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Abstract

Ant Colony Optimization (ACO) is a kind of randomized search heuristic that has become
very popular for solving problems from combinatorial optimization. Solutions for a given prob-
lem are constructed by a random walk on a so-called construction graph. This random walk
can be influenced by heuristic information about the problem. In contrast to many successful
applications, the theoretical foundation of this kind of randomized search heuristic is rather
weak. Theoretical investigations with respect to the runtime behavior of ACO algorithms have
been started only recently for the optimization of pseudo-boolean functions.

We present the first comprehensive rigorous analysis of a simple ACO algorithms for a
combinatorial optimization problem. In our investigations we consider the minimum spanning
tree problem and examine the effect of two construction graphs with respect to the runtime
behavior. The choice of the construction graph in an ACO algorithm seems to be crucial for
the success of such an algorithm. First, we take the input graph itself as the construction
graph and analyze the use of a construction procedure that is similar to Broder’s algorithm [1]
for choosing a spanning tree uniformly at random. After that, a more incremental construction
procedure is analyzed. It turns out that this procedure is superior to the Broder-based algorithm
and produces additionally in a constant number of iterations a minimum spanning tree if the
influence of the heuristic information is large enough.

1Financial support by the Deutsche Forschungsgemeinschaft (SFB) in terms of the Collaborative Research Center
“Computational Intelligence” (SFB 531) is gratefully acknowledged.
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1 Introduction

Using Ant Colony Optimization (ACO) algorithms to obtain good solutions for combinatorial op-
timization problems has become very popular in recent years. In contrast to other kinds of ran-
domized search heuristis such as Simulated Annealing or evolutionary algorithms, ACO algorithms
have the ability to integrate knowledge about the problem into the construction of a new solution.
In the case of a new combinatorial optimization problem, there is often some knowledge about the
problem which can be incorporated into this kind of randomized search heuristic. Therefore, the
main application of ACO algorithms lies in the field of combinatorial optimization and the first
problem to which this kind of heuristic has been applied was the traveling salesperson problem [4].
ACO is inspired by a colony of ants that search for a common source of food. It has been observed
that ants are able to find a shortest path to such a source under certain circumstances by indirect
communication. This communication is done by so-called pheromone values. The behavior of ants
is put into an algorithmic framework to obtain solutions for a given problem. Solutions are con-
structed by random walks of artificial ants on a so-called construction graph, which has weights
– the pheromone values – on the edges. Larger pheromone values lead to higher probability of
being traversed in the next walk. In addition, the random walk is usually influenced by heuristic
information about the problem.

In contrast to successful applications, the theoretical foundation of the mentioned search heuris-
tics is still in its infancy. A lot of applications show their practical evidence, but for a long time
they were not analyzed with respect to their runtime or approximation qualities. We concentrate
on the analysis of such heuristics with respect to their runtime behavior in a similar fashion what is
usually done for randomized algorithms. In this case, either the expected optimization time, which
equals the number of constructed solutions until an optimal one has been obtained, or the success
probability after a certain number of steps is analyzed.

The first result with respect to the runtime of a simple ACO algorithm called 1-ANT has been
obtained by Neumann and Witt [10]. They have shown that the 1-ANT for the optimization of
pseudo-Boolean functions behaves as a well-known evolutionary algorithm called (1+1) EA. Many
combinatorial optimization problems can be considered as the optimization of a specific pseudo-
boolean function. Especially in the case of polynomially solvable problems, we can not hope
that more or less general search heuristics outperform the best-known algorithms for a specific
problem. Nevertheless, it is interesting to analyze them on such problems as this shows how the
heuristics work and therefore improve the understanding of these, in practice successful, algorithms.
The (1+1) EA has been considered for a wide class of combinatorial optimization problems in
the context of optimizing a pseudo-Boolean function. All results with respect to the (1+1) EA
transfer to the 1-ANT in this context. This includes runtime bounds on some of the best-known
polynomially solvable combinatorial optimization problems such as maximum matching, and the
minimum spanning tree problem. In the case of NP-hard problems, the result of Witt [13] on the
partition problem transfers to the 1-ANT.

