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Abstract

We consider the envy-free pricing problem, in which we want to compute revenue maximizing prices
for a set of productsP assuming that each consumer from a set of consumer samplesC will buy the
product maximizing her personal utility, i.e., the difference between her respective budget and the prod-
uct’s price. We show that assuming specific hardness of the balanced bipartite independent set problem
in constant degree graphs or hardness of refuting random 3CNF formulas, the envy-free pricing problem
cannot be approximated in polynomial time withinO(logε |C|) for someε > 0. This is the first result giv-
ing evidence that envy-free pricing might be hard to approximate within essentially better ratios than the
logarithmic ratio obtained so far. Additionally, it gives another example of how average case complexity
is connected to the worst case approximation complexity of notorious optimization problems.

1 Introduction

Inspired by the possibility of gathering large amounts of data about the preferences and budgets of a com-
pany’s potential customers by web sites designed for this purpose, Rusmevichientong [15] and Glynn et al.
[11] introduced a class of so calledmulti-product pricingproblems that aim at computing optimal pricing
schemes for a company’s product range. In the original version of the problem each consumer is represented
by a budget and a set of products she is interested in. Given fixed prices for the products, she decides to buy
one of the products she is interested in with a price not exceeding her budget. The decision is made corre-
sponding to either themin-buying, max-buying, or rank-buyingmodel, where the consumer buys the product
with lowest price not exceeding the budget, highest price not exceeding the budget, or highest rank according
to some consumer specific ranking, respectively. All these problems are usually referred to asunit-demand
pricing, since consumers will buy exactly one product if they can afford to do so.

Aggarwal et al. [1] extend the problem definition and allow consumers with different budgets for the different
products they are interested in. Assuming that aprice ladder constraint, i.e., a predefined order on the
prices of all products, is given, they derive a polynomial time approximation scheme for the max-buying
and rank-buying (under another reasonable assumption) models. They also show how to obtain logarithmic
approximation ratios for all three models if no price ladderis given. Briest and Krysta [7] show that both of
these algorithms are essentially best possible.
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Guruswami et al. [12] consider a different selection rule, which has already been proposed in [1]. In the
max-gainmodel, a consumer buys the product maximizing her personal utility, i.e., the difference between
the product’s price and her respective budget. In the case oflimited product supply, the definition in [12]
requires that each consumer must obtain the product she desires most whenever she can afford any product
at all. Thus, the resulting pricing scheme must beenvy-freeand we obtain theenvy-free pricingproblem.

Another problem introduced in [12] is so calledcombinatorialor single-minded pricing, which is inspired by
single-minded combinatorial auction design. In this scenario each consumer has a single budget value and
buys the whole set of products she is interested in if the sum of prices does not exceed her budget. Among
other results, Guruswami et al. show that techniques similar to those of [1] yield a logarithmic approximation
for this problem, which is proven to be close to best possibleby Demaine et al. [8]. Balcan and Blum [3] and
Briest and Krysta [6] give improved approximation results for a number of restricted versions of the problem.

2 New Results

The main open problem in the field is settling the approximation complexity of the envy-free and max-gain
pricing problems, which have resisted all attempts so far. In the envy-free pricing problem a consumerc is
characterized by her budgetsb(c, e) for different productse. Given fixed pricesp(e), every consumerc must
be allocated the product maximizingb(c, e)− p(e), i.e., consumerc’s utility from receiving the product at its
specified price. Note, that the last condition (referred to as eny-freeness) is only an issue if we assume that
product supply is limited. In this paper we consider the mostrestricted version of these problems, in which
every consumer has only a single budget for all the products she desires and product supply is unlimited.
Clearly, this problem can just as well be seen as a restriction of the unit-demand min-buying problem, since
with uniform budgets it is always the product with lowest absolute price that maximizes a consumer’s utility.

Definition 1 In theUnit-Demand Pricing Problemwith Min-Buying Model (UDP-M IN), unlimited product
supply and uniform budgets, we are given productsP and consumer samplesC consisting of budgetsbc ∈ R+

0

and product setsSc for all c ∈ C. For a price assignmentp : P → R+
0 we letA(p) = {c ∈ C | ∃e ∈ Sc :

p(e) ≤ bc} refer to the set of consumers that can afford to buy any product underp. We want to find pricesp
that maximize

∑

c∈A(p)

min{p(e) | e ∈ Sc ∧ p(e) ≤ bc}.

