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Abstract

We prove that the integrality gap after tightening the standard LP relaxation for VERTEX
COVER with Q(y/logn/loglogn) rounds of the SDP LS, system is 2 — o(1).

1 Introduction

A wvertex cover in a graph G = (V, E) is a set S C V such that every edge e € E intersects S in
at least one endpoint. The minimum VERTEX COVER problem asks what size the minimum vertex
cover in G is. Determining how well we can approximate VERTEX COVER is one of the outstanding
open problems in the complexity of approximation.

In a seminal paper, Goemans and Williamson [9] introduced semidefinite programming (SDP)
as a tool for obtaining approximation algorithms. Since then semidefinite programming has been
applied to various NP-hard optimization problems and has become an important technique. Indeed,
for many problems the best approximation algorithms rely on semidefinite programming relaxations.

When semidefinite programming was introduced it was hoped that it could be used to yield
a 2 — Q(1)-approximation algorithm for VERTEX COVER. Unfortunately, this has not proved the
case: In ’95 Kleinberg and Goemans [15] showed that the standard SDP for VERTEX COVER
has an integrality gap of 2 — o(1). Subsequently, Charikar [5] showed that the integrality gap
remains 2 — o(1) even if we add additional triangle inequality constraints. Later, Hatami et al. [11]
strengthened this further, to show that this state of affairs remains even when we add the so-called
pentagonal inequality constraints. Interestingly enough, all three of these papers use the same
graph family about which we will say more below.

Indeed, the state of the art is such that SDP based algorithms for VERTEX COVER must settle
for competing in “how big” the “little oh” term is in the 2 — o(1) factor. Halperin [10] gives a
(2—loglog A/ log A) approximation, where A is the maximal degree of the graph. Later, Karakostas
[12] obtained a (2 — 2(1/+/log n))-approximation algorithm by using a stronger SDP relaxation.

Nevertheless, it is consistent with the known hardness results for VERTEX COVER that there
could exist some other SDP for VERTEX COVER with integrality gap, say, 1.4. In particular, the
best PCP-based hardness results known only show that 1.36-approximation of VERTEX COVER is
NP-hard ([6]). Only by assuming Khot’s Unique Games Conjecture [14] do we get a tight 2 — Q(1)
inapproximability result [13]. However, determining the validity of the Unique Games Conjecture
(or directly improving Dinur and Safra’s hardness result) remains a difficult open problem.
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To get a better picture of the approximability of VERTEX COVER (especially in light of the
inability to resolve the issue with PCP-based methods), Arora et al. [2] suggested the following ap-
proach: rule out good approximations for VERTEX COVER by large families of algorithms. One such
family is the class of relaxations for VERTEX COVER in the Lovasz-Schrijver hierarchies. Lovisz and
Schrijver [16] define procedures LS and LS, for systematically tightening linear and semidefinite
relaxations, respectively, over many rounds. The key algorithmic properties LS and LS. enjoy are
that (a) n» rounds of even the weaker LS procedure suffice to derive the integral hull (and hence
obtain exact solutions) and that (b) we can optimize a linear function over the rth round LS and
LS, relaxations in n(") time.

Many celebrated SDP-based algorithms, including the seminal MAX-CUT algorithm of Goemans-
Williamson [9] for MAX-CUT and the Arora-Rao-Vazirani algorithm [3] for SPARSEST-CUT, can be
derived using a constant number of rounds of LS. Thus proving inapproximability results for
LS based algorithms rules out the most promising class of algorithms that we currently have for
obtaining 2 — (1) approximations for VERTEX COVER. Furthermore, unlike PCP-based results we
emphasize that such results do not rely on any complexity theoretic assumptions.

Arora et al. [2] obtained the first result along these lines for VERTEX COVER showing that
Q(logn) rounds of the weaker LS procedure has an integrality gap of 2 — o(1). Tourlakis [20]
subsequently proved an integrality gap of 1.5 — o(1) for VERTEX COVER, for Q(log?n) rounds of
LS. Very recently, a beautiful result by Schoenebeck et al. [19] showed that the integrality gap is
2 —o(1) even after (n) rounds of LS. Unfortunately, the hard examples used in all three of these
papers cannot be used to prove a 2 — o(1) integrality gap for even one round of LS.

As aluded above, one round of LS, suffices to derive the Goemans-Williamson [9] algorithm for
MAX CUT and hence give a 0.878-approximation. However, Schoenebeck et al. [19] show that 2(n)
rounds of LS for MAX cUT still do not suffice to get better than a 0.5-approximation. It would be
reasonable then to wonder if a similar gap exists for VERTEX COVER.

