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Abstract

We consider the envy-free pricing problem, in which we wardcdmpute revenue maximizing prices
for a set of product$ assuming that each consumer from a set of consumer safpidf buy the
product maximizing her personal utility, i.e., the difface between her respective budget and the prod-
uct’s price. We show that assuming specific hardness of tlabed bipartite independent set problem
in constant degree graphs or hardness of refuting randont3@Mulas, the envy-free pricing problem
cannot be approximated in polynomial time witlfidilog® |C|) for somes > 0. This is the first result giv-
ing evidence that envy-free pricing might be hard to apprate within essentially better ratios than the
logarithmic ratio obtained so far. Additionally, it gives@her example of how average case complexity
is connected to the worst case approximation complexityotdmous optimization problems.

1 Introduction

Inspired by the possibility of gathering large amounts dhdzbout the preferences and budgets of a com-
pany’s potential customers by web sites designed for thisqae, Rusmevichientong [15] and Glynn et al.
[11] introduced a class of so calledulti-product pricingproblems that aim at computing optimal pricing
schemes for a company’s product range. In the original @ersf the problem each consumer is represented
by a budget and a set of products she is interested in. Gived fixices for the products, she decides to buy
one of the products she is interested in with a price not elingeher budget. The decision is made corre-
sponding to either thein-buying max-buying or rank-buyingmodel, where the consumer buys the product
with lowest price not exceeding the budget, highest priceerceeding the budget, or highest rank according
to some consumer specific ranking, respectively. All thesblpms are usually referred to asit-demand
pricing, since consumers will buy exactly one product if they caorafto do so.

Aggarwal et al. [1] extend the problem definition and allowmsomers with different budgets for the different
products they are interested in. Assuming thairige ladder constrainti.e., a predefined order on the
prices of all products, is given, they derive a polynomiaidiapproximation scheme for the max-buying
and rank-buying (under another reasonable assumptionglsiotihey also show how to obtain logarithmic
approximation ratios for all three models if no price ladidegiven. Briest and Krysta [7] show that both of
these algorithms are essentially best possible.
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Guruswami et al. [12] consider a different selection ruléjclh has already been proposed in [1]. In the
max-gainmodel, a consumer buys the product maximizing her persdildy,u.e., the difference between
the product’s price and her respective budget. In the casenéd product supply, the definition in [12]
requires that each consumer must obtain the product shesl@sost whenever she can afford any product
at all. Thus, the resulting pricing scheme musetbey-freeand we obtain thenvy-free pricingoroblem.

Another problem introduced in [12] is so calledmbinatorialor single-minded pricingwhich is inspired by
single-minded combinatorial auction design. In this sdeneach consumer has a single budget value and
buys the whole set of products she is interested in if the siupnices does not exceed her budget. Among
other results, Guruswami et al. show that techniques simaihose of [1] yield a logarithmic approximation
for this problem, which is proven to be close to best posdiglBemaine et al. [8]. Balcan and Blum [3] and
Briest and Krysta [6] give improved approximation resutisd number of restricted versions of the problem.

2 New Results

The main open problem in the field is settling the approxiorattomplexity of the envy-free and max-gain
pricing problems, which have resisted all attempts so fathé envy-free pricing problem a consumds
characterized by her budgéts:, e) for different products:.. Given fixed price®(e), every consumet must
be allocated the product maximizigc, e) — p(e), i.e., consumer’s utility from receiving the product at its
specified price. Note, that the last condition (referredgeray-freenegsis only an issue if we assume that
product supply is limited. In this paper we consider the mmestricted version of these problems, in which
every consumer has only a single budget for all the produstsdesires and product supply is unlimited.
Clearly, this problem can just as well be seen as a resmictidhe unit-demand min-buying problem, since
with uniform budgets it is always the product with lowest@lse price that maximizes a consumer’s utility.