For the rest of this paper UDP-M IN refers to the problem defined above, i.e., we implicitly assume unlimited
product supply and uniform budgets. As the main result of this paper, we show a reduction from theBalanced
Bipartite Independent Set Problem(BBIS) in constant degree bipartite graphs to UDP-M IN. This shows
that, assuming there are no randomized polynomial time algorithms of a certain kind approximating constant
degree BBIS within arbitrarily small constant factors, there are no polynomial time algorithms approximating
UDP-M IN within O(logε |C|) for someε > 0.

Up to now, no explicit hardness results have been proven for BBIS in constant degree graphs, although the
problem has been receiving a lot of attention. The first result for general BBIS using a quite moderate com-
plexity theoretic assumption was obtained by Khot [13]. Previous results by Feige [9] and Feige and Kogan
[10] are deriving hardness of BBIS under more specific assumptions. In [9], Feige shows an interesting con-
nection between the average case complexity of refuting 3CNF-formulas and the worst case approximation
complexity of several notorious optimization problems including BBIS. To put our result into a somewhat
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wider context, we formulate a slightly stronger version of the hypothesis in [9] and show that this is enough
for our purposes.

Before stating the hypothesis we need to describe the randomsampling procedure used to obtain random
3CNF formulas in [9]. Givenn variables we create formulas consisting ofm = ∆n clauses for some large
constant∆ ∈ N. Each literal of every clause is picked uniformly at random from the set of2n literals. Thus,
every clause consists of 3 (not necessarily different) literals that are picked independently at random. When
∆ is large enough, every truth assignment satisfies roughly(7/8)m clauses of a random 3CNF formula.
Thus, atypical random 3CNF formula does not have more than(7/8)m simultaneously satisfiable clauses.
On the other hand, a formula with(1−ε)m simultaneously satisfiable clauses can be consideredexceptional.
Hypothesis 1 states that it is hard to detect exceptional formulas on average.

Hypothesis 1 For every fixedε > 0 and sufficiently large constant∆ ∈ N, there is no polynomial time
(randomized) algorithm that, given a random 3CNF formula with n variables andm = ∆n clauses, outputs
typical with probability at least1/2, but outputsexceptionalon every formula with(1− ε)m simultaneously
satisfiable clauses with probability at least1 − 1/2poly(n).

The difference between Hypothesis 1 and the hypothesis in [9] is that we allow randomized algorithms
that have exponentially small error probability when it comes to detecting exceptional formulas. We need
this stronger version as a result of our reduction from BBIS to UDP-M IN, which is partially based on a
random construction that introduces an exponentially small one-sided error probability for detecting large
independent sets. In analogy to [9] we define a notion of hardness based on Hypothesis 1. We use slightly
different notation compared to [9] to reflect the differencein the underlying hypotheses.

Definition 2 A problem is said to be R3SAT?-hard, if having a (randomized) polynomial time algorithm
(with exponentially small failure probability) for it refutes Hypothesis 1.

Definition 3 In theBalanced Bipartite Independent Set Problem(BBIS) we are given a bipartite graphG =
(V,W,E). We want to find maximum cardinality subsets of verticesV ′ ⊂ V , W ′ ⊂ W with |V ′| = |W ′|,
such that{v,w} /∈ E for all v ∈ V ′, w ∈ W ′.

The first step in our proof is mostly identical to proofs givenin [9], where hardness of general BBIS is
derived. We do a slightly more careful analysis and obtain R3SAT?-hardness of BBIS in constant degree
graphs. We point out that this part of the proof can be replaced by the following weaker hypothesis, which
states that the gap variant of BBIS in constant degree graphsdoes not have randomized polynomial time
algorithms with one-sided error. More formally, letG(a, d), G(b, d) be two families of bipartite graphs on2n
vertices with constant degreed ∈ N and maximum BBIS of size at mostan or at leastbn, respectively. Given
0 < a < b < 1 andd ∈ N the problem BBIS(a, b, d) requires deciding whetherG ∈ G(a, d) or G ∈ G(b, d)
for a given graphG. For our purposes Hypothesis 2 is fully sufficient.