The only known integrality gaps for semidefinite relaxations for VERTEX COVER in the LS,
hierarchy prior to the current paper were proved by Schoenebeck et al. in [18]. They show that an
integrality gap of 7/6 remains after Q(n) rounds of LS. Their result built upon LS lower bounds
for MAX-3AT by Alekhnovich et al. [1] and MAX-kSAT by Buresh-Oppenheim et al. [4], as well as
using ideas from Feige and Ofek [17]. At root of their result is a graph family obtained using the
standard FGLSS [7] reduction from MAX-3XOR to VERTEX COVER. It is not hard to show that this
result is tight for this graph family since the integrality gap for it is at most 7/6 after one round
of LS. Thus it remained a challenging open problem to prove a 2 — o(1) integrality gap for even
two rounds of LS, . (Note that Charikar’s construction [5] does imply a one round integrality gap
of 2 — o(1) for VERTEX COVER.)

To prove integrality gaps of 2—o0(1) for SDP relaxations in the LS, hierarchy, the obvious place
to start would be the graph families used by [15, 5, 11]. We briefly describe these graphs now. The
vertex set is {—1,1}" and two vertices are adjacent if their Hamming distance is exactly (1 —)m.
Here « is a sufficently small real number, and m is an integer such that ym is even. A result of
Frankl and R6d1 [8] then implies that the largest independent set of these graphs is of size at most
(2 — n(y))™ where n(y) > 0 and does not depend on m. This immediately says that the vertex
cover of these graphs must have size (1 — o(1))|V| for any fixed 7. Interestingly enough, no other
family of graphs is known that allows for 2 — o(1) integrality gap for any SDP based algorithm for
VERTEX COVER.

In this work we use this family to prove that ©(y/logn/loglogn) rounds of LS, has an inte-
grality gap of 2—o0(1) for VERTEX COVER. Our main technical tool is the construction of a sequence
of tensoring operations on vectors. This operation has the property that inner products on the set



of tensored vectors are a polynomial function of the the inner products of the original vectors. A
similar tensoring operation was used in [5]. However our application calls for more complicated
polynomials, and moreover the polynomials (and hence the tensored vectors) will change as the
induction unwinds in our lower bound argument. (More details are given in Section 3.)

2 Definitions and Notation

2.1 Standard SDPs for VERTEX COVER

The standard way to formulate VERTEX COVER as a quadratic integer program is as follows:

min Y (1 — zox;)/2
st. (zo—zi))(zo—2zj) =0 VijeFE
z; € {-1,1} Vie {0}UuV

The set of vertices ¢ for which z; = xg correspond to the minimal vertex cover. Relaxing this to a
semidefinite program we obtain the following:

min ),y (1 —vo-vj)/2
st. (vo—vi):-(vo—v;) =0 VijeFE (1)
lvil| =1 Vie {0}uV

We can strengthen this relaxation by adding all constraints valid in the integral case. One such set
of constraints commonly considered are the triangle inequalities:

(vi—vj) - (vi—vk) >0 Vi, j,ke{0juV. (2)

2.2 Lovasz-Schrijver Lift-and-Project Systems

A convex cone is a set K C R%*! such that for every y,z € K, and for every o, 3 > 0, ay+fz € K.
For a matrix Y, we denote by Ye; the ith column of Y.

If K C R4 is a convex cone, we define M, (K) C R(#1)x(d+1) t5 consist of all (d+1) x (d+ 1)
matrices Y such that,

1. Y is symmetric and positive semidefinite (PSD).
9. Foralli =0,1,....d, Yo; = Yy
3. Foralli=0,1,...,d,Ye; and Yeg — Ye; are in K.

We then define N, (K) = {Yey:Y € M, (K)} C R¥1. That is, a vector y = (yo,...,%q) is in
N, (K) if there exists Y € M, (K) such that Yeyp =y in which case Y is called a protection matriz
for y.
We define the notation N (K) inductively by setting N9 (K) = K and N¥(K) = N (N¥ 1 (K)).
Let G = (V, E) be a graph and assume that V = {1,...,n}. The VERTEX COVER polytype for
G, VC(@), is the set of vectors y € R**! such that:

yi+y; >yo forallijeFE (3)
yo>1y; >0 forallieV (4)
Yo >0 (5)



We call the constraints given by (3) the edge constraints and the constraints given by (4) the boz
constraints.
The relaxation of the VERTEX COVER problem arising from k rounds of LS. is the solution of

R
e subject to (yo,-..,yn) € NE(VC(G)), and yo = 1

The integrality gap of this relaxation (for graphs over n vertices) is the largest ratio between the
minimum vertex cover size of G and the optimum in the above program, over all graphs G with n
vertices.

We note that the relaxation N (VC(G)) is at least as strong as the the standard SDP re-
laxation (1) for VERTEX COVER in the sense that the Choleski decomposition of any matrix
Y € M, (VC(G)) satisfies (under an affine transformation) the SDP (1). In fact, it even satis-
fies the triangle inequalities (2) for the case i = 0.