In this paper, we conduct a first comprehensive runtime analysis of ACO algorithms on a com-
binatorial optimization problem. We have chosen the well-known minimum spanning tree (MST)
problem as a promising starting point since different randomized search heuristics, in particular the
(1+1) EA, have been studied w. r. t. this problem before, e. g., by Neumann and Wegener [8,9] and
Wegener [11]. Due to [10] and the result on the (1+1) EA in [8], the expected optimization time
of the 1-ANT for the MST problem is O(m2(log n + log wmax)), where wmax is the largest weight
of the input. In addition, a class of instances with polynomial weights has been presented in [8]
where the expected time to obtain on optimal solution is Θ(n4 log n).
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It is widely assumed and observed in experiments that the choice of the construction graph
has a great effect on the runtime behavior of an ACO algorithm. The construction graph used
by Neumann and Witt [10] is a general one for the optimization of pseudo-Boolean functions,
which does not take knowledge about the given graph into account. ACO algorithms have the
advantage that more knowledge about the structure of a given problem can be incorporated into
the construction of solutions. This is done by choosing an appropriate construction graph together
with a procedure which allows to obtain feasible solutions. The choice of such a construction graph
together with its procedure has been observed experimentally as a crucial point for the success of
such an algorithm.

We examine ACO algorithms that work on a construction graphs which seem to be more suit-
able for the considered problem. First, we consider a random walk on the input graph to construct
solutions for the MST problem. It is well known how to choose a spanning tree of a given graph
uniformly at random using random walk algorithms (see e. g. [1] [12]). Our construction procedure
produces solutions by a variant of Broder’s algorithm [1]. We show a polynomial, but relatively
large, upper bound for obtaining a minimum spanning tree by this procedure if no heuristic infor-
mation influences the random walk. Using only heuristic information for constructing solutions, we
show that the 1-ANT together with the Broder-based construction procedure with high probability
does not find a minimum spanning tree or even does not present a feasible solution in polynomial
time.

After that, we consider a more incremental construction procedure that follows a general ap-
proach proposed by Dorigo and Stützle [5] to obtain an ACO construction graph. We call this
the Kruskal-based construction procedure as in each step an edge that does not create a cycle is
chosen to be included into the solution. It turns out that the expected optimization time of the
1-ANT using the Kruskal-based construction procedure is O(mn(log n + log wmax)). This beats
the 1-ANT in the case that the minimum spanning tree problem is more generally modeled as an
optimization problem of a special pseudo-boolean function since the lower bound for this approach
is Ω(n4 log n) for a special graph with polynomial weights. Using the 1-ANT together with the
Kruskal-based construction procedure and a large influence of the heuristic information, the algo-
rithm has even a constant expected optimization time. All our analyses show that and how ACO
algorithms for combinatorial optimization can be analyzed rigorously using the toolbox from the
analyses of randomized algorithms. In particular, we provide insight into the working principles of
ACO algorithms by studying the effect of the (guided) random walks that these algorithms perform.

After having motivated our work, we introduce the model of the minimum spanning tree problem
and the 1-ANT in Section 2. In Section 3, we consider a construction procedure which is influenced
by Broder’s algorithm and consider its effect with respect to the runtime behavior. Section 4
deals with the analysis of the 1-ANT using the Kruskal-based construction graph. We finish with
conclusions and the discussion of some open problems.

2 Minimum spanning trees and the 1-ANT

Throughout the paper, we consider the well-known MST problem. Given an undirected graph
G = (V,E) with edge costs (weights) w : E → N≥1, the goal is to find a spanning tree E∗ ⊆ E
such that the total cost

∑

e∈E∗ w(e) becomes minimal. Denote n := |V | and m := |E| and assume
w. l. o. g. that E := {1, . . . ,m}. Moreover, let m ≥ n since an existing spanning tree is unique
if m = n − 1. The MST problem can be solved in time O(m log n) or O(n2) using the Greedy
algorithms by Kruskal respectively Prim, see, e. g., [2].
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We study the simple ACO algorithm called 1-ANT (see Algorithm 1), already analyzed in [10] for
the optimization of pseudo-boolean functions. In the 1-ANT, solutions are constructed iteratively
by different construction procedures on a given directed construction graph C = (X,A). In the
initialization step, each edge (u, v) ∈ A gets a pheromone value τ(u,v) = 1/|A| such that the
pheromone values sum up to 1. Afterwards, an initial solution x∗ is produced by a random walk of
an imaginary ant on the construction graph and the pheromone values are updated with respected
to this walk. In each iteration, a new solution is constructed and the pheromone values are updated
if this solution is not inferior (w. r. t. a fitness function f) to the best solution obtained so far.