Hypothesis 2 There exist constants0 < a < b < 1 andd ∈ N, such that BBIS(a, b, d) /∈ RP.

Having hardness of constant degree BBIS we apply the method of derandomized graph products [2] to obtain
semi-logarithmic hardness of approximation for BBIS in graphs with roughly logarithmic maximum degree.
The main part of the proof consists of the reduction to UDP-M IN. As an intermediate step in the reduction
we modify the BBIS instance by adding a number of random edgesand interpret vertices on one side of the
bipartition as sets. The connection to UDP-M IN is made by considering sequences of these sets that have a
certain expansion property. This is formalized in the following definition.
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Definition 4 In the Maximum Expanding Sequence Problem(MES) we are given an ordered collection
S1, . . . , Sm of sets. An expanding sequenceφ = (φ(1) < · · · < φ(`)) of length|φ| = ` is a selection of sets
Sφ(1), . . . , Sφ(`), such that

Sφ(j) *
j−1
⋃

i=1

Sφ(i)

for 2 ≤ j ≤ `. MES asks for finding such a sequence of maximum length.

We are not aware that MES has been considered explicitly before. We briefly point out that a reduction
similar to the one given in Section 3.3 yields hardness of approximation under a standard assumption.

Theorem 1 MES is hard to approximate withinO(mε) for someε > 0, unlessNP ⊆ ⋂

ε>0 BPTIME(2nε

).

It is relatively straightforward to encode MES in terms of UDP-M IN, since MES models precisely the de-
pendence between different price levels in the pricing problem. The only difficulty lies in ensuring that the
resulting UDP-M IN instances are of polynomial size. In fact, if we consider an extended version of the
problem, we obtain hardness even under standard assumptions.

Theorem 2 Let UDP-M IN? be the version ofUDP-M IN in which each consumerc gives an additional num-
bermc defining the number of copies she will buy of the cheapest product she can afford.UDP-M IN? is hard
to approximate withinO(|C|ε) for someε > 0, unlessNP ⊆ ⋂

ε>0 BPTIME(2nε

).

The formal proofs of Theorems 1 and 2 are ommitted from this manuscript. They are, however, completely
analogous to the reductions presented in Sections 3.3 and 3.4. These are used in combination with the known
hardness results for general BBIS from [13].

In order to reduce MES to UDP-M IN we have to restrict our attention to severely restricted problem instances.
BBIS instances with semi-logarithmic maximum degree yieldMES instances in which both the size of every
set and the frequency of every element is at most semi-logarithmic. Ordering sets in an appropriate way
we obtain an instance that consists of a logarithmic number of blocks, each of which contains only pairwise
disjoint sets. This allows encoding the problem with a logarithmic number of different prices and, thus, a
polynomial number of consumers.

Theorem 3 There existsε > 0, such that it is R3SAT?-hard to approximateUDP-M IN with uniform budgets
within O(logε |C|). Hardness of approximation holds even under the weaker assumption of Hypothesis 2.

As UDP-M IN is just a special case of the envy-free pricing problem, we obtain identical hardness results for
the general case.

Corollary 1 There existsε > 0, such that it is R3SAT?-hard to approximate the envy-free pricing problem
within O(logε |C|). Hardness of approximation holds even under the weaker assumption of Hypothesis 2.

Section 3 contains the proof of Theorem 3. Section 3.1 shows the relation between refutation of random
3CNF-formulas and hardness of BBIS in constant degree graphs. Section 3.2 states how to amplify the
hardness gap to the desired level using derandomized graph products. The reduction to UDP-M IN using the
concept of expanding sequences is found in Sections 3.3 and 3.4.
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3 Proof of Theorem 3

3.1 R3SAT?-hardness of Constant Degree BBIS

We show a reduction from MAX-3AND. Given a collection of clauses, each of which contains 3 (not neces-
sarily distinct) literals and is satisfied if all 3 literals are assigned the boolean value true, we want to determine
the maximum number of simultaneously satisfiable clauses. The remainder of this part of the proof is roughly
identical to the one in [9], except for the fact that a small change in the reduction yields graphs of constant
degree. Lemma 1 is explicitly stated in [9] for the case of their underlying hypothesis and extends easily to
our notion of R3SAT?-hardness. We note that if we talk about random MAX-3AND instances, we assume
the sampling procedure as described in Section 1.

