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Abstract

We develop the theory of holographic algorithms. We give characterizations of algebraic varieties of
realizable symmetric generators and recognizers on the basis manifold, and a polynomial time decision
algorithm for the simultaneous realizability problem. Using the general machinery we are able to give
unexpected holographic algorithms for some counting problems, modulo certain Mersenne type integers.
These counting problems are #P-complete without the moduli. Going beyond symmetric signatures,
we define d-admissibility and d-realizability for general signatures, and give a characterization of 2-
admissibility and some general constructions of admissible and realizable families.



1 Introduction

It has become more or less an article of faith among Theoretical Computer Scientists that the conjecture
P 6= NP holds. Certainly there are good reasons to believe this assertion, not the least of which is the
fact that the usual algorithmic paradigms seem unable to handle any of the NP-hard problems. Such
statements are made credible by decades of in-depth study of these methodologies.

To be sure, there are some “surprising” polynomial time algorithms for problems which, on appear-
ance, would seem to require exponential time. One such example is to count the number of perfect
matchings in a planar graph (the FKT method) [13, 14, 21]. In [23, 25] L. Valiant has introduced an
algorithmic design technique of breathtaking originality, called holographic algorithms. Computation
in these algorithms is expressed and interpreted through a choice of linear basis vectors in an expo-
nential “holographic” mix, and then it is carried out by the FKT method via the Holant Theorem.
This methodology has produced polynomial time algorithms for a variety of problems ranging from
restrictive versions of Satisfiability, Vertex Cover, to other graph problems such as edge orientation and
node/edge deletion. No polynomial time algorithms were known for any of these problems, and some
minor variations are known to be NP-hard.

These holographic algorithms are quite unusual compared to other kinds of algorithms (except
perhaps quantum algorithms). At the heart of the computation is a process of introducing and then
canceling exponentially many computational fragments. Invariably the success of this methodology on
a particular problem boils down to finding a certain “exotic” object represented by a signature.

For example, Valiant showed [28] that the restrictive SAT problem #7Pl-Rtw-Mon-3CNF (counting
the number of satisfying assignments of a planar read-twice monotone 3CNF formula, modulo 7) is
solvable in P. The same problem #Pl-Rtw-Mon-3CNF without mod 7 is known to be #P-complete; the
problem mod 2, #2Pl-Rtw-Mon-3CNF, is known to be ⊕P-complete (thus NP-hard). The surprising
tractability mod 7 is due to the existence of an unexpected signature over Z7.

These signatures are specified by families of algebraic equations. These families of equations are
typically exponential in size. Searching for their solutions is what Valiant called the enumerative form
in his “Accidental Algorithm” paper [28]. 1 Dealing with such algebraic equations can be difficult due
to the exponential size. So far the successes have been an expression of artistic inspirations.

To sustain our belief in P 6= NP, we must start to develop a systematic understanding of the
capabilities of holographic algorithms. Some have argued that the problems such as #7Pl-Rtw-Mon-
3CNF that have been solved in this framework are a little contrived. But the point is that when we
surveyed potential algorithmic approaches with P vs. NP in mind, these algorithms were not part of
the repertoire. Presumably the same “intuition” for P 6= NP would have applied equally to #7Pl-Rtw-
Mon-3CNF and to #2Pl-Rtw-Mon-3CNF. Thus, Valiant suggested in [25], “any proof of P 6= NP may
need to explain, and not only to imply, the unsolvability” of NP-hard problems using this approach.

While finding “exotic” solutions such as the signature for #7Pl-Rtw-Mon-3CNF is inspired artistry,
the situation with ever more complicated algebraic constraints on such signatures (for other problems)
can quickly overwhelm such an artistic approach (as well as a computer search). At any rate, failure
to find such solutions to a particular algebraic system yields no proof that such solutions do not exist,
and it generally does not give us any insight as to why. We need a more scientific understanding. The
aim of this paper is to build toward such an understanding.

We have achieved a complete account of the realizable symmetric signatures. Using this we can
show why the modulus 7 happens to be the modulus that works for #7Pl-Rtw-Mon-3CNF. Underlying

1From [28]: “The objects enumerated are sets of polynomial systems such that the solvability of any one member would
give a polynomial time algorithm for a specific problem. . . . the situation with the P = NP question is not dissimilar to
that of other unresolved enumerative conjectures in mathematics. The possibility that accidental or freak objects in the
enumeration exist cannot be discounted, if the objects in the enumeration have not been systematically studied previously.”

1



this is the fact that 7 is 23 − 1, and for any odd prime p, any prime factor q of the Mersenne number
2p − 1 has q ≡ ±1 mod 8, and therefore 2 is a quadratic residue in Zq. Generalizing this, we show
that #2k−1Pl-Rtw-Mon-kCNF is in P for all k ≥ 3 (the problem is trivial for k ≤ 2). Furthermore, no
suitable signatures exist for any modulus other than factors of 2k − 1 for this problem.

When designing a holographic algorithm for any particular problem, the essential step is to de-
cide whether there is a basis for which certain signatures of both generators and recognizers can be
simultaneously realized (we give a quick review of terminologies in the Appendix. See [25, 23, 2, 3] for
more details.) Frequently these signatures are symmetric signatures. Our understanding of symmetric
signatures has advanced to the point where it is possible to give a polynomial time algorithm to decide
the simultaneous realizability problem. If a matchgate has arity n, the signature has size 2n. However
for symmetric signatures we have a compact form, and the running time of the decision algorithm is
measured in n. With this structural understanding we can give (i) a complete account of all the previ-
ous successes of holographic algorithms using symmetric signatures [25, 3, 28]; (ii) generalizations such
as #2k−1Pl-Rtw-Mon-kCNF and a similar problem for Vertex Cover, when this is possible; and (iii) a
proof when this is not possible. This should be considered an important step in our understanding of
holographic algorithms, from art to science.

In order to investigate realizability of signatures, we found it useful to introduce a basis manifold
M, which is defined to be the set of all possible bases modulo an equivalence relation. This is a useful
language for the discussion of symmetric signatures; it becomes essential for the general signatures. We
define the notions of d-admissibility and d-realizability. To be d-admissible is to have a d-dimensional
solution subvariety in M, satisfying all the parity requirements. These are part of the requirements
for the bases to satisfy in order to be realizable. To be d-realizable is to have a d-dimensional solution
subvariety in M for all realizability requirements, which include the parity requirements as well as the
useful Grassmann-Plücker identities [3, 24], called the matchgate identities. To have 0-realizability is
a necessary condition. But to get holographic algorithms one needs simultaneous realizability of both
generators and recognizers. This is accomplished by having a non-empty intersection of the respective
subvarieties for the realizability of generators and recognizers. And this tends to be accomplished by
having d-realizability (which implies d-admissibility), for d ≥ 1, on at least one side. Therefore it is im-
portant to investigate d-realizability and d-admissibility for d ≥ 1. We give a complete characterization
of 2-admissibility. We also give some non-trivial 1-admissible families, and 1- or 2-realizable families.

This paper is organized as follows. In Section 2 we define the basis manifold M which will be used
to express our results throughout. In Section 3 we describe our results on simultaneous realizability
of recognizers and generators, culminating in the polynomial time decision procedure. In Section 4
we describe our results on #2k−1Pl-Rtw-Mon-kCNF and on Vertex Cover. Further illustrations of the
power of the general machinery are given in Section 5. In Section 6 we go beyond symmetric signatures,
and give some general results regarding d-admissibility and d-realizability.

2 The Basis Manifold M
In holographic algorithms, computations are expressed in terms of a set of linear basis vectors of di-
mension 2k, where k is called the size of the basis. In almost all cases [25, 1], the successful design of a
holographic algorithm was accomplished by a basis of size 1. In [28], initially Valiant used a basis of size
2 to show #7Pl-Rtw-Mon-3CNF ∈ P. Then it was pointed out in [4] that even in that case the same can
be done with a basis of size 1. In a forthcoming paper [5] we will show that this is generally true, i.e.,
higher dimensional bases do not extend the reach of holographic algorithms. Therefore, in this paper
we will develop our theory exclusively with bases of size 1; but our results are universally applicable.
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We will identify the set of 2-dimensional bases

[(

n0

n1

)

,

(

p0

p1

)]

with GL2(F). Over the complex

field F = C, it has dimension 4. However, the following simple Proposition 4.3 of [25] shows that the
essential underlying structure has only dimension 2.

Proposition 2.1 (Valiant). [25] If there is a generator (recognizer) with certain signature for size one
basis {(n0, n1), (p0, p1)} then there is a generator (recognizer) with the same signature for size one basis
{(xn0, yn1), (xp0, yp1)} or {(xn1, yn0), (xp1, yp0) for any x, y ∈ F and xy 6= 0.