Algorithm 1 (1-ANT)

1.) Set τ(u,v) = 1/|A| for all (u, v) ∈ A.

2.) Compute a solution x using a construction procedure.

3.) Update the pheromone values and set x∗ := x.

4.) Compute x using a construction procedure.

5.) If f(x) ≤ f(x∗), update the pheromone values and set x∗ := x.

6.) Go to 4.).

We analyze the influence of different construction procedures on the runtime behavior of the
1-ANT algorithm. This is done by considering the expected number of solutions that are constructed
by the algorithm until a minimum spanning tree has been obtained for the first time. We call this
the expected optimization time of the 1-ANT.

3 Broder-based construction graph

Since the MST problem is a graph problem, the first idea is to use the input graph G to the MST
problem itself as the construction graph C of the 1-ANT. (Note that each undirected edge {u, v} can
be considered as two directed edges (u, v) and (v, u).) However, it is not obvious how a random walk
of an ant on G is translated into a spanning tree. Interestingly, the famous algorithm of Broder [1],
which chooses uniformly at random from all spanning trees of G, is a random walk algorithm.
We will use an ACO variant as given in Algorithm 2 of Broder’s algorithm. As usual in ACO
algorithms, the construction procedure maintains pheromone values τ and heuristic information
η for all edges of the construction graph G. Considering the MST problem, we assume that the
heuristic information η{u,v} of an edge {u, v} is the inverse of the weight of the edge {u, v} in G.
α and β are parameters that control the extent to which pheromone values respectively heuristic
information is used.

Algorithm 2 (BroderConstruct(G, τ, η))

1.) Choose an arbitrary node s ∈ V .

2.) u := s, T = ∅

3.) Let R :=
∑

{u,v}∈E [τ{u,v}]
α · [η{u,v}]

β .

4.) Choose one neighbor v of u where the probability of selection of any fixed v is
[τ{u,v}]

α·[η{u,v}]
β

R
.
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5.) If v has not been visited before, set T := T ∪ {u, v}.

6.) Set u := v.

7.) If each node of G has been visited return T , otherwise go to 3.)

Obviously, Algorithm 2 outputs a spanning tree T whose cost f(T ) is measured by the sum
of the w-values of its edges. After a new solution has been accepted, the pheromone values τ are
updated w. r. t. the constructed spanning tree T . We maintain upper and lower bounds on these
values, which is a common measure to ensure convergence [3] and was also proposed in the previous
runtime analysis of the 1-ANT [10]. We assume that after each update, the τ -value of each edge
in the construction graph attains either the upper bound h or lower bound `. Hence, for the new
pheromone values τ ′ after an update, it holds that

τ ′
{u,v} = h if {u, v} ∈ T

and
τ ′
{u,v} = ` if {u, v} /∈ T .

So the last constructed solution is indirectly saved by the n − 1 undirected edges that obtain the
high pheromone value h. The ratio of the parameters ` and h is crucial since too large values of `
will lead to too large changes of the tree in subsequent steps whereas too large values of h will make
changes of the tree too unlikely. We choose h and l such that h = n3` holds and will argue later
on the optimality of this choice.

Note that choosing β = 0 or α = 0 in Algorithm 2, only the pheromone value respectively the
heuristic information influence the random walk. We examine the cases where one of these values
is 0 to study the effect of the pheromone values respectively the heuristic information separately.
First, we consider the case α = 1 and β = 0 for the Broder-based construction graph. This
has the following consequences. Let u be the current node of the random walk and denote by
R :=

∑

{u,·} τ{u,·} the sum over the pheromone values of all edges that are incident on u. Then
the next node is chosen proportionally to the pheromone values on the corresponding edges, which
means that a neighbor v of u is chosen with probability τ{u,v}/R.

