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Abstract

We show that for any p ≥ 2, lattice problems in the `p norm are subject to all the same
limits on hardness as are known for the `2 norm. In particular, for lattices of dimension n:

• Approximating the shortest and closest vector in the `p norm to within Õ(
√

n) factors is
contained in coNP.

• Approximating the length of the shortest vector in the `p norm to within Õ(n) factors
reduces to the same average-case problems that have been studied in related works (Ajtai,
STOC 1996; Micciancio and Regev, FOCS 2004; Regev, STOC 2005).

Each of these results improves upon the current understanding of `p norms by up to a
√

n factor.
Taken together, they can be seen as a partial converse to recent reductions from lattice problems
in the `2 norm to corresponding problems in `p norms (Regev and Rosen, STOC 2006).

One of our main technical contributions is a general analysis of sums of independent Gaussian
distributions over lattices, which may be of independent interest. Our proofs employ analytical
techniques of Banaszczyk which, to our knowledge, have yet to be exploited in computer science.

1 Introduction

The last two decades have seen an explosion of interest in the complexity of computational problems
on lattices. A lattice is a periodic “grid” of points in R

n generated by all integer combinations of
some basis of linearly independent vectors. The two central problems on lattices are the shortest
vector problem SVP and the closest vector problem CVP. In SVP, the goal is to find a (nonzero)
lattice point which is closest to the origin, given a basis for the lattice. In CVP, the goal is to find
a lattice point which is closest to some given target point in R

n. In these problems, it is common
to measure distances in the `p norm for some 1 ≤ p ≤ ∞, usually p = 2.1

As with many optimization problems, it is interesting to consider approximation versions of
SVP and CVP (and others). For SVP (resp., CVP), the goal then becomes to find a lattice point
whose distance from the origin (resp., target) exceeds the optimal distance by no more than a
certain approximation factor γ ≥ 1. Known polynomial-time algorithms for SVP and CVP, such as
the celebrated LLL algorithm, achieve approximation factors essentially exponential in the dimen-
sion n [20, 7, 29, 5]. The best algorithm for solving the exact version of SVP runs in randomized
2O(n) time [5].

∗SRI International, cpeikert@alum.mit.edu
1For p < ∞, the `p norm of x ∈ R

n is ‖x‖p = (
Pn

i=1
|xi|

p)1/p, and the `∞ norm is ‖x‖
∞

= maxi |xi|.
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Hardness. There are several hardness results that reinforce the apparent difficulty of lattice
problems for small approximation factors. For the sake of brevity, we describe the highlights.

SVP in any `p norm is hard to approximate to within any constant factor (and more, for
p = ∞), assuming NP 6⊆ RP [19, 12, 28]. CVP in any `p norm is NP-hard to approximate to within
almost-polynomial nO(1/ log log n) factors [13, 12]. Other problems such as the closest vector with
preprocessing problem CVPP and the shortest independent vectors problem SIVP in any `p norm
are hard for any constant factor as well, assuming NP 6⊆ RP [6, 11, 28]. (Several of these constant
factors can be improved to almost-polynomial in n, assuming NP 6⊆ RTIME(2poly(log n)).)

Of special interest is a recent result of Regev and Rosen [28]. Using an elegant application of
norm embeddings, they showed (essentially) that lattice problems are easiest in the `2 norm for
any given approximation factor.

Limits on hardness. Given the difficulty of designing efficient approximation algorithms for
even moderately sub-exponential factors, one might hope to significantly improve upon the known
hardness. However, there seem to be strict limits on any such improvements. We explain below.

For certain approximation factors γ(n) as small as O(
√

n), it turns out that many interesting
lattice problems in the `2 norm (including SVP and CVP) are in coAM or even coNP. This implies
that these approximation problems are not NP-hard, unless the polynomial hierarchy collapses.
Results of this type can be found in [16, 2, 18].

One of the most remarkable features of lattice problems are the worst-case to average-case
reductions first demonstrated by Ajtai [3], which have seen many extension and improvements
in recent years (see, e.g., [4, 24, 27]). Such a reduction is usually taken as positive evidence for
the hardness of the average-case problem. At the same time, though, the reduction also limits the
hardness of the worst-case problem, by showing that it is as easy as the average-case problem (which
is in, say, distributional-NP [21, 10]). The state of the art for worst-case/average-case connections
is represented by the works of Micciancio and Regev [24] and Regev [27], who obtained reductions
from several lattice problems in the `2 norm for almost-linear Õ(n) approximation factors.

All the results limiting the hardness of lattice problems are focused primarily on the `2 norm.
Using standard relations between norms, one can obtain limits for other `p norms, but the ap-
proximation factors suffer. For example, the factors become O(n1/2+|1/2−1/p|) = O(n) for the
containments in coNP, and Õ(n1+|1/2−1/p|) = Õ(n1.5) for the worst-case/average-case reductions.

Summary. In terms of `p norms, the landscape looks as follows: by Regev and Rosen [28], we
know that for a given approximation factor, as p increases from 2 to ∞ (or decreases from 2 to 1),
lattice problems become no easier. In addition, the known limits on their hardness become weaker.
But do the problems actually get strictly harder? This is the main question motivating our work.

1.1 Our Results

Stated informally, our results are that for any p ≥ 2, lattice problems in the `p norm are subject to
all the same limits on hardness as are known for the `2 norm, for essentially the same asymptotic
approximation factors. Specifically, for any 2 ≤ p ≤ ∞ we show that:

• For certain Õ(
√

n) approximation factors, the following problems in the `p norm are contained
in coNP: CVP, SVP, SIVP, and CRP.
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• For certain Õ(
√

n) approximation factors, decisional CVPP in the `p norm is easy (i.e., in P).

• For certain Õ(n) connection factors, the following worst-case problems in the `p norm reduce
to the average-case problems from [24, 27]: SIVP, decisional SVP, and others.

Each of these results improves upon the current best approximation factors for the `p norm by up
to a

√
n factor, and essentially matches the current state of the art for the `2 norm.

On the technical side, one of our main contributions is a very general analysis of sums of
Gaussian distributions over lattices. This may be of independent interest and utility elsewhere.
Indeed, this analysis has also been applied in a concurrent work by Peikert and Rosen [25] on
worst-case/average-case reductions for special classes of algebraic lattices.

Our results also have cryptographic implications. Until now, the hardness of average-case prob-
lems has always been based on worst-case problems in the `2 norm. Because lattice problems are
in fact easiest in the `2 norm (for similar approximation factors), the security of the resulting cryp-
tographic primitives was therefore based on the strongest worst-case assumption of its kind. Our
results imply that security can be based on the possibly weaker assumption that lattice problems
are hard in some `p norm, 2 ≤ p ≤ ∞.

We remark that the factors hidden by the Õ-notation above do depend mildly on the choice of
norm. In all of the quantities, there is a constant factor proportional to

√
p for p < ∞, and a factor

proportional to
√

log n for p = ∞. These are in addition to any small logarithmic factors which
may already exist in the known results for the `2 norm.

1.2 Techniques

One way of obtaining all our results (and more) would be to give approximation-preserving reduc-
tions from lattice problems in the `p norm to problems in the `2 norm. While reductions in the
reverse direction are known [28], reducing from the `p norm to the `2 norm appears to be much
more challenging.

