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Abstract

We examine the communication required for generating random variables remotely. One
party Alice will be given a distribution D, and she has to send a message to Bob, who is then
required to generate a value with distribution exactly D. Alice and Bob are allowed to share
random bits generated without the knowledge of D. There are two settings based on how the
distribution D provided to Alice is chosen.

Average case: D is itself chosen randomly from some set (the set and distribution are known
in advance) and we wish to minimize the expected communication in order for Alice to
generate a value y, with distribution D. We characterize the communication required in
this case based on the mutual information between the the input to Alice and the output
Bob is required to generate.

Worst case: D is chosen from a set of distributions D, and we wish to devise a protocol so that
the expected communication (the randomness comes from the shared random string and
Alice’s coin tosses) is small for each D ∈ D. We characterize the communication required
in this case in terms of the channel capacity associated with the set D.

Prior to this work, only the limit (or asymptotic) versions of these results were known, where
Alice is given a sequence of distributions 〈D1, D2, . . . , Dn〉, and Bob is required to generate n
values 〈y1, y2, . . . , yn, where yi has distribution Di. Here the amortized cost (per Di) is studied
as n tends to infinity. In the case, when the Di’s are iid and some error is allowed Winter [Win]
characterized the cost in terms of mutual information. In the case where Di’s are only known
to come from some set D and we require worst case bounds, the Reverse Shannon Theorem of
Bennett et al. [BSST] characterizes the limiting amortized cost in terms of the channel capacity.

Our results, are for the one-shot case, and immediately imply the limit versions shown earlier.
We use our one-shot protocol to derive a direct sum result in communication complexity, for
which the asymptotic versions do not seem to help. Our result substantially improves the
previous such result shown by Jain et al. [JRSb].

An essential ingredient in our proofs is an improved rejection sampling procedure that relates
the relative entropy between two distributions to the communication complexity of generating
one distribution from the other.
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1 Introduction

Let X and Y be finite non-empty sets, and let (X,Y) be a pair of (correlated) random variables
taking values in X ×Y. Consider the following communication problem between two parties, Alice

and Bob. Alice is given a random input x ∈ X , sampled according to the distribution X. (We
use the same symbol to refer to a random variable and its distribution.) Alice needs to transmit
a message M to Bob so that Bob can generate a value y ∈ Y, that is distributed according to the
conditional distribution Y|X=x (i.e., the pair (x, y) has joint distribution (X,Y)). How many bits
must Alice send Bob in any protocol that accomplishes this? It follows from the data-processing
inequality in information theory that this minimum, which we shall call T (X : Y), is at least the
mutual information between, X and Y, that is,

I[X : Y]
∆
= H[X] + H[Y]−H[X,Y],

where H[Z] denotes the Shannon entropy of the random variable Z (This lower bound is implied
by the following sequence of inequalities: T (X : Y) ≥ H[M] ≥ I[X : M] ≥ I[X : Y], where the
last inequality is the data-processing inequality (cf. [CT, Page 32, Theorem 2.8.1]) applied to the
Markov chain X → M → Y.) We can also consider a slightly relaxed version of this problem
which allows for some error. More formally, let Tλ(X,Y) denote the minimum expected number of
bits Alice needs to send Bob so that the joint distribution generated by the protocol, which we call
(X,Π(X)), to be λ-close in total variation distance1 to the joint distribution (X,Y).

How good is I[X : Y] as a lower bound for T (X : Y) (or Tλ(X : Y))? Does the complexity
of this communication problem provide us a functional interpretation of the information theoretic
notion of mutual information?

This problem was first studied by Wyner [Wyn], who considered its asymptotic version (with
error), where Alice is given several independently drawn samples (x1, . . . , xm) from the distribution
Xm and Bob needs to generate (y1, . . . , ym) such that the output distribution of ((x1, y1), . . . , (xm, ym))
is λ-close to the distribution (X,Y)m. Wyner referred to the amortized minimum expected number
of bits Alice needs to send Bob as the common information C(X : Y) of the random variables X
and Y, i.e.,

C(X : Y)
∆
= lim inf

λ→0

[
lim

m→∞

Tλ(Xm : Ym)

m

]
. (1)

He then obtained the following remarkable information theoretic characterization of common in-
formation.

Theorem 1.1 (Wyner’s Theorem [Wyn, Theorem 1.3])

C(X : Y) = min
W

I[XY : W],

where the minimum is taken over all random variables W such that X and Y are conditionally
independent given W.

It can easily be verified that T (X : Y) ≥ C(X : Y) ≥ I[X : Y] (See Section 6 for a proof of
these inequalities). However, both these inequalities can be very loose. To demonstrate how weak
these inequalities can be, in Section 6, we give examples of joint distributions (X,Y) that satisfy
T (X : Y) = ω(C(X : Y) and C(X : Y) = ω(I[X : Y]). Thus, this seeming natural problem does
not offer us the functional characterization for I[X : Y] we were initially hoping for.

1The total variation distance between two distribution P and Q is defined as maxS⊆X |P (S) − Q(S)|, which is
also equal to 1

2
‖P − Q‖1 where ‖ · ‖1 is the `1-norm



1.1 A characterization of mutual information

Our first result shows that there is such a characterization if Alice and Bob are allowed to share
random information, generated independently of Alice’s input. In fact, then Alice need send no
more than approximately I(X : Y) bits to Bob. In order to state our result precisely, let us first
define the kind of communication protocol Alice and Bob are expected to use.

Definition 1.2 (one-way protocol) In a one-way protocol, the two parties Alice and Bob share
a random string R, and also have private random strings RA and RB respectively. Alice receives
an input x ∈ X . Based on the shared random string R and her own private random string RA,
she sends a message M(x,R,RA) to Bob. On receiving the message M, Bob computes the output
y = y(M,R,RB). The protocol is thus specified by the two functions M(x,R,RA) and y(M,R,RB)
and the distributions for the random strings R, RA and RB. For such a protocol Π, let Π(x)
denote its (random) output when the input given to Alice is x. Let TΠ(x) be the expected length of
the message transmitted by Alice to Bob, that is, E[|M(x,R,RA)|]. Note that the private random
strings can be considered part of the shared random string if we are not concerned about minimizing
the amount of shared randomness.

Definition 1.3 Given random variables (X,Y), let

TR
λ (X : Y)

∆
= min

Π
E

x←X
[TΠ(x)],

where Π ranges over all one-way protocols where (X,Π(X)) is λ-close in total variation distance to

the distribution (X,Y). For the special case when λ = 0, we define TR(X : Y)
∆
= TR

0 (X : Y).