For simplicity, we call the described setting of α, β, h and ` the cubic update scheme. To become
acquainted therewith, we derive the following simple estimations on the probabilities of traversing
edges depending on the pheromone values. Assume that a node v has k adjacent edges with value
h and i adjacent edges with value `. Note that k + i ≤ n− 1 and h = n3`. Then the probability of
choosing an edge with value h is

kh

kh + i`
= 1 −

i

kn3 + i
≥ 1 −

1

n2
,

where among the edges with values h one edge is chosen uniformly at random. The probability of
choosing a specific edge with value ` is at least

`

` + (n − 2)h
≥

`

nh
≥

1

n4
.

This leads us to the following theorem, which shows that the 1-ANT in the described setting is
able to construct MSTs in expected polynomial time.

Theorem 1 The expected optimization time of the 1-ANT using the procedure BroderConstruct
with cubic update scheme is O(n6(log n + log wmax)). The expected number of traversed edges in a
run of BroderConstruct is bounded above by O(n2) except for the initial run, where it is O(n3).
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Proof We use the following idea for Theorem 2 in [8]. Suppose the spanning tree T ∗ was constructed
in the last accepted solution. Let T = T ∗ \{e}∪{e′} be any spanning tree that is obtained from T ∗

by including one edge e′ and removing another edge e, and let s(m,n) be a lower bound on the
probability of producing T from T ∗ in the next step. Then the expected number of steps until a
minimum spanning tree has been obtained is O(s(m,n)−1(log n+log wmax)). To prove the theorem,
it therefore suffices to show that the probability of the 1-ANT producing T by the next constructed
solution is Ω(1/n6).

To simplify our argumentation, we first concentrate on the probability of rediscovering T ∗ in
the next constructed solution. This happens if the ant traverses all edges of T ∗ in some arbitrary
order and no other edges in between, which might require that an edge has to be taken more than
once. (This is a pessimistic assumption since newly traversed edges are not necessarily included in
the solution.) Hence, we are confronted with the cover time for the tree T ∗. The cover time for
trees on n nodes in general is bounded above by 2n2 [7], i. e., by Markov’s inquality, it is at most
4n2 with probability at least 1/2. We can apply this result if no so-called error occurs that an edge
with pheromone value ` is taken. According to the above calculations, the probabilty of an error
is bounded above by 1/n2 in a single step of the ant. Hence, there is no error in O(n2) steps with
probability Ω(1). Therefore, the probability of rediscovering T ∗ in the next solution (using O(n2)
steps of BroderConstruct) is at least Ω(1). Additionally taking into account the number of steps
O(n3) for the initial solution [1], we have already bounded the expected number of traversed edges
in a run of BroderConstruct.

To construct T instead of T ∗, exactly one error is desired, namely e′ has to be traversed instead
of e. Consider the ant when it is for the first time on a node on which e′ is incident. By the
calculations above, the probability of including e′ is Ω(1/n4). Note that inserting e′ into T ∗ closes
a cycle c. Hence, when e′ has been included, there may be at most n − 2 edges of T̃ := T ∗ \ {e}
left to traverse. We partition the edges of the forest T̃ into two subsets: The edges that belong to
the cycle c are called critical and the remaining ones are called uncritical. The order of inclusion
for the uncritical edges is irrelevant. However, all critical edges have to be included before the ant
traverses e.

We are faced with the following problem: Let v1, . . . , vk, v1 describe the cycle c and suppose
w. l. o. g. that e′ = {v1, vk}. It holds that e = {vi, vi+1} for some 1 ≤ i ≤ k − 1. Moreover, let vs

be the node of c that is visited first by the ant. W. l. o. g., 1 ≤ s ≤ i. With probability Ω(1/n4),
the edge e′ is traversed exactly once until a new solution has been constructed. Hence, after e′ has
been taken, the ant must visit the nodes vk, vk−1, . . . , vi+1 in the described order (unless an error
other than including e′ occurs), possibly traversing uncritical edges in between. To ensure that e is
traversed before, we would like the ant to visit all the nodes in {v2, . . . , vi}, without visiting nodes in
{vi+1, . . . , vk}, before visiting v1 and subsequently traversing e′. We apply results on the Gambler’s
Ruin Problem [6]. The probability of going from vs to vi before visiting v1 is at least Ω(1/n). The
same lower bound holds on the probability of going from vi to v1 before visiting vi+1. These random
walks are still completed in expected time O(n2). Hence, in total, the probability of constructing T
is Ω((1/n4) · (1/n) · (1/n)) = Ω(1/n6) as suggested. �

We see that the ratio h/` = n3 leads to relatively high exponents in the expected optimization
time. However, this ratio seems to be necessary for our argumentation. Consider the complete
graph on n nodes where the spanning tree T ∗ equals a path of length n − 1. The cover time
for this special tree T ∗ is bounded below by Ω(n2). To each node of the path, at most 2 edges
with value h and at least n − 3 edges with value ` are incident. Hence, the ratio is required to
obtain an error probability of O(1/n2). It is much more difficult to improve the upper bound of
Theorem 1 or to come up with a matching lower bound. The reasons are twofold. First, we cannot
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control the effects of steps where the ant traverses edges to nodes that have been visited before in
the construction step. These steps might reduce the time until certain edges of T ∗ are reached.
Second, our argumentation concerning the cycle v1, . . . , vk, v1 makes a worst-case assumption on
the starting node vs. It seems more likely that vs is uniform over the path, which could improve
the upper bound of the theorem by a factor Ω(n). However, a formal proof of this is open.

ACO algorithms often use heuristic information to direct the search process. In the following,
we set α = 0 and examine the effect of heuristic information for the MST problem. Recall that the
heuristic information for an edge e is given by η(e) = 1/w(e). Interestingly, for the obvious Broder-
based graph, heuristic information alone does not help to find MSTs in reasonable time regardless
of β. On the following example graph G∗, either the runtime of BroderConstruct explodes or MSTs
are found only with exponentially small probability. W. l. o. g., n = 4k + 1. Then G∗, a connected
graph on the nodes {1, . . . , n}, consists of k triangles with weights (1, 1, 2) and two paths of length k
with exponentially increasing weights along the path. More precisely, let

T ∗ :=
k

⋃

i=1

{

{1, 2i}, {1, 2i + 1}, {2i, 2i + 1}
}

,

where w({1, 2i}) = w({2i, 2i + 1}) := 1 and w({1, 2i + 1}) := 2. Moreover, denote

P ∗
1 := {1, 2k + 2} ∪

k
⋃

i=2

{

2k + i, 2k + i + 1
}

,

where w({1, 2k + 2}) := 2 and w({2k + i, 2k + i + 1}) := 2i, and, similarly,

P ∗
2 := {1, 3k + 2} ∪

k
⋃

i=2

{

3k + i, 3k + i + 1
}

,

where w({1, 3k+2}) := 2 and w({3k+i, 3k+i+1}) := 2i. Finally, the edge set of G∗ is T ∗∪P ∗
1 ∪P ∗

2 .
Hence, all triangles and one end of each path are glued by node 1.

Theorem 2 Choosing α = 0 and β arbitrarily, the probability that the 1-ANT using BroderCon-
struct finds an MST for G∗, or the probability of termination within polynomial time is 2−Ω(n).

Proof Regardless of the ant’s starting point, at least one path, w. l. o. g. P ∗
1 , must be traversed

from 1 to its other end, and for least k − 1 triangles, both nodes 2i and 2i + 1 must be visited
through node 1. For each of these initially undiscovered triangles, the first move into the triangle
must go from 1 to 2i, otherwise the resulting tree will not be minimal. If the triangle is entered at
node 2i, we consider it a success, otherwise (entrance at 2i+ 1) an error. The proof idea is to show
that for too small β, i. e., when the influence of heuristic information is low, with overwhelming
probability at least one triangle contains an error. If, on the other hand, β is too large, the ant with
overwhelming probability will not be able to traverse P ∗

1 in polynomial time due to its exponentially
increasing edge weights.