We will instead obtain our results by directly demonstrating the requisite coNP proof systems,
worst-case to average-case reductions, etc. Remarkably, we are able to use, without modification,
the exact same constructions that were designed for the `2 norm [2, 24, 27]! Our main technical
contribution is a novel analysis of these algorithms for `p norms. We rely crucially on harmonic
analysis techniques of Banaszczyk that were initially developed to prove transference theorems for
lattices, first for the `2 norm [8], and later for arbitrary `p norms [9]. Ideas from the former paper
stimulated many of the advances achieved by [2, 24, 27]. To the best of our knowledge, this is the
first time that techniques from the latter paper have been applied in computational complexity.

For showing that CVP (among other problems) in the `p norm is in coNP for Õ(
√

n) approxi-
mation factors, we directly apply certain measure inequalities from [9] to the framework laid out by
Aharonov and Regev [2] for the `2 norm. The main tool in [2] is a function f which distinguishes
points which are close to a lattice from those which are very far from the lattice. The measure
inequalities (see Section 3) will guarantee that f(x) is small for any point x whose `p distance from
the lattice is at least n1/p. At the same time, f(x) is guaranteed to be large for any point x within
`p distance at most ∼ n1/p−1/2 from the lattice, by standard properties of norms. These facts are
the essence of the Õ(

√
n) gap for the resulting coNP proof system.

For analyzing the worst-case to average-case reductions of Micciancio and Regev [24] and
Regev [27], we will need to derive new facts about the discrete Gaussian probability distribu-
tions over lattices that emerge in their reductions. Specifically, we analyze sums of independent
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samples from discrete Gaussians, and show that in several important respects they behave just like
continuous Gaussians (see Section 5 for details). This significantly generalizes prior analyses by
Micciancio and Regev [24] and by Lyubashevsky and Micciancio [22], while providing an arguably
more tractable proof.

1.3 Open Questions

The complexity of lattice problems in `p norms for 1 ≤ p < 2 is less well understood. Our techniques
do not seem to be as useful for these norms, due to an asymmetry in how they relate to the `2

norm. We are unable to conclude anything other than what is already implied by basic relations
among norms, i.e.: problems in coNP for Õ(n1/p) factors, and worst-case to average-case reductions
with Õ(n1/2+1/p) connection factors. We remark that there is a natural correspondence between
the `p norm and its dual `q norm, where 1/p + 1/q = 1 and 1 ≤ p ≤ 2 ≤ q ≤ ∞. It seems plausible
that lattice problems in the `p norm could be related to problems in the `q norm via this duality.

Another important question is whether there are approximation-preserving reductions from
problems in the `p norm to problems in the `2 norm. Combined with the results of [28], such
reductions would imply that all `p norms are (essentially) equally hard for any approximation
factor, not just those that emerge in proof systems or worst-case/average-case reductions.

1.4 Organization

In Section 2 we review lattices, computational problems, and Gaussian measures. In Section 3
we explain some of Banaszczyk’s previously unexploited measure inequalities and their immediate
implications. In Section 4 we use these inequalities to demonstrate that several lattice problems in
`p norms are in coNP. In Section 5 we develop new tools for analyzing sums of discrete Gaussian
distributions. In Section 6 we apply these tools by extending the analysis of prior worst-case to
average-case reductions to other `p norms.

2 Preliminaries

2.1 Notation

We denote set of real numbers by R and the integers by Z. For a positive integer n, [n] denotes
{1, . . . , n}. The function log will always denote the natural logarithm. Extend any function f(·) to
a countable set A in the following way: f(A) =

∑

x∈A f(x).
For a real a, we write [a,∞] for the set [a,∞) ∪ {∞}. For simplicity, we use the following

conventions: ∞
√

n = 1 for any positive n; 1/∞ = 0; and 1/0 = ∞.
A vector in R

n is represented in column form, and written as a bold lower-case letter, e.g. x.
For a vector x, the ith component of x will be denoted by xi, or when such notation would be
confusing, by (x)i. Matrices are written as bold capital letters, e.g. X. The ith column vector of
X is denoted xi. We denote the standard inner product between x,y ∈ R

n as 〈x,y〉 =
∑

i∈[n] xiyi.

For simplicity, we sometimes write x2 for 〈x,x〉.
It is well-known that for any x ∈ R

n and any p ∈ [2,∞], we have n1/p−1/2 ‖x‖2 ≤ ‖x‖p ≤ ‖x‖2,

whereas for any p ∈ [1, 2], we have ‖x‖2 ≤ ‖x‖p ≤ n1/p−1/2 ‖x‖2. For any t ∈ R
n and set V ⊆ R

n,
define distp(t, V ) = infv∈V ‖t− v‖p. Let Bp

n = {x ∈ R
n : ‖x‖p ≤ 1} denote the n-dimensional

unit ball under the `p norm.

4



Let Γ(z) denote the Euler Gamma function for real z > 0, defined as Γ(z) = 2
∫∞
r=0 r2z−1e−r2

dr.
We write poly(·) for some unspecified polynomial function in its parameter. A function f(n) is
negligible in n if it decreases faster than the inverse of any polynomial in n.

2.2 Lattices

A lattice in R
n is

Λ = L(B) = {Bc : c ∈ Z
n} , B ∈ R

n×n

where the columns b1, . . . ,bn ∈ R
n of B are linearly independent.2 The matrix B is a basis of the

lattice, and the columns bi are basis vectors. A given lattice Λ has infinitely-many bases, which
are related by unimodular transformations.

The minimum distance in `p norm of a lattice Λ, denoted λp
1(Λ), is the length of its shortest

nonzero element (in `p norm): λp
1(Λ) = min06=x∈Λ ‖x‖p. More generally, the ith successive minimum

in `p norm λp
i (Λ) is the smallest radius r such that the ball rBp

n contains i linearly independent
points of Λ. The covering radius in `p norm of Λ, denoted µp(Λ), is the smallest radius r such that
balls rBp

n centered at all points of Λ cover all of R
n, i.e. µp(Λ) = maxx∈Rn distp(x,Λ).

The dual lattice of Λ, denoted Λ∗, is defined to be Λ∗ = {x ∈ R
n : ∀ v ∈ Λ, 〈x,v〉 ∈ Z}.

2.3 Problems on Lattices

Here we define some standard worst-case problems on lattices. See [23, 24] for motivation and
discussion of these problems. All of the following are approximation problems parameterized by a
positive function γ = γ(n) of the dimension.

We define the following problems in their decisional promise versions.

Definition 2.1 (Shortest Vector Problem). An input to GapSVPp
γ is a pair (B, d) where B is an

n-dimensional lattice basis and d ∈ R. It is a YES instance if λp
1(L(B)) ≤ d, and is a NO instance

if λp
1(L(B)) > γ(n) · d.

Definition 2.2 (Closest Vector Problem). An input to GapCVPp
γ is a tuple (B,v, d) where B is

an n-dimensional lattice basis, v ∈ R
n, and d ∈ R. It is a YES instance if distp(v,L(B)) ≤ d, and

is a NO instance if distp(v,L(B)) > γ(n) · d.