This leads to the following definition of an equivalence relation:

Definition 2.1. Two bases β = [n, p] =

[(

n0

n1

)

,

(

p0

p1

)]

and β′ = [n′, p′] =

[(

n′
0

n′
1

)

,

(

p′0
p′1

)]

are equiva-

lent, denoted by β ∼ β′, iff there exist x, y ∈ F∗ such that n′
0 = xn0, p

′
0 = xp0, n

′
1 = yn1, p

′
1 = yp1 or

n′
0 = xn1, p

′
0 = xp1, n

′
1 = yn0, p

′
1 = yp0.

Theorem 2.1. GL2(F)/ ∼ is a two dimensional manifold (for F = C or R).

We call this the basis manifold M. For F = R, it can be shown that topologically M is a Möbius
strip. From now on we identify a basis β with its equivalence class containing it. When it is permissible,

we use the dehomogenized coordinates

(

1 x
1 y

)

to represent a point (i.e., a basis class) in M. We will

assume char.F 6= 2. (This exceptional case is omitted here. The full paper will include this.)

3 Simultaneous Realizability of Symmetric Signatures

In [4], we gave a complete characterization of all the realizable symmetric signatures (Theorems 7.3–
7.5). These tell us exactly what signatures can be realized over some bases. However, to construct a
holographic algorithm, one needs to realize some generators and recognizers simultaneously. In terms of
M, a given generator (recognizer) defines a (possibly empty) subvariety which consists of all the bases
over which it is realizable. The simultaneous realizability is equivalent to a non-empty intersection of
these subvarieties. Thus we have to go beyond Theorem 7.5. For every signature which is realizable
according to Theorem 7.5, we need to determine the subvariety where it is realizable.

Definition 3.1. Let Brec([x0, x1, . . . , xn]) (resp. Bgen([x0, x1, . . . , xn])) be the set of all possible bases
in M for which a symmetric signature [x0, x1, . . . , xn] for a recognizer (resp. a generator) is realizable.
We also use Brec(R) and Bgen(G) for general (unsymmetric) signatures.

We will discuss our results for the recognizers. The results for the generators are similar and will be
stated in the Appendix. Since the identical zero signature is realizable in every basis, we will assume
the signature is non-zero in the following discussion.

3.1 Realizability of Recognizers

The following Lemmas give a complete and mutually exclusive list of realizable symmetric signatures
for recognizers.

Lemma 3.1.

Brec([a
n, an−1b, . . . , bn]) =

{[(

a
n1

)

,

(

b
p1

)]

∈ M
∣

∣

∣

∣

n1, p1 ∈ F

}

.
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Remark: Every signature with arity 1 is trivially of this form.
Proof: If n = 1, the standard signature can and can only be (λ, 0) or (0, λ) (where λ is arbitrary). So

the signature over the basis

[(

n0

n1

)

,

(

p0

p1

)]

is (λn0, λp0) or (λn1, λp1). Since we require the signature

to be (a, b), all the possible bases as expressed in M are

[(

a
n1

)

,

(

b
p1

)]

, where n1, p1 are arbitrary,

except ap1 − bn1 6= 0.
Now we assume n > 1, then it is easy to show that this signature must be generated from Form 1 of

Theorem 7.3. In this form, we must have b(sn0 + tn1) = a(sp0 + tp1) and b(sn0 − tn1) = a(sp0 − tp1).
It follows that bsn0 = asp0 and btn1 = atp1. Because at least one of a, b is non-zero, if st 6= 0, we
have n0p1 − n1p0 = 0. But this is not allowed. So we must have s = 0 or t = 0, and in either cases,

all the possible bases are

[(

a
n1

)

,

(

b
p1

)]

∈ M, where n1, p1 are arbitrary, except ap1 − bn1 6= 0. This

completes the proof.

Lemma 3.2.

Brec([x0, x1, x2]) =

{[(

n0

n1

)

,

(

p0

p1

)]

∈ M
∣

∣

∣

∣

x0p
2
1 − 2x1p1n1 + x2n

2
1 = 0, x0p

2
0 − 2x1p0n0 + x2n

2
0 = 0

or x0p0p1 − x1(n0p1 + n1p0) + x2n0n1 = 0

}

.

Proof: Under the equivalence relation, we can assume n0p1 − n1p0 = 1.

Then

[(

n0

n1

)

,

(

p0

p1

)]−1

=

[(

p1

−n1

)

,

(

−p0

n0

)]

. So the standard signature of [x0, x1, x2] is

[x0p
2
1 − 2x1p1n1 + x2n

2
1, x0p0p1 − x1(n0p1 + n1p0) + x2n0n1, x0p

2
0 − 2x1p0n0 + x2n

2
0].

The fact that the only constraint of a standard signature of arity 2 is the parity constraint completes
the proof.

In the following the matchgate arity n is ≥ 3.

Lemma 3.3. Let λ1 6= 0. Suppose p = char.F 6 |n,

Brec([0, 0, . . . , 0, λ1, λ2]) =

{[(

0
nλ1

)

,

(

1
λ2

)]}

.

For p|n and λ2 = 0, Brec([0, 0, . . . , 0, λ1, 0]) =

{[(

0
n1

)

,

(

1
p1

)]

∈ M
∣

∣

∣

∣

n1, p1 ∈ F

}

. For p|n and λ2 6= 0,

then [0, 0, . . . , 0, λ1, λ2] is not realizable.

Proof: Its reversal signature [λ2, λ1, 0, . . . , 0] is a special case of Lemma 3.6 (with α = 0).

Lemma 3.4. For AB 6= 0,

Brec([A,Aα,Aα2, . . . , Aαn + B]) =

{[(

1
1

)

,

(

α + ω
α − ω

)]∣

∣

∣

∣

ωn = ±B

A

}

.

Proof: Its reversal signature [Aαn + B,Aαn−1, . . . , Aα,A] is a spacial case of Lemma 3.5. (This proof
assumes α 6= 0. For α = 0, it can be directly verified.)

Other cases of Theorem 7.5 have the property that the a, b and c (in the theorem statement) are
unique up to a scaling factor and c 6= 0. So we have a unique characteristic equation cx2 + bx + a = 0,
which has two roots α and β. If α 6= β, we have the following lemma:
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Lemma 3.5. For AB 6= 0 and α 6= β,

Brec([Aαi + Bβi|i = 0, 1, . . . , n]) =

{[(

1 + ω
1 − ω

)

,

(

α + βω
α − βω

)]∣

∣

∣

∣

ωn = ±B

A

}

.

Remark: We denote 00 = 1.
Proof: From A + B = x0, Aα + Bβ = x1, we can solve uniquely for A,B. We have AB 6= 0; otherwise
{xi} has the form {aibn−i}, which has been dealt with in Lemma 3.1. So from Lemma 7.1, we know
that the representation is unique. But from form 1 of Theorem 7.3, we know that

xi = (sn0 + tn1)
n

(

sp0 + tp1

sn0 + tn1

)i

+ ε(sn0 − tn1)
n

(

sp0 − tp1

sn0 − tn1

)i

.

So (sn0 + tn1)
n = A, sp0+tp1

sn0+tn1
= α, ε(sn0 − tn1)

n = B, sp0−tp1

sn0−tn1
= β, (exchanging notations A with B, and

α with β if necessary.) So

[(

sn0

tn1

)

,

(

sp0

tp1

)]

=

[(

a + b
a − b

)

,

(

aα + bβ
aα − bβ

)]

, where an = A, bn = B. Since

α 6= β, we know st 6= 0. So

[(

n0

n1

)

,

(

p0

p1

)]

∼
[(

sn0

tn1

)

,

(

sp0

tp1

)]

. This completes the proof.

If α = β, we have the following lemma:

Lemma 3.6. Let p = char.F and let A 6= 0.
Case 1: p = 0 or p 6 |n.

Brec([Aiαi−1 + Bαi|i = 0, 1, . . . , n]) =

{[(

1
B

)

,

(

α
nA + Bα

)]}

.

Case 2: p|n and x0 = 0, in this case, the signature is of the form Aiαi−1.

Brec([Aiαi−1|i = 0, 1, . . . , n]) =

{[(

1
n1

)

,

(

α
p1

)]

∈ M
∣

∣

∣

∣

n1, p1 ∈ F

}

.

Case 3: p|n and x0 6= 0. Then it’s not realizable.