We study the success probabilities for the triangles and the path P1. Given that the ant moves
from 1 to either 2i or 2i + 1, the probability of going to 2i equals

(η({1, 2i}))β

(η({1, 2i}))β + (η({1, 2i + 1}))β
=

1

1 + 2−β
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since η(e) = 1/w(e). Therefore, the probability of k − 1 successes equals, due to independence,
(1 + 2−β)−k+1. This probability increases with β. However, for β ≤ 1, it is still bounded above by
(2/3)k−1 = 2−Ω(n).

Considering the path P ∗
1 , we are faced with the Gambler’s Ruin Problem. At each of the

nodes 2k + i, 2 ≤ i ≤ k − 1, the probability of going to a lower-numbered node and the probability
of going to a higher-numbered have the same ratio of r := (2−i+1)β/(2i)β = 2β. Hence, starting in
2k + 2, the probability of reaching 3k + 1 before returning to 1 equals (see [6])

r

rk − 1
=

2β

2kβ − 1
.

This probability decreases with β. However, for β ≥ 1, it is still bounded above by 2/(2k − 1) =
2−Ω(n). Then the probability of reaching the end in a polynomial number of trials is also 2−Ω(n). �

4 A Kruskal-based construction procedure

Dorigo and Stützle [5] state a general approach how to obtain an ACO construction graph from
any combinatorial optimization algorithm. The idea is to identify the so-called components of the
problem, which may be objects, binary variables etc., with nodes of the construction graph and
to allow the ant to choose from these components by moving to the corresponding nodes. In our
setting, the components to choose from are the edges from the edge set {1, . . . ,m} of the input
graph G. Hence, the canonical construction graph C(G) for the MST problem is a directed graph
on the m+1 nodes {0, 1, . . . ,m} with the designated start node s := 0. Its edge set A of cardinality
m2 is given by

A :=
{

(i, j) | 0 ≤ i ≤ m, 1 ≤ j ≤ m, i 6= j
}

,

i. e., C(G) is obtained from the complete directed graph by removing all self-loops and the edges
pointing to s. When the 1-ANT visits node e in the construction graph C(G), this corresponds to
choosing the edge e for a spanning tree. To ensure that a walk of the 1-ANT actually constructs a
tree, we define the feasible neigborhood N(vk) of node vk depending on the nodes v1, . . . , vk visited
so far:

N(vk) :=
(

E \
{

v1, . . . , vk

})

\
{

e ∈ E
∣

∣

(

V, {v1, . . . , vk, e}
)

contains a cycle
}

.

Note that the feasible neighborhood depends on the memory of the ant about the path followed so
far, which is very common in ACO algorithms, see, e. g., [5].

A new solution is constructed using Algorithm 3. Again, the random walk of an ant is controlled
by the pheromone values τ and the heuristic information η on the edges. Similarly to the Broder-
based construction graph, we assume that the η(u,v)-value of an edge (u, v) is the inverse of the
weight of the edge of G corresponding to the node v in C(G).

Algorithm 3 (Construct(C(G), τ, η))

1.) v0 := s; k := 0.

2.) While N(vk) is nonempty:

a.) Let R :=
∑

y∈N(vk)[τ(vk ,y)]
α · [η(vk ,y)]

β.
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b.) Choose one neighbor vk+1 of vk where the probability of selection of any fixed y ∈ N(vk)

is
[τ(vk,y)]

α·[η(vk,y)]
β

R
.

c.) Set k := k + 1 and go to 2.).

3.) Return the path p = (v0, . . . , vk) constructed by this procedure.

A run of Algorithm 3 returns a sequence of k+1 nodes of C(G). It is easy to see that k := n−1
after the run, hence the number of steps is bounded above by n, and that v1, . . . , vn−1 is a sequence
of edges that form a spanning tree for G. Accordingly, we measure the fitness f(p) of a path
p = (v0, . . . , vn−1) simply by w(v1) + · · · + w(vn−1), i. e., the cost of the corresponding spanning
tree. It remains to specify the update scheme for the pheromone values. As in the case of the
Broder-based construction procedure, we only consider two different values h and `. To allow the
ant to rediscover the edges of the previous spanning tree equiprobably in each order, we reward all
edges pointing to nodes from p except s, i. e., we reward (m + 1)(n− 1) edges. Hence, the τ ′-values
are

τ ′
(u,v) = h if v ∈ p and v 6= s

and
τ ′
(u,v) = ` otherwise.