We informally define the closest vector with preprocessing problem GapCVPP, whose goal is to
solve GapCVP on some fixed lattice for a given target point, allowing for the use of some arbitrary
short advice about the lattice. See [14] for motivation and a formal definition.

Definition 2.3 (Covering Radius Problem). An input to GapCRPp
γ is a pair (B, d) where B is an

n-dimensional lattice basis and d ∈ R. It is a YES instance if µp(L(B)) ≤ d and is a NO instance
if µp(L(B)) > γ(n) · d.

We define the following problems in their search versions.

Definition 2.4 (Shortest Independent Vectors Problem). An input to SIVPp
γ is an n-dimensional

lattice basis B. The goal is to output a set of n linearly independent lattice vectors S ⊂ L(B) such
that ‖S‖p ≤ γ(n) · λp

n(L(B)).

2Technically, this is the definition of a full-rank lattice, which is the only kind of lattice we will be concerned with.
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The guaranteed distance decoding problem GDD and its incremental version IncGDD are variants
of the closest vector problem. In this work we only need them to state an intermediate result on
worst-case/average-case reductions, therefore we omit their precise definitions. See [24] for details.

2.4 Gaussian Measures

Our review of Gaussian measures over lattices follows the development by prior works [2, 26, 24].
For any s > 0 define the Gaussian function centered at c with parameter s as:

∀x ∈ R
n, ρs,c(x) = e−π‖x‖2/s2

.

The subscripts s and c are taken to be 1 and 0 (respectively) when omitted. The total measure
of ρs,c(x) over R

n is sn, therefore we can define a continuous Gaussian probability distribution as
Ds,c(x) = s−n · ρs,c(x).

For any c ∈ R
n, real s > 0, and lattice Λ, define the discrete Gaussian distribution over Λ as:

∀x ∈ Λ, DΛ,s,c(x) =
Ds,c(x)

Ds,c(Λ)
=

ρs,c(x)

ρs,c(Λ)
.

(As above, we may omit the parameters s or c.) Intuitively, DΛ,s,c can be viewed as a “conditional”
distribution, resulting from sampling an x from Ds,c and conditioning on x ∈ Λ.

The smoothing parameter. Micciancio and Regev [24] proposed a new lattice quantity which
they called the smoothing parameter :

Definition 2.5 ([24]). For an n-dimensional lattice Λ and positive real ε > 0, the smoothing
parameter ηε(Λ) is defined to be the smallest s such that ρ1/s(Λ

∗\ {0}) ≤ ε.

The name “smoothing parameter” is motivated by the following (informal) fact: if a lattice Λ is
“blurred” by adding Gaussian noise with parameter s ≥ ηε(Λ), the resulting distribution is within
ε of uniform. (The formal statement and proof of this fact can be found in [24].) The smoothing
parameter is closely related to the successive minima of the lattice:

Lemma 2.6. For any n-dimensional lattice Λ, real p ∈ [2,∞], and real ε > 0, we have

ηε(Λ) ≤ λn(Λ) ·
√

log(2n(1 + 1/ε))

π
≤ λp

n(Λ) · n1/2−1/p ·
√

log(2n(1 + 1/ε))

π
.

Proof. The first inequality is due to [24]. The second follows by ‖x‖2 ≤ n1/2−1/p ‖x‖p for p ≥ 2.

The smoothing parameter also influences the behavior of discrete Gaussians over the lattice. In
our new analysis of discrete Gaussians we will rely upon the following simple lemma:

Lemma 2.7 ([24], implicit). For any s ≥ ηε(Λ), real ε ∈ (0, 1), and c ∈ R
n, we have

1−ε
1+ε · ρs(Λ) ≤ ρs,c(Λ) ≤ ρs(Λ).

For the worst-case to average-case reduction from GapSVP we will need the following lemma:

Lemma 2.8 ([24, implicit in Lemma 4.5]). For any n-dimensional lattice Λ, real ε ∈ (0, 1), real
s ≥ ηε(Λ), and c,v ∈ R

n, we have:
∣
∣
∣
∣

E
x∼DΛ,s,c

[

e2πi〈x,v〉
]
∣
∣
∣
∣
≤ 1 + ε

1 − ε
·
ρ1/s(Λ

∗ − v)

ρ1/s(Λ∗)
.
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3 Measure Inequalities for `p Norms

In this section we review some inequalities developed by Banaszczyk [9] and a few of their immediate
consequences for our applications.

The goal of these inequalities is to bound the total Gaussian measure ρ((Λ +v) \ rBp
n) assigned

to those points of a shifted lattice Λ + v whose `p norm exceeds a certain radius r. The measure
is typically normalized by the total measure ρ(Λ) on the entire unshifted lattice, yielding a ratio
between 0 and 1. This ratio has proven to be a crucial quantity in obtaining transference theorems
for lattices [8, 9], and in the study of the computational complexity of lattice problems [1, 2, 24].

In a prior work of Banaszczyk [8], it was shown that for p = 2 and radius r =
√

n, the
ratio described above is exponentially small in n. The results below are generalizations of this
statement to arbitrary `p norms. Loosely speaking, they show that for some suitable constant C,
the normalized measure is small for r = C ·n1/p. The ratio is not, generally speaking, exponentially
small, but for our applications we will only need it to be a small constant. The important fact is
that as a function of p, we can obtain a ratio bounded away from 1 using a radius r ∼ n1/p.

Lemma 3.1 ([9, Lemma 2.9]). For any n-dimensional lattice Λ, p ∈ [1,∞), v ∈ R
n, and real

r > 0, we have:
ρ((Λ + v) \ rBp

n)

ρ(Λ)
< pπ−p/2Γ

(p

2

)

· n · r−p.

Corollary 3.2. For any p ∈ [1,∞), there is a constant cp ≈ √
p such that for any n-dimensional

lattice Λ and v ∈ R
n,

ρ((Λ + v) \ cpn
1/p · Bp

n)

ρ(Λ)
< 1/4.

Proof. Follows immediately from Lemma 3.1 by setting

r =
(

4π−p/2 · p · Γ
(p

2

))1/p
· n1/p ≈ √

p · n1/p.

Lemma 3.3 ([9, Lemma 2.10]). For any n-dimensional lattice Λ, v ∈ R
n, and real r > 0, we have:

ρ((Λ + v) \ rB∞
n )

ρ(Λ)
< 2ne−πr2

.

Corollary 3.4. There is a constant c such that for any n-dimensional lattice Λ and v ∈ R
n,

ρ((Λ + v) \ c
√

log n · B∞
n )

ρ(Λ)
< 1/4.

Proof. Follows immediately from Lemma 3.3 by setting r =

√
log(8n)

π ≤ c
√

log n for some c.

3.1 Smoothing Parameter

The measure inequalities from the previous section yield bounds on the smoothing parameter
relative to lattice minima in `p norms. We will need these bounds for showing the worst-case to
average-case reductions for GapSVP in `p norms, later in the paper.
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Lemma 3.5. For any n-dimensional lattice Λ, p ∈ [1,∞], and real ε > 0, we have:

ηε(Λ) ≤ n1/p ·
√

log(2n/ε)/π

λp
1(Λ

∗)
.