Lemma 1 For every fixedε > 0 and sufficiently large constant∆ ∈ N, the following problem is R3SAT?-
hard. Given a random 3AND formula withn variables andm = ∆n clauses, outputtypical with probability
at least1/2, but outputexceptionalon every formula with(1/4 − ε)m simultaneously satisfiable clauses.

We want to show that if we have some good approximation algorithm for BBIS in constant degree graphs,
then we can use it to design a refutation algorithm for MAX-3AND, which contradicts Hypothesis 1. Let us
have a closer look at the random formulas we are given as an input. Clearly, in expectation each literal will
appear(3/2)∆ times in the formula. Now letVi be a random variable counting the number of occurrences
of literal `i. Applying the Chernoff bound [14] we have that

Pr

[

(1 − δ)
3

2
∆ ≤ Vi ≤ (1 + δ)

3

2
∆

]

≥ 1 − 2e−(3/4)δ2∆

for any 0 < δ < 1. For every literal we define an additional random variableXi ∈ {0, 1} that indicates
whether the above condition is satisfied and letX = X1 + · · ·+X2n. By linearity of expectation it obviously
holds that

E [X] ≥
(

1 − 2e−(3/4)δ2∆
)

2n.

This implies that

Pr
[

X < (1 −
√

2e−(3/8)δ2∆)2n
]

≤
√

2e−(3/8)δ2∆,

since any higher probability would imply that

E[X] <
√

2e−(3/8)δ2∆(1 −
√

2e−(3/8)δ2∆)2n + (1 −
√

2e−(3/8)δ2∆)2n = (1 − 2e−(3/4)δ2∆)2n,

a contradiction. Now fix anyγ > 0 and observe that by choosing∆ sufficiently large we can ensure that√
2e−(3/8)δ2∆ ≤ γ.

Fact 1 With probability1 − γ a (1 − γ)-fraction of the literals appear between(1 − δ)3
2∆ and(1 + δ)3

2∆
times in a random MAX-3AND formula.

The first step of our refutation algorithm for MAX-3AND consists of checking the above condition. If too
many literals deviate from their expected number of occurrences, the algorithm outputsexceptional. If this
is not the case, we continue by removing the few problematic literals from the formula. More precisely, we
remove every clause that contains a literal appearing more than(1 + δ)(3/2)∆ times.
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Let µ = 3(δ + γ). We know that(1 − γ)2n good literals appear at least(1 − δ)(3/2)∆ times within the
formula. Thus, a total number of at least

(1 − γ)2n(1 − δ)(3/2)∆ ≥ (1 − δ − γ)3∆n

literal occurrences belong togood literals. This leaves at most(δ + γ)3∆n = µm literal occurrences
belonging tobad literals and, consequently, gives an upper bound on the number of clauses that are removed
from the formula. For the rest of the reduction to BBIS we needtwo more facts. (Fact 3 is explicitly proven
in [9].)

Fact 2 If the original MAX-3AND formula had(1/4−ε)m satisfiable clauses, then the number of satisfiable
clauses in our modified formula is bounded below by(1/4 − ε − µ)m

Fact 3 For everyε > 0, sufficiently large∆ ∈ N and n large enough, the following holds. With high
probability every set of(1/8+ε)m clauses in a random MAX-3AND formula withm = ∆n clauses contains
at leastn + 1 different literals.

We transform the modified formula into an instance of BBIS as follows. On both sides of the bipartition we
have a vertex for every clause of the formula. Vertices on opposite sides are connected by an edge, if the
corresponding clauses contain conflicting literals, i.e.,if some variable appears in positive form in one clause
and in negative form in the other. Thus, two vertices are connected if and only if the corresponding clauses
cannot be satisfied simultaneously.