Remark: If α = 0, and i = 0, we still denote iαi−1 = 0, and also αi = 1.
Proof: In Case 1, from B = x0, A + Bα = x1, we can solve uniquely for A,B. We have A 6= 0,
so Lemma 7.2 applies. From Lemma 7.2, we know that the representation is unique. From form 2 of

Theorem 7.3 (form 3 will give an equivalent basis), we know that xi = (n1p0 − n0p1)n
n
1 i
(

p1

n1

)i−1
+

nnn−1
1

(

p1

n1

)i
. So (n1p0 − n0p1)n

n
1 = A, p1

n1
= α, nn0n

n−1
1 = B. Since n1 6= 0, under the equivalence

relation, we can let n1 = 1, then we have the unique solution n0 = B/n, p1 = α, p0 = A + Bα
n . We omit

the proofs for Case 2 and 3.

3.2 Simultaneous Realizability

Definition 3.2. The Simultaneous Realizability Problem (SRP):
Input: A set of symmetric signatures for generators and/or recognizers.
Output: A common basis of these signatures if any; “NO” if they are not simultaneously realizable.

Algorithm:

For every signature [x0, x1, . . . xn], check if it satisfies Theorem 7.5.
If not, output “NO” and halt.
Otherwise find Bgen([x0, x1, . . . xn]) or Brec([x0, x1, . . . xn]) according to one of the Lemmas.
Check if these subvarieties have a non-empty intersection.
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Theorem 3.1. This is a polynomial time algorithm for SRP.

Proof: Checking whether every input signature satisfies Theorem 7.5 can obviously be done in polyno-
mial time. To find the right form and then the right Lemma for a signature which satisfies Theorem 7.5
can also be done in polynomial time.

Every subvariety of bases from Lemma 3.1 to 3.6 and from Lemma 8.1 to 8.6 is of one of three kinds:
finite set of points (of linear size), a line or a quadratic curve. To check if they have a common element
can be done in polynomial time.

4 Some Not So Accidental Algorithms

In [28], Valiant gave polynomial time algorithms for #7Pl-Rtw-Mon-3CNF and #7Pl-3/2Bip-VC, and
he called them “accidental algorithms”. In this section, we show how such algorithms can be developed
almost “mechanically”. This approach has the advantage that one gains more understanding of what
can or cannot be accomplished. With this machinery we are able to generalize his result to Pl-Rtw-
Mon-kCNF and Pl-k/2Bip-VC, for a general k. We show that there is a unique modulus 2k − 1 for
which we can design such a holographic algorithm which counts the number of solutions. In the case of
k = 3, this shows why 7 is special.

4.1 #2k−1Pl-Rtw-Mon-kCNF

For #Pl-Rtw-Mon-kCNF, we are given a planar formula [11] in kCNF form, where each variable appears
positively, and each appears in exactly 2 clauses. The problem is to count the number of satisfying
assignments. As noted earlier, this counting problem is #P-complete already for k = 3.

Now we wish to replace each variable by a generator with signature [1, 0, 1], and each clause by a
recognizer with [0, 1, 1, · · · , 1] (with k 1’s). The symmetric signature [1, 0, 1] corresponds to a consistent
truth assignment on two edges leading to clauses, and [0, 1, 1, · · · , 1] corresponds to a Boolean OR for
the clause. If we connect the generators and recognizers in a natural way, by the Holant Theorem [25]
this would solve #Pl-Rtw-Mon-kCNF in polynomial time (if the signatures are realizable over Q).

Then the question boils down to whether there is a basis in M where [1, 0, 1] for a generator and
[0, 1, 1, · · · , 1] (with k 1’s) for a recognizer can be simultaneously realized. For this, we use our machinery.

From Lemma 3.5, with A = 1, B = −1, α = 1, β = 0, we have

Brec([0, 1, 1, · · · , 1]) =

{[(

1 + ω
1 − ω

)

,

(

1
1

)]∣

∣

∣

∣

ωk = ±1

}

.

We look for some ωk = ±1, such that

[(

1 + ω
1 − ω

)

,

(

1
1

)]

∈ Bgen([1, 0, 1]).

According to Lemma 8.2, we want (1 + ω)2 + 1 = (1 − ω)2 + 1 = 0 or (1 + ω)(1 − ω) + 1 = 0.
The first case is impossible, and in the second case we require ω2 = 2. Together with the condition

ωk = ±1, we have 2k − 1 = 0. From this we can already see that for every prime p|2k − 1, #pPl-Rtw-
Mon-kCNF is computable in polynomial time. In particular this is true for every Mersenne prime 2q−1.
More generally we have:

Theorem 4.1. There is a polynomial time algorithm for #2k−1Pl-Rtw-Mon-kCNF. Furthermore, any
modulus m for which the appropriate signatures exist must be a divisor of 2k − 1.

Proof: Our discussion above already shows that the modulus 2k − 1 is the best we can do. (Formally
speaking we should present a generalization of the Holant Theorem [25] over a ring such as Z2k−1, which
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we will omit here.) We now give the polynomial algorithms in two cases:
Case 1: k is even.

Over the complex numbers C, from Lemma 8.2 and Lemma 3.4, we can see that a generator for [1, 0, 1]
and a recognizer for [1 + ε2k/2, 1, 1, · · · , 1] (where there are k 1’s, and ε = ±1) are simultaneously

realizable in the basis β =

[(

1 +
√

2

1 −
√

2

)

,

(

1
1

)]

.

Setting ε = 1 and replacing each variable by a generator and each clause by a recognizer with the
corresponding signatures, we obtain a matchgrid Ω with the underlying weighted planar graph G. Then
the Holant Theorem [25] tells us

Holant(Ω) = PerfMatch(G). (1)

We will denote this value by X.
From the left hand side of (1) we know that X is an integer because every entry in the signatures

of generators and recognizers is an integer. Furthermore we have

X ≡ #Pl-Rtw-Mon-kCNF (mod 1 + 2k/2).

From the right hand side of (1) we know that X can be computed in polynomial time using the
FKT algorithm for perfect matchings of a planar graph. The planar graph has weights from the subfield
Q(

√
2) ⊂ C, which poses no problem to the Pfaffian evaluation of FKT in polynomial time.

Therefore #2k/2+1Pl-Rtw-Mon-kCNF can be computed in polynomial time. Similarly, setting ε =
−1, we can compute #2k/2−1Pl-Rtw-Mon-kCNF in polynomial time.

Since (2k/2 + 1, 2k/2 − 1) = 1 and 2k − 1 = (2k/2 + 1)((2k/2 − 1), we can apply Chinese remaindering
to get a polynomial time algorithm for #2k−1Pl-Rtw-Mon-kCNF.
Case 2: k is odd.

Consider the ring Z2k−1, and let r = 2(k+1)/2 ∈ Z2k−1. Then r satisfies r2 = 2 in Z2k−1. We denote this
r by

√
2. Then 1 − (

√
2)k = 1 − (2k)(k+1)/2 = 0 in Z2k−1.

Therefore over this ring Z2k−1 and with the basis β =

[(

1 +
√

2

1 −
√

2

)

,

(

1
1

)]

=

[(

1 + 2(k+1)/2

1 − 2(k+1)/2

)

,

(

1
1

)]

,

we have a generator for [1, 0, 1] and a recognizer for [0, 1, 1, · · · , 1] (with k 1’s) according to Lemma 8.2
and 3.4. As a result, we have a polynomial time algorithm for #2k−1Pl-Rtw-Mon-kCNF. (It is in this
case where k is odd, we need 2 as a quadratic residue in Zp for primes p|2k−1, as discussed in Section 1.)

4.2 #2k−1Pl-k/2Bip-VC

In this problem, we are given a planar bipartite graph with left degree k and right degree 2. We wish
to count the number of Vertex Covers mod 2k − 1. The counting problem for this class of graphs mod
2 is ⊕P-complete and thus NP-hard [28]. Consider an arbitrary subset S of vertices from the right.
Every vertex v on the left either has all its k adjacent vertices in S, in which case there are exactly
two choices to extend at v to a Vertex Cover, or has some of its k adjacent vertices not in S, in which
case there is exactly one choice to extend at v to a Vertex Cover. Thus, following the general recipe for
holographic algorithms, we want to construct a generator with signature [1, 0, 1] and a recognizer with
signature [2, 1, 1, · · · , 1] (with k 1’s) simultaneously.

From Lemma 3.5, where A = 1, B = 1, α = 1, β = 0, we have:

Brec([2, 1, 1, · · · , 1]) =

{[(

1 + ω
1 − ω

)

,

(

1
1

)]∣

∣

∣

∣

ωk = ±1

}

.