Proof. Let s >
n1/p·

√
log(2n/ε)/π

λp
1
(Λ∗)

. Then

ρ1/s(Λ
∗ \ {0}) = ρ(sΛ∗ \ {0}) = ρ(sΛ∗ \ sλp

1(Λ
∗) · Bp

n) ≤ ρ(sΛ∗ \ sλp
1(Λ

∗) · n−1/p · B∞
n ) < ε,

where we have used that Bp
n ⊇ n−1/p · B∞

n , and the final inequality follows from Lemma 3.3.

4 Problems in coNP

In this section, we show that for certain γ(n) = Õ(
√

n) approximation factors, the following deci-
sional “gap” problems in `p norm are contained in coNP: the shortest vector problem GapSVPp

γ , the
closest vector problem GapCVPp

γ , the covering radius problem GapCRPp
γ , and the shortest indepen-

dent vectors problem GapSIVPp
γ . This implies that for these problems are not NP-hard unless the

polynomial hierarchy collapses (see [16, 15] for a discussion of some subtleties concerning promise
problems and the polynomial hierarchy). For similar approximation factors, we also show that the
closest vector with preprocessing problem GapCVPP in `p norm is easy (i.e., in P).

These results are intended partly as a warm-up for the more complicated analysis of discrete
Gaussians later in the paper. Indeed, the results in this section are a simple application of the
measure inequalities from Section 3 to prior work by Aharonov and Regev [2], who developed the
main techniques for the `2 norm. Therefore we will omit many technical details, and direct the
reader to [2] for full discussions.

4.1 Closest Vector Problem

The main result we need is the containment GapCVPp
γ ∈ coNP for p ∈ [2,∞] and certain choices of

γ(n) = Õ(
√

n). (The coNP verifier for GapCVP will also play a role in the worst-case to average-case
reductions of Section 6.) The remaining results will follow by known reductions to GapCVP, which
work for arbitrary `p norms and approximation factors.

Here we give a brief informal overview of the main proof technique of Aharonov and Regev [2]
for GapCVP. It is shown in [2] that for any n-dimensional lattice Λ, there is a positive function
f : R

n → [0, 1] which indicates whether an arbitrary point v ∈ R
n is close to, or far from, the lattice

(in `2 norm): when v is close, f(v) is large; when v is very far, f(v) is small. More precisely, when
v is within, say, distance 1/100 of the lattice, f(v) ≥ 1/2; when v is more than

√
n away from

the lattice, f(v) is exponentially small in n. The precise definition of f is the (normalized) sum of
Gaussians centered at every lattice point, i.e. f(v) = ρ(Λ + v)/ρ(Λ).

It is also shown in [2] that f can be succinctly approximated, by choosing elements from the dual
lattice Λ∗ under an appropriate distribution. This leads to an NP proof system for the fact that v

is far from the lattice. The witness is a succinct representation of a function f̃ ≈ f . The verifier
accepts if f̃(v) is small, and if f̃ is a good enough approximation to f (this is more technical, but
can also be done efficiently). On the other hand, if v is actually close to the lattice, then f̃(v) will
always be large for any acceptable f̃ , and the verifier rejects.
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Analysis for `p norms. We now consider arbitrary `p norms, p ≥ 2. It turns out that we can
use exactly the same verifier and witness as in [2]; only the analysis is different. We make the
following observations: if distp(v,Λ) ≤ n1/p−1/2/100, then dist2(v,Λ) ≤ 1/100 by properties of `p

norms. In such a case, we already know that the verifier always rejects. On the other hand, if
distp(v,Λ) > cpn

1/p for some appropriate constant cp, then the measure inequalities for `p norms
guarantee that f̃(v) ≈ f(v) is a small constant, and the verifier accepts. The resulting gap factor
is therefore O(n1/p/n1/p−1/2) = O(

√
n).

We conclude this informal overview with a discussion of `p norms, 1 ≤ p < 2. For these
norms, completeness still holds when distp(v,Λ) > Cn1/p. However, soundness is compromised: if
distp(v,Λ) = n1/p−1/2, it may still be the case that dist2(v,Λ) = n1/p−1/2 � 1. The only way to
guarantee that v is close enough to Λ in `2 norm is to require, say, distp(v,Λ) ≤ 1/100. This yields
an approximation factor of O(n1/p), which was already known from [2] using the relations between
`p norms. We do not know if there is an alternate proof system which improves upon this factor.

We now proceed to the detailed statement of the theorem and its proof.

Theorem 4.1. For any p ∈ [2,∞), there is a constant cp ≈ √
p such that GapCVP

p
cp

√
n
∈ NP∩coNP.

For p = ∞, there is a constant c such that GapCVP∞
c
√

n log n
∈ NP ∩ coNP.

Proof. The containment in NP is trivial, as well as the proof for n = 1. Thus it suffices to prove
GapCVP is in coNP, assuming n ≥ 2. That is, we must show a polynomial-time algorithm which,
given a lattice basis B, a point v, and a witness, verifies that v is far from the lattice L(B).

The verifier V we use is the same one from from [2]; we recall it here. The input to V is an
instance (B,v, d) of GapCVP, plus a witness matrix W ∈ R

n×N , for sufficiently large N . Let
Λ = L(B). The verifier algorithm performs the following tests, and accepts if all three hold
(otherwise it rejects):

1. Check that fW(v) < 1/2, where fW is the function fW(v) = 1
N

∑

i∈[N ] cos(2π 〈wi,v〉).

2. Check that wi ∈ Λ∗ for all i ∈ [N ], i.e. that wi are dual lattice vectors.

3. Check that the largest eigenvalue of the matrix WWT is at most N/(2πd)2.

As argued in [2], V can be implemented in polynomial time.
We now demonstrate the correctness of the verifier for all `p norms, p ∈ [2,∞]. First, we

perform the following rescaling: we map an instance (B,v, d′) of GapCVPp to an instance (B,v, d)
where d = d′ · n1/2−1/p, and invoke the verifier V on that instance (and the same witness W).

Soundness. Suppose (B,v, d′) is a NO instance, i.e. distp(v,Λ) ≤ d′. Then

dist2(v,Λ) ≤ d′ · n1/2−1/p = d

by the properties of `p norms. In [2] it is shown that V always rejects in this case.

Completeness. Suppose now that (B,v, d′) is a YES instance, i.e. distp(v,Λ) > cp
√

n · d′ =
cpn

1/p · d for p ∈ [2,∞), or distp(v,Λ) > c
√

n log n · d′ = c
√

log n · d for p = ∞.
In [2] it is shown that when the vectors wi of W are chosen independently from a certain

distribution (i.e., the discrete Gaussian DΛ∗,1/d over the dual lattice Λ∗), Test 3 is satisfied with
overwhelming probability, and Test 2 is always satisfied by definition of the distribution.
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It remains to show that Test 1 is satisfied, i.e. fW(v) < 1/2, with some positive constant
probability over the choice of W, which implies the existence of a W which makes V accept. The
Pointwise Approximation Lemma of [2] (with appropriate scaling) states that with probability at
least 3/4 over the random choice of W, the difference

∣
∣
∣
∣
fW(v) − ρd(Λ + v)

ρd(Λ)

∣
∣
∣
∣
=

∣
∣
∣
∣
fW(v) − ρ(Λ′ + v′)

ρ(Λ′)

∣
∣
∣
∣
≤ 1/n2,

where Λ′ = Λ/d and v′ = v/d are a rescaled lattice and target point.
First take p ∈ [2,∞). Then distp(v′,Λ′) > cpn

1/p, so ρ(Λ′ + v′) = ρ((Λ′ + v′) \ cpn
1/p · Bp

n).
Then by Corollary 3.2 we have fW(v) < 1/4 + 1/n2 ≤ 1/2 with probability at least 3/4.