2.3 Vectors and Tensoring

We will use 0 to denote the all-0 vector. Given two vectors x,y € {—1,1}" their Hamming distance
dy(z,y) is |{i € [n] : z; # yi}|- For two vectors u € R” and v € R™ denote by (u,v) € R*™ the
vector whose projection on the first n coordinates is u and on the last m coordinates is v.

Recall that the tensor product u ® v of two vectors u,v € R” is the vector in R"* indexed by
ordered pairs from n x n and that assumes the value u;v; at coordinate (7,5). Define u®? to be

the vector in R"" obtained by tensoring u with itself d times.

Definition 1 Let P(z) = c1z"* + ... + ¢z’ be a polynomial with nonnegative coefficients. Then
we define Tp to be the function that maps a vector u to the vector Tp(u) = (\/c1u®", ..., /cqu®).

Fact 1 For all vectors u,v € R?, Tp(u) - Tp(v) = P(u-v).

2.4 Frankl-Rodl Graphs

Definition 2 Fiz v, 0 < v < 1 and an integer m > 1. The Frankl-Rodl graph G7, is the graph
with vertices {—1,1}" and where two vertices i,j € {—1,1}" are adjacent if dg(i,7) = (1 — v)m.

Relatives of the following lemma appear in [8] in various guises, but it seems as if the exact
statement that we will use requires a further small step which we sketch in Appendix A. The key
difference with variants in [8] is that we explicitly allow 7 to be a function of m.

Lemma 1 Let m be an integer, and let v = y(m) > 0 be a sufficiently small number so that ym is
an even integer. Then there are no independent sets in Gy, of size larger than m2™(1 — +2/64)™.

For technical reasons that we will make clear later, we will in fact use a variant of G;, which
we denote by 3G ;. This graph 3G .| is the subgraph of G} ., spanned by all vertices of the
form {1} x {—1,1}. The critical point to notice here is that G, ,, has no independent set of

size larger than (m + 1)2™+1(1 — 42/64)™*! which is still o(|V'|) when v € Q(4/logm/m).



2.5 Saturated Vectors and their Properties

In general, our lower bounds will be proved by arguing about vectors whose coordinates are either
0/1 or take on at most one other fixed value. The following definition formalizes this.

Definition 3 A vectory € [0,1]"*! is an e-vector ifyo =1 and y; € {0, +¢,1} forall1 <i < n.

Note that e-vectors have the property that the sum of any two non-0/1 coordinates is 1+ 2¢. A
weaker condition on vectors in [0, 1]"*! would be to only require that the sum of any two non-0/1
coordinates is at least 1 4+ 2e. Such vectors were used in Schoenebeck et al. [19], and the following
definition is adapted from their paper:

Definition 4 ([19]) Let G = (V,E) be a graph. A vector' y € VC(G) is e-saturated if for every
edge 1j € E such that y; and y, are both not integral, y; +y; > 1+ 2e.

Saturated vectors have the important following property proved in Schoenebeck et al. [19] (for
completeness we include the proof of their lemma in the Appendix):

Lemma 2 ([19]) Let G = (V, E) be any graph and suppose x € VC(QG) is e-saturated. Then x is
a convex combination of e-vectors in VC(G).

The lemma essentially says that even though being e-saturated is a weaker condition than being
an e-vector, proving lower bounds for e-saturated vectors is no harder than proving lower bounds
for e-vectors. This will be crucial for our arguments.

3 Overview of the Proof

We start with the Frankl-Rodl graph family, G = G},, and denote by n = 2™ the size of G. We
will show that the point x = (1,1/2 +¢,...,1/2 + €) is contained in the polytope defined after
Q(y/logn/loglogn) rounds of LS;. This clearly gives us our desired 2 — o(1)-inapproximability
result.

The standard way to prove that a certain point x is in the polytope resulting from r rounds
of LS, (hereafter, the “rth polytope”) is as follows: (1) Exhibit a symmetric PSD “protection”
matrix Y for x such that its diagonal and first column of Y equal x. (2) Show inductively that the
vectors Ye; and Y (ey — e;) are in the (r — 1)st polytope. By definition of LS, it will then follow
that x is in the rth polytope.

To define the protection matrix for a a point x we will start with the canonical set of vectors
associated with the vertices of G, namely the normalized versions of the vectors {—1,1}™ (these
vectors were also the starting point for [15, 5, 11]). These vectors have the appealing property that
the inner product of vectors associated with vertices ¢ and j is solely a function of the Hamming
distance dp (%, j) between i and j. Observe that this property will not be compromised by applying
the Tp tensoring transformation to the vectors. Indeed, we will use this tensoring transformation
with a specific polynomial P to obtain a new set of tensored vectors and then define our candidate
protection matrix to be essentially the Gram matrix of these vectors. (Note that Charikar [5] also
uses a tensor transformation to prove his integrality gap for the SDP with triangle inequalities.)