As in the case of T (X : Y), it again follows from the data processing inequality that TR(X : Y) is
bounded below by the mutual information I[X : Y]. This lower bound is implied by the following
sequence of inequalities: TR(X : Y) ≥ H[M] ≥ H[M | R] ≥ I[X : M | R] = I[X : M |
R] + I[X : R] = I[X : MR] ≥ I[X : Y]. We have used the fact that I[X : R] = 0 since X
and R are independent. The last inequality is the data-processing inequality (cf. [CT, Page 32,
Theorem 2.8.1]) applied to the Markov chain X→ (M,R)→ Y.

Our first result shows that this lower bound is essentially tight, giving a characterization of
mutual information (modulo some lower order logarithmic terms2).

Result 1 (characterization of mutual information)

I[X : Y] ≤ TR(X : Y) ≤ I[X : Y] + 2 lg(I[X : Y] + 1) + O(1).

We have an additive 2 lg I[X : Y] term in the upper bound because our proof of the result employs
a prefix-free encoding of integers that requires ln n+2 lg lg n bits to encode the integer n. By using
an encoding that requires ln n + (1 + ε) lg lg n bits, the constant 2 can be improved to (1 + ε) for
any ε > 0.

The above result does not place any bound on the amount of randomness that Alice and Bob

need to share. In fact, there exist distributions (X,Y) for which our proof of Result 1 requires Alice

and Bob to share a random string of unbounded length. However, using technique from network
flows, we can bound the amount of shared randomness by O(lg |X | + lg |Y|) if we are allowed
to increase the expected communication by an additive factor of O(lg lg(|X | + Y|)) (proof in full
version).

2All logarithms (denoted by lg) in this paper are with respect to base 2.
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1.2 Generating one distribution from another

The main tool in our proof of Theorem 1 is a sampling procedure for generating one distribution
from another. This sampling procedure is of independent interest because it relates the relative
entropy between two distributions and the communication complexity of generating one distribution
from the other.

Definition 1.4 (relative entropy) The relative entropy or Kullback-Leibler divergence between
two probability distributions P and Q on a finite set X is

S(P‖Q) =
∑

x∈X

P (x) lg
P (x)

Q(x)
.

Observe that S(P‖Q) is finite if and only if the support of distribution P (i.e., the set of points
x ∈ X such that P (x) > 0) is contained in the support of the distribution Q; in that case it is zero
iff P = Q, but otherwise always positive.

Let P and Q be two distributions such that the relative entropy S(P‖Q) is finite. We consider
the problem of generating a sample according to P from a sequence of samples drawn according to
Q. Let 〈x1,x2, . . . ,xi, . . . 〉 be a sequence of samples, drawn independently, each with distribution
Q. The idea is to generate an index i∗ (a random variable depending on the sample) so that the
sample xi∗ has distribution P . For example, if P and Q are identical, then we can set i∗ = 1 and
be done. It is easy to show that for any such procedure

E[`(i∗)] ≥ S(P‖Q)− 1,

where `(i∗) is the length of the binary encoding of i∗. We show that there, in fact, exists a procedure
that almost achieves this lower bound. More formally, we have

Lemma 1.5 (rejection sampling lemma) Let P and Q be two distributions such that S(P‖Q)
is finite. There exists a sampling procedure P which on input a sequence 〈x1,x2, . . . ,xi, . . . 〉 of
independently drawn samples from the distribution Q outputs an index i∗ such that the sample xi∗

is distributed according to the distribution P and the expected encoding length of the index i∗ is at
most

S(P‖Q) + 2 lg(S(P‖Q) + 1) + O(1),

where the expectation is taken over the sample sequence and the internal random coins of the
procedure P.

As in the case of Result 1, the constant 2 can be improved to any constant (1 + ε) for any ε > 0.

1.3 Reverse Shannon theorem

In Result 1, we considered the communication cost averaged over x ∈ X , chosen according to the
distribution of X. We now consider the worst-case communication over all x ∈ X (but we still
average over the random choices of the protocol). The setting is similar to the earlier section. Let
X and Y be finite non-empty sets as before. Let PY be the set of all probability distributions on
the set Y. A channel with input alphabet X and output alphabet Y is a function E : X → PY .
The Shannon capacity of such a channel is

C(E)
∆
= max

(X,Y)
I[X : Y],
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where (X,Y) is a pair of random variables taking values in X × Y such that for all x ∈ X and
y ∈ Y, Pr[Y = y | X = x] = E(x)(y). A simulator for this channel (using a noiseless communication
channel and shared randomness) is a one-way protocol Π such that for all x ∈ X , Bob’s output
Π(x) has distribution E(x). The goal is to minimize the worst-case communication; let

T (E) = min
Π

max
x∈X

TΠ(x),

where the minimum is taken over all valid simulators Π of E. The following relationship between
T (E) and C(E) is easy to show and well known.

Proposition 1.6 T (E) ≥ C(E).

Using the rejection sampling lemma (Lemma 1.5), we can show that this lower bound is essentially
tight (modulo some lower order logarithmic terms). A result of this nature is called the Reverse
Shannon Theorem as it gives an (optimal) simulation of noisy channels using noiseless channels
and shared randomness.

Result 2 (one-shot reverse Shannon theorem) T (E) ≤ C(E) + 2 lg(C(E) + 1) + O(1).

We call this result, the “one-shot Reverse Shannon Theorem”, since asymptotic versions of this
result was previously known (See Section 1.5 for a discussion of these asymptotic results).

1.4 A direct-sum result in communication complexity

To present our next result, we need to recall some standard definitions from two-party communi-
cation complexity. We refer the reader to the book by Kushilevitz and Nisan [KN] for an excellent
introduction to communication complexity. Let X , Y and Z be finite non-empty sets, and let
f : X × Y → Z be a function. A two-party protocol for computing f consists of two parties, Alice

and Bob, who get inputs x ∈ X and y ∈ Y respectively, and exchange messages in order to compute
f(x, y) ∈ Z. A protocol is said to be k-round, if the two parties exchange at most k messages.

For a distribution µ on X ×Y, let the ε-error k-round distributional communication complexity
of f under µ (denoted by Dµ,k

ε (f)), be the number of bits communicated (for the worst-case
input) by the best deterministic k-round protocol for f with average error at most ε under µ. Let

Rpub,k
ε (f), the public-coins k-round randomized communication complexity of f with worst case

error ε, be the number of bits communicated (for the worst-case input) by the best k-round public-
coins randomized protocol, that for each input (x, y) computes f(x, y) correctly with probability
at least 1 − ε. Randomized and distributional complexity are related by the following celebrated
result of Yao [Yao].