We realize that this set is exactly the same as Brec([0, 1, 1, · · · , 1]). Then the proof in Section 4.1
gives us:
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Theorem 4.2. There is a polynomial time algorithm for #2k−1Pl-k/2Bip-VC. Furthermore, any mod-
ulus m for which the appropriate signatures exist must be a divisor of 2k − 1.

Our general machinery not only can find the required signatures when they exist, but also can prove
certain desired signatures do not exist or can not be simultaneously realized. As an example, one may
wish to extend the previous two problems to allow more than Read-twice as in #Pl-Rl-Mon-kCNF,
where l > 2. This calls for a simultaneous realizability of [1, 0, 0, · · · , 0, 1] (l − 1 0’s) and [0, 1, 1, · · · , 1]
(k 1’s). This can be shown to result in an empty intersection on M.

In the Appendix we will give a holographic algorithm to a problem motivated by Neural Networks.

5 Some More Examples

In [25] Valiant gave a list of combinatorial problems all of which can be solved by holographic algorithms.
In each case, a “magic” design of matchgates and signatures were presented to derive the algorithm.
With our machinery, we can show all these problems can be systematically derived. In particular, we
will see how the two mysterious bases b1 and b2 show up naturally. We will handle all the problems
except PL-FO-2-COLOR which uses a basis of three vectors. This will be more naturally dealt with
in [5] where we prove results on more general bases (more basis vectors and higher dimensions).

5.1 Not-All-Equal Gate

In [25], four problems employ the NAE (Not-All-Equal) gate [0, 1, 1, 0]. They are #PL-3-NAE-SAT,
#PL-3-NAE-ICE, #PL-3-(1,1)-CYCLECHAIN and PL-NODE-BIPARTITION (this last one uses a
generator with signature [x, 1, 1, x].)

Notice that they have a common restriction of “maximum degree 3”. This is necessary because if
k > 3, then [0, 1, 1, · · · , 1, 0] (k − 1 1’s) is not realizable. This is a result of [3], but it’s easy to see now.

For the case of degree 3, by Lemma 3.5, take α, β to be the two roots of x2−x+1 = 0 and A/B = −1,

we have Brec([0, 1, 1, 0]) =

{[(

1 + ω
1 − ω

)

,

(

α + βω
α − βω

)]∣

∣

∣

∣

ω3 = ±1

}

.

Notice that α3 = −1 and αβ = 1, let ω = α, we have (using ∼ on M)
[(

1 + ω
1 − ω

)

,

(

α + βω
α − βω

)]

=

[(

1 + α
1 − α

)

,

(

α + βα
α − βα

)]

=

[(

1
1

)

,

(

1
−1

)]

.

This is b2 in [25]. Actually for each of the four problems, in order to intersect with the subvarieties
of other generators and recognizers, this is the only choice. Due to space limitation, we omit the details.

5.2 #k+12/k-X-Matchings

Input: A planar bipartite graph G = (V1, V2, E). Nodes in V1 and V2 have degrees 2 and k respectively.
Output: The number mod (k + 1) of all (not necessarily perfect) matchings.

This problem is a slight variation on #X-Matchings from [25], which has general weights on edges
and uses an unsymmetric signature. (We will discuss unsymmetric signatures in Section 6.) The case
k = 4 was explicitly stated in [25], but the proof there clearly also handles general k. Jerrum [12]
showed that counting matchings for planar graphs is #P-complete. Vadhan [22] showed that this
remains #P-complete for planar bipartite graphs of degree 6.

For this problem we are looking for a generator with signature [1, 1, 0] and a recognizer with sig-
nature [1, 1, 0, · · · , 0] (k − 1 0’s) simultaneously. From Lemma 3.6, with A = B = 1, α = 0, we have:

[Brec([1, 1, 0, · · · , 0]) =

{[(

1
1

)

,

(

0
k

)]}

.We hope that

[(

1
1

)

,

(

0
k

)]

∈ Bgen([1, 1, 0]).
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From Lemma 8.2, we must have k + 1 = 0. So we can only work inside the ring Zk+1.

Remark: In Zk+1, this basis

[(

1
1

)

,

(

0
k

)]

in M under the equivalence relation ∼ is exactly b1 in [25].

Theorem 5.1. There is a polynomial time algorithms for #k+12/k-X-Matchings. Any modulus m for
which the appropriate signatures exist must be a divisor of k + 1.

In the Appendix we will also discuss ⊕PL-EVEN-LIN2, the last problem from [25].

6 Beyond Symmetric Signatures

The theory of symmetric signatures has been satisfactorily developed. Symmetric signatures are par-
ticularly useful because they have clear combinatorial meanings. However general (i.e. unsymmetric)
signatures have also been used before. To understand completely the power of holographic algorithms,
we must study unsymmetric signatures as well. (In the following, we discuss generators only; the
situation for recognizers is similar.)

Following the framework in [2], a generator is a contravariant tensor of the form G = (gi1i2...in) where
i1i2 . . . in ∈ {0, 1}. We also denote G = (gS) where S ⊂ [n], and gS = gχS(1)χS (2)...χS(n). A generator
signature G is realizable on a basis β iff the standard signature G′ = β⊗nG can be realized by some
planar matchgate. There are two conditions for a standard signature to be realizable:

Parity Constraint: Either g′S = 0 for all |S| even, or g′S = 0 for all |S| odd.
Matchgate Identities: G′ satisfies all the useful Grassmann-Plücker identities.

Definition 6.1. A tensor G is admissible as a generator on a basis β iff G′ = β⊗nG satisfies the
Parity Constraint. Let Bp

gen(G) denote the subset of M for which G is admissible as a generator.

By definition we have Bgen(G) ⊆ Bp
gen(G) for all G.

For symmetric signatures, we already observed that there are some different levels of realizability.
Some signatures are realizable on isolated points, while others are realizable on lines or curves. Success
at getting a holographic algorithm typically results from either a generator or a recognizer having more
than isolated points of realizability. In terms of M, this refers to the dimension of the subvariety
Bgen(G). More precisely,

Definition 6.2. A generator G is called d-realizable (resp. d-admissible) for an integer d ≥ 0 iff
Bgen(G) ⊂ M (resp. Bp

gen(G) ⊂ M) is a (non-empty) algebraic subset of dimension at least d.

By definition, if a generator G is d-realizable, then it is d-admissible.

Remark: Since M has dimension two, 2-realizability is universal realizability which means that G is
realizable on any basis. This is because the conditions defining realizability are polynomial equations
(with coefficients from (gS), and variables on M). If there is at least one polynomial which is not
identically 0, the algebraic set has dimension ≤ 1. Using any 2-realizable signature is a freebie in the
design of holographic algorithms; it places no restriction on the rest of the design. Therefore they are
particularly desirable.

The following theorem is a complete characterization of 2-admissibility (over fields of characteristic 0.
We omit the treatment of fields of positive characteristic here.) Due to space limitation, the proof is given
in the Appendix. It uses rank estimates related to the Kneser Graph KG2k+1,k [15, 17, 18, 6, 7, 9, 10].

Theorem 6.1. G is 2-admissible iff (1) n = 2k is even; (2) all gS = 0 except for |S| = k; and (3) for
all T ⊂ [n] with |T | = k + 1,

∑

S⊂T,|S|=k

gS = 0. (2)

9



The solution space is a linear subspace of dimension 1
2k+1

(2k+1
k

)

.

The next theorem shows that any basis transformation on a 2-admissible G is just a scaling. The
proof is in the Appendix.

Theorem 6.2. If G is 2-admissible with arity 2k, then ∀β =

(

n0 p0

n1 p1

)

∈ M, β⊗2kG = (n0p1−n1p0)
kG.

Corollary 6.1. If G is 2-admissible and realizable on some basis (e.g. on the standard basis), then it
is 2-realizable.

For n = 6, all 2-admissible G’s form a 5 dimensional linear space. Applying the Matchgate Identities,
we find that there are 5 different 2-realizable signatures (up to scaling). Let G1 and G2 be the following

gα
1 =











1, α ∈ {000111, 011001, 101010, 110100},
−1, α ∈ {111000, 100110, 010101, 001011},

0, otherwise,

gα
2 =











1, α ∈ {010101, 011010, 100110, 101001},
−1, α ∈ {101010, 100101, 011001, 010110},

0, otherwise.

Then all the 2-realizable signatures are obtained by cyclically rotating the indices of G1 or G2. (Rotating
3 bits on G1 is G1 itself up to a scaling factor −1; rotating 2 bits on G2 gives G2 back. So there are 3
different 2-realizable signatures from rotating G1 and 2 different ones from rotating G2.)

It turns out that all of these can be obtained from the planar tensor product operation which we
define next.

