponens gives a
P -proof of ¬θn(ā, z̄) as desired.

Assume now a ∈ B. Then ¬¬θ|a|(ā, z̄) = θ|a|(ā, z̄) is satisfiable and hence

(¬θ|a|(ā, z̄), 1
p(|a|)) ∈ SAT∗. ut

The next lemma is an extension of the simulation of SF by EF as proved
in [KP89].

Lemma 7. Let Φ be a set of tautologies that is polynomial time decidable. As-

sume that Φ only contains the variables p̄ such that different formulas from Φ

use distinct variables from p̄. Let further q̄ be an infinite sequence of variables

that is disjoint from p̄. Then the system SF ∪q̄Φ(p̄) is p-simulated by the system

EF ∪ Φ(q̄).

Proof. Let π = (ϕ1, . . . , ϕk) be a proof of ϕk in the system SF ∪q̄ Φ(p̄). If π
uses the variables q̄, then π is an ordinary SF -proof which can be translated
into a polynomially longer EF -proof. If π proves a formula ϕ(p̄) from Φ(p̄),
then we construct an EF ∪Φ(q̄)-proof of ϕ(p̄) as follows. First we introduce all
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variables p1, . . . , pm occurring in ϕ(p̄) as extension variables via the rules pi ↔ qi
for i = 1, . . . ,m. Using the formulas pi ↔ qi we then prove the equivalence
ϕ(p̄) ↔ ϕ(q̄) by induction on the logical complexity of ϕ. Finally, we include
the axiom ϕ(q̄) from Φ(q̄) and derive ϕ(p̄) by modus ponens.

The general case follows the same paradigm as the last construction but is
technically more involved. Without loss of generality we may now assume that
the only axioms from Φ in the proof π are the first n formulas ϕ1(p̄), . . . , ϕn(p̄),
and that these n < k formulas are all distinct. Moreover, we may assume that
the variables q̄ do not occur in π and that apart from the axioms the system
SF ∪q̄ Φ(p̄) only uses the substitution rule and modus ponens.

Similarly as in [KP89] we will now construct a proof of ϕk in the system
EF ∪ Φ(q̄). Let r̄ be all variables occurring in π. We choose tuples of mutually
distinct variables q̄1, . . . , q̄k that have the same length as r̄. For q̄1, . . . , q̄n we
choose those variables from q̄ that correspond to the respective variables from
p̄ in ϕ1(p̄), . . . , ϕn(p̄). By hypothesis all formulas from Φ use different variables,
and therefore q̄1, . . . , q̄n are pairwise distinct. For q̄k we choose the variables r̄.
We denote the formulas ϕj(q̄j) by ψj for j = 1, . . . , k. Now we define tuples of
formulas β̄j , j = 1, . . . , k, as follows:

β̄j =

{

q̄j if ϕj is an axiom or has been derived by modus ponens,
α(q̄j) if ϕj was derived from ϕi, i < j, by the substitution α.

Here α(q̄j) means that the variables q̄j are substituted by α in the same way as
the variables r̄ in ϕi.

We further use the abbreviations Ψi,j = ψi ∧ . . . ∧ ψj with the convention
Ψi+1,i = 1. The EF ∪ Φ(q̄)-proof starts with the following applications of the
extension rule

qi,l ↔ (Ψi+1,i ∧ ¬ψi+1 ∧ βi+1,l) ∨ . . . ∨ (Ψi+1,k−1 ∧ ¬ψk ∧ βk,l)

for i = k−1, . . . , 1 and l = 1, . . . , |r̄|. In particular, all variables in the new proof,
except for q̄k = r̄ in ψk, are extension variables. Apparently, the formulas

Ψi+1,j−1 ∧ ¬ψj → (qi,l ↔ βj,l) , i < j

are tautologies. Therefore also the formulas

Ψi+1,j−1 ∧ ¬ψj → (ϕi(q̄i) ↔ ϕi(β̄j)) , i < j

are tautological. Moreover, by induction on the formulas ϕi it can be shown
that the above formulas admit polynomial size Frege proofs. By definition these
formulas can also be written as

Ψi+1,j−1 ∧ ¬ψj → (ψi ↔ ψi(β̄j)) , i < j . (1)

Once these formulas have been derived the EF ∪Φ(q̄)-proof proceeds by succes-
sively deriving the formulas ψ1, . . . , ψk, thus yielding with ψk = ϕk the desired
formula. Proving the formulas ψj for j = 1, . . . , k is done by induction on j. We
have to distinguish three cases on how ϕj was derived.
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If ϕj is an axiom, then this is also true for ψj . In particular, this holds for
the formulas ψ1(q̄1), . . . , ψn(q̄n), as these are formulas from Φ(q̄).