Definition 1 In the Unit-Demand Pricing Problemwith Min-Buying Model (UbP-MIN), unlimited product
supply and uniform budgets, we are given proddeend consumer samplé€sconsisting of budgets. € R({
and product sets.. for all ¢ € C. For a price assignment : P — R we letA(p) = {c € C|Je € S. :
p(e) < b.} refer to the set of consumers that can afford to buy any prodonderp. We want to find priceg
that maximize
Z min{p(e) |e € S. A p(e) < b.}.
ceA(p)

For the rest of this paperi,-MIN refers to the problem defined above, i.e., we implicitly asswnlimited
product supply and uniform budgets. As the main result afplaiper, we show a reduction from fRalanced
Bipartite Independent Set Proble(BBIS) in constant degree bipartite graphs torRJMIN. This shows
that, assuming there are no randomized polynomial timeidhgas of a certain kind approximating constant
degree BBIS within arbitrarily small constant factors,réhare no polynomial time algorithms approximating
Upp-MIN within O(log® |C|) for somes > 0.

Up to now, no explicit hardness results have been proven BIEBn constant degree graphs, although the
problem has been receiving a lot of attention. The first tdsulgeneral BBIS using a quite moderate com-
plexity theoretic assumption was obtained by Khot [13].vRnes results by Feige [9] and Feige and Kogan
[10] are deriving hardness of BBIS under more specific assiomg In [9], Feige shows an interesting con-
nection between the average case complexity of refutingRB€ixmulas and the worst case approximation
complexity of several notorious optimization problemsluding BBIS. To put our result into a somewhat



wider context, we formulate a slightly stronger versiontw hypothesis in [9] and show that this is enough
for our purposes.

Before stating the hypothesis we need to describe the rars@onpling procedure used to obtain random
3CNF formulas in [9]. Givem variables we create formulas consistingnef= An clauses for some large
constantA € N. Each literal of every clause is picked uniformly at randoonf the set oPn literals. Thus,
every clause consists of 3 (not necessarily different)ditethat are picked independently at random. When
A is large enough, every truth assignment satisfies roughig)m clauses of a random 3CNF formula.
Thus, atypical random 3CNF formula does not have more tfi@y8)m simultaneously satisfiable clauses.
On the other hand, a formula witlh — )m simultaneously satisfiable clauses can be consideteeptional
Hypothesis 1 states that it is hard to detect exceptionatiitas on average.

Hypothesis 1 For every fixede > 0 and sufficiently large constamk € N, there is no polynomial time
(randomized) algorithm that, given a random 3CNF formuléhwi variables andn = An clauses, outputs
typical with probability at leastl /2, but outputexceptionabn every formula wittil — £)m simultaneously
satisfiable clauses with probability at leaist- 1/2r°¥(),

The difference between Hypothesis 1 and the hypothesis]iis [fhat we allow randomized algorithms
that have exponentially small error probability when it @ario detecting exceptional formulas. We need
this stronger version as a result of our reduction from BRISJbP-MIN, which is partially based on a
random construction that introduces an exponentially sora-sided error probability for detecting large
independent sets. In analogy to [9] we define a notion of temslbased on Hypothesis 1. We use slightly
different notation compared to [9] to reflect the differemt¢he underlying hypotheses.

Definition 2 A problem is said to be R3SAMhard, if having a (randomized) polynomial time algorithm
(with exponentially small failure probability) for it refes Hypothesis 1.

Definition 3 In the Balanced Bipartite Independent Set ProbiBBIS) we are given a bipartite graphl =
(V,W, E). We want to find maximum cardinality subsets of vertices- V, W' c W with [V'| = |/,
such that{v,w} ¢ Eforallv e V', w e W'.