A consequence of the observation above is that the values on the diagonal of the Gram matrix
are all identical. So using this recipe to come up with a protection matrix will only work for vectors
like x where all fractional values are the same. In fact, for technical reasons which we do not get



into in this outline, this recipe produces valid protection matrices only when x is a p-vector for
some 0 < p < 1/2.

To continue our inductive argument we would in turn like to use the same recipe to find candidate
protection matrices for each of the 2n vectors Ye; and Y(ep — ;) (or, more accurately, for the
projections of these vectors on to the hyperplane zyp = 1). The problem is that while these 2n
vectors may indeed be in the (r — 1)st polytope, they may not be p-vectors. (This is because the
entries Y;; of Ye; are a polynomial function of d (4, j) and the latter is distributed like a binomial
distribution when i is fixed.) So the recipe cannot be used without extra work.

To remedy the situation, we will apply a “correction” phase as follows. (Note that “correction”
phases of some sort or another can be found in many previous works [2, 1, 4, 20, 18, 19].) We will
construct the tensored vectors so that the vectors Ye;, Y(ep — e;) have high saturation. We will
then use Lemma 2 to express these vectors as convex combinations of p'-vectors from VC(G) for
some p' > 0 (this is the “correction” part). We then carry on the induction with these p’-vectors to
show that they lie in the (r —1)st polytope. Convexity then implies that the vectors Ye;, Y (ep —e;)
are also in the (r — 1)st polytope.

To summarize, we start with a vector x = (1,1/24¢p,...,1/2+¢€p), €9 = €, and after one round
we wish to show that the 2n vectors Ye;, Y (eg — e;) corresponding to x’s protection matrix Y have
large saturation €1; and then we continue with vectors with fractional values 1/2 + €;, and so on.
In this process, the obvious objective is to make the sequence €y, €1, €2, ... as slowly decreasing as
possible, thereby making it last for many rounds before it becomes negative (which amounts to
negative saturation, and hence that the corresponding vectors are not in VC(G) at all). We will
show that for each round 4, we can maintain that ¢; = ¢;_1 — O(y). Thus for arbitrarily small initial
€0, we get an induction chain of length Q(1/7).

The engine of this process and our main technical tool are the tensor-inducing polynomials.
Along with the sequence of decreasing saturation values we shall have a sequence of polynomials
with positive coefficients, Py, P, P»,... where P; depends on ¢; and determines €;41. The choice
of this sequence is at the heart of the matter. The nonnegativity requirement on the coefficients
makes this a challenging task as otherwise we could approximate any continuous function that
fits our needs. In [5], Charikar uses a polynomial designed to produce vectors that satisfy the
triangle inequality. This polynomial is the sum of a linear term and a degree O(1/) monomial
that unfortunately produces a poor saturation, and hence cannot be used to proceed beyond one
round of LS. In particular, the saturation it provides is about 1/m < . The problem is intrinsic:
let’s suppose that we are dealing with Y (eg — e;) for some fixed i. It’s easy to see that whatever
polynomial we may use, edges ij will have no slack at all in Y(eg — ¢;). This edge itself does
not affect the saturation as one of its values is integral. However, the continuous nature of the
construction means that nearby edges i’j' correspond to fractional values that are attained by the
polynomial at nearby points. The only way to deal with this state of affairs is to make sure that the
polynomial we use varies a lot between such points. This calls for a polynomial with a very large
derivative, and hence one with very high degree d > m; in contrast, the polynomial that Charikar
uses has degree independent of m.

There is one more complication which is the “shadow” of the above problem. Consider Y (ey—e;)
for some fixed 7. Our problem occurs in this vector for edges 7j where ¢ is the antipodal vertex
to 4 in {—1,1}™. When we start with the normalized versions of the vectors {—1,1}" this leads
(again, regardless of the polynomial) to an undesirable multiplicative (as opposed to additive) drop
in the saturation after each round. Consequently, this leads to an inferior lower bound, namely the
integrality gap we get will be guaranteed for only ©(logm) = ©O(loglogn) rounds. The problem
disappears if we disallow inner products of the normalized cube which are —1 or extremely close



to it. This can be achieved by starting with the graph %G% 41 instead of G}, and proceeding as
before.

4 Main Theorem

Lemma 3 Let m be a sufficiently large integer and v > 0. Let n = 2™ and let € be such that
5y < € < 1/4. Suppose in addition that y € R**! is an e-vector in VC(%G?,LH). Then there exists
a protection matriz Y for y such that for all i with 0 < y; <1, Ye;/y; and Y (eo —€;) /(1 — y;) are

convez combinations of (€ — 5y)-vectors. In particular, y € N4+ (VC(3G} 1))

Given Lemma, 3, we can prove our main theorem:

Theorem 5 Let m be sufficiently large, and fix v > 12\/10@% such that ym are all even. Let
€ be such that 5y < € < 1/4. Let n = 2™ and let r = L%J — 1. Then the integrality gap of
NT(VC(3G}, 1)) is at least 2 — 4e — 4/m.