Theorem 1.7 (Yao’s minmax principle [Yao]) Rpub,k
ε (f) = maxµ Dµ,k

ε (f)

For function f : X × Y → Z, the t-fold direct sum of f , f⊕t : X t × Yt → Zt, is defined by

f⊕t(〈x1, . . . , xt〉, 〈y1, . . . , yt〉) ∆
= 〈f(x1, y1), . . . , f(xt, yt)〉. It is natural to ask if the communication

complexity of f⊕t is at least t times that of f . This is commonly known as the direct sum question.
The direct sum question is a very basic question in communication complexity and had been studied
for a long time. Several results were known for this question in restricted settings for deterministic
and randomized protocols [KN]. Recently Chakrabarti, Shi, Wirth and Yao [CSWY] studied this
question in the Simultaneous message passing (SMP) model in which instead of Alice and Bob
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communicating among themselves send a message each to a third party Referee who then outputs
a z such that f(x, y) = z. They showed that in this model, the Equality function EQ satisfies the
direct sum property. Their result also holds for any function that satisfies a certain robustness
requirement. This result was then extended by Jain, Radhakrishnan and Sen [JRSd] to hold for
all functions and relations, not necessarily satisfying the robustness requirement, both in the one-
way and the SMP model of communication. In another work Jain et al. [JRSb] showed, a weaker
direct sum result for bounded-round two-way protocols. Their result was the following (here µ is a
product distribution on X × Y and k represents the number of rounds):

Dµt,k
ε (f⊕t) ≥ t

(
δ2

2k
·Dµ,k

ε+2δ(f)− 2

)

Using the rejection sampling lemma (Lemma 1.5), we obtain a considerable strengthening of
the above result.

Result 3 (direct sum result) For any function f : X ×Y → Z, and a product distribution µ on
X × Y, we have

Dµt,k
ε (f⊕t) ≥ t

2

(
δDµ,k

ε+δ(f)−O(k)
)

.

Applying Yao’s minmax principle (Theorem 1.7), we have:

Rpub,k
ε (f⊕t) ≥ max

µ

(
t

2

(
δDµ,k

ε+δ(f)−O(k)
))

.

where the maximum above is taken over all product distributions µ on X × Y.

1.5 Related work

Asymptotic versions of our Results 1 and 2 were independently shown by Winter [Win] and Ben-
nett et al. [BSST] respectively.

Theorem 1.8 ([Win, Theorem 9 and Remark 10]) For every pair of distributions (X,Y) and
λ > 0 and n, there exists a one-way protocol Πn such that the distribution (Xn,Πn(Xn)) is λ-close
in total variation distance to the joint distribution (Xn,Yn) and furthermore,

max
x∈Xn

TΠn(x) ≤ nI[X : Y] + O

(
1

λ

)
·
√

n.

Theorem 1.9 (reverse Shannon Theorem [BSST]) Let E be a discrete memoryless channel
with Shannon capacity C and ε > 0. Then, for each block size n there is a deterministic simulation
protocol Πn for En which makes use of a noiseless channel and prior random information R shared
between sender and receiver. The simulation is exactly faithful in the sense that for all n, and for
all xbar ∈ X n, the output Πn(x) has the distribution En(x), and it is asymptotically efficient in the
sense that

lim
n→∞

max
x∈Xn

Pr[CΠn(x) > n(C(E) + ε)] = 0.

It is to be noted that the asymptotic result of [Win] is slightly stronger than what is stated
above in that Winter’s result actually bounds the worst case number of bits communicated while
our results (and the above statement) bound the expected number of bits communicated. Despite
this, these asymptotic results (and their stronger counterparts) follow immediately from our results
by routine applications of the law of large numbers.
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One-shot vs. asymptotic results In the light of the above, it might seem natural to ask why
would one be interested in one-shot versions of known asymptotic results. Our motivation for the
one-shot versions is two-fold.

• The asymptotic equipartition property (cf. [CT, Chapter 3]) for distributions states that for
sufficiently large n, n independently drawn samples from a distribution X almost always fall
in what are called “typical sets”. Typical sets have the property that all elements in it are
nearly equiprobable and the size of the typical set is approximately 2nH[X]. Any property
that is proved for typical sets will then be true with high probability for a large sequence
of independently drawn samples. Thus, to prove the asymptotic results, it suffices to prove
the same for typical sets. Thus, one might contend that these asymptotic results are in fact
properties of typical sets and it could be the case that the results are in fact, not true for the
one-shot case. Our results show that this is not the case and one need not resort to typical
sequences to prove them.

• Second, our results provide tools for certain problems in communication complexity (e.g., our
improved direct sum result). For such communication complexity applications, the asymptotic
versions do not suffice and we require the one-shot versions.

Bounding shared randomness As mentioned earlier, we can bound the shared randomness
in Result 1 by O(lg |X | + lg |Y|) if we are allowed to increase the expected communication by an
additive factor of O(lg lg(|X | + Y|)). This raises the natural question of tradeoffs between shared
randomness and expected communication. The asymptotic version of this problem was recently
solved by Bennett and Winter (Personal Communication [BW]).

Substate Theorem Jain, Radhakrishnan and Sen [JRSa] prove the following result relating the
relative entropy between two distributions P and Q to how well a distribution is contained in
another.

Theorem 1.10 (classical substate Theorem, [JRSa]) Let P and Q be two distributions such
that k = S(P‖Q) is finite. For all ε > 0 there exists a distribution P ′ such that ‖P ′ −P‖1 ≤ ε and
Q = αP ′ + (1− α)P ′′ where P ′′ is some other distribution and α = 2−O(k/ε).

The rejection sampling lemma (Lemma 1.5) is a strengthening of the above theorem (the above
theorem follows from Lemma 1.5 by an application of Markov’s inequality). In fact, the classical
substate theorem can then be used to prove a weaker version of Result 1 which allows for error.
More precisely, one can infer (from Theorem 1.10) that TR

λ (X : Y) ≤ O(I[X : Y])/λ). It is to
be noted that the fundamental contribution of Jain, Radhakrishnan and Sen [JRSa] is actually a
quantum analogue of the above substate theorem. It is open if there exist quantum analogues of
our results.