For the second case we assume that ϕj was derived by modus ponens from
formulas ϕu and ϕv = ϕu → ϕj with u, v < j. By Formula 1 above we have

Ψu+1,j−1 ∧ ¬ψj → (ψu ↔ ψu(β̄j)) .

By induction hypothesis we have already derived Ψu+1,j−1 and therefore obtain

¬ψj → (ψu ↔ ψu(β̄j)) .

Similarly, we get ¬ψj → (ψv ↔ ψv(β̄j)). As ψu and ψv have already been
derived by induction hypothesis we get

¬ψj → ψu(β̄j) ∧ ψv(β̄j) ,

i.e., ¬ψj → ψu(β̄j) ∧ (ψu(β̄j) → ψj(β̄j)). Applying modus ponens gives

¬ψj → ψj(β̄j)

which is by definition ¬ψj → ψj. Hence we get the formula ψj.

For the last case assume that ϕj is obtained by the substitution α from ϕi

for some i < j. Formula 1 yields

Ψi+1,j−1 ∧ ¬ψj → (ψi ↔ ψi(β̄j)) .

By induction hypothesis we have both Ψi+1,j−1 and ψi which gives

¬ψj → ψi(β̄j) .

But now we have by definition

ψi(β̄j) = ψi(α(q̄j)) = ψj(q̄j) = ψj ,

hence we get again ¬ψj → ψj and therefore the formula ψj . ut

Augmenting line based proof systems P by additional axioms Φ will usually
enhance the power of the proof system. The following lemma shows, however,
that if P has the weak deduction property, then the canonical pair of P ∪ Φ
will not be more difficult than the canonical P -pair. In particular, combined
with Theorem 3 the next lemma shows that the canonical pairs of F and its
extensions F ∪ Φ are equivalent for printable sets Φ ⊆ TAUT.

Lemma 8. Let Φ be a printable set of tautologies and let P be a proof system

with the weak deduction property. Then (Ref(P ∪Φ),SAT∗) ≤p (Ref(P ),SAT∗).

Proof. Let Φ be printable and let p be the polynomial from the weak deduction
property for P and Φ. Because Φ is printable there exists a polynomial q such
that for each number m the set Φ contains at most q(m) tautologies of length
≤ m. Let Φm = Φ ∩Σ≤m be the set of these tautologies.
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Then (Ref(P ∪ Φ),SAT∗) reduces to (Ref(P ),SAT∗) via the function

(ψ, 1m) 7→ ( (
∧

ϕ∈Φm

ϕ) → ψ, 1p(mq(m)+m)) .

To verify the claim assume that (ψ, 1m) ∈ Ref(P ∪ Φ). Let π be a P ∪ Φ-proof
of ψ of length ≤ m. This proof π can use only formulas of length ≤ m from Φ

of which there are only ≤ q(m) many. Hence the tautologies used in the proof
π are contained in

∧

ϕ∈Φm
ϕ. Therefore we know that π is also a proof for ψ in

the proof system P ∪ Φm. Using the weak deduction property of P we get a
P -proof of size ≤ p(mq(m) +m) of (

∧

ϕ∈Φm
ϕ) → ψ.

Now assume (ψ, 1m) ∈ SAT∗. Then ¬ψ is satisfiable and therefore

¬((
∧

ϕ∈Φm

ϕ) → ψ) = (
∧

ϕ∈Φm

ϕ) ∧ ¬ψ

is also satisfiable because (
∧

ϕ∈Φm
ϕ) is a tautology. ut

Combining the above lemmas we can now prove our main results.

Theorem 9. If EF satisfies the weak deduction property, then the canonical

pair of EF is ≤p-complete for the class of all disjoint NP-pairs.