The first step in our proof is mostly identical to proofs givien[9], where hardness of general BBIS is
derived. We do a slightly more careful analysis and obtais&3-hardness of BBIS in constant degree
graphs. We point out that this part of the proof can be repldgethe following weaker hypothesis, which
states that the gap variant of BBIS in constant degree grdpbs not have randomized polynomial time
algorithms with one-sided error. More formally, &ta, d), G(b, d) be two families of bipartite graphs @
vertices with constant degréde= N and maximum BBIS of size at most or at leasbn, respectively. Given

0 < a < b< 1andd € N the problem BBIS{, b, d) requires deciding wheth&¥ € G(a,d) or G € G(b,d)

for a given graphG. For our purposes Hypothesis 2 is fully sufficient.

Hypothesis 2 There exist constants< a < b < 1 andd € N, such that BBIS(, b, d) ¢ RP.

Having hardness of constant degree BBIS we apply the methderandomized graph products [2] to obtain
semi-logarithmic hardness of approximation for BBIS ingdra with roughly logarithmic maximum degree.
The main part of the proof consists of the reduction PLMIN. As an intermediate step in the reduction
we modify the BBIS instance by adding a number of random edgdsnterpret vertices on one side of the
bipartition as sets. The connection t@wk}MIN is made by considering sequences of these sets that have a
certain expansion property. This is formalized in the failog definition.
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Definition 4 In the Maximum Expanding Sequence ProbldMES) we are given an ordered collection
S, ..., Sy of sets. An expanding sequente- (¢(1) < --- < ¢(¢)) of length|¢| = ¢ is a selection of sets
S¢(1), ceey S¢(f)' such that

7j—1
So € U Ss
i=1
for 2 < j < {. MEs asks for finding such a sequence of maximum length.

We are not aware that & has been considered explicitly before. We briefly point dwait ta reduction
similar to the one given in Section 3.3 yields hardness of@pmation under a standard assumption.

Theorem 1 MEsis hard to approximate withi®(m?) for some= > 0, unlessNP C (.., BPTIME2™").

It is relatively straightforward to encode i in terms of LbP-MIN, since Mes models precisely the de-
pendence between different price levels in the pricing lerob The only difficulty lies in ensuring that the
resulting Lbp-MIN instances are of polynomial size. In fact, if we consider serded version of the
problem, we obtain hardness even under standard assusption

Theorem 2 LetUbP-MIN* be the version o/ DP-MIN in which each consumergives an additional num-
berm. defining the number of copies she will buy of the cheapesuptae can affordUbP-MIN* is hard

to approximate withirO(|C|¥) for somes > 0, unlessN P C (.., BPTIME(2™).

The formal proofs of Theorems 1 and 2 are ommitted from thiauseript. They are, however, completely
analogous to the reductions presented in Sections 3.3 4ndif3ese are used in combination with the known
hardness results for general BBIS from [13].

In order to reduce Msto UDP-MIN we have to restrict our attention to severely restrictedhi@r instances.
BBIS instances with semi-logarithmic maximum degree yMlIds instances in which both the size of every
set and the frequency of every element is at most semi-bgaid. Ordering sets in an appropriate way
we obtain an instance that consists of a logarithmic numbbklogks, each of which contains only pairwise
disjoint sets. This allows encoding the problem with a litharic number of different prices and, thus, a
polynomial number of consumers.

Theorem 3 There exists > 0, such that it is R3SAThard to approximatéJopP-MIN with uniform budgets
within O(log® |C|). Hardness of approximation holds even under the weakemgstion of Hypothesis 2.

As UbP-MIN is just a special case of the envy-free pricing problem, wainbdentical hardness results for
the general case.

Corollary 1 There existg > 0, such that it is R3SAThard to approximate the envy-free pricing problem
within O(log® |C|). Hardness of approximation holds even under the weakemngsson of Hypothesis 2.