Lower Bounds using message compression Chakrabarti and Regev [CR] prove that any
randomized cell probe algorithm that solves the approximate nearest search problem on the Ham-
ming cube {0, 1}d using polynomial storage and word size dO(1) requires a worst case query time
of Ω(lg lg d/ lg lg lg d). An important component in their proof of this lower bound is the message
compression technique of Jain, Radhakrishnan and Sen [JRSb]. The rejection sampling lemma
(Lemma 1.5) can be used to improve message compression of [JRSb], which in turn simplifies the
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lower bound argument of Chakrabarti and Regev. It is likely that there are other similar applica-
tions.

Organization

The rest of the paper is organized as follows: We first prove Results 1 and 2 assuming the rejection
sampling lemma (Lemma 1.5) in Sections 2 and 3 respectively. We then proceed to prove the
rejection sampling lemma in Section 4. The Direct Sum Result (Result 3) is then proved in Section 5.
Finally, in Section 6, we give examples of joint distributions (X,Y) that satisfy T (X : Y) = ω(C(X :
Y)) and C(X : Y) = ω(I[X : Y]).

2 Proof of Result 1

Result 1 follows easily from the rejection sampling lemma (Lemma 1.5) and the following well-known
relationship between relative entropy and mutual information.

Fact 2.1 I[X : Y] = Ex←X[S(Y|X=x‖Y)].

In other words, the mutual information between any two random variables X and Y is the average
relative entropy between the conditional distribution Y|X=x and the marginal distribution Y.

Proof of Result 1: We may assume that the random string shared by Alice and Bob is a
sequence of independently drawn samples 〈y1,y2, . . . 〉 according to the marginal distribution Y.
On input x ∈ X drawn according to the distribution X, Alice uses the sampling procedure P (from
Lemma 1.5) to sample the conditional distribution Y|X=x from the marginal distribution Y in
order to generate the index i∗. (Note that the conditional and marginal distribution always satisfy
S(Y|X=x‖Y) < ∞). Alice transmits the index i∗ to Bob, who then outputs the sample yi∗ which
has the required distribution. The expected number of bits transmitted in this protocol is at most
Ex←X [S(Y|X=x‖Y) + 2 lg(S(Y|X=x‖Y) + 1) + O(1)] which (by Fact 2.1 and Jensen’s inequality)

is at most I[X : Y] + 2 lg(I[X : Y] + 1) + O(1).

3 Proof of the one-shot reverse Shannon theorem (Result 2)

Fix the the channel E, and let (X,Y) be the random variables that realize its channel capacity.
Let Q be the marginal distribution of Y.

Claim 3.1 For all x ∈ X , S(E(x)‖Q) ≤ C(E).

The existence of a distribution Q with the above property was also shown by Jain [Jai] using a
different argument.

Note that the result follows immediately from this claim by invoking the rejection sampling
lemma (Lemma 1.5). The resulting protocol uses samples drawn according to Q as shared random-
ness and on input x ∈ X generates a symbol in Y whose distribution is E(x). The communication
required is bounded by lg S(E(x)‖Q) + 2 lg(S(E(X)‖Q) + 1) + O(1); by Claim 3.1, this is at most
lg C(E) + 2 lg(C(E) + 1) + O(1).
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Proof of Claim 3.1: For contradiction assume that for some x0 ∈ X , we have S(E(x0)‖Q) >
C(E). We will show that by assigning greater probability to x0 than it receives in X, we can obtain
a pair of random variables (X′,Y′) whose distribution is compatible with the channel, but whose
mutual information is strictly more than C(E)—a contradiction. Formally, for α ∈ [0, 1], consider
a new random variable Xα obtained by picking x0 with probability α and X with probability
(1 − α). Let Yα be a random variable correlated with Xα such that for all x ∈ X and y ∈ Y,
Pr[Yα = y | Xα = x] = E(x)(y); let Qα be the marginal distribution of Yα. A direct calculation
yields:

I[Xα : Yα]− I[X : Y] = α(S(E(x)‖Q) − I[X : Y]) + (1− α)S(Q‖Qα) + α
∑

y∈Y

E(x)(y) lg
Q(y)

Qα(y)

= α(S(E(x)‖Q) − I[X : Y]) + (1− α)S(Q‖Qα) + O(α2).

Since, S(E(x)‖Q) − I[X : Y] > 0, for some small enough α > 0, we have I[Xα : Yα] > I[X : Y] =

C(E)—a contradiction.

This completes the proof of Result 2.

4 The rejection sampling procedure

Let P and Q be two distributions on the set X such that the relative entropy S(P‖Q) is finite.
Recall that we need to design a rejection sampling procedure that on input, a sequence of samples
{x1,x2, . . . , } independently drawn from the distribution Q, outputs an index i∗ such that xi∗ is
distributed according to P and the expected encoding length of the index i∗ is as small as possible.

A natural approach to this would be the greedy method: at each iteration, we fill the distribution
P with the best possible sub-distribution of Q, while maintaining that our sum is always less
then the distribution P (note that since we are doing rejection sampling, we can only create sub-
distributions of Q at each iteration). This greedy approach will generate the required distribution
P , but it is not guaranteed to perform well with respect to expected index length. For instance,
suppose there exists a x∗ ∈ X such that P (x∗) > Q(x∗) and are both very small while for all
other x ∈ X we have Q(x)� 0 and P (x) ≤ Q(x). Then, with high probability, the first sample is
unlikely to be x∗ (since Q(x∗) is small), while at the same time the first sample suffices to satisfy
the probability requirements of all values x ∈ X but x∗. We would then have to wait for at least
1/Q(x∗) samples, on average, to see the value x∗ before fulfilling its probability requirement. Thus,
the average length of the index of the greedy method can be as large as P (x∗) lg(1/Q(x∗)) which
can be much larger than the relative entropy S(P‖Q).

We show that a variant of the greedy algorithm overcomes this problem and in fact achieves
expected index length roughly S(P‖Q). This variant works in several phases and within each phase,
the algorithm proceeds greedily to fill the distribution P/2 instead of P . Filling P/2 instead of P
in each phase guarantees that there is significant probability (at least 1/2 in this case) of seeing
samples with low probability (like x∗ in the above example). The factor 2 is arbitrary and we could
have as well worked with any other constant bounded away from 1. In the following lemma, we
describe the behavior of the algorithm within each phase.

Lemma 4.1 Let P and Q be two distributions on the set X such that their relative entropy S(P‖Q)
is finite. Then there exists is a procedure P̃ with the following properties:
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Random Input: A random string R which is a sequence 〈x1,x2, . . .〉, of independent samples each
with distribution Q;

Output: The procedure either aborts (which happens with probability 1/2) or outputs an index j∗

that satisfies Pr[xj∗ = x] = P (x)/2 for all x ∈ X . Here the probability is taken over the
random string R and the internal random coins of the procedure.