Proof: Lety = (1, %—ke, ey %—ke) € R*t. Clearly y € VC(%GZ,LH). A simple inductive argument
using Lemma 3 then implies that y € N (VC(3G},1))-

On the other hand, Lemma 1 implies that the largest independent set in %G
most

Y

m+1 has size at

2m
2m+1[(m + 1)(1 _ 72/64)m+1] S (m + 1)2m+16—3’67 S (m + 1)2m+le—%logm S 9. 2m/m_
Hence, the integrality gap for N7 (VC(GY},)) is at least,

2m —2.2m 2(1-2 4
2 A -Ym) L, 4
n(s +€) 1+ 2¢ m

O

The remainder of this section is dedicated to proving Lemma 3.

Proof:[Lemma 3] Fix m and v and consider G = 1G] ;. Denote the vertices V of G as vectors
w; € {1} x {—1,1}"", 1 <4 < 2™, and for each vector w; € V we define u; = \/ni—+1wi‘ Note that

||lu;|| =1 and u; - uj = 2y — 1 for all 45 € E. Moreover, |u; -u;j| <1 - miﬂ forall1 <i<j<2m.
Given a polynomial P with nonnegative coeflicients we will now define a procedure that takes
the vectors {u;}, applies the tensoring operation Tp defined in Proposition 1 to obtain a new set
of vectors, and then applies a linear transformation to the resulting vectors. The Gram matrix of
the vectors resulting from this procedure will be called Y (P,y). Our goal will be to pick P so that
Y (P,y) is a protection matrix for y.
First, define vy = (1,0,...,0). For each vertex 1 < i < 2™ define,

Vo, ifyZ =1
vi=<¢ 0, ify;, =0
(3 +e, —'15462-Tp(ui)), ify,=3+e

Let Y(P,y) € R("+1)x("+1) he the positive semi-definite matrix Y (P,y)i; = v; - v;.
We now define a class of polynomials and show that for any polynomial P in this class, Y (P, y)
is a protection matrix for y.



Definition 6 A polynomial P(z) is called (y,e,m)-useful if it satisfies the following four condi-
tions:

1. P has only nonnegative coefficients.
2. P(1) =1,

8. P(z) > P(2y —1) = —155¢ for all z € [-1,1].

4. For alli € {1,...,2™} and all jk € E,

de de
< P(u; - u; Coup) <
T 5c S P(u; - uj) + P(u; - u) < T2 (6)

Claim 1 If P is (y,€e,m)-useful, thenY =Y (P,y) € M. (VC(Q)). In particular, y € N.(VC(Q)).

Proof: Since Y is PSD by definition, to show that Y is a protection matrix for y it suffices to
show that:

A. Forall0<i<m, Yo=Yy =uw,
B. Foralll1<i<mn,Ye;,Y(e —e;) € VC(G).

Consider constraints A first. Clearly Y;o = Yi; = y; whenever y; € {0,1}. In particular, note

that Yoo = 1. So assume that y; = 1/2 + €. Clearly Y;o = % + €, so consider Yj;. It follows that
1 — 4é? 1 — 4é2

4

1 1
Tp(w) Tp(u;) = = +e+e + P(u;-w;) = 5 +e

1 2
Yz’z’ZVz"Vz'Z(E-i-G) + 1
where the last equality follows from the fact that the u; are unit vectors and P(1) = 1.

Now consider constraints B. We must show that for all 1 < ¢ < n, Ye; and Y(ey — €;) both
satisfy the edge constraints (3) and the box constraints (4). Note that if y; € {0,1}, then
{Ye;,Y(eo —e;))} = {0,Yep} C VC(G) and the constraints are of course satisfied. So assume
Y = % + €.

The box constraints require for all 1 < 57 <n that 0 <Y;; <Yjp and 0 < Yp; — Y;; < Yy — Yio.
Equivalently, for all 1 < 5 < n,

Yio + Yjo—o00 < Vi < Y. (7)

On the other hand, the edge constraints require for all 1 <4 < n and all jk € F that
Yi; + Yir > Yo, (8)
(Yo; — Y35) + (Yor — Yik) > Yoo — Yio. (9)

Since (7) holds when y; € {0,1}, by symmetry it also holds if y; € {0,1}. So assume y; = 3 +e.
We first show that the right inequality in (7) holds. Fix j € {1,...,n}. Note first that since
P(1) = 1, it follows that ||v;|| = ||v;]|. So, Yi; = vi-v; <||vi||> = Yz = Yo.