Section 3 contains the proof of Theorem 3. Section 3.1 shbegdlation between refutation of random
3CNF-formulas and hardness of BBIS in constant degree grafection 3.2 states how to amplify the
hardness gap to the desired level using derandomized graphgts. The reduction to P-MIN using the
concept of expanding sequences is found in Sections 3.3.4nd 3
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3 Proof of Theorem 3

3.1 R3SAT-hardness of Constant Degree BBIS

We show a reduction from MAX-3AND. Given a collection of ctas, each of which contains 3 (not neces-
sarily distinct) literals and is satisfied if all 3 literalseaassigned the boolean value true, we want to determine
the maximum number of simultaneously satisfiable clausbe.r@mainder of this part of the proof is roughly
identical to the one in [9], except for the fact that a smalmalpe in the reduction yields graphs of constant
degree. Lemma 1 is explicitly stated in [9] for the case ofrtbaderlying hypothesis and extends easily to
our notion of R3SAT-hardness. We note that if we talk about random MAX-3ANDanses, we assume
the sampling procedure as described in Section 1.

Lemma 1 For every fixeck > 0 and sufficiently large constark € N, the following problem is R3SAT
hard. Given a random 3AND formula withvariables andn = An clauses, outputypical with probability
at least1/2, but outputexceptionabn every formula witl{1 /4 — €)m simultaneously satisfiable clauses.

We want to show that if we have some good approximation alyorifor BBIS in constant degree graphs,
then we can use it to design a refutation algorithm for MAXNE3, which contradicts Hypothesis 1. Let us
have a closer look at the random formulas we are given as an iQpearly, in expectation each literal will
appear(3/2)A times in the formula. Now leV; be a random variable counting the number of occurrences
of literal ¢;. Applying the Chernoff bound [14] we have that

Pr [(1 - 5)3A <V, <(1 +5)3A] > 1 — 2¢~(3/45°A

2 2

forany0 < 6 < 1. For every literal we define an additional random varialilec {0, 1} that indicates
whether the above condition is satisfied and¥et= X; +- - - + X,. By linearity of expectation it obviously
holds that

E[X] > (1 - 2e_(3/4)52A) 2n.

This implies that
Pr|X < (1-— \/§e—(3/8)52A)2n] < Ve~ (3/8102A

since any higher probability would imply that
E[X] < \/5e‘(3/8)52A(1 _ \/56_(3/8)62A)2n (11— \/§e_(3/8)52A)2n _ - Qe_(3/4)52A)2n’

a contradiction. Now fix anyy > 0 and observe that by choosiy sufficiently large we can ensure that
\/ge—(3/8)52A <.

Fact 1 With probability1 —  a (1 — ~)-fraction of the literals appear betweei — §)3A and (1 + §)3A
times in a random MAX-3AND formula.

The first step of our refutation algorithm for MAX-3AND costs of checking the above condition. If too
many literals deviate from their expected number of oceures, the algorithm outpuexceptional If this

is not the case, we continue by removing the few problemigitals from the formula. More precisely, we
remove every clause that contains a literal appearing nharg(t + 6)(3/2)A times.



Let u = 3(d + ). We know that(1 — ~)2n goodliterals appear at leagt — §)(3/2)A times within the
formula. Thus, a total number of at least

(1 —=7)2n(1—96)(3/2)A > (1 -0 —~)3An

literal occurrences belong tgood literals. This leaves at mogt + v)3An = um literal occurrences
belonging tabadliterals and, consequently, gives an upper bound on the auoflzlauses that are removed
from the formula. For the rest of the reduction to BBIS we niwal more facts. (Fact 3 is explicitly proven
in[9].)

Fact 2 If the original MAX-3AND formula hadl /4 —¢)m satisfiable clauses, then the number of satisfiable
clauses in our modified formula is bounded below byt — ¢ — p)m

Fact 3 For everye > 0, sufficiently largeA € N andn large enough, the following holds. With high
probability every set ofl /8 +¢)m clauses in a random MAX-3AND formula with= An clauses contains
at leastn + 1 different literals.