Expected length: The expected length of the index j∗, conditioned on the fact that the procedure
P̃ does not abort, is at most

S(P‖Q) + 2 lg(S(P‖Q) + 1) + O(1).

We defer the construction of P̃ to the latter part of this section and first show how the procedure
P claimed in Lemma 1.5 can be constructed given the procedure P̃ specified in Lemma 4.1.

Proof of Lemma 1.5: For notational convenience, we will assume that the sequence of samples
for P is indexed by a pair of indices (i, j) instead of a single index i. P repeatedly invokes P̃ in
each phase till P̃ does not abort in which case P outputs both the phase number and the output
of P̃. More formally, we have:

Rejection Sampling Procedure P(P,Q)

Random Input: {xi,j |i, j ∈ N} a sequence of samples independently drawn from the distri-
bution Q.

1. For i← 1 to ∞ do

Phase i

(a) Run procedure P̃ on the subsequence of samples {xi,j|j ∈ N}.
(b) If P̃ does not abort, set i∗ = (i, j) where j is the output of P̃ and go to Step 2

2. Output i∗

Clearly, the sample xi∗ is distributed according to the distribution P . Since P̃ aborts with probabil-
ity exactly 1/2, P invokes P̃ twice on average. The expected length of the index i∗ is the expected
length the index j and the expected length of the phase number i, which is at most a constant.
This completes the proof of Lemma 1.5.

It remains to justify Lemma 4.1.

Proof of Lemma 4.1: The idea is as follows. The procedure P̃ will examine the samples
〈xj : j ∈ N〉 sequentially; after examining xj it either accepts (by returning the value j for j∗)
or moves on to the next sample xj+1. The key is to to assign acceptance probabilities for each
step so that xj∗ has the right distribution. These acceptance probabilities are given by a function
aj : X → [0, 1], with the natural interpretation that when the procedure examines xj and finds that
its value is z, then it accepts it with probability aj(z). We now define 〈aj : j ∈ N〉 precisely, then
show how the procedure uses them. It will be convenient to inductively define two other sequences
along with aj :
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〈sj : j = 0, 1, . . .〉 , where each sj ∈ [0, 1]; later we will show that sj is the probability that the
procedure halts before it examines the sample xj+1;

〈pj : j = 0, 1, . . .〉 , where pj : X → [0, 1]; it will turn out that pj(z) is the probability that xj∗ = z
and j∗ > j.

The three sequences are defined as follows.

Definition 4.2 (acceptance probabilities) Let P and Q be distributions on X such that S(P‖Q) <
∞.

1. L = maxx∈X

⌈
P (x)
Q(x)

⌉
, s0 = 0, and p0(x) = P (x)/2 for all x ∈ X .

2. For j ∈ {1, . . . , L}, let

• aj(x) = min
(
1,

pj−1(x)
(1−sj−1)·Q(x)

)
,

• pj(x) = pj−1(x)− (1− sj−1) ·Q(x) · aj(x), and

• sj = 1
2 −

∑
x∈X pj(x)

We now turn to the construction of P̃ . As mentioned before P̃ tries to greedily fill the sub-
distribution P/2 and aborts with probability 1/2.

Procedure P̃(P,Q)

Random Input: 〈xj : j ∈ N〉 a sequence of samples independently drawn from the distribu-
tion Q.

1. Compute L and the sequence 〈aj : j ∈ N〉 as given in Definition 4.2

2. For j ← 1 to L do

Iteration (j)

(a) Examine sample xj ,

(b) With probability aj(xj), output j and halt.

3. Abort (this happens if the procedure does not accept in any of the L iterations).

The following claim relates the quantities defined in Definition 4.2 to the halting probabilities
of P̃.

Claim 4.3 For every j ∈ {0, . . . , L},

(a) the probability that P̃ halts within j iterations is exactly sj, which is at most 1/2 for all j;

(b) for each x ∈ X , the probability that P̃ halts within j iterations and outputs j∗ such that xj∗ = x
is exactly P (x)/2 − pj(x).

10



Proof: We will prove the two parts simultaneously by induction on j. At the very beginning
(i.e., end of iteration 0), we have s0 = 0 and p0(x) = P (x)/2. Thus, the claim holds at the end of
iteration 0.

Suppose the claim holds at the end of j iterations. Then the probability that P̃ halts within
(j+1) iterations and outputs j∗ such that xj∗ = x is exactly P (x)/2−pj(x)+(1−sj) ·Q(x) ·aj(x) =

P (x)/2 − pj+1(x). This shows part (b); part (a) then follows immediately from part (b).

For each x ∈ X , the pj(x)’s decreases monotonically from P (x)/2 to 0 and does not change
after it has attained the value 0. The following claim describes the rate at which this sequence
falls.

Claim 4.4 For each x ∈ X and j ∈ {1, . . . , L}, either pj(x) = 0 or pj(x) ≤ pj−1(x)−Q(x)/2.

Proof: Fix some j and x. We have that pj(x) = pj−1(x)−min ((1− sj−1) ·Q(x), pj−1(x)). If the
minimum is pj−1(x), then pj(x) = 0. Otherwise, the decrease is (1 − sj−1) ·Q(x) which is at least

Q(x)/2.

Thus, by the end of j =
⌈

P (x)
Q(x)

⌉
≤ L iterations, pj(x) = 0. This implies that sL = 1/2. It

then follows from Claims 4.3,and 4.4 that P̃ either aborts (which happens with probability 1/2) or
outputs an index j that satisfies Pr[xj = x] = P (x)/2 for all x ∈ X .