Definition 6.3. Let Rotr(G) be the tensor obtained by circularly rotating clockwise the coordinates of
G by r bits. Let G ⊗ G′ be the tensor product with all indices of G before all indices of G′. A planar
tensor product is a finite sequence of operations of Rotr(G) and G ⊗ G′.

Theorem 6.3. Bgen(Rotr(G)) = Bgen(G) and Bgen(G1 ⊗ G2) = Bgen(G1) ∩ Bgen(G2). Thus a planar
tensor product preserves Bgen.

The proof uses direct constructions and Matchgate Identities, and is omitted here.

Theorem 6.4. Each of the five 2-realizable signatures for n = 6 is obtainable as a planar tensor product
from (0, 1,−1, 0).

From (0, 1,−1, 0), we can construct a family of 2-realizable signatures for any arity 2k by planar ten-
sor product. It is an open question if this family (up to scaling) captures all the 2-realizable signatures.
This is true for n ≤ 6.

Definition 6.4. A signature G is called prime iff it cannot be decomposed as a tensor product of two
signatures of positive arity.

In the Appendix, we will list some families of prime signatures. In particular (0, 1,−1, 0) is a prime
2-realizable signature. The above open problem is essentially whether (0, 1,−1, 0) is the unique prime
2-realizable signature (up to scaling).

1-admissibility (resp. 1-realizability) is strictly weaker than 2-admissibility (resp. 2-realizability).
In the Appendix, we give some constructions of 1-admissible and 1-realizable families which are not in
general 2-admissible or 2-realizable. These are in fact prime signatures. Planar tensor product can be
applied to construct more 1-realizable families.

10



Acknowledgments

We would like to thank Leslie Valiant for many comments and discussions. We also thank Eric Bach,
Steve Cook, Jon Kleinberg, Edith Hemaspaandra, Lane Hemaspaandra, Salil Vadhan and Avi Wigderson
for their comments.

References

[1] J-Y. Cai and Vinay Choudhary. Some Results on Matchgates and Holographic Algorithms. In
Proceedings of ICALP 2006, Part I. Lecture Notes in Computer Science vol. 4051. pp 703-714.
Also available at Electronic Colloquium on Computational Complexity TR06-048, 2006.

[2] J-Y. Cai and Vinay Choudhary. Valiant’s Holant Theorem and Matchgate Tensors (Extended
Abstract). In Proceedings of TAMC 2006: Lecture Notes in Computer Science vol. 3959, pp
248-261. Also available at Electronic Colloquium on Computational Complexity Report TR05-118.

[3] J-Y. Cai and Vinay Choudhary. On the Theory of Matchgate Computations . Available at Elec-
tronic Colloquium on Computational Complexity Report TR06-018.

[4] J-Y. Cai and Pinyan Lu. On Symmetric Signatures in Holographic Algorithms. Available at
Electronic Colloquium on Computational Complexity Report TR06-135.

[5] J-Y. Cai and Pinyan Lu. On the Universality of Bases in Holographic Algorithms. Manuscript, in
preparation.

[6] W. Foody and A. Hedayat. On theory and applications of BIB designs with repeated blocks, Annals
Statist., 5 (1977), pp. 932-945.

[7] W. Foody and A. Hedayat. Note: Correction to ”On Theory and Application of BIB Designs with
Repeated Blocks”. Annals of Statistics, Vol. 7, No. 4 (Jul., 1979), p. 925.

[8] C. T. J. Dodson and T. Poston. Tensor Geometry, Graduate Texts in Mathematics 130, Second
edition, Springer-Verlag, New York, 1991.

[9] R. L. Graham, S.-Y. R. Li, and W.-C. W. Li. On the Structure of t-Designs. SIAM. J. on Algebraic
and Discrete Methods 1, 8 (1980).

[10] N. Linial and B. Rothschild. Incidence Matrices of Subsets–A Rank Formula. SIAM. J. on Algebraic
and Discrete Methods 2, 333 (1981).

[11] D. Lichtenstein. Planar formulae and their uses. SIAM J. Comput. 11, 2:329-343.

[12] M. Jerrum. Two-dimensional monomer-dimer systems are computationally intractable. J. Stat.
Phys. 48 (1987) 121-134; erratum, 59 (1990) 1087-1088

[13] P. W. Kasteleyn. The statistics of dimers on a lattice. Physica, 27: 1209-1225 (1961).

[14] P. W. Kasteleyn. Graph Theory and Crystal Physics. In Graph Theory and Theoretical Physics,
(F. Harary, ed.), Academic Press, London, 43-110 (1967).

[15] M. Kneser. “Aufgabe 360”. Jahresbericht der Deutschen Mathematiker-Vereinigung, 2. Abteilung
58: 27. 1955.

11



[16] E. Knill. Fermionic Linear Optics and Matchgates.
At http://arxiv.org/abs/quant-ph/0108033

[17] L. Lovász. “Kneser’s conjecture, chromatic number, and homotopy”. Journal of Combinatorial
Theory, Series A 25: 319-324. 1978.
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Appendix

7 Some Background

In this section, for the convenience of readers, we review some definitions and results. More details can
be found in [23, 25, 24, 3, 2, 1].

Let G = (V,E,W ), G′ = (V ′, E′,W ′) be weighted undirected planar graphs. A generator matchgate
Γ is a tuple (G,X) where X ⊂ V is a set of external output nodes. A recognizer matchgate Γ′ is a tuple
(G′, Y ) where Y ⊂ V ′ is a set of external input nodes. The external nodes are ordered counter-clock
wise on the external face. Γ is called an odd (resp. even) matchgate if it has an odd (resp. even)
number of nodes.

Each matchgate is assigned a signature tensor. A generator Γ with m output nodes is assigned a
contravariant tensor G ∈ V m

0 of type
(m

0

)

. This tensor under the standard basis b has the form

∑

Gi1i2...imbi1 ⊗ bi2 ⊗ · · · ⊗ bim ,

12



where
Gi1i2...im = PerfMatch(G − Z),

and where Z is the subset of the output nodes having the characteristic sequence χZ = i1i2 . . . im.
Similarly a recognizer Γ′ with m input nodes is assigned a covariant tensor R ∈ V 0

m of type
( 0
m

)

. This
tensor under the standard (dual) basis b∗ has the form

∑

Ri1i2...imbi1 ⊗ bi2 ⊗ · · · ⊗ bim ,

where
Ri1i2...im = PerfMatch(G′ − Z),

where Z is the subset of the input nodes having χZ = i1i2 . . . im.
In particular, G transforms as a contravariant tensor under a basis transformation and R transforms

as a covariant tensor.
A signature is symmetric, if each entry only depends on the Hamming weight of the index. This

notion is invariant under basis transformations. A symmetric signature is denoted by [σ0, σ1, . . . , σm].
A matchgrid Ω = (A,B,C) is a weighted planar graph consisting of a disjoint union of: a set of g

generators A = (A1, . . . , Ag), a set of r recognizers B = (B1, . . . , Br), and a set of f connecting edges
C = (C1, . . . , Cf ), where each Ci edge has weight 1 and joins an output node of a generator with a input
node of a recognizer, so that every input and output node in every constituent matchgate has exactly
one such incident connecting edge.

Let G =
⊗g

i=1 G(Ai) be the tensor product of all the generator signatures, and let R =
⊗r

j=1 R(Bj)
be the tensor product of all the recognizer signatures. Then Holant(Ω) is defined to be the contraction
of the two product tensors, under some basis β, where the corresponding indices match up according
to the f connecting edges Ck.

The remarkable Holant Theorem is

Theorem 7.1 (Valiant). For any matchgrid Ω over any basis β, let G be its underlying weighted graph,
then

Holant(Ω) = PerfMatch(G).

The FKT algorithm can compute the perfect matching polynomial PerfMatch(G) for a planar graph
in polynomial time. This algorithm gives an orientation of the edges of the planar graph, which assigns
a ±1 factor to each edge weight. It then evaluates the Pfaffian of the skew-symmetric matrix of the
graph.

Pfaffians satisfy the Grassmann-Plücker identities [20].

Theorem 7.2. For any n × n skew-symmetric matrix M , and any I = {i1, . . . , iK} ⊆ [n] and J =
{j1, . . . , jL} ⊆ [n],

L
∑

l=1

(−1)lPf(jl, i1, . . . , iK)Pf(j1, . . . , ĵl, . . . , jL) +

K
∑

k=1

(−1)kPf(i1, . . . , îk, . . . , iK)Pf(ik, j1, . . . , jL) = 0

A set of so-called useful Grassmann-Plücker identities have been proved to characterize planar match-
gate signatures [24, 1, 3]. These are called Matchgate Identities.