Proof. Let (A,B) be a disjoint NP-pair and let ϕn(p̄) be the polynomial time
constructible sequence in the variables p̄ which is guaranteed by Lemma 6. Let
Φ(p̄) denote the set {ϕn(p̄) | n ≥ 0}. By Lemma 6 we have

(A,B) ≤p (Ref(SF ∪q̄ Φ(p̄)),SAT∗) .

As Φ(p̄) uses only the variables p̄ and avoids the variables q̄ we get by Lemma 7

SF ∪q̄ Φ(p̄) ≤p EF ∪ Φ(q̄) .

By Proposition 1 this implies that (A,B) is ≤p-reducible to the canonical pair
of EF ∪Φ(q̄). Finally, we use the weak deduction property of EF to reduce the
canonical pair of EF ∪Φ(q̄) to the canonical pair of EF . By combining the last
two reductions we have reduced (A,B) to (Ref(EF ),SAT∗). ut

As we know that every proof system P is simulated by a proof system of the
form EF +Φ with printable Φ ⊂ TAUT (for instance we can take Φ as transla-
tions of the reflection principle of P ), we can easily adapt the above arguments
to prove a somewhat more general version of Theorem 9, thus demonstrating
the importance of the question whether EF or its extensions satisfy the weak
deduction property.

Theorem 10. 1. If optimal proof systems exist, then EF + Φ has the weak

deduction property for some printable set Φ ⊂ TAUT.

2. If EF + Φ has the weak deduction property for some printable Φ ⊂ TAUT,

then complete disjoint NP-pairs exist.
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Now we will exhibit two conditions which lead to the stronger consequence
of the completeness of the canonical pair of Frege systems. Although these
conditions are seemingly unrelated with the deduction property, the results
follow easily from the chain of the above lemmas. In the next theorem we will
show that the existence of complete NP-pairs is tightly connected with the
question whether F and EF are indeed proof systems of different strength.

Theorem 11. Assume that for all printable sequences Φ of tautologies the proof

systems F ∪Φ and EF ∪Φ are equivalent. Then the canonical pair of the Frege

proof system is complete for the class of all disjoint NP-pairs.

Proof. By Lemmas 6 and 7 we can reduce every NP-pair to the canonical pair
of a proof system EF ∪ Φ with printable Φ ⊂ TAUT. If EF ∪ Φ ≤ F ∪ Φ, then
EF has efficient deduction, by which the result follows with Lemma 8. ut

The next theorem asks, in principle, whether the systems F ∪ Φ and F + Φ

are equivalent.

Theorem 12. Assume that for all printable sets of tautologies Φ the system

F ∪ Φ is closed under substitutions by constants. Then the canonical F -pair is

a complete disjoint NP-pair.

Proof. Assume that all systems F ∪ Φ are closed under substitutions by con-
stants, i.e., from an F ∪ Φ-proof of some formula ϕ(x̄, ȳ) we can construct an
F ∪ Φ-proof of ϕ(x̄, ā) where some variables ȳ of ϕ are substituted by the con-
stants ā. Then we can reduce every disjoint NP-pair to the canonical pair of
such a proof system, analogously as in Lemma 6. Together with the deduction
theorem for F and Lemma 8 this yields the result. ut

5 Conclusion

From Proposition 5 it follows that the optimality of EF implies the weak de-
duction property for EF . In turn, this weak deduction property for EF gives us
a complete disjoint NP-pair in form of the canonical pair of EF . These results
show the importance of the following problem:

Problem 13. Does EF have the weak or even the efficient deduction property1?

Given the implications above, we expect, however, that neither proving nor
disproving this question will be an easy task.

A hopefully more accessible question is to determine whether the deduction
property is robust in the sense that it is preserved inside a degree of equivalent
proof systems. A positive answer would imply, for instance, that deduction for
EF implies deduction for SF and vice versa. It would also allow us to weaken
the hypothesis of Theorem 11 to F ≡ EF .

1 In [Bey06a] I claimed that efficient deduction holds for EF . The proof that I had in mind
was an easy modification of the proof of the deduction theorem for Frege systems. This,
however, works only if the EF ∪Φ-proof does not contain any applications of the extension
rule involving the variables of Φ (as it does e.g. in the proof of Lemma 7).
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