We now bound the expected encoding length of the index j conditioned on P̃ not aborting.
Suppose the index j output by P̃ satisfies xj = x for some x ∈ X . It follows from Claim 4.4 that

j ≤
⌈

P (x)
Q(x)

⌉
. However this event happens with probability exactly P (x). It then follows that

E[`(j)] ≤
∑

x∈X

P (x) · l
(⌈

P (x)

Q(x)

⌉)

We now fix some prefix-free encoding of the integers such that the encoding of every integer n > 2
requires no more than `(n) = lg n + 2 lg lg n + O(1) bits. Let X(P>2Q) be the set of x ∈ X that
satisfy P (x) > 2Q(x). It then follows that

11



E[`(j)] ≤
∑

x∈X(P>2Q)

P (x) ·
(

lg

⌈
P (x)

Q(x)

⌉
+ 2 lg lg

⌈
P (x)

Q(x)

⌉
+ O(1)

)
+

∑

x/∈X(P>2Q)

P (x) ·O(1)

≤
∑

x∈X(P>2Q)

P (x) · lg 2P (x)

Q(x)
+ 2

∑

x∈X(P>2Q)

P (x) lg lg
2P (x)

Q(x)
+ O(1)

=
∑

x∈X(P>2Q)

P (x) · lg P (x)

Q(x)
+ 2

∑

x∈X(P>2Q)

P (x) lg lg
P (x)

Q(x)
+ O(1)

≤
∑

x∈X(P>2Q)

P (x) · lg P (x)

Q(x)
+ 2 lg


1 +

∑

x∈X(P>2Q)

P (x) lg
P (x)

Q(x)


+ O(1)

[By Jensen’s inequality]

= S(P‖Q)−
∑

x/∈X(P>2Q)

P (x) · lg P (x)

Q(x)
+ 2 lg


1 + S(P‖Q)−

∑

x/∈X(P>2Q)

P (x) lg
P (x)

Q(x)


+ O(1)

≤ S(P‖Q) +
lg e

e
+ 2 lg

(
1 + S(P‖Q) +

lg e

e

)
+ O(1)

= S(P‖Q) + 2 lg(S(P‖Q) + 1) + O(1)

where in the penultimate step we have used the fact that for any X ′ ⊆ X , we have

∑

x∈X ′

P (x) lg
P (x)

Q(x)
≥ − lg e

e
.

A proof of this statement can be found in the Appendix A. This completes the proof of Lemma 4.1

5 Proof of Direct Sum Result (Result 3)

Below we present our result in the two-party model for computing functions f : X × Y → Z.
However, the result also holds for protocols computing relations R ⊆ X ×Y ×Z in which Alice and
Bob given x ∈ X and y ∈ Y respectively, need to output a z ∈ Z such that (x, y, z) ∈ R.

Our proof uses the notion of information cost defined by Chakrabarti et al. [CSWY], and refined
in several subsequent works [BJKS, JRSb, JRSc, JRSd].

Definition 5.1 (information cost) Let Π be a private coins protocol taking inputs from the set
X × Y, and let µ be a distribution on the input set X × Y. Then, the information cost of Π under
µ is

ICµ(Π) = I[XY : M],

where (X,Y) represent the input to the two parties (chosen with distribution µ) and M is the
transcript of the messages exchanged by the protocol on this input. For a function f : X ×Y → Z,
let

ICµ,k
ε (f) = min

Π
ICµ(Π),

where Π ranges over all k-round private-coins protocols for f with error at most ε under µ.
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We immediately have the following relationship between ICµ,k
ε and Dµ,k

ε .

Proposition 5.2 Let µ be a product distribution on X × Y. Then, ICµ,k
ε (f) ≤ Dµ,k

ε (f).

Proof: Let Π be a protocol whose communication is c
∆
= Dµ,k

ε (f). Let M denote the message

transcript of Π. Then we have, c ≥ H(M) ≥ I(XY : M) ≥ ICµ,k
ε (f).

A key insight of Chakrabarti et al. [CSWY] was that one could show (approximately) a rela-
tionship in the opposite direction when the inputs are being drawn from the uniform distribution.
They showed this for SMP protocols using a kind of message compression. Their result was then
extended using different techniques involving the (classical) substate theorem (Theorem 1.10) by
Jain et al. [JRSb, JRSd]. Using this they showed that messages could be compressed to the amount
of information they are carry about the inputs, under all distributions for one-way and SMP pro-
tocols and under product distributions for two-way protocols. These message compression results
then lead to corresponding direct sum results. Using the rejection sampling lemma (Lemma 1.5),
we can considerably strengthen the result of Jain et al. [JRSb] for two-way protocols as follows.
The dependence on k, the number of rounds, in their result was much worse as mentioned in the
Introduction section.

Lemma 5.3 Let ε, δ > 0. Let µ be a distribution (not necessarily product) on the X × Y and
f : X × Y → Z. Then,

Dµ,k
ε+δ(f) ≤ 1

δ

[
2 · ICµ,k

ε (f) + O(k)
]
.

The second ingredient in our proof of Theorem 3 is the direct sum property of information cost,
originally observed by Chakrabarti et al. [CSWY] for the uniform distribution.

Lemma 5.4 Let µ be a product distribution on X × Y. Then, ICµt,k
ε (f⊕t) ≥ t · ICµ,k

ε (f).

Before proving these lemmas, let us show that they immediately imply our theorem.

Proof of Theorem 3: Let µ be a product distribution on X × Y. Then we have

Dµt,k
ε (f⊕t) ≥ ICµt,k

ε (f⊕t) ≥ t · ICµ,k
ε (f) ≥ t

2

(
δDµ,k

ε+δ(f)−O(k)
)

,

where the first inequality follows from Proposition 5.2, the second from Lemma 5.4 and the last
from Lemma 5.3.

Proof of Lemma 5.3: Let µ be a distribution on X × Y. Fix a private-coins protocol Π that
achieves the optimum information cost ICµ,k

ε (f). Let (X,Y) be the random variables representing
the inputs of Alice and Bob distributed according to µ. We will use the following notation: M =
M(X,Y) will be the transcript of the protocol; for i = 1, 2, . . . , k, Mi will denote the i-th message
of the transcript M and M1,i will denote the first i messages in M. Now, we have from the chain
rule for mutual information (cf. [CT]).

I[XY : M] =
k∑

i=1

I[XY : Mi |M1,i−1]. (2)
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We now construct another protocol Π′ as follows. The idea is as follows. For i = 1, 2, . . . , k, the
party that sent Mi in Π, will now instead use Result 1 to generate the message Mi for the other
party by sending about I[XY : Mi | M1,i−1] bits on the average. Suppose, we have managed to
generate the first i− 1 messages in Π′ with distribution exactly as that of M1,i−1, and the (partial)
transcript so far is m. For the rest of this paragraph we condition on M1,i−1 = m, and describe how
the next message is to be generated. Assume that it is Alice’s turn to send the next message. We
have two observations concerning the distributions involved. First, the prefix m of the transcript
has already been generated and hence both parties can condition on this information. In particular,
the conditional distribution (Mi |M1,i−1 = m) is known to both Alice and Bob and (pre-generated)
samples from it can be used as shared randomness. Second, since Π is a private-coins protocol, for
each x ∈ X , the conditional random variable (Mi(x,Y) |M1,i−1(x,Y) = m), is independent of Y.
Hence on input x, Alice knows the distribution of (Mi(x,Y) |M1,i−1(x,Y) = m).