Now take p = ∞. Then dist∞(v′,Λ′) > c
√

log n. By a similar argument using Corollary 3.4,
the proof is complete.

4.2 Other Problems

Theorem 4.2. For any p ∈ [2,∞), there is a constant cp ≈ √
p such that all of the following

problems are in coNP for γ(n) = cp
√

n: GapSVPp
γ, GapCRPp

γ, and GapSIVPp
γ.

For p = ∞, there is a constant c such that all of the above are in coNP for γ(n) = c
√

n log n.

Proof. The theorem follows from known approximation- and norm-preserving reductions to GapCVP.
For GapSVP, there is a reduction from to GapCVP due to Goldreich et al [17]. For GapCRP, there is
a simple nondeterministic reduction to GapCVP, due to Guruswami et al [18], in which the reduc-
tion guesses a “deep hole” (i.e., a point far from the lattice) which becomes the target point in the
resulting GapCVP instance. This reduction suffices to show inclusion in coNP. For GapSIVP, there is
a more complicated nondeterministic reduction, also due to Guruswami et al [18], to GapCVP.

4.3 Closest Vector with Preprocessing

Aharonov and Regev also showed that GapCVPP in `2 norm is easy for some γ(n) = c
√

n/ log n [2].
Applying a similar analysis as above, it is easy to extend this result to `p norms.

Theorem 4.3. For any p ∈ [2,∞), there is a constant cp ≈ √
p such that GapCVPP

p

cp

√
n/ log n

∈ P.

For p = ∞, there is a constant c such that GapCVPP∞
c
√

n ∈ P.

5 New Analysis of Discrete Gaussians

In this section, we develop new tools that are useful for analyzing worst-case to average-case reduc-
tions that rely on Gaussians. We will analyze sums of independent samples from discrete Gaussian
distributions over lattices. More precisely, we analyze the moments of such sums when projected
onto a subspace of R

n. Our main result is that these moments are nearly identical to those for
sums of continuous Gaussian distributions. This can be used to derive very “intuitive” bounds on
expectations and tail probabilities for `p norms. In summary, our analysis further reinforces the
idea that discrete Gaussians over lattices behave remarkably similarly to continuous Gaussians.

Our analysis seems a natural continuation of prior study into discrete Gaussians. Using ideas
from Banaszczyk [8], Micciancio and Regev [24] analyzed a few low-order moments of a discrete
Gaussian projected onto a one-dimensional subspace of R

n. Lyubashevsky and Micciancio [22]
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extended this analysis to all the higher moments. Unfortunately, even at this stage the analysis
becomes quite cumbersome, involving several pages of heavy manipulations.

We analyze sums of discrete Gaussians over lattices, projected onto arbitrary subspaces of R
n.

Despite these generalities, our analysis is actually simpler, due crucially to the use of techniques
from a follow-up work of Banaszczyk [9].

5.1 Overview of Techniques

In this subsection we give a simplified and high-level overview of our techniques for analyzing sums
of discrete Gaussians. Suppose without loss of generality that Λ is a sufficiently dense lattice in
R

n. Suppose that x ∈ Λ is a random variable distributed as the sum of m independent samples
from the discrete Gaussian DΛ,1.

3 We are interested in calculating the expected length of x in the
`p norm, E[‖x‖p]. By Jensen’s inequality and linearity of expectation, this is at most

(

E
[

‖x‖p
p

])1/p
=
(∑

i∈[n]
E [|xi|p]

)1/p
, (1)

so it suffices to bound E [|xi|p]. The crucial tool we need is an exponential tail inequality on xi:

Tail Inequality. For any r ≥ 0, the probability that |xi| > r decays exponentially with r2/m:

Pr
x

[|xi| > r] ≈ exp(−Θ(r2/m)).

This inequality is stated precisely and in full generality as Lemma 5.4 below. We remark that
for sums of continuous Gaussians, proving this inequality is straightforward — a sum of Gaussians
is just another Gaussian (with a larger variance), which can be analyzed by direct integration.
However, for sums of discrete Gaussians the path is not so straightforward.

To prove the tail inequality and complete the analysis, we will draw upon techniques of Ba-
naszczyk [8, 9]. First, view x’s probability distribution as a positive function D : Λ → R

+. Then
our goal is to bound the total measure assigned by D to Λ− = {x ∈ Λ : |xi| > r}. The general
strategy is to find some positive function g : Λ → R

+ satisfying two conditions: (1) the total
measure (D · g)(Λ) only exceeds the total measure D(Λ) by a “small” factor c, but (2) the total
measure (D · g)(Λ−) exceeds the total measure D(Λ−) by a “very large” factor C. Because D and
g are positive, we get

C · D(Λ−) ≤ (D · g)(Λ−) ≤ (D · g)(Λ) ≤ c · D(Λ) = c,

from which we conclude that the tail probability D(Λ−) ≤ c/C, a small quantity. It turns out that
an appropriate choice for the function g is g(x) = cosh(2πr |xi| /m), where cosh(x) = 1

2(ex + e−x)
is the hyperbolic cosine.

With the tail inequality in hand, the expectation E [|xi|p] can be written as an integral:

∑

x∈Λ

|xi|p · Pr[x] =
∑

x∈Λ

(
∫ |xi|

r=0
prp−1 dr

)

Pr[x] =

∫ ∞

r=0
prp−1

(
∑

x∈Λ, |xi|>r

Pr[x]

)

dr

=

∫ ∞

r=0
prp−1 · Pr [|xi| > r] dr ≈ p

∫ ∞

r=0
rp−1 exp(−Θ(r2/m)) dr. (2)

3In the general case, the samples may be drawn from discrete Gaussians with different parameters s ≥ ηε, different
centers c, and even defined over different lattices. In order to illuminate the key ideas, we focus on a much simpler
case in this overview.
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The final expression is a so-called Gaussian integral, which has a known closed form that evaluates
to roughly (

√
pm)p. When plugged into Equation (1), this yields

E[‖x‖p] ≤
√

p ·
√

m · p
√

n.

In conclusion, for any fixed `p norm, the sum of m discrete n-dimensional Gaussians (with parameter
s = 1) has expected norm that grows as

√
m and p

√
n, just as with continuous Gaussians. For the

`∞ norm, there is simply an extra
√

log n factor.
We devote the remainder of this section to the full statement of the result and its proof. We

caution that the proof is technical and somewhat heavy in notation in places; the reader who is
interested only in the applications may safely skip to Section 6.