We transform the modified formula into an instance of BBISalefvs. On both sides of the bipartition we
have a vertex for every clause of the formula. Vertices orosje sides are connected by an edge, if the
corresponding clauses contain conflicting literals, ifsgme variable appears in positive form in one clause
and in negative form in the other. Thus, two vertices are eoted if and only if the corresponding clauses
cannot be satisfied simultaneously.

It is straightforward to argue thét /4 — e — 1)m satisfiable clauses result in a maximum BBIS of at least the
same size, while for random formulas the size of the maximt5Bs bounded above bl /8 + £)m with
high probability. Additionally we know that, since everyaake contains 3 literals and every literal appears
atmost(1 + 0)(3/2)A times, the resulting bipartite graph has a maximum degre¢mist(1 + ¢)(9/2)A.

Assume now we had some polynomial time algorithm that camdigish the two cases with an error prob-
ability exponentially close to 0. By applying this algonthto the above BBIS instance we immediately
obtain a polynomial time refutation algorithm for MAX-3ANRIith exponentially small failure probability
for detecting exceptional formulas. If the BBIS algoritheturns a BBIS of size at leat/8 + ¢)m, we
outputexceptional Otherwise, we outputypical. The failure probability for detecting typical formulas is
dominated by the probability that the formula has too mateydis deviating from their expected number of
occurrences and, thus, can be made an arbitrarily smaltaruns

Lemma 2 Let G(a,d), G(b,d) be the families of bipartite graphs din vertices with maximum degree
bounded byl € N and a maximum balanced bipartite independent set of sizeoatam or at leaston,
respectively. There exi$t < ¢ < b < 1 andd € N, such that deciding whether a given graph <
G(a,d) UG(b,d) belongs taj(a,d) or G(b,d) is R3SAT-hard.

3.2 Gap-Amplification for Bounded Degree BBIS

For a bipartite graplt = (V,W, E), |V| = |W| = n, let a(G) refer to the size of a maximum balanced
bipartite independent set ifi. LetG(a,d) andG(b,d) be two families of bipartite graphs with maximum
degree bounded by anda(G) < an for G € G(a,d), a(G) > bn for G € G(b,d). From the previous
section we know that we can choose constanisandd, such that deciding whether a given graph is from
G(a,d) orG(b,d) is hard assuming Hypothesis 1 holds. The following definit®in analogy to [2, 4].
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Definition 5 LetG = (V, W, E), |V| = |W| = n, be a bipartite graph an@& < N. Thek-fold graph product
GF = (Vk, Wk, E}) is defined by cartesian produd&®, W* and{(v1,...,v), (wi,...,ws)} € Ey if and
only if {vy,..., vk, w1,...,wg} is not a bipartite independent set .

Berman and Schnitger [4] and Blum [5] consider so-catlutlomized graph productsvhich are obtained
as the subgraph induced by a random sample of the vertio@%,db amplify hardness of the independent
set problem in non-bipartite graphs. Alon et al. [2] show hbvs construction can be derandomized by
replacing the sampling procedure of [4]. We briefly descthe application of their approach to bipartite
graphs. GiverG = (V,W, E), |V| = |W| = n, we construct a non-bipartiteregular Ramanujan graph
H onn vertices and constant degrégdepending only on constantsandb). VerticesV* andW* of the
derandomized graph produ@G* are obtained by choosing a vertexifuniformly at random and taking a
random walk of lengttk —1 starting at this vertex. Fdr = O(log n) the numben*~—! of such random walks
is polynomial and, thusPG* can be constructed deterministically in polynomial timéieedges oDG*
are defined as before. Now &l be the (symmetric) adjacency matrix Bf, wherehg > Ay > --- > A\,
are eigenvalues of matri®, and letA = max{\1, |\,—1|}. The following is a slightly simplified version of
Theorem 1 of [2], which extends easily to the BBIS problem.