We choose h and ` such that h = (m − n + 1)(log n)` holds. In this case, the probability of taking
a rewarded edge (if applicable) is always at least 1 − 1/log n.

We first consider the case where the random walk to construct solutions is only influenced by
the pheromone values on the edges of C(G).

Theorem 3 Choosing α = 1 and β = 0, the expected optimization time of the 1-ANT with con-
struction graph C(G) is bounded by O(mn(log n + log wmax)).

Proof Again we use the proof idea for Theorem 2 in [8]. It suffices to show the following claim.
Suppose the 1-ANT has constructed the spanning tree T ∗ in the last accepted solution. Let T =
T ∗ \{e}∪{e′} be any spanning tree that is obtained from T ∗ by including one edge e′ and removing
another edge e. Then the probability of producing T by the next constructed solution is Ω(1/(nm)).

Let e1, . . . , en−1 be the edges of T ∗ and suppose w. l. o. g. that the edges of T are e1, . . . , en−2, e
′

where e′ 6= ei for 1 ≤ i ≤ n − 1. We show that with probability Ω(1), exactly n − 2 (but not
n − 1) out of the n − 1 nodes visited by the 1-ANT in C(G) form a uniformly random subset of
{e1, . . . , en−1}. Hence, en−1 is missing with probability 1/(n − 1). Furthermore, we will show that
the probability of visiting e′ rather than en−1 as the missing node has probability at least Ω(1/m).
Hence, in total, T is constructed with probability Ω(1/(nm)).

We still have to prove the statements on the probabilities in detail. We study the events Ei,
1 ≤ i ≤ n− 1, defined as follows. Ei occurs iff the first i− 1 and the last n− i− 1 nodes visited by
the 1-ANT (excluding s) correspond to edges of T ∗ whereas the i-th one does not. Edges in C(G)
pointing to nodes of T ∗ have pheromone value h and all remaining edges have value `. Hence, if
j − 1 edges of T ∗ have been found, the probability of not choosing another edge of T ∗ by the next
node visited in C(G) is at most

(m − (n − 1))`

((n − 1) − (j − 1))h
=

1

(n − j) log n
.
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Therefore, the first i − 1 and last n − i − 1 nodes (excluding s) visited correspond to edges of T ∗

with probability at least

1 −
n−1
∑

j=1
j 6=i

1

(n − j) log n
≥ 1 −

(ln(n − 1) + 1)

log n
+

1

log n

≥ 1 −
ln n

log n
= Ω(1)

(estimating the (n−1)-th Harmonic number by ln(n−1)+1) and, due to the symmetry of the update
scheme, each subset of T ∗ of size n− 2 is equally likely, i. e., has probability Ω(1/n). Additionally,
the probability of choosing by the i-th visited node an edge e′ not contained in T ∗ equals

`

(n − i)h + k`
≥

1

(n − i + 1)(m − n + 1) log n
,

where k is the number of edges outside T ∗ that can still be chosen; note that k` ≤ h. Hence, with
probability at least c/((n− i + 1)mn log n) for some small enough constant c (and large enough n),
Ei occurs and the tree T is constructed. Since the Ei are mutually disjoint events, T is constructed
instead of T ∗ with probability at least

n−1
∑

i=1

c

(n − i + 1)mn log n
= Ω(1/(mn))

as suggested. �

In the following, we examine the use of heuristic information for the Kruskal-based construction
graph. Here it can be proven that strong heuristic information helps the 1-ANT mimicking the
greedy algorithm by Kruskal.

Theorem 4 Choosing α = 0 and β ≥ 6wmax log n, the expected optimization time of the 1-ANT
using the construction graph C(G) is constant.

Proof We show that the next solution which the 1-ANT constructs is with probability at least 1/e
a minimum spanning tree, where e is Euler’s number. This implies that the expected number of
solutions that have to be constructed until a minimum spanning tree has been computed is bounded
above by e.