It is straightforward to argue that(1/4−ε−µ)m satisfiable clauses result in a maximum BBIS of at least the
same size, while for random formulas the size of the maximum BBIS is bounded above by(1/8 + ε)m with
high probability. Additionally we know that, since every clause contains 3 literals and every literal appears
at most(1 + δ)(3/2)∆ times, the resulting bipartite graph has a maximum degree ofat most(1 + δ)(9/2)∆.

Assume now we had some polynomial time algorithm that can distinguish the two cases with an error prob-
ability exponentially close to 0. By applying this algorithm to the above BBIS instance we immediately
obtain a polynomial time refutation algorithm for MAX-3ANDwith exponentially small failure probability
for detecting exceptional formulas. If the BBIS algorithm returns a BBIS of size at least(1/8 + ε)m, we
outputexceptional. Otherwise, we outputtypical. The failure probability for detecting typical formulas is
dominated by the probability that the formula has too many literals deviating from their expected number of
occurrences and, thus, can be made an arbitrarily small constant.

Lemma 2 Let G(a, d), G(b, d) be the families of bipartite graphs on2n vertices with maximum degree
bounded byd ∈ N and a maximum balanced bipartite independent set of size at most an or at leastbn,
respectively. There exist0 < a < b < 1 and d ∈ N, such that deciding whether a given graphG ∈
G(a, d) ∪ G(b, d) belongs toG(a, d) or G(b, d) is R3SAT?-hard.

3.2 Gap-Amplification for Bounded Degree BBIS

For a bipartite graphG = (V,W,E), |V | = |W | = n, let α(G) refer to the size of a maximum balanced
bipartite independent set inG. Let G(a, d) andG(b, d) be two families of bipartite graphs with maximum
degree bounded byd andα(G) ≤ an for G ∈ G(a, d), α(G) ≥ bn for G ∈ G(b, d). From the previous
section we know that we can choose constantsa, b andd, such that deciding whether a given graph is from
G(a, d) or G(b, d) is hard assuming Hypothesis 1 holds. The following definition is in analogy to [2, 4].
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Definition 5 LetG = (V,W,E), |V | = |W | = n, be a bipartite graph andk ∈ N. Thek-fold graph product
Gk = (V k,W k, Ek) is defined by cartesian productsV k, W k and{(v1, . . . , vk), (w1, . . . , wk)} ∈ Ek if and
only if {v1, . . . , vk, w1, . . . , wk} is not a bipartite independent set inG.

Berman and Schnitger [4] and Blum [5] consider so-calledrandomized graph products, which are obtained
as the subgraph induced by a random sample of the vertices ofGk, to amplify hardness of the independent
set problem in non-bipartite graphs. Alon et al. [2] show howthis construction can be derandomized by
replacing the sampling procedure of [4]. We briefly describethe application of their approach to bipartite
graphs. GivenG = (V,W,E), |V | = |W | = n, we construct a non-bipartiteδ-regular Ramanujan graph
H on n vertices and constant degreeδ (depending only on constantsa andb). VerticesV k andW k of the
derandomized graph productDGk are obtained by choosing a vertex ofH uniformly at random and taking a
random walk of lengthk−1 starting at this vertex. Fork = O(log n) the numbernδk−1 of such random walks
is polynomial and, thus,DGk can be constructed deterministically in polynomial time. The edges ofDGk

are defined as before. Now letδA be the (symmetric) adjacency matrix ofH, whereλ0 ≥ λ1 ≥ · · · ≥ λn−1

are eigenvalues of matrixA, and letλ = max{λ1, |λn−1|}. The following is a slightly simplified version of
Theorem 1 of [2], which extends easily to the BBIS problem.

Theorem 4 ([2]) For every balanced bipartite graphG and anyk it holds that

α(G)δk−1

(

α(G)

n
− λ

)k−1

≤ α(DGk) ≤ α(G)δk−1

(

α(G)

n
+ λ

)k−1

.

We next state a slightly extended version of Theorem 3 of [2].We include the proof to demonstrate appli-
cability in the context of BBIS and the possibility to obtainmaximum degrees that are parameterized in the
number of vertices ofDGk.