5.2 Preliminaries and Notation

Let Λ1, . . . ,Λm be arbitrary lattices in R
n, and let Λ = Λ1 × · · · × Λm. Likewise, let s ∈ (R+)m

be a vector of positive parameters for m Gaussians, and let C ∈ R
n×m be the matrix of their m

centers. Let ρs,C : Λ → R be the function defined as the product of the corresponding Gaussian
functions:

ρs,C(X) =
∏

i∈[m]

ρsi,ci(xi).

(We may omit C when it is the all-zeros matrix.) It immediately follows from Lemma 2.7 that:

Lemma 5.1. Let Λ, s, C be as above, and let ε > 0 be such that si ≥ ηε(Λi) for all i ∈ [m]. Then:

1 ≤ ρs(Λ)

ρs,C(Λ)
≤
(

1 + ε

1 − ε

)m

.

Denote by DΛ,s,C the joint distribution over R
n×m, and having support Λ, given by sampling

independently from DΛi,si,ci for each i. That is, for X ∈ Λ,

DΛ,s,C(X) =
∏

i∈[m]

DΛi,si,ci(xi) =
ρs,C(X)

ρs,C(Λ)
.

For any X ∈ R
n×m, define hC(X) =

∑

i∈[m](xi − ci), the sum of the xis shifted by the centers ci.
Finally, let U = {u1, . . . ,ud} be a set of d ≥ 1 orthonormal vectors in R

n. For concreteness
(and indeed, for all of our applications in this work), we can take d = 1 and let u1 be one of the
standard basis elements for R

n. Define the “U norm” as ‖y‖
U

=
∑

i∈[d] |〈y,ui〉| for any y ∈ R
n.

In our concrete example of U, then, ‖y‖
U

is simply the absolute value of one of y’s coordinates.
More generally, the U norm is akin to the `1 norm within the subspace spanned by U.

5.3 Moments of Gaussian Sums

Our main theorem concerns the sum of independent discrete Gaussians over lattices. The theorem
bounds all the moments of the sum, where the moments are taken about the sum of the Gaussian’s
centers. Using our notation from above, then, we are concerned with the distribution of hC(X),
where X ∼ DΛ,s,C. Of course, hC(X) is distributed over R

n, whereas moments usually refer to
distributions over R. We handle this mismatch by actually considering the moments of ‖hC(X)‖

U
,

i.e. the U norm of the sum of Gaussians.
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Theorem 5.2 (Main Theorem: Moments of discrete Gaussian sums). Let Λ, s, C, and U be as
above, and let ε > 0 be such that si ≥ ηε(Λi) for all i ∈ [m]. Then for any p > 0,

E
X∼DΛ,s,C

[
‖hC(X)‖p

U

]
≤ 2d−1 ·

(
1 + ε

1 − ε

)m

·
∥
∥
∥s
√

d/π
∥
∥
∥

p

2
· p · Γ

(p

2

)

.

For the typical case where d = 1 (a concurrent work [25] also needs to consider d = 2, but no
more), m = m(n) is some small polynomial, and ε = ε(n) is some small inverse polynomial, the
following corollary is in a form more suitable for application:

Corollary 5.3. Let Λ, s, C be as above, let m = m(n) = poly(n), and let ε(n) ≤ 1/(2m(n) + 1)
be such that si ≥ ηε(Λi) for all i ∈ [m]. For any p ∈ [1,∞), there is a constant cp ≈ √

p such that:

E
X∼DΛ,s,C

[

‖hC(X)‖p

]

≤ cp · ‖s‖2 · n1/p.

For p = ∞, there is a universal constant c such that:

Pr
X∼DΛ,s,C

[

‖hC(X)‖∞ > c · ‖s‖2 ·
√

log n
]

≤ 1/4.

Proof. First we consider the case p ∈ [1,∞). Let {ei}i∈[n] be the standard basis of R
n. We have:

E
[

‖hC(X)‖p

]

≤
(
∑

i∈[n]

E [|〈hC(X), ei〉|p]
)1/p

(Jensen’s ineq, linearity of E)

≤
(

n ·
(

1+ε
1−ε

)m
· ‖s‖p

2 · p · Γ
(p

2

))1/p
(Theorem 5.2)

≤ cp · ‖s‖2 · n1/p (appropriate cp;
(

1+ε
1−ε

)m
≤ e)

Now we consider p = ∞. Here we actually use Lemma 5.4 (Tail Inequality) directly, choosing
r = c · ‖s‖ · √log n for appropriate constant c so that for any i ∈ [n],

Pr
X∼DΛ,s,C

[|〈hC(X), ei〉| > r] ≤ 1/4n.

By the union bound, the proof is complete.

Before proving the main theorem, we will need one more piece of notation. For any r ≥ 0 and
for C and U as above, define

Qr = {X : ‖hC(X)‖
U

≤ r} ⊆ R
n×m.

We now proceed to the proof.
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Proof of Theorem 5.2. The proof exactly follows the structure of Equation (2) from our overview,
just with heavier notation. The main tool is the tail inequality from Lemma 5.4 below.

E
X∼DΛ,s,C

[
‖hC(X)‖p

U

]
=
∑

X∈Λ

‖hC(X)‖p
U
· DΛ,s,C(X) (def. of E)

= p

∫ ∞

r=0
rp−1 ·

∑

X∈Λ \Qr

DΛ,s,C(X) dr (calculus; see (2))

≤ 2d · p
∫ ∞

r=0
rp−1 exp(−πr2/d · ‖s‖2

2) ·
ρs(Λ)

ρs,C(Λ)
dr (Lemma 5.4)

≤ 2d ·
(

1+ε
1−ε

)m
· p
∫ ∞

r=0
rp−1 exp(−πr2/d · ‖s‖2

2) dr (Lemma 5.1)

= 2d−1 ·
(

1+ε
1−ε

)m
·
∥
∥
∥s
√

d/π
∥
∥
∥

p

2
· p · Γ

(p
2

)
. (integration)

Lemma 5.4 (Tail Inequality). Let Λ, s, C be as above. Then for any r ≥ 0,

ρs,C(Λ \Qr) ≤ 2d · exp

(

−πr2

d · ‖s‖2
2

)

· ρs(Λ).

Proof. First, for any t ∈ R define the positive function gt : Λ → R
+ as:

gt(X) =
∏

k∈[d]

cosh(2πt 〈hC(X),uk〉).

The proof will hinge on the following two inequalities (which we prove below):

Claim 5.5. For any t ∈ R,

∑

X∈Λ

ρs,C(X) · gt(X) ≤ exp(πt2d · ‖s‖2
2) · ρs(Λ).

Claim 5.6. For any t ∈ R and r ≥ 0,

∑

X∈Λ \Qr

ρs,C(X) · gt(X) ≥ exp(2πtr)

2d
· ρs,C(Λ \Qr).

Then we see that

exp(2πtr)

2d
· ρs,C(Λ \Qr) ≤

∑

X∈Λ \Qr

ρs,C(X) · gt(X) (Claim 5.6)

≤
∑

X∈Λ

ρs,C(X) · gt(X) (ρ, gt positive)

≤ exp(πt2d · ‖s‖2
2) · ρs(Λ). (Claim 5.5)

Setting t = r
d·‖s‖2

2

yields the lemma.