We state some theorems from [4], which will be used.

Theorem 7.3. A symmetric signature [x0, x1, . . . , xn] for a recognizer is realizable under the basis

β = [n, p] =

[(

n0

n1

)

,

(

p0

p1

)]

iff it takes one of the following forms:
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• Form 1: there exist (arbitrary) constants λ, s, t and ε where ε = ±1, such that for all i, 0 ≤ i ≤ n,

xi = λ[(sn0 + tn1)
n−i(sp0 + tp1)

i + ε(sn0 − tn1)
n−i(sp0 − tp1)

i]. (3)

• Form 2: there exist (arbitrary) constants λ,such that for all i, 0 ≤ i ≤ n,

xi = λ[(n − i)n0(p1)
i(n1)

n−1−i + ip0(p1)
i−1(n1)

n−i]. (4)

• Form 3: there exist (arbitrary) constants λ,such that for all i, 0 ≤ i ≤ n,

xi = λ[(n − i)n1(p0)
i(n0)

n−1−i + ip1(p0)
i−1(n0)

n−i]. (5)

Theorem 7.4. A symmetric signature [x0, x1, . . . , xn] for a generator is realizable under the basis

β = [n, p] =

[(

n0

n1

)

,

(

p0

p1

)]

iff it takes one of the following forms:

• Form 1: there exist (arbitrary) constance λ, s, t and ε where ε = ±1, such that for all i, 0 ≤ i ≤ n,

xi = λ[(sp1 − tp0)
n−i(−sn1 + tn0)

i + ε(sp1 + tp0)
n−i(−sn1 − tn0)

i]. (6)

• Form 2: there exist (arbitrary) constants λ,such that for all i, 0 ≤ i ≤ n,

xi = λ[(n − i)p1(n0)
i(−p0)

n−1−i − in1(n0)
i−1(−p0)

n−i]. (7)

• Form 3: there exist (arbitrary) constants λ,such that for all i, 0 ≤ i ≤ n,

xi = λ[−(n − i)p0(−n1)
i(p1)

n−1−i + in0(−n1)
i−1(p1)

n−i]. (8)

Theorem 7.5. A symmetric signature [x0, x1, · · · , xn] is realizable on some basis of size 1 iff there
exists three constants a, b, c(not all zero), such that ∀k, 0 ≤ k ≤ n − 2

axk + bxk+1 + cxk+2 = 0. (9)

The following two simple lemmas are used in the proof of Lemma 3.5 and 3.6.

Lemma 7.1. Suppose a sequence xi (i = 0, 1, . . . , n, where n ≥ 3) has the following form: xi =
Aαi + Bβi, (AB 6= 0, α 6= β), then the representation is unique. That is, if xi = A′(α′)i + B′(β′)i,
(i = 0, 1, . . . , n, n ≥ 3), then A′ = A,B′ = B,α′ = α, β′ = β or A′ = B,B′ = A,α′ = β, β′ = α.

Lemma 7.2. Suppose a sequence xi (i = 0, 1, . . . , n, where n ≥ 3) has the following form: xi =
Aiαi−1 + Bαi, (A 6= 0), then the representation is unique. That is, if xi = A′i(α′)i−1 + B′(α′)i,
(i = 0, 1, . . . , n, n ≥ 3), then A′ = A,B′ = B,α′ = α.

These follow from the fact that a second-order homogeneous linear recurrence sequence has a unique
representation.
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8 Realizability of Generators

The following Lemmas give a complete and mutually exclusive list of realizable symmetric signatures
for generators.

Lemma 8.1.

Bgen([an, an−1b, · · · , bn]) =

{[(

n0

−b

)

,

(

p0

a

)]∣

∣

∣

∣

n0, p0 ∈ F

}

.

Lemma 8.2.

Bgen([x0, x1, x2]) =

{[(

n0

n1

)

,

(

p0

p1

)]

∈ M
∣

∣

∣

∣

x0n
2
0 + 2x1n0p0 + x2p

2
0 = 0, x0n

2
1 + 2x1n1p1 + x2p

2
1 = 0

or x0n0n1 + x1(n0p1 + n1p0) + x2p0p1 = 0

}

.

Lemma 8.3. Let λ1 6= 0. Suppose p = char.F 6 |n,

Bgen([0, 0, · · · , 0, λ1, λ2]) =

{[(

−λ2

1

)

,

(

nλ1

0

)]}

.

For p|n and λ2 = 0, Bgen([0, 0, . . . , 0, λ1, 0]) =

{[(

1
n1

)

,

(

0
p1

)]

∈ M
∣

∣

∣

∣

n1, p1 ∈ F

}

. For p|n and λ2 6= 0,

then [0, 0, . . . , 0, λ1, λ2] is not realizable.

Lemma 8.4. For AB 6= 0,

Bgen([A,Aα,Aα2, · · · , Aαn + B]) =

{[(

ω − α
−α − ω

)

,

(

1
1

)]∣

∣

∣

∣

ωn = ±B

A

}

.

Lemma 8.5. For AB 6= 0 and α 6= β,

Bgen({Aαi + Bβi|i = 0, 1, · · · , n}) =

{[(

βω − α
−α − βω

)

,

(

1 − ω
1 + ω

)]∣

∣

∣

∣

ωn = ±B

A

}

.

Lemma 8.6. Let p = char.F and let A 6= 0.
Case 1: p = 0 or p 6 |n.

Bgen({Aiαi−1 + Bαi|i = 0, 1, · · · , n}) =

{[(

nA + Bα
−α

)

,

(

−B
1

)]}

.

Case 2: p|n and x0 = 0, in this case, the signature is of the form Aiαi−1.

Bgen([Aiαi−1|i = 0, 1, . . . , n]) =

{[(

−α
n1

)

,

(

1
p1

)]

∈ M
∣

∣

∣

∣

n1, p1 ∈ F

}

.

Case 3: p|n and x0 6= 0. Then it’s not realizable.

9 A Problem From Neural Networks

Consider the following planar two-level neural network N : The input nodes are Boolean variables
x1, . . . , xn. Each xi has fan-out 2. The intermediate level nodes v all have fan-in k from the xi’s. The
output of v feeds into the top node and can have c + 1 different values 0, 1, . . . , c. If all k inputs of v
are 0 then the output of v is 0 (unexcited state). Otherwise, the output of v can be any of the c + 1
values (excited state). The problem is to count the total number of output (firing) patterns as received
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at the top node. (In the following for simplicity, we assume c is odd. We have a parallel set of results
for c even. The statement has some number theoretic complications, and is omitted here.)
#2k−c2NNk/c-Firing-Pattern

Input: A two-level neural network with parameters k and c as above.
Output: The number mod (2k − c2) of all possible firing patterns.

First we suppose k is even. Then we do it over C by taking ω =
√

2. The same basis as in Section 4.1
can achieve the signature [1+2k/2, 1, 1, · · · , 1] (with k 1’s) for a recognizer and the signature [1, 0, 1] for
a generator simultaneously. This is verified by ω2 = 2 and ωk = 2k/2.

Let X be the value of the Holant. With mod 2k/2 − c, the recognizer signature is the same as
[1 + c, 1, 1, · · · , 1]. Thus

X ≡ #NNk/c-Firing-Pattern (mod 2k/2 − c).

Similarly we can also achieve the signature [1−2k/2, 1, 1, · · · , 1] (with k 1’s) for a recognizer and the
signature [1, 0, 1] for a generator simultaneously. This is verified by ω2 = 2 and ωk = −(−2k/2). This
recognizer signature is congruent to [1+c, 1, 1, · · · , 1] mod 2k/2 + c. Thus we can compute in polynomial
time some value X ′ for a Holant, where

X ′ ≡ #NNk/c-Firing-Pattern (mod 2k/2 + c).

Then by Chinese remaindering, we can compute the value #NNk/c-Firing-Pattern modulo the l.c.m.
of 2k/2 − c and 2k/2 + c. Since c is odd, this is 2k − c2.

Now we suppose k is odd. As c is relatively prime to N = 2k − c2, there exists c′ such that
cc′ ≡ 1 mod N . Take ω = 2(k+1)/2c′. Then ω2 = 2k+1c′2 ≡ 2 mod N . Also ωk = (2k)(k+1)/2c′k ≡
ck+1c′k ≡ c mod N . Thus we can construct [1 + c, 1, 1, · · · , 1] (with k 1’s) for a recognizer and the
signature [1, 0, 1] for a generator simultaneously in the ring ZN directly.