Theorem 5 Let d(n) = O(
√

log n), G(a(n), d(n)) and G(b(n), d(n)) the families of balanced bipartite
graphs on2n vertices, maximum degree bounded byd(n) and maximum BBIS of size at mosta(n) · n or at
leastb(n) · n, respectively. There exist0 < a(n) < b(n) < 1 with b(n)/a(n) = Ω(logε n) for someε > 0,
such that givenG ∈ G(a(n), d(n)) ∪ G(b(n), d(n)) it is R3SAT?-hard to decide whetherG ∈ G(a(n), d(n))
or G ∈ G(b(n), d(n)).

Proof: Let G(a, d) andG(b, d) be defined as above and letG ∈ G(a, d) ∪ G(b, d), G = (V,W,E), |V | =
|W | = n. Choosing0 < a < b < 1 appropriately it is R3SAT?-hard to decide whetherG ∈ G(a, d) or G ∈
G(b, d) by Lemma 2. We now consider thek-fold derandomized graph productDGk = (DV,DW,DE).

In DGk an edge{(v1, . . . , vk), (w1, . . . , wk)} exists only if there are indicesi andj, such that{vi, wj} ∈ E.
We fix (v1, . . . , vk) and count the maximum number of adjacent vertices. There arek2 possibilities to select
i andj. Fixing indices fixesvi as well and, by the fact thatG has maximum degreed, there are at most
d possible choices forwj . Finally, there remainδk−1 possibilities to choose the random walk generating
(w1, . . . , wk). Thus,DGk has maximum degree∆ ≤ dk2δk−1.

Forδ-regular Ramanujan graphs it is known thatλ ≈ 2
√

δ − 1/δ. By choosing the constant degreeδ ≥ 2 of
H sufficiently large we have that

λ <
2√
δ
≤ 1

3
(b − a).
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By Theorem 4 the gap between the cases thatG ∈ G(a, d) andG ∈ G(b, d) is then amplified to

bnδk−1(b − λ)k−1

anδk−1(a + λ)k−1
≥

(

b − λ

a + λ

)k

> (1 + λ)k.

Using the fact thatδ ≈ 4/λ2 and choosing a constantγ, such that(4/λ2)γ ≈ (1 + λ), we obtain that
(1 + λ)k ≥ δγk.

GivenG ∈ G(a, d)∪G(b, d), G = (V,W,E) and|V | = |W | = n, we choose (for the remainder of the proof
log is to the base ofδ) k = (1/2− ε) log log n. Thus, the number of verticesN on one side of the bipartition
of DGk is lower bounded by

N ≥ n · δ(1/2−ε) log log n = Ω(n).

The maximum degree∆ of DGk is upper bounded by

d((1/2) log log n)2δ(1/2−ε) log log n = O(
√

log n).

Thus, we have that∆ = O(
√

log N) as desired. The gap between the casesG ∈ Ga andG ∈ Gb is amplified
to

δγk = log(1/2−ε)γ n = Ω
(

log(1/2−ε)γ N
)

,

where we use thatlog N = O(log n). Clearly, it is not difficult to calculate the precise valuesof a(n) and
b(n) as needed to prove our claim. �

We want to remark that by construction the constant degree graphs obtained by the reduction in Section 3.1
are symmetric in the sense that we can rename verticesV = {v1, . . . , vn} andW = {w1, . . . , wn}, such that
{vi, wj} ∈ E if and only if {vj , wi} ∈ E. This property is not lost during gap amplification, since wecan
use the same expander graph to obtain the vertices on both sides of the graph product.

3.3 Maximum Expanding Sequences

Let G ∈ G(a(n), d(n)) ∪ G(b(n), d(n)), G = (V,W,E),|V | = |W | = n, with a(n), b(n) and d(n)
as in Theorem 5 be given. We will reduce the problem of deciding whetherG ∈ G(a(n), d(n)) or G ∈
G(b(n), d(n)) to solving a restricted instance of MES. We start by adding a couple of random edges to the
graph. More precisely, every possible edge is added toG with probability (b(n)n)−1. We do not allow
multiple edges and, thus, edges that have already been present in G will not be duplicated.