Theorem 4 ([2]) For every balanced bipartite grapy and anyk it holds that

(@) A>H < o(DGY) < o@)8+ <@ + A)k_l .

k—1
a(G)o ( -
We next state a slightly extended version of Theorem 3 of Y¥& include the proof to demonstrate appli-

cability in the context of BBIS and the possibility to obtairaximum degrees that are parameterized in the
number of vertices oDG*.

Theorem 5 Letd(n) = O(yv/Iogn), G(a(n),d(n)) and G(b(n),d(n)) the families of balanced bipartite
graphs on2n vertices, maximum degree boundeddfy) and maximum BBIS of size at ma$h) - n or at
leastb(n) - n, respectively. There exi6t< a(n) < b(n) < 1 withb(n)/a(n) = Q(log®n) for somes > 0,
such that giverG € G(a(n),d(n)) U G(b(n),d(n)) itis R3SAT-hard to decide whethe® € G(a(n),d(n))
or G € G(b(n),d(n)).

Proof: Let G(a,d) andG (b, d) be defined as above and 6t G(a,d) U G(b,d), G = (V,W,E), |V| =
|W| = n. Choosing) < a < b < 1 appropriately it is R3SAT-hard to decide wheth&r € G(a,d) or G €
G(b,d) by Lemma 2. We now consider ttkefold derandomized graph produbtG* = (DV, DW, DE).

In DG* an edg€{(v1, . .., vg), (w1,...,wy)} exists only if there are indicesandy, such thafv;, w;} € E.

We fix (v, ..., v) and count the maximum number of adjacent vertices. Therg’gpessibilities to select

i andj. Fixing indices fixesy; as well and, by the fact thaf has maximum degreé, there are at most

d possible choices fow;. Finally, there remains*~! possibilities to choose the random walk generating
(w1, ..., w). Thus,DG* has maximum degrea < dk25+~1.

For -regular Ramanujan graphs it is known that- 21/ — 1/4. By choosing the constant degrée> 2 of
H sufficiently large we have that

A< < —(b—a).

S|
>,
W =

\‘



By Theorem 4 the gap between the casesthatG(a,d) andG € G(b, d) is then amplified to

bndk—1 (b — A)k-1 b—A\" .
and®=1(a + X)k—1 = <a+)\> > (LA

Using the fact that ~ 4/\? and choosing a constant such that(4/)2)” ~ (1 + \), we obtain that
(1+ M)k > o7k,

GivenG € G(a,d)UG(b,d), G = (V,W, E) and|V| = |W| = n, we choose (for the remainder of the proof
log is to the base of) k = (1/2 — ¢) log log n. Thus, the number of verticé$ on one side of the bipartition
of DG* is lower bounded by

N>n- 5(1/2—5) loglogn _ Q(n)

The maximum degred of DG* is upper bounded by

d((1/2)log log n)?5(1/2=e)leglogn — (| /log n).

Thus, we have thah = O(y/log N) as desired. The gap between the cases G, andG < G, is amplified
to
57k — 10g(1/2—€)“/ n—=0Q <10g(1/2—€)“/ N) 7

where we use thdbg N = O(logn). Clearly, it is not difficult to calculate the precise valugs:(n) and
b(n) as needed to prove our claim. O

We want to remark that by construction the constant degraghgrobtained by the reduction in Section 3.1
are symmetric in the sense that we can rename veftices{vy, ..., v,} andW = {wy,...,w,}, such that
{vi,w;} € E ifand only if {v;,w;} € E. This property is not lost during gap amplification, since ca@
use the same expander graph to obtain the vertices on bethafidhe graph product.

3.3 Maximum Expanding Sequences

Let G € G(a(n),d(n)) U G(b(n),d(n)), G = (V,W,E),|V| = |W| = n, with a(n), b(n) andd(n)

as in Theorem 5 be given. We will reduce the problem of degidimetherG € G(a(n),d(n)) or G €
G(b(n),d(n)) to solving a restricted instance of#. We start by adding a couple of random edges to the
graph. More precisely, every possible edge is adde@ twith probability (b(n)n)~!. We do not allow
multiple edges and, thus, edges that have already beempiege will not be duplicated.