10 ⊕PL-EVEN-LIN2

In this problem, we wish to construct generators for [1, x, 1], [x, 1, x], [1, 0, 1], [0, 1, 0], [1, 0, 0, . . . , 0, 1] and
recognizers for [1, 0,−1, 0, 1], [0, 1, 0,−1, 0], [1, 0, 1], [0, 1, 0].

By Lemma 3.5, for A = B = 1/2, α = i, β = −i (here i =
√
−1), we have

Brec([1, 0,−1, 0, 1]) =

{[(

1 + ω
1 − ω

)

,

(

i − iω
i + iω

)]

|ω4 = ±1

}

.

We hope that

[(

1 + ω
1 − ω

)

,

(

i − iω
i + iω

)]

is also a basis for the recognizer [0, 1, 0].

By Lemma 3.2, we require that (1 + ω)(i + iω) + (1 − ω)(i − iω) = 0. That is ω = i, and

[(

1 + ω
1 − ω

)

,

(

i − iω
i + iω

)]

=

[(

1 + i
1 − i

)

,

(

i + 1
i − 1

)]

=

[(

1
1

)

,

(

1
−1

)]

.

We can easily verify that this is also a basis for the other recognizers and generators and we remark
that this basis is precisely b2 in [25]. One can also prove 2 is the only modulus for this problem.

11 Characterization of 2-admissibility

Consider all subsets of [n] of a certain cardinality. Let 0 ≤ k ≤ ` ≤ n, and let Ak,`,n denote the
(n
k

)

×
(n

`

)

Boolean matrix indexed by (A,B), where A,B ⊂ [n] and |A| = k, |B| = `, and the entry at (A,B) is
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χ[A⊂B]. It is known that over the rationals Q, the rank rk(Ak,`,n) = min{
(n
k

)

,
(n

`

)

} [6, 7, 9, 10]. We will
not deal with finite characteristics here. The situation with finite characteristic p is interesting and is
more involved. For example, Linial and Rothschild [10] prove exact rank formula for characteristic 2
and 3. The rank “defect” compared to the characteristic 0 case provides more admissible signatures.
This will be discussed in future work.

We restate the definition of d-admissibility in more detail.

Definition 11.1. G = (gS)S⊂[n] is called d-admissible if the following algebraic variety V has dimension
at least d, where V = V0 ∪ V1 ⊂ M, and V0 (resp. V1) is defined by the set of all parity requirements
for the generator signature of an odd (resp. even) matchgate.

More precisely, consider V0. We take a point (in dehomogenized coordinates)

(

1 x
1 y

)

∈ M. We

also denote x0 = x, x1 = y. Let T ⊂ [n] with |T | even. Then we require

〈

n
⊗

σ=1

[1, x[σ∈T ]], G

〉

= 0.

Similarly we define V1, where we require that all |T | be odd.
We note that

〈

n
⊗

σ=1

[1, x[σ∈T ]], G

〉

=
∑

0≤i≤n−|T |
0 ≤ j ≤ |T |

xiyj
∑

A ⊂ Tc, |A| = i
B ⊂ T, |B| = j

gA∪B . (10)

If dim(V ) = 2, then either dim(V0) = 2 or dim(V1) = 2. For dim(V0) = 2, we have the following:
For all T ⊂ [n] with |T | even, and for all 0 ≤ i ≤ n − |T | and 0 ≤ j ≤ |T |,

∑

A⊂T c,B⊂T,|A|=i,|B|=j

gA∪B = 0. (11)

(If there is one equation not satisfied, then there is at least one non-trivial polynomial among the parity
requirements, which implies dim(V0) ≤ 1.) For dim(V1) = 2, the above holds for all |T | odd. Continuing
with dim(V0) = 2, by taking i = 0, we get for all T ⊂ [n] with |T | even, and j ≤ |T |,

∑

S⊂T,|S|=j

gS = 0. (12)

Also by taking j = 0, we get for all i ≤ n − |T |,
∑

S⊂T c,|S|=i

gS = 0.

If S ⊂ [n] with |S| even, then we may take T = S and j = |T |, and it follows that

gS = 0.

If n is odd, then T is even and T c is odd, and together they range over all possible subsets of [n]. It
follows that

gS = 0,

for all S ⊂ [n]. That is, G is trivial.
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An identical argument also shows that for dim(V1) = 2 and n odd, the trivial G ≡ 0 is the only
possibility.

Now we assume n = 2k is even, and continuing with dim(V0) = 2. Both T and T c are even. Pick
any T even and i = n − |T |, we get

∑

A⊂T c,B⊂T,|A|=i,|B|=j

gA∪B =
∑

S⊃T c,|S|=i+j

gS = 0.

i.e. for all even T ′ ⊂ [n] and all i ≥ |T ′|,
∑

S⊃T ′,|S|=i

gS = 0. (13)

If |S| = i < k, we form the following system of equations from (12),

∑

S⊂T,|S|=i

gS = 0,

where T ranges over all subsets of [n] with |T | = t, and t = i or i + 1, whichever is even. This linear
system has rank

(n
i

)

. It follows that gS = 0 for all |S| < k.
Similarly if |S| = i > k, we can use (13) with |T | = i or i− 1, whichever is even, and summing over

all subsets S containing T . This linear system also has rank
(n

i

)

. It follows that gS = 0 for all |S| > k.
Therefore the only non-zero entries of G are among gS with half weight |S| = k. Also with dim(V0) =

2, we may assume k is odd. Otherwise, we already know gS = 0 for all |S| even.
A similar argument for V1 shows that, in order for dim(V1) = 2, we must have n = 2k even, all

gS = 0 except for |S| = k and k is even.
Summarizing, we have

Lemma 11.1. If G is 2-admissible, then n = 2k is even, all gS = 0 except for |S| = k. If k is odd
(resp. even) then the only possibility is dim(V0) = 2 (resp. dim(V1) = 2). Moreover, for all T ⊂ [n]
with |T | = k + 1,

∑

S⊂T,|S|=k

gS = 0. (14)

Next we prove that the conditions in Lemma 11.1 are also sufficient for G being 2-admissible, i.e.,
we prove (11), thus all the polynomials in (10) are identically zero.

Suppose k odd. We prove dim(V0) = 2. A similar argument does for k even and dim(V1) = 2. We
only need to verify (11) for all i+ j = k, namely for all T ⊂ [n] with |T | even, and for all 0 ≤ i ≤ n−|T |,
and 0 ≤ j = k − i ≤ |T |,

∑

A⊂T c,B⊂T,|A|=i,|B|=k−i

gA∪B = 0. (15)

Denote by t = |T | and s = n− |T |. By symmetry of T and T c (both being even subsets of [n]) we may
assume s ≤ t. Since k is odd, we have the strict s < t, for otherwise s = t = k would be odd.

We prove (15) by induction on i ≥ 0. For the base case i = 0, j = k, we consider all U ⊂ T with
|U | = k + 1. Note that as t ≥ k + 1, this is not vacuous. By (14) we have

∑

S⊂U,|S|=k

gS = 0.
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Summing over all such U , and consider how many times each S ⊂ [n] with |S| = k appears in the sum,
we get

∑

A ⊂ Tc, |A| = 0

B ⊂ T, |B| = k

gA∪B =
∑

S⊂T,|S|=k

gS =
1

(

t−k
1

)

∑

U ⊂ T
|U| = k + 1

∑

S⊂U,|S|=k

gS = 0. (16)

Inductively we assume (15) has been proved for i− 1, for some i ≥ 1. Consider i and j = k − i. We
may assume i ≤ s; otherwise we are done. Also k − i + 1 ≤ t. Consider all subsets U = U1 ∪ U2 ⊂ [n],
where U1 ⊂ T c, U2 ⊂ T , with |U1| = i and |U2| = k − i + 1. Note that |U | = k + 1. We have

0 =
∑

S⊂U,|S|=k

gS =
∑

A⊂U1,|A|=i−1

gA∪U2 +
∑

B⊂U2,|B|=k−i

gU1∪B ,

as all sets S ⊂ U with |S| = k are classified into two classes according to whether |S ∩ U1| = i − 1 or i.
Then summing over all such U ,

0 =
∑

U

∑

S⊂U,|S|=k

gS =

(

s − (i − 1)

1

)

∑

A ⊂ Tc, |A| = i − 1

B ⊂ T, |B| = k − i + 1

gA∪B +

(

t − (k − i)

1

)

∑

A ⊂ Tc, |A| = i
B ⊂ T, |B| = k − i

gA∪B ,

by considering how many times each S of the two classes appears in the sum
∑

U

∑

S . Since the first
sum is 0 by inductive hypothesis, and t − k + i ≥ 1, the second sum is also zero. Thus

∑

A⊂T c,B⊂T,|A|=i,|B|=k−i

gA∪B = 0.