Afterwards we remove vertices with too high degree from the graph. In expectation the random experiment
tries to addb(n)−1 new edges to every vertexv ∈ V ∪ W . We remove a vertexv if more thanc · b(n)−1

edges are added to it, wherec is some sufficiently large constant to be determined later. LetNv be the random
variable counting the number edges added tov andRv ∈ {0, 1} a random variable indicating whetherv is
removed after the random experiment. Applying the Chernoffbound we obtain

Pr[Rv = 1] = Pr[Nv ≥ c · b(n)−1] ≤ e−(c−1)/(3b(n))

for any constantc ≥ 2. We denote the modified graph byG′ = (V ′,W ′, E′). For every vertexvi ∈ V ′ we
define a corresponding setSi by

Si =
{

wj ∈ W ′ | {vi, wj} ∈ E′
}

,

8



i.e., verticesV ′ correspond to sets over universeW ′ in our MES instance. In order to obtain a feasible MES

instance we need to define an order on setsSi, which we do next. Observe that vertices inG′ have degree at
most

d′(n) ≤ d(n) + c · b(n)−1 = O(
√

log n),

where we use the fact that bipartite graphs with bounded degreed(n) have a BBIS of size at leastn/(d(n)+1)
and, thus, it must be the case thatb(n)−1 = O(d(n)). Furthermore, if the maximum degree ofG′ is d′(n),
then the setsSi can be partitioned intod′(n)2 many classes, such that sets in each class do not intersect. To
see this, note, that every set contains at mostd′(n) elements, each of which is contained in at mostd′(n)− 1
further sets. Thus, starting withd′(n)2 empty classes and adding sets one by one, the number of classes to
which a specific set cannot be added is always bounded above byd′(n)(d′(n) − 1).

Let C1, . . . , Cq(n) denote the classes of sets obtained in this way and observe that q(n) = O(log n). We
reorder sets according to the classes and finally obtain an MES instanceS1, . . . , Sm for which it holds that
Cj = {Sk(j), Sk(j)+1 . . . S`(j)}, i.e., sets belonging to a single class form a non-interrupted block in the
ordering. This property is not required for the remainder ofthis section, but will be of immense importance
for the reduction to UDP-M IN in Section 3.4.

Definition 6 We say that anMES instanceS1, . . . , Sm is log-separableif it can be separated intoq(m) =
O(log m) subsetsC1, . . . , Cq(m), such thatCj = {Sk(j), Sk(j)+1 . . . S`(j)}, wherek(1) = 1, `(q(m)) = m,
k(j + 1) = `(j) + 1 for 1 ≤ j ≤ q − 1 and eachCj contains only non-intersecting sets.

Soundness:Let G ∈ G(b(n), d(n)). Assume for the moment that no vertices are removed fromG and
w.l.o.g. letS∗ = {S1, . . . , Sb(n)n} be the sets in the MES instance corresponding to vertices fromV that
belong to a maximum BBIS. LetW ∗ ⊂ W denote the vertices fromW belonging to the BBIS. Finally, letS∗

r

andW ∗
r denote the subsets ofS∗ andW ∗ that are not removed from the instance due to the degree constraint.

We construct an expanding sequence by considering setsS1, . . . , Sb(n)n one by one. SetSj is selected for
the sequence if it has not been removed, i.e., ifSj ∈ S∗

r , and contains exactly one element fromW ∗, which
has not been covered by previously selected sets and is not removed from the instance. For1 ≤ j ≤ b(n)n/2
we estimate the probability thatSj is not selected using the union bound. We have already seen that the
probability ofSj or any specificv ∈ W ∗ being removed is bounded above bye−(c−1)/(3b(n)) . Every selected
set contains exactly1 element fromW ∗. Thus, forj ≤ b(n)n/2 there are at leastb(n)n/2 uncovered ele-
ments remaining when we try to selectSj. The probability thatSj contains exactly one previously uncovered
element fromW ∗ is therefore at least

∑

w uncovered

1

b(n)n

(

1 − 1

b(n)n

)b(n)n

≥ b(n)n

2

1

eb(n)n
=

1

2e

and, thus, the failure probability is bounded above by1 − 1/2e. Applying the union bound we obtain that

Pr [Sj is selected] ≥ 1

2e
− 2e−(c−1)/(3b(n)) ≈ 1

2e

for sufficiently large constantc. Let Y denote the number of selected sets. It clearly holds thatE[Y ] ≥
(1/4e)b(n)n and applying the same argumentation as in Section 3.1 we get thatPr[Y ≤ (1/(8e))b(n)n] ≤
1 − (1/(8e)), since otherwise it had to be true that

E[Y ] <

(

1 − 1

8e

)

1

8e
b(n)n +

1

8e
b(n)n ≤ 1

4e
b(n)n,
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a contradiction. This implies that with probabilityΩ(1) there exists an expanding sequence of length
Ω(b(n)n).