The second observation in particular implies (using chain rule for information),

I[XY : Mi |M1,i−1 = m] = I[X : Mi |M1,i−1 = m].

Thus, by Theorem 1, Alice can arrange for (Mi|M1,i−1 = m) to be generated on Bob’s side by
sending at most

2I[X : Mi |M1,i−1 = m] + O(1)

bits on the average; the overall communication in the i-th round is the average of this quantity over
all choices m, that is, at most

2I[XY : Mi |M1,i−1] + O(1).

By applying this strategy for all rounds, we note from (2) that we obtain a public-coins k-round
protocol Π′, with expected communication 2I[XY : M] + O(k) bits, and error at most ε as in Π.
Using Markov’s inequality, we conclude that the number of bits sent by the protocol is at least 1

δ
times this quantity with probability at most δ. By truncating the long runs and then fixing the
private random sequences suitably, we obtain a deterministic protocol Π′′ with error at most ε + δ
and communication at most 1

δ (2I[XY : M] + O(k)) = 1
δ (2 · ICµ,k

ε (f) + O(k)). The lemma now

follows from this and definition of Dµ,k
ε+δ(f).

Proof of Lemma 5.4: Let µ be a product distribution on X × Y. Fix a k-round private-coins
protocol Π for f⊕t that achieves ICµt,k

ε (f⊕t). For this protocol Π the input is chosen according to
µt. We denote this input by (X,Y) = (X1X2 · · ·Xt,Y1Y2 · · ·Yt) and note that the 2t random
variables involved are mutually independent. Let M denote the transcript of this protocol when
run the input (X,Y). Now, we have from chain rule for mutual information and independence of
the 2t random variables as above,

ICµk,k
ε (f) = I[XY : M ] ≥

t∑

i=1

I[XiYi : M ].

We claim that each term in the sum of the form I[XiYi : M ] is at least ICµ,k
ε . Indeed, consider

the following protocol Π′ for f derived from Π. In Π′, on receiving the input (x, y) ∈ X × Y, Alice

and Bob simulate Π as follows. They insert x and y as the i-th component of their respective
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inputs for Π, and generate the remaining components based on the product distribution µ. They
can do so using private coins since µ is a product distribution. This results in a k-round private
coins protocol Π′ for f with error at most ε under µ, since the error of Π was at most ε under µk.
Clearly, ICµ(Π) = I[XiYi : M].

6 Separating T (X : Y), C(X : Y) and I[X,Y]

For any pair of random variables (X,Y), it easily follows from the definitions that T (X : Y) ≥
C(X : Y). Furthermore, by Wyner’s theorem (Theorem 1.1)

C(X : Y) = min
W

I[XY : W],

where W is such that X and Y are independent when conditioned on W. Note, however, that

I[XY : W] =≥ I[X : W] ≥ I[X : Y].

The last inequality is the data-proceesing inequality applied to the Markov chain X →W → Y.
Thus, we have T (X : Y) ≥ C(X : Y) ≥ I[X : Y]. In this section, we will show that both these
inequalities are strict for (X,Y) defined as follows.

Definition 6.1 Let W = (i,b) be a random variable uniformly distributed over the set [n]×{0, 1}.
Now, let X and Y be random variables taking values in {0, 1}n, such that

(a) Pr[X = z |W = (i, b)],Pr[Y = z |W = (i, b)] =

{
2−(n−1) z[i] = b
0 otherwise

.

(b) X and Y are independent when conditioned on W.

Proposition 6.2 For (X,Y) defined as above, we have:

(a) I[X : Y] = O
(
n−

1
3

)
.

(b) C(X : Y) = 2− I[X : Y ] = 2−O
(
n−

1
3

)
.

(c) T (X : Y) = Θ(lg n).

Note that in the above example, though C(X : Y) and I[X : Y] differ by a super-constant mul-
tiplicative factor, they only differ by a constant additive factor. We can construct another joint
distribution (X′,Y′) by taking m-wise independent copies of the joint distribution (X,Y) (i.e.,
(X′,Y′) = (X,Y)m). We then have I[X′ : Y′] = I[Xm : Ym] = mI[X : Y] = o(m) while
C(X′ : Y′) = C(Xm : Ym) = mC(X : Y) = Θ(m)3. This implies, that C(X′ : Y′) and I[X′ : Y′]
differ by a super-constant factor both multiplicatively as well as additively.

3C(Xm : Ym) = lim infλ→0 limn→∞(T (Xmn : Ymn)/n) = m · lim infλ→0 limn→∞(T (Xmn : Ymn)/mn) = mC(X :
Y) where the first and third equalities follow from Eq. (1)
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Proof of part (a): Given X = x for some n-bit string x, the conditional distribution Y|X=x is
given by

Pr[Y = y | X = x] =
agr(x, y)

n2n−1

where agr(x, y) is the number of bit positions x and y agree on. We can now compute the conditional
entropy H[Y | X] as follows:

H[Y | X] = −
∑

x∈{0,1}n

1

2n

n∑

k=0

(
n

k

)
2k

n2n
lg

2k

n2n

= −
n∑

k=0

(
n

k

)
k

n2n−1
lg

k

n2n−1

= −
n∑

k=1

(
n− 1

k − 1

)
1

2n−1
lg

k

n2n−1

= −
n−1∑

k=0

(
n− 1

k

)
1

2n−1

[
lg

k + 1

n
− (n− 1)

]

= (n− 1)−
n−1∑

k=0

(
n− 1

k

)
1

2n−1
lg

k + 1

n

= n + lg n− 1−
n−1∑

k=0

(
n− 1

k

)
1

2n−1
lg(k + 1)

≥ n + lg n− 1−
(
1− 2−O(n1/3)

)
· lg
[
n

2

(
1 +

1

n1/3

)]
− 2−O(n1/3) · lg n

= n + lg n− 1−
(
1− 2−O(n1/3)

)
·
(

lg n− 1 +
lg e

n1/3

)
− 2−O(n1/3) · lg n

[since lg(1 + δ) ≤ δ lg e]

= n−O

(
1

n1/3

)

Thus, I[X : Y] = H[Y]−H[Y | X] = O(n−
1
3 ).