Afterwards we remove vertices with too high degree from trepl. In expectation the random experiment
tries to addb(n)~! new edges to every vertaxc V U W. We remove a vertex if more thanc - b(n)~!
edges are added to it, wheres some sufficiently large constant to be determined latet )\, be the random
variable counting the number edges added amd R, € {0, 1} a random variable indicating whetheiis
removed after the random experiment. Applying the Cherbotind we obtain

Pr[R, = 1] = Pr[N, > ¢ b(n)~1] < e~ (e~ 1/

for any constant > 2. We denote the modified graph 6§ = (V/, W’ E’). For every vertex; € V' we
define a corresponding s&t by

S; = {wj ew’ | {Ui,’wj} S E,} R



i.e., verticesV’’ correspond to sets over univerd€ in our MEs instance. In order to obtain a feasiblee®
instance we need to define an order on $gtsvhich we do next. Observe that verticesGhhave degree at
most

d'(n) < d(n) +c-b(n)~! = O(y/logn),

where we use the fact that bipartite graphs with boundecegegn) have a BBIS of size at least/(d(n)+1)

and, thus, it must be the case that)~! = O(d(n)). Furthermore, if the maximum degree @Gf is d'(n),

then the sets; can be partitioned intd’(n)? many classes, such that sets in each class do not intergect. T
see this, note, that every set contains at mt{st) elements, each of which is contained in at méigt) — 1
further sets. Thus, starting witli(n)? empty classes and adding sets one by one, the number oftasse
which a specific set cannot be added is always bounded aba¥/¢/byd' (n) — 1).

Let Cy,...,Cqn) denote the classes of sets obtained in this way and obseave(th) = O(logn). We
reorder sets according to the classes and finally obtain esiNstanceS;, .. ., S,, for which it holds that
Ci = {Sk()» Sk@j)+1 - - - Sey)}» 1., sets belonging to a single class form a non-inteedifiilock in the
ordering. This property is not required for the remaindethig section, but will be of immense importance
for the reduction to BP-MIN in Section 3.4.

Definition 6 We say that aMEs instanceSy, .. ., S,, is log-separabléf it can be separated intg(m) =
O(logm) subsets’y, . .., Cy(m), such thaiC; = {Si(j), Sk(j)+1 - - - Se(jy}, wherek(1) = 1, £(q(m)) = m,
k(j+1)=1¢(j)+1for1l < j < ¢—1and eactC; contains only non-intersecting sets.

Soundness:Let G € G(b(n),d(n)). Assume for the moment that no vertices are removed ftomand
w.l.0.g. letS* = {S1,...,Sym)n} b€ the sets in the Kk instance corresponding to vertices frdmthat
belong to a maximum BBIS. Lét"* C W denote the vertices fromy’ belonging to the BBIS. Finally, le$
andW denote the subsets 6f andW* that are not removed from the instance due to the degreeraontst

We construct an expanding sequence by consideringSsets. , Sy,,), one by one. Se§; is selected for
the sequence if it has not been removed, i.e5;iE S, and contains exactly one element fré#i*, which
has not been covered by previously selected sets and ismoteel from the instance. For< j < b(n)n/2
we estimate the probability that; is not selected using the union bound. We have already serthi
probability of S; or any specifia € W* being removed is bounded abovedyy~/(3¥(") | Every selected
set contains exactly element fromii/*. Thus, forj < b(n)n/2 there are at least(n)n /2 uncovered ele-
ments remaining when we try to selett The probability thatS; contains exactly one previously uncovered
element fromiV* is therefore at least

1 1 \™"  bn 1 1
S o () 2

w uncovered

and, thus, the failure probability is bounded above by 1/2e. Applying the union bound we obtain that

1 1

i > = 9e—(c=1)/(3b(n))