Completeness:Let G ∈ G(a(n), d(n)) and consider any expanding sequenceφ in S1, . . . , Sm. Since the
maximum BBIS inG is of sizea(n)n, every selection ofa(n)n + 1 vertices fromV must be adjacent to all
but a(n)n vertices fromW . Thus, the firsta(n)n + 1 sets fromφ leave at mosta(n)n elements uncovered
and it follows that|φ| ≤ 2a(n)n + 1.

We have shown a randomized reduction with constant one-sided error probability. By repeating the algorithm
a polynomial number of times, we obtain error probabilitiesthat are exponentially close to0. This yields the
following result.

Lemma 3 The restricted version ofMESwith log-separable instances is R3SAT?-hard to approximate within
O(logε m) for some constantε > 0.

3.4 Reduction to UDP-MIN

The final step in the proof of Theorem 3 consists of reducinglog-separable MES to UDP-M IN with uniform
budgets. Let MES instanceS1, . . . , Sm be separable intoC1, . . . , Cq(m) with q(m) = O(log m).

For each elemente in the universe of the MES instance we have a corresponding product, to which we
will also refer ase. For every setSi in classCk we define a collection of2k−1 identical consumersCi =
{c1

i , c
2
i , . . .}. Each of these consumers has budgetbi = 21−k and is interested in products from setSi.

Soundness:Let φ = (φ(1) < · · · < φ(`)) be an expanding sequence of length`. For every1 ≤ i ≤ ` let Ni

denote the elements that are newly covered bySi. Now we repeat the following fori = 1, . . . , `. Determine
Ni, then set the prices of all elementse ∈ Ni to bi. As a result, all consumers belonging to a setSi in the
expanding sequence will buy at their budget values. Thus, the overall profit from the price assignment is at
least`.

Completeness:Assume that we are given a price assignment resulting in overall revenuer. First observe
that w.l.o.g. all prices are from the set of distinct budget values, i.e., all prices are powers of2. Then note
that w.l.o.g. revenue at leastr/2 is due to consumers buying at their budget values, since otherwise we could
increase overall revenue by multiplying all prices by2. Finally, it’s not difficult to see that consumers buying
at their budget values form an expanding sequence. It follows that we obtain an expanding sequenceφ of
length at leastr/2.

This finishes the proof of Theorem 3.

4 Conclusions and Open Problems

We have shown that assuming specific hardness of constant degree BBIS or hardness on average of refuting
random 3CNF-formulas, the envy-free pricing problem does not allow approximation guarantees essentially
beyond the known results. This leaves open the question whether one can prove inapproximability under
some standard complexity theoretic assumption. Our current results suggest a number of ways to approach
this task.

1. Prove hardness of approximation for constant degree BBIS. Applying our reduction this immediately
yields hardness of envy-free pricing.

10



2. We believe that the MES problem essentially characterizes one of the main difficulties of envy-free
pricing, namely the interaction between different price levels and the way that combinations of con-
sumers block each other. Sticking to this approach, maybe itis possible to prove hardness of approxi-
mation of (very restricted) MES without using BBIS.

3. Although MEScaptures one of the difficulties of pricing, there are others, as well. Our reduction shows
hardness of the most restricted version of envy-free pricing. Considering also limited product supply,
the problem becomes even more involved because of the envy-freeness condition. Maybe exploiting
this feature of the problem one might find another proof of hardness of approximation.

On the other hand, one may try to refute Hypotheses 1 or 2. Especially settling the approximation complexity
of BBIS in constant degree graphs either way is an important open problem.
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