Now consider the left inequality in (7). We have that,

1 1 — 4¢€?
Ej‘FYOO_Yéo—ijO:Y;j—QE: Z+6+62+ 4 Tp(ui)-TP(u]') — 2¢
1 1— 462
:Z—e—I-GQ—i- 46P(ui-uj)
1 1—4e2 2¢—1
> 2 . —
Zpete 1 21 0



where the inequality follows by Property 3 of a (v, ¢, m)-useful polynomial and the fact that the u;
are unit vectors. So constraints (7) holds.

Now we move on to the remaining constraints. Fix j,k € {0,1,...,2™}. Using constraints (7),
the fact that Y;; = Yjo for all 4, and the fact that y is an e-vector in VC(QG), it is easy to verify that
constraints (8) and (9) hold whenever one of y; or yj are integral. So assume that y; =y, = 5 +e.

In that case, note first that constraint (8) holds if the following is at least 1:

Yij tYie (l + 6) i1 _226(TP(112') - Tp(ug) + Tp(ui) - Tr(ug))

Yio 2
1—2e
=14 2e+ ——(P(u; - wj) + P(u; - uy)). (10)
Similarly, constraint (9) holds if the following is at least 1:
Yoi — Yi; Yor = Y; 1+2
(Yoj = ¥ij) + (Yor = Vi) _ ;o 1+ € (P(us - u5) + Plu; - uy). (1)
Yoo — Yio

But by Property 4 of a (v, e, m)-useful polynomial, for all 7 € {1,...,2™} and all jk € E, equa-
tions (10) and (11) are indeed both at least 1 and the claim follows. O

By Lemma 2, to complete the proof of the lemma it suffices to show that there exists a (-, €, m)-
useful polynomial P such that if Y = Y(P,y), then for all i such that y; = % + € the vectors Ye; /y;
and Y (ep—e;)/(1—y;) are (e—5v)-saturated. Note that the vectors Ye;/y; and Y (eo—e;)/(1—y;) are
the “normalized” versions of vectors Ye; and Y (ey —e;), i.e., their projections on to the hyperplane
rg — 1.

To that end, let us first compute the saturation of these vectors for an arbitrary but fixed
(7, € m)-useful polynomial P. Fix ¢ such that y; = 3 + € and consider Ye;/y;. Let I = {i} U
{7 1 y; € {0,1}}. Then the saturation of Ye;/y; is at least

. 1 ) 1—2¢
i (0 ) i) = i e+ 2 P w) + Pl w)

1—2¢
4

where the equality follows by (10) and the fact that y;,yx ¢ {0,1}. The saturation of Y (eg —
ei)/(1 —v;) is at least

> min €+
Jk#i,jkEE

(P(u; - uj) + P(u; - uk))] ,

.1 (Yo = Yi) + (Yor — Yig) . 1+ 2¢
- —1) = - P(u; - u;) + P(u; -
j,kénLlJ%EE 2 ( 1—y; j,kggl,lj%eE ¢ 4 (P(u; - uj) + P(u; - uy))
. 1+ 2¢
> anin e D2 Py + ()]

where the equality follows by (11) and the fact that y;, yx & {0,1}.
Lemma 3 now follows from the following lemma proved in Section 5 which shows that (-y, €, m)-
useful polynomials of the type we require do in fact exist:

Lemma 4 Let m be an integer and 7y a sufficiently small positive real such that % and % are even

integers and m is significantly larger than % Suppose € > by. Then there exists a (v, €, m)-useful
polynomial P such that for all i,j,k € {—1,1}" where j,k # i and jk € E,

-2y < P(u; - uj) + P(u; - ug) < 13y. (12)



5 Proof of Lemma 4: Constructing (v, ¢, m)-useful polynomials

In this section we prove Lemma 4. Fix € and v as in the statement of the lemma.
Let R be the following subset of R?:

1 1
R={(@) € LI fotyl <2vfo—ul <20 -a)lel < 1- L bl <1- .

Claim 2 To prove the lemma it suffices to find a polynomial P with nonnegative coefficients such
that P(1) =1, Vz € [0,1] P(z) > P(2y—1) = (2¢ — 1)/(2¢ + 1), and such that,

-2y < P(z) + P(y) <13y V(z,y) € R. (13)

Proof: By definition, P satisfies the first three properties of a (v, €, m)-useful polynomial. Now,
he vectors u; satisfy the following properties: |u; - u;| <1 — miﬂ for all 1 <4 # j < 2™, Further,
since u; + uy, is supported on y(m + 1) coordinates on which it assumes values £2/v/m + 1 we get
that

ui - uy + g ug] = fug - (5 4 ug)| < 27
Similarly, |u; -uj —u;-ug| < 2(1—+). Hence, {(u; - uj,u; - ug) : 4,k #4 and jk € E} C R. So (13)
implies (12). Moreover, since 5y < ¢, it implies Property 4 of a (v, €, m)-useful polynomial in all
cases except when ¢ = k. However, in that case we have
2¢e—1 e
2¢+1  1+2¢

P(ui-ui)—l-P(ui-uj):P(1)+P(1—27) =1+

and hence Property 4 holds in that case too. (I

Given the claim, Lemma 4 will now follow from the following technical lemma:

Lemma 5 Let m be an integer and v a sufficiently small positive real such that % and % are

even integers and m is significantly larger than % Let € > 3. Then there exists a polynomial P
satisfying the properties:

1. P has only nonnegative coefficients,

2. P(1) =1,

3. P(z) > P(2y—1) = (2¢—1)/(2¢ + 1) for all x € R, and

4. Over the region R, the function f(z,y) = P(z) + P(y) satisfies

=27 < f(z,y) < 13y.