This proves that

Theorem 11.1. The conditions in Lemma 11.1 are both necessary and sufficient for G being 2-
admissible.

We can further prove:

Theorem 11.2. If G is 2-admissible with arity 2k, then ∀β =

(

n0 p0

n1 p1

)

∈ M, β⊗2kG = (n0p1 −

n1p0)
kG.

In order to prove this theorem, we first prove the following lemma:

Lemma 11.2. Let G be 2-admissible with arity 2k, S ⊂ [2k] with |S| = k, and A ⊂ Sc. Then

∑

B⊂S and |B|=k−|A|

gA∪B = (−1)|A|gS

Proof: We prove it by induction on |A| ≥ 0.
The case |A| = 0 is obvious.
Inductively we assume the lemma has been proved for all |A| ≤ i−1, for some i ≥ 1. Let |A| = i > 0

and let G be 2-admissible, it follows from Lemma 11.1 we have

∑

C⊂A∪S and |C|=k

gC = 0.
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Then

0 =
∑

C⊂A∪S and |C|=k

gC

=
∑

B⊂S and |B|=k−|A|

gA∪B +

|A|−1
∑

t=0

∑

A1⊂A,|A1|=t

∑

B⊂S,|B|=k−|A1|

gA1∪B,

according to t = |A ∩ C| = 0, 1, . . . , |A|. Since |A1| = t ≤ |A| − 1, by induction we have:
∑

B⊂S,|B|=k−|A1|

gA1∪B = (−1)|A1|gS = (−1)tgS .

So

0 =
∑

B⊂S and |B|=k−|A|

gA∪B + gS

|A|−1
∑

t=0

(−1)t
(|A|

t

)

=
∑

B⊂S and |B|=k−|A|

gA∪B − (−1)|A|gS .

From the last equation, we have
∑

B⊂S and |B|=k−|A|

gA∪B = (−1)|A|gS

This completes the proof.

Corollary 11.1. If G is any 2-admissible signature, then ∀S ⊂ [2k], gS = (−1)kgSc
.

Now we can prove Theorem 11.2.

Proof: To simplify notations, we use the dehomogenized coordinates β =

(

1 x
1 y

)

=

(

1 x0

1 x1

)

. Some

exceptional cases can be proved directly.
First it is obvious that β⊗2kG is also 2-admissible. So for any S ⊂ [2k] and |S| 6= k,

〈

n
⊗

σ=1

[1, x[σ∈S]], G

〉

≡ 0.

Now let S ⊂ [2k] and |S| = k,
〈

n
⊗

σ=1

[1, x[σ∈S]], G

〉

=
∑

0≤i≤k

xiyk−i
∑

A⊂Sc,|A|=i

∑

B⊂S,|B|=k−i

gA∪B .

By Lemma 11.2 and for A ⊂ Sc, |A| = i, we have
∑

B⊂S,|B|=k−i

gA∪B = (−1)igS .

So
〈

n
⊗

σ=1

[1, x[σ∈S]], G

〉

=
∑

0≤i≤k

xiyk−i
∑

A⊂Sc,|A|=i

(−1)igS = gS
∑

0≤i≤k

xiyk−i(−1)i
(

k

i

)

= (y − x)kgS .

This completes the proof.
Since a scaling preserves realizability, the theorem gives:
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Corollary 11.2. If a 2-admissible G is realizable on some basis (e.g., on the standard basis), then it is
realizable on any basis, which means it is 2-realizable.

12 1-admissibility and 1-realizability

First we give a family of 1-admissible generators.

Theorem 12.1. Let n = 2k be even, we have all gS = 0 except for those |S| = k. Finally for all S ⊂ [n]
with |S| = k, gS = gSc

. Then G is 1-admissible.

Proof: We prove this by showing that ∀x,

(

1 x
1 −x

)

∈ V1, where V1 is defined in Definition 11.1. Let

T ⊂ [n] with |T | odd. Then we require

〈

n
⊗

σ=1

[1, x[σ∈T ]], G

〉

≡ 0,

where x0 = x and x1 = −x. In the above setting, we have
〈

n
⊗

σ=1

[1, x[σ∈T ]], G

〉

= xk
∑

max{0,|T |−k}≤i≤min{k,|T |}

(−1)i
∑

A ⊂ Tc, |A| = k − i
B ⊂ T, |B| = i

gA∪B .

We assume that k ≥ |T | (the case k < |T | is similar). Since |T | is odd, the first and the last term of the
first summation cancel out. Similarly the second and the second last term cancel out, and so on. So we
have this summation identically equal to 0. This completes the proof.

For n = 4, in order to be 1-realizable, the Matchgate Identities further require g0011g1001 = 0. This
gives the following two 1-realizable signatures (they are prime for a2 6= b2):

gα =











a, α ∈ {0101, 1010},
b, α ∈ {0011, 1100},
0, otherwise.

and

gα =











a, α ∈ {0101, 1010},
b, α ∈ {1001, 0110},
0, otherwise.

Next, we present another family of 1-realizable signatures, which are not subsumed by any of the
above. It also has some generalized symmetry. It can be viewed as a generalization of Case 2 in
Lemma 8.6.

Theorem 12.2. For any g1, g2, . . . , gn, α ∈ F, where g1 + g2 + · · ·+ gn = 0, let G = (gS)S⊂[n] be defined
as follows,

gS = α|S|−1
∑

i∈S

gi.

Then G is 1-realizable and

Bgen(G) =

{[(

−α
n1

)

,

(

1
p1

)]

∈ M
∣

∣

∣

∣

n1, p1 ∈ F

}

.
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Proof: For simplicity, we use the dehomogenized coordinates

(

1 x
1 y

)

where x = −1/α. Some excep-

tional cases such as α = 0 can be proved directly (we use the convention that α0 = 1 and 0 · α0−1 = 0
even when α = 0.)

Let T ⊂ [n], if |T | = 0 or |T | = n, then
〈

n
⊗

σ=1

[1, x[σ∈T ]], G

〉

= 0.

Otherwise we have
〈

n
⊗

σ=1

[1, x[σ∈T ]], G

〉

=
∑

0≤i≤n−|T |
0 ≤ j ≤ |T |

xiyj
∑

A ⊂ Tc, |A| = i
B ⊂ T, |B| = j

gA∪B

=
∑

0≤i≤n−|T |
0 ≤ j ≤ |T |

xiyj
∑

A ⊂ Tc, |A| = i
B ⊂ T, |B| = j

α|A∪B|−1
∑

k∈A∪B

gk

=
∑

0≤i≤n−|T |
0 ≤ j ≤ |T |

xiyjαi+j−1
∑

A ⊂ Tc, |A| = i
B ⊂ T, |B| = j

(
∑

k∈A

gk +
∑

l∈B

gl)

=
∑

0≤i≤n−|T |
0 ≤ j ≤ |T |

xiyjαi+j−1

(

(|T |
j

)(|T c| − 1

i − 1

)

∑

k∈T c

gk +

(|T c|
i

)(|T | − 1

j − 1

)

∑

l∈T

gl

)

=
∑

k∈T c

gk









∑

0≤i≤n−|T |
0 ≤ j ≤ |T |

xiyjαi+j−1

(|T |
j

)(

n − |T | − 1

i − 1

)

−
∑

0≤i≤n−|T |
0 ≤ j ≤ |T |

xiyjαi+j−1

(

n − |T |
i

)(|T | − 1

j − 1

)









=
∑

k∈T c

gk

(

x(1 + αx)n−|T |−1(1 + αy)|T | − y(1 + αx)n−|T |(1 + αy)|T |−1
)

.

If |T | < n − 1, the above equation is identically 0 when x = −1/α.
For |T | = n − 1, suppose T = [n] − {t}, then this value is λgt where λ = −(1 + αy)n−1/α. This

standard signature is realizable by the star (see Figure 1.)

u�
�
�
�
�
�
u 1

g1

u

2

g2A
A
A
A
A
Au

3

g3

u

n − 1

gn−1

A
A

A
A

A
A
un

gn

q q q q q q

Figure 1: 1-realizability

Remark: When n = 2, this generator is the 2-realizable signature (0, 1,−1, 0).

22



13 2-realizable signatures of arity 6

Here we give the pictorial realization of all the 2-realizable generator signatures of arity 6, by planar
tensor product from the prime 2-realizable signature (0, 1,−1, 0).

1
1

1

−1

−1
−1

1

2

3

4

5

6

Figure 2: One planar tensor product for arity 6.

1 2

3

45

6

1 −1

1

−11
−1

Figure 3: Another planar tensor product for arity 6.
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