We now justify the two claims from above.
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Proof of Claim 5.5. Before beginning, we caution that the following proof is heavy in notation,
though conceptually quite simple. It essentially consists of expanding ρs,C(X) and gt(X) into
their constituent parts, aligning the corresponding components, and re-combining. Except where
explicitly noted, all of the steps are justified simply by the definition of the notation, or by linearity.

We start by analyzing terms of the following form, which will appear when we expand gt(X)
according to its definition:

ρs,C(X) · exp

(
∑

k∈[d]
2πt 〈hC(X),±uk〉

)

= ρs,C(X) · exp

(

π
∑

i∈[m]
2
〈

xi − ci, t
∑

k∈[d]
±uk

〉)

= exp

(

−π
∑

i∈[m]

(

(xi − ci)
2/s2

i − 2
〈

xi − ci, t
∑

k∈[d]
±uk

︸ ︷︷ ︸

c′i

〉))

= exp

(

−π
∑

i∈[m]

(

xi − (ci + sitc
′
i)

︸ ︷︷ ︸

c′′i

)2
/s2

i − (sitc
′
i)

2

)

(3)

= exp
(

πt2d · ‖s‖2
2

)

· exp

(

−π
∑

i∈[m]
(xi − c′′i )

2/s2
i

)

(4)

= exp(πt2d · ‖s‖2
2) · ρs,C′′(X)

Equation (3) is by completing the square. Equation (4) is by (c′i)
2 = ‖c′i‖

2
2 = d, regardless of the

pattern of ±’s, due to the orthonormality of {uk}.
We now analyze the expression that appears in the statement of Claim 5.5. Expanding the

definition of gt using cosh(x) = 1
2(ex + e−x), we see that the expression ρs,C(X) · gt(X) contains 2d

terms of the form:

1

2d
· ρs,C(X) ·

∏

k∈[d]

exp (±2πt 〈hC(X),uk〉) =
1

2d
· ρs,C(X) · exp

(
∑

k∈[d]
2πt 〈hC(X),±uk〉

)

,

which we analyzed above. Summed over all X ∈ Λ, each of these 2d terms becomes:

exp(πt2d · ‖s‖2
2)

2d
· ρs,C′′(Λ) ≤ exp(πt2d · ‖s‖2

2)

2d
· ρs(Λ),

where the inequality is due to Lemma 5.1. Combining all 2d terms, Claim 5.5 follows.

Proof of Claim 5.6. By the definition of gt and the inequality cosh(x) ≥ 1
2 exp(|x|), we have

gt(X) ≥ 1

2d

∏

k∈[d]

exp (2πt |〈hC(X),uk〉|) =
1

2d
· exp (2πt ‖hC(X)‖

U
) .

Then because ‖hC(X)‖
U

≥ r for any X ∈ Λ \Qr, and by positivity ρ, the claim follows.
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6 Worst-Case to Average-Case Reductions

In this section we provide a novel analysis, for `p norms, of two prior worst-case to average-case
reductions that use Gaussians. The first, due to Micciancio and Regev [24], shows that solving
random systems of modular linear equations is as hard as approximating several worst-case lattice
problems in `2 norm to within Õ(n) factors. We extend this result to all `p norms, p ∈ [2,∞],
essentially maintaining the connection factor of the reduction.

The second reduction, due to Regev [27], shows that decoding random linear codes under a
certain noise distribution is as hard as approximating worst-case lattice problems in `2 norm to
within factors as small as Õ(n), using a quantum algorithm. We also extend this result to all `p

norms, p ∈ [2,∞], with essentially the same approximation factors.
Both of our extensions rely upon the analysis of discrete Gaussians we developed in Section 5,

specifically, Theorem 5.2 and Corollary 5.3. In addition, we remark that a concurrent work of
Peikert and Rosen [25] also uses our analysis of discrete Gaussians to obtain sub-logarithmic worst-
case/average-case connection factors for special classes of algebraic lattices.

6.1 Random Modular Linear Equations

The average-case problem studied in [24] is to find small nonzero solutions to random linear systems
of modular equations. This problem goes all the way back to Ajtai’s seminal work [3], and can
be used as a foundation for collision-resistant cryptographic hash functions. We use the following
definition from [24], to which we refer the reader for a full discussion:

Definition 6.1. The small integer solutions problem in `2 norm, denoted SIS, is the following:
for an integer q, matrix A ∈ Z

n×m
q , and real β, find a nonzero integer vector z ∈ Z

m \ {0} such
that Az = 0 mod q and ‖z‖2 ≤ β. For functions q(n), m(n), β(n), SISq,m,β is the ensemble over
instances (q(n),A, β(n)) where A is a uniformly random n × m(n) matrix mod q(n).

When β ≥ √
m · qn/m, one can show that any SIS instance always has a nonzero solution [24,

Lemma 5.2]. We will take β to be
√

m · qn/m when it is omitted.
We now show that solving the average-case SIS problem is as hard as solving several worst-

case lattice problems in the `p norm. The theorem below is an adaptation of the main theorem
from [24], which reduces the incremental guaranteed distance decoding (IncGDD) problem to SIS.
As we explain below, IncGDD is as hard as several more standard lattice problems.

Theorem 6.2. For any p ∈ [1,∞), there is a constant cp such that for any g(n) > 0, polynomially-
bounded m(n), β(n) = poly(n), and q(n) ≥ n ·g(n)β(n)

√

m(n), solving SISq,m,β on the average with
non-negligible probability is as hard as solving IncGDDp,ηε

γ,g in the worst case for sufficiently small

ε(n) = 1/poly(n) and γ(n) = 4cpn
1/p · β(n).

For p = ∞, there is a constant c such that the same statement holds for γ(n) = 2c ·β(n)
√

log n.

Proof. For simplicity of notation, we will omit the dependence on n for parameters m, β, etc. Let
Λ = L(B), where B is the lattice basis of the input instance of IncGDD.

The statement of the theorem is virtually identical to one shown by Micciancio and Regev [24,
Theorem 5.9]. The only difference is the generalization to `p norms, and the corresponding change
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of the approximation factor γ.4 In addition, the reduction claimed in the theorem is exactly the
one given in [24]; only the analysis is different. Fortunately, the bulk of the analysis from [24] is
insensitive to the choice of p or the value of γ(n).

The only part of the proof that differs in our case is the analysis of the length, in `p norm, of
a sum of independent samples from discrete Gaussians. The precise form of the sum in question
is ‖(X − C)z‖p, where the columns xi of X are independent and distributed according to DΛ,s,ci ,
ci ∈ R

n are fixed centers, z ∈ Z
m is a fixed vector such that ‖z‖2 ≤ β, and s ≥ ηε(Λ). In order to

complete the proof from [24], it suffices to show that

‖(X − C)z‖p ≤ sγ/2

with some positive constant probability. We do so by a straightforward application of the techniques
developed in Section 5.

We first rescale the discrete Gaussian parameters in the following way: let Λi = ziΛ, s = s·z, and
C′ = Cz. Let Λ = (Λ1, . . . ,Λm). By this rescaling, it is clear that si ≥ ηε(Λi), and ‖(X − C)z‖p

is distributed identically to ‖hC′(X′)‖p, where X′ is sampled from DΛ,s,C′ (all of this notation is
defined in Section 5.2).