Proof: Let A =1—2y and let T'= 5> and § = % Let g(z) and r(z) be the unique polynomials
q(z) = az’ + bz
r(z) = cz¥ + du

satisfying ¢(1) = r(1) =1 and ¢’(—\) = 7/(—)\) = 0. Note that

B 1 o TAT B 1 g SAS
CTIE AT P T I ST 1xgas 1 YT T r o
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Our polynomial P will be the following weighted average of ¢ and r
P(z) = Aq(z) + (1 — A)r(z),

where A € (0,1/4) will be defined below. Note that P(1) =1 and P'(—X) = 0.

The polynomials ¢, enjoy complementary properties that we will exploit to ensure P satisfies
the properties of the lemma. The leading coefficient of ¢ is close to 1, while the leading coefficient
of r is close to 0. Moreover, the exponent of the leading term of ¢ is significantly bigger than the
corresponding exponent of r. Hence, even though ¢(z),r(z) both tend to 1 as x tends to 1, ¢(z)
is significantly smaller than 1 even for z = 1 — 1/m; in fact, ¢ remains extremely close to 0 when
z € [-14+1/m,1 — 1/m] (See Figure 1). We state the The particular properties enjoyed by ¢ and
r that we require are as follows:

1

Figure 1: Example illustrating the different behaviours of ¢ and r.

A. Since S and T are both even and a, ¢ > 0, it follows that g, are convex. So P is also convex,
and consequently, P'(z) = 0 if and only if z = —\. So P attains its minimum at —\.

B. The coefficients a, b, ¢, d satisfy the following bounds: a > 1 — 27", b < 27™, ¢ € (57, 2ey),

d € (1 —2evy,1 — 5v). These estimates follows from the fact that since «y is sufficiently small,
A/(27) e,

C. Our bounds on a,b,c,d immediately imply that r(—y) > —y and g(—y) > —y27™™. In
addition, we have the following upper bounds, most of which are quite loose but still good
enough for our purposes: (a) |g(z)| < e 2 whenz € [-1+1/m,1—1/m], (b) r(—-1+1/m) <
—1+11y, (¢) r(=A—1/m) < =1+ 12y, and (d) r(A+1/m) < 1 — 3.

Given our bounds for a and b and estimates for ¢ and d in B, it is easy to see that there exists a
constant C, 8 < C' <9 and for which,

P(=X) = A2°0™) 4 (1 — A)(=1 + Cy — O(1?)).

11



A simple continuity argument now shows that there exists A € (0,1/4) such that P(—)\) = (2¢ —
1)/(2¢ + 1), as desired. Fix A to this value for the remainder of the proof. Using the fact that
€ > 3y and m > 1/v it is not hard to show that A = 4e + O(¢?). However, perhaps somewhat
surprisingly, the only fact about A that we will require to bound f on R is that 0 < A < 1.

It remains to bound f on R. By symmetry of both f and R we can restrict our attention to
x > y. Moreover, by A above, Vf is (0,0) only at (—\, —)) € R, and hence, f attains extreme
points on the boundary of R. The following sets define the boundary of R when z > y (see Figure 2):

Ry ={(z,y) e R:z € (—7,A\—1/m),y = —z — 27},
Ry ={(z,y) e R:z € (y,1 -1/m),y = —z + 27},
Ry={(z,y) e R:ze A+1/m,1 —1/m),y =2 —2(1 —~)},
Ry={(z,y) e R:y=—-1+1/m,xz € (A—1/m,\+1/m)},
Rs={(z,y) eR:z=1—-1/myy € (=X —1/m,—A+1/m)}.
11
PR

Figure 2: The domain R and the boundaries R; through Rs.

So we must find f’s extreme points on UR;. Consider V f when z > y. Note that Vf-(1,-1) >0
for all (z,y) € UR;. This follows from the fact that P is convex and hence, P'(z) > P'(y) whenever
x > y; in particular, Vf - (1,—1) = P'(z) — P'(y) > 0. It follows that the minima of f on UR; are
obtained at (—v, —v) and (v,7), and that the maxima of f on UR; must lie on R3.

We tackle the minima first. Using our estimates in C for ¢(—+) and r(—y) from above, we that

f(=7,—7) =2P(—v) = 2(Aq(—) + (1 = A)r(—y)) > —27.