Proof of part (b): By Wyner’s theorem (Theorem 1.1),

C(X : Y) = min
W′

I[XY : W′]

= H[XY]−max
W′

H[XY |W′]

= H[X] + H[Y]− I[X : Y]−max
W′

H[XY |W′]

= 2n− I[X : Y]−max
W′

H[XY |W′].

where the random variable W′ is such that I[X : Y |W′] = 0. We already know that I[X : Y] =

O
(
n−

1
3

)
. So, part (b) will follow if we show

max
W′

H[XY |W′] = 2n− 2. (3)
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Let W′ be such that I[X : Y | W′] = 0. Consider any w in the support of W′. Let Xw be the
set of x ∈ {0, 1}n such that Pr[X = x | W′ = w] > 0. Similarly, define Yw. We must have that
|Xw|+ |Yw| ≤ 2n, since otherwise there exist an x such that Pr[X = x∧Y = x̄] > 0 where x̄ is the
n-bit string obtained by complementing each bit of x. This implies that |Xw × Yw| ≤ 22n/4. Thus,

max
W′

H[XY |W′] ≤ 2n− 2.

Now, if we W′ is the random variable W used in Definition 6.1, we have H[XY |W] = 2(n − 1).
Hence,

max
W′

H[XY |W′] ≥ 2n− 2.

This justifies (3) and completes the proof of part (b).

To prove part (c), we will use a theorem of Harper [Har], which states that Hamming balls in
the hypercube have the smallest boundary. The following version, due to Frankl and Füredi (see
Bollobás [Bol, Theorem 3, page 127]), will be the most convenient for us. First, we need some
notation.

Notation. For x, y ∈ {0, 1}n, let d(x, y) be the Hamming distance between x and y, that is, the
number of positions where x and y differ. For non-empty subsets A,B ⊆ {0, 1}n, let

d(A,B)
∆
= min{d(a, b) : a ∈ A and b ∈ B}.

We say that a subset S ⊆ {0, 1}n is a Hamming ball centered at x ∈ {0, 1}n if for all y, y′ ∈ {0, 1}n,
if y ∈ S and d(x, y′) < d(x, y), then y′ ∈ S. Let

Ball(x, d) = {y ∈ {0, 1}n : d(x, y) ≤ d} .

Theorem 6.3 Let A and B be non-empty subsets of {0, 1}n. Then, we can find Hamming balls A0

and B0 centered at 0n and 1n respectively, such that |A0| = |A|, |B0| = |B|, and d(A0,B0) ≥ d(A,B).

Corollary 6.4 If A and B are non-empty sets of strings such that d(A,B) ≥ d ≥ 2, then

min{|A|, |B|} ≤ exp

(
−(d− 2)2

4

)
2n.

Proof: By Theorem 6.3, we may assume that A and B are balls centered at 0n and 1n. Suppose
|A| ≤ |B|, and let r be a non-negative integer such that

Ball(0n, r) ⊆ A ⊆ Ball(0n, r + 1).

Then, 2r + d ≤ n, that is, r + 1 ≤ (n − d + 2)/2. It then follows using the Chernoff bound (see,
e.g., Alon and Spencer[AS, Theorem A.1.1, page 263]) that

|A| ≤ |Ball(0n, r + 1)| ≤ exp

(
−(d− 2)2

2n

)
.

17



Proof of part (c): It is easy to see that T (X : Y) ≤ dlg ne + 1: on receiving x ∈ {0, 1}n, Alice

sends Bob an index i uniformly distributed in [n] and the bit x[i]; on receiving (i, b), Bob generates
a random string y ∈ {0, 1} such that y[i] = b, with each of the 2n−1 possibilities being equally
likely.

It remains to show that T (X : Y) = Ω(lg n). It follows from the definition of T (X : Y) that
T (X : Y) ≥ minW′ H[W′], where the minimum is over all random variables W′ such that X and Y
are conditionally independent given W′. Thus, it is enough to show that any such W′ has entropy
Ω(lg n). Let W′ be one such random variable. We show below that for all w

Pr[W′ = w] = O

(√
lg n

n

)
.

That is, we show that the min-entropy of W′ is Ω(lg n); it follows that the entropy of W′ is Ω(lg n)

Fix w such that α
∆
= Pr[W′ = w] > 0. Let

Xw =
{

x ∈ {0, 1}n : Pr[X = x |W′ = w] > 2−(n+1)
}

;

Yw =
{

y ∈ {0, 1}n : Pr[X = y |W′ = w] > 2−(n+1)
}

.

Then, for all x ∈ Xw and y ∈ Yw, we have

α2−2(n+1) < Pr[(X,Y) = (x, y) ∧W′ = w] ≤ Pr[(X,Y) = (x, y)] =
agr(x, y)

n22n−1
,

that is, agr(x, y) > αn/8. Furthermore, since for all x, Pr[X = x | W′ = w] ≤ 2−n/α and∑
x∈{0,1}n Pr[X = x | W′ = w] = 1, we have |Xw| ≥ α2n−1. Similarly |Yw| ≥ α2n−1. We thus

obtain two sets Xw, Yw ⊆ {0, 1}n, each with at least α2n−1 elements, such that every x ∈ Xw and
y ∈ Yw satisfies agr(x, y) > αn/8. Our goal is to show that this implies that α is small.

Let Y ′w be the set of strings whose complements belong to Yw. Since agr(x, y) > αn/8 for
all x ∈ Xw and y ∈ Yw, the Hamming distance between Xw and Y ′w is more than αn/8. By
Corollary 6.4, we conclude that

α2n−1 ≤ exp

(
−(αn− 16)2

128

)
2n,

which implies that α ≤ 15
√

ln n
n , for all large enough n.
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A Bounding the Negative terms

Claim A.1 Let P and Q be two distributions on the set X . For any set X ′ ⊆ X , we have

∑

x∈X ′

P (x) lg
P (x)

Q(x)
≥ − lg e

e
.

Proof: We require the following facts.

• log-sum inequality: For non-negative integers a1, . . . , an and b1, . . . , bn,

∑
ai lg

ai

bi
≥
(∑

ai

)
lg

∑
ai∑
bi

.

• The function x lg x ≥ −(lg e)/e for all x > 0

∑

x∈X ′

P (x) lg
P (x)

Q(x)
=

∑

x∈X ′

P (x) lg
P (x)

Q(x)
+
∑

x/∈X ′

Q(x) lg
Q(x)

Q(x)

≥
(
∑

x∈X ′

P (x) +
∑

x/∈X ′

P (x)

)
lg

(∑
x∈X ′ P (x) +

∑
x/∈X ′ P (x)∑

x∈X Q(x)

)

=

(∑
x∈X ′ P (x) +

∑
x/∈X ′ P (x)∑

x∈X Q(x)

)
lg

(∑
x∈X ′ P (x) +

∑
x/∈X ′ P (x)∑

x∈X Q(x)

)

≥ − lg e

e
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