Pr[S; is selectefi > 5 2e 5

for sufficiently large constant. LetY denote the number of selected sets. It clearly holds & >

(1/4e)b(n)n and applying the same argumentation as in Section 3.1 waaggeit]y < (1/(8e))b(n)n] <
1 —(1/(8e)), since otherwise it had to be true that

E[Y] < <1 - 8_1e> éb(n)n + ib(n)n < ib(n)n,



a contradiction. This implies that with probabilif@(1) there exists an expanding sequence of length

Completeness:Let G € G(a(n),d(n)) and consider any expanding sequenca Si,...,.S,,. Since the
maximum BBIS inG is of sizea(n)n, every selection ofi(n)n + 1 vertices fromVV must be adjacent to all
buta(n)n vertices fromW. Thus, the first(n)n + 1 sets frome leave at most(n)n elements uncovered
and it follows that¢| < 2a(n)n + 1.

We have shown a randomized reduction with constant onelgider probability. By repeating the algorithm
a polynomial number of times, we obtain error probabilitiest are exponentially close o This yields the
following result.

Lemma 3 The restricted version dfl ESwith log-separable instances is R3SAfard to approximate within
O(log® m) for some constant > 0.

3.4 Reduction to UDP-MIN

The final step in the proof of Theorem 3 consists of redudirgseparable Msto UDP-MIN with uniform

budgets. Let MsinstanceS, ..., Sy, be separable intGi, . . ., Cy(y,) With g(m) = O(logm).

For each element in the universe of the Ms instance we have a corresponding product, to which we

will also refer ase. For every sefS; in classC;, we define a collection of*~! identical consumerg’; =
{c},¢2,...}. Each of these consumers has budget 2'~* and is interested in products from st

177"

Soundnesslet¢ = (¢(1) < --- < ¢(¢)) be an expanding sequence of lengtlror everyl < i < /let N;
denote the elements that are newly coveredoyNow we repeat the following for = 1, ..., /. Determine
N;, then set the prices of all elementss N; to b;. As a result, all consumers belonging to a Sein the
expanding sequence will buy at their budget values. Thesotierall profit from the price assignment is at
least?.

Completeness:Assume that we are given a price assignment resulting irathvevenuer. First observe
that w.l.o.g. all prices are from the set of distinct budggues, i.e., all prices are powers 2f Then note
that w.l.0.g. revenue at least2 is due to consumers buying at their budget values, sincewaitewe could
increase overall revenue by multiplying all pricesZyFinally, it's not difficult to see that consumers buying
at their budget values form an expanding sequence. It fslldhat we obtain an expanding sequencef
length at least /2.

This finishes the proof of Theorem 3.

4 Conclusions and Open Problems

We have shown that assuming specific hardness of constamtedB&I|S or hardness on average of refuting
random 3CNF-formulas, the envy-free pricing problem dassatiow approximation guarantees essentially
beyond the known results. This leaves open the questionhehene can prove inapproximability under
some standard complexity theoretic assumption. Our curesuilts suggest a number of ways to approach
this task.

1. Prove hardness of approximation for constant degree B&ISlying our reduction this immediately
yields hardness of envy-free pricing.

10



2. We believe that the ks problem essentially characterizes one of the main diffesilof envy-free

pricing, namely the interaction between different priceels and the way that combinations of con-
sumers block each other. Sticking to this approach, mayikgissible to prove hardness of approxi-
mation of (very restricted) Ms without using BBIS.

. Although Mes captures one of the difficulties of pricing, there are othasswvell. Our reduction shows

hardness of the most restricted version of envy-free mgiconsidering also limited product supply,
the problem becomes even more involved because of the emegdss condition. Maybe exploiting
this feature of the problem one might find another proof otlhass of approximation.

On the other hand, one may try to refute Hypotheses 1 or 2.cidlyesettling the approximation complexity
of BBIS in constant degree graphs either way is an importpahgroblem.
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