On the other hand, f(-y,7) > 0 since P(z) > 0 when z > 0. So f > —2vy on R as desired.
Now we tackle the maxima. The convexity of P and the fact that R3 has slope 1 implies that f
restricted to Rj is convex. Hence, the local maxima occur at (A+1/m,—1) and (1—-1/m, —A—1/m).

12



Using our estimates in B and C and the fact that 0 < A <1,

FA= g A= d)=P(L-5)+P(=A— %)
= Alg(l = L)+ (-2 = L)+ (1 =A)[r(1 = L) +r(=x= 1)
<2A¢7F + (1— A)[1+ (=1 +127)]
<y 4 (1 - A)12y < 13y.

Similarly we can show that f(A+1/m,—1+1/m) < 9y. O
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A Proof sketch of Lemma 1

In [8] we find the following similar-looking statement to Lemma 1 about sets avoiding intersections.

Lemma 6 (Corollary 4.2 in [8]) Let v be a sufficiently small number, and m an integer. Also, let
F and G be two set families over the universe [m] so that |F NG| # |mn]| for every F € F,G € G.
Then 4~™|F||G] < (1 —n?/4).

By taking F = G and treating set families as points in {—1,1}" we get that the above lemma
says that a subset of size > 2™(1 — 7% /4) must contain two points whuch share exactly |mn] ones.

Let S be a set in {—1,1}™ avoiding distance (1 — )m. Instead of bounding the size of S we
will bound the size of the biggest set of the form form Sy = {s € S : |s| = k}, where | - | denotes
Hamming weight (i.e., the number of coordinates set to 1). Clearly S,, satisfies |S,| > |S|/m. We
shall assume wlog that w < m/2.

Having reduced to the case where all points have the same Hamming weight w we can easiliy
relate to Lemma 6: it is easy to see that no two points in S,, may share exactly w — m(1 — v)/2
ones. Assume, first, that w > (1 —~/2). Then S, is a subset that avoids intersection of nm
where v/4 <1 < /2. We now apply Lemma 6 (or its corollary rather) to get that

|Su| < 2™(1—n?/4) > 2™ (1 —~*/64)™,
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and so |S| < m|Sy,| < m2™(1 — 42/64)™.
For the case that w < (1 — v/2) we may simply say that S, is small by virtue of the bound
on the number of points in the cube having small Hamming weight:

m 2 log 2
< ~ gmH(1/2=7/4) _, gm(9—7*/16ym  gm _082 2) om(1 _ ~2/64)™
50 < (y "0 7m) (N9 < amexp (1B252) < om(1 - 4261)

and again S is at most m times this bound.
The above estimate is nearly tight: Consider the (open) Hamming ball B of radius (1 —)/2;
clearly this ball is an independent set in Gy ,,. Now

Bl= Y ()= m > MM omH(1/2=) , MM om1-97/4 _ gm T g—’m/1.
. i) = 2 \2(1-2y)) = 2 2 2
i< (1-7) 2

So for |B| to be 0(2™) we must have that ym27"™/4 = (1) and so v = Q(y/logm/m).

B Proof of Lemma 2

For completeness, we include in this section a proof of Schoenebeck et al.’s [19] Lemma 2 for
expressing an e-saturated vector as a convex combination of e-vectors.

Proof: Partition V as follows: Let V. ={i e V:x; <1/2+ €}, Vo ={i €V :z; >1/2+ €}, V) =
{ieV:z;=1/2+¢€}. Let r(0) =0, and for alli € V let

1-—Fi—, ieV_

1/2+e¢’
r(i) =< 1, 1€V
1-— ll/gaje, 1€V,

Note that since x is feasible, whenever ¢j € E and i € V_, we must have 5 € V,. Moreover, for
such a pair we must have that r(j) > r(i) because

1—x; T;
i) =) =1- g (1 )
ZI; 1—:13j
1/2+€¢ 1/2—¢
w(1/2-9 - (1-5)(1/2+9)
(1/24¢€)(1/2 —¢)
zi+z;— (1+2€) e(zj—x;)

= oA Taa-e 0

where the last inequality follows from the fact that x is e-saturated.
Reorder the r(i)’s so that 0 = r(ig) < r(i1) < ... <r(ijy|). Foreach t =1,...,|V], let x(®) be

the e-vector where
0, i€ V_ and r(i) > r(i)
xz(-t) =< 1, i € Vi and r(i) > r(iy)
% + €, otherwise

We claim these vectors are in VC(G). To see why consider an edge 7j. The constraint xl(t) —i—x;t) >
z(-t) ;t) are 0. However, if o) = 0, then 4 € V_ and r(i) > r(it). So

i
the feasibility of x implies j € V. and hence r(j) > r(i;). So acg-t)

1 is satisfied unless both z;”’ and z

= 1 and the constraint is satisfied.