Let (w1, w2, . . . , wn−1) the weights of edges of a minimum spanning tree. Let wi ≤ wi+1,
1 ≤ i ≤ n − 2 and asumme that the ant has already included i − 1 edges that have weights
w1, . . . , wi−1 and consider the probability of choosing an edge of weight wi in the next step. Let
M = {e1, . . . , er} be the set of edges that can be included without creating a cycle and denote
by Mi = {e1, . . . , es} the subset of M that includes all edges of weight wi. W. l. o. g. we assume
w(ei) ≤ w(ei+1), 1 ≤ i ≤ r − 1.

The probability of choosing an edge of Mi in the next step is given by

∑s
k=1(η(ek))β

∑r
l=1(η(el))β

=

∑s
k=1(η(ek))β

∑s
l=1(η(el))β +

∑r
l=s+1(η(el))β

,

where η(ej) = 1/w(ej) holds. Let a =
∑s

k=1(η(ei))
β =

∑s
k=1(1/wi)

β and b =
∑r

l=s+1(η(el))
β . The

probability of choosing an edge of weight wi is a/(a + b), which is at least 1− 1/n if b ≤ a/n. The
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number of edges in M \ Mi is bounded above by m, and the weight of such an edge is at least
wi + 1. Hence, b ≤ m · (1/(wi + 1))β .

We would like m · (1/(wi + 1))β ≤ s · (1/wi)
β/n to hold. This can be achieved by choosing

β ≥
log(mn/s)

log((wi + 1)/wi)
=

log(mn/s)

log(1 + 1/wi)
,

which is at most
log(mn/s)

wi/2
≤ 6wmax log n

since mn ≤ n3 and ex ≤ 1 + 2x for 0 ≤ x ≤ 1. Due to our choices, the ant traverses the edge with
weight wi with probability at least 1− 1/n. Therefore, the probability that in every step i such an
edge is taken is at least (1 − 1/n)n−1 ≥ 1/e as suggested. �

Of course, the result of Theorem 4 does not necessarily improve upon Kruskal’s algorithm since
the computational efforts in a run of the construction algorithm and for initializing suitable random
number generators (both of which are assumed constant in our cost measure for the optimization
time) must not be neglected. With a careful implementation of the 1-ANT, however, the expected
computational effort w. r. t. the well-known uniform cost measure could be at least bounded above
by the runtime O(m log m) of Kruskal’s algorithm.

5 Conclusions

ACO algorithms have in particular shown to be successful in solving problems from combinatorial
optimization. In contrast to many applications, first theoretical estimations of the runtime of such
algorithms for the optimization of pseudo-boolean functions have been obtained only recently. In
the case of combinatorial optimization problems, the construction graphs used are more related
to the problem at hand. For the first time, the effect of such graphs have been investigated by
rigorous runtime analyses. We have considered a simple ACO algorithm 1-ANT for the well-
known minimum spanning tree problem. In the case of the Broder-based construction procedure
a polynomial, but relatively large, upper bound has been proven. In addition, it has been shown
that heuristic information can mislead the algorithm such that an optimal solution is not found
within a polynomial number of steps with high probability. In the case of the Kruskal-based
construction procedure, the upper bound obtained shows that this construction graph leads to a
better optimization process than the 1-ANT and simple evolutionary algorithms in the context of
the optimization of pseudo-boolean functions. In addition, a large influence of heuristic information
makes the algorithm mimic Kruskal’s algorithm for the minimum spanning tree problem. All
analyses provide insight into the guided random walks that the 1-ANT performs in order to create
solutions of our problem.

There are several interesting open questions concerning ACO algorithms. First, it would be
desirable to obtain the expected optimization time for the considered algorithms asymptotically
exactly. For the Broder-based construction graph, we have argued why we expect relatively large
lower bounds. Nevertheless, a formal proof for that is open. On the other hand, the influence of
the pheromone values and the heuristic information has been analyzed only separately. The same
bounds should also hold if the effect of one of these parameters is low compared with the other
one. But it would be interesting to consider cases where both have a large influence and to obtain
bounds in these cases.
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