Suppose p ∈ [1,∞). Then by Corollary 5.3, we have

E
[∥
∥hC′(X′)

∥
∥

p

]

≤ cp ‖s‖2 · n1/p = cp · s ‖z‖2 · n1/p ≤ s · cpβ · n1/p ≤ sγ/4.

Then by Markov’s inequality, ‖hC′(X′)‖p ≤ sγ/2 with probability at least 1/2.
Now suppose p = ∞. By Corollary 5.3,

Pr
X′

[

‖hC′(X)‖∞ > sγ/2 = c · sβ ·
√

log n
]

≤ Pr
X′

[

‖hC′(X)‖∞ > c · ‖s‖2 ·
√

log n
]

≤ 1/4.

This completes the analysis and the proof.

Connection to other worst-case problems. As shown in [24, Section 5.3], the IncGDD problem
(in `2 norm) is as hard as several more standard lattice problems (also in `2 norm), via straight-
forward worst-case to worst-case reductions. One can easily verify that these reductions also apply
to any `p norm, as they only rely on simple properties of norms such as the triangle inequality.

When we instantiate β(n) properly so that SIS solutions always exist, Theorem 6.2 and the
reductions from [24] imply that, given an SIS oracle, we can find vectors of length Õ(n1/2+1/p) · ηε.
By Lemma 2.6, the smoothing parameter ηε is at most Õ(n1/2−1/p) ·λp

n. Combining these two facts,
we get an overall connection factor of Õ(n), which we state precisely in the following corollary:

Corollary 6.3. For any p ∈ [2,∞) and for any m(n) = Θ(n log n), there exists some q(n) =
O(n2 log n) such that solving SISq,m on the average with non-negligible probability is as hard as
solving the following problems for some γ(n) = Θ(n log n): SIVPp

γ, GDDp
γ , and GapCRPp

γ.

For p = ∞, the same applies for some γ(n) = Θ(n log1.5 n).

4We have also slightly departed from [24] in the choice of ε(n) = 1/poly(n) as an inverse polynomial, rather than
negligible function. We observe that it is enough to choose ε(n) to be a small inverse polynomial related to the success
probability of the SIS oracle. This is merely an optimization for obtaining the tightest possible reduction.
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Proof. By Lemma 2.6, for any ε(n) = 1/poly(n) there is some α(n) = Θ(
√

log n) such that
ηε(Λ) ≤ α(n) ·n1/2−1/p ·λp

n(Λ) for any n-dimensional lattice Λ. Therefore any algorithm that solves

IncGDD
p,ηε

γ′,g for some ε(n) = 1/poly(n) also solves IncGDDp,λp
n

γ,g for some γ(n) = Θ(
√

log n) ·n1/2−1/p ·
γ′(n). Applying Theorem 6.2, we get an algorithm for IncGDDp,λn

γ,g , for some γ(n) = Θ(n log n).
Using the reductions from [24], we get the desired result. A similar argument applies for p = ∞.

Comment on `p norms, 1 ≤ p < 2. We point out that Theorem 6.2 applies equally well to
all `p norms for 1 ≤ p ≤ ∞. The difficulty in concluding anything meaningful for p < 2 arises
when we connect the smoothing parameter to λp

n. Unlike for p ≥ 2, we cannot conclude that
ηε ≤ Õ(n1/2−1/p) · λp

n. Instead, the best bound we can obtain is ηε ≤ O(
√

log n) · λp
n, which yields

an overall approximation factor of γ(n) = Õ(n1/2+1/p) = Õ(n3/2) for the problems above.

Connection to the shortest vector problem. Just as in [24], the above results do not imme-
diately imply a reduction that solves the shortest vector problem in the worst case. This is because
the shortest vector in a lattice may be significantly shorter than the smoothing parameter ηε, but
the reduction from Theorem 6.2 may “stop working” once the Gaussian parameter drops below ηε.
In [24] a reduction is presented, using the ideas behind the coNP verifier for GapCVP from [2], which
solves GapSVP2

γ for quasi-linear factors γ(n) = O(n
√

log n). By applying the measure inequalities
and their consequences to the techniques from [24], we obtain a reduction that solves GapSVPp

γ for
γ(n) = O(n log n).

Theorem 6.4. For any p ∈ [2,∞], for any m(n) = Θ(n log n), there exists odd q(n) = O(n2.5 log n)
such that solving SISq,m on the average is as hard as solving GapSVPp

γ for some γ(n) = O(n log n).

Proof sketch. We give a brief sketch of the reduction, deferring the details to the full version.
As explained in [17, 24], GapSVPp

γ reduces to a variant of GapCVPp
γ . We reduce this latter prob-

lem to SIS as follows: on an instance (B, t, d), create instances of SIS using a Gaussian parameter
of

s =
n1/p · O(

√
log n)

γ · d
over the dual lattice L(B)∗. The outputs of the SIS oracle are combined to yield vectors from the
dual lattice, which are used as a witness W for running the GapCVPp verifier algorithm V from
Section 4.1 (with appropriate scaling of d). The reduction outputs the negation of V’s output.

For YES instances of the GapCVPp
γ variant, t is close to L(B), so the soundness property

of V guarantees that it always rejects, and the reduction accepts. For NO instances, Lemma 3.5
guarantees that s ≥ ηε(L(B)∗), so the instances of SIS are properly distributed, and the oracle yields
sufficiently many samples from the dual lattice L(B)∗, forming W. As shown in [24], the matrix
WWT passes V’s eigenvalue test with overwhelming probability. In addition, using Lemma 2.8
and the measure inequalities from Section 3, we can show that the value fW(t) < 1/2 with positive
constant probability. Therefore all of V’s tests are passed, and the reduction rejects with positive
constant probability. Standard repetition techniques amplify this to overwhelming probability.

6.2 Decoding Random Linear Codes

Regev demonstrated that decoding random linear codes mod q under a certain distribution of
Gaussian noise is hard, unless there are efficient quantum algorithms for approximating the worst-
case problems SIVP and GapSVP, in `2 norm, to within Õ(n) factors [27]. While the exact nature
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of the decoding problem will not be important for us, we stress that it can be used as the basis for
a semantically-secure public-key cryptosystem. We direct the interested reader to [27] for details.

The essence of Regev’s reduction is a quantum strategy which, given a decoding oracle, generates
samples from the discrete Gaussians DΛ,s for iteratively smaller values of s, all the way down to
some s = q(n) · ηε(Λ), where q(n) can be as small as Θ(

√
n).

A straightforward application of our Corollary 5.3 (for the special case of a single discrete
Gaussian) demonstrates that samples from DΛ,s are short in `p norm, which allows us to solve
SIVPp. Slightly modifying the reduction from Section 6.1, we can also obtain a reduction from
GapSVPp. This results in an adaptation of the main theorem from [27] to any `p norm, p ∈ [2,∞]:

Theorem 6.5 (Informal). Let α = α(n) ∈ (0, 1) be a real number, and q = q(n) ≥ 2
√

n/α(n)
be an integer. For any p ∈ [2,∞], if there exists a (possibly quantum) polynomial-time algorithm
that solves the decoding problem mod q, then there exist quantum algorithms that solve SIVPp

γ and

GapSVPp
γ in the worst case for some γ(n) = Õ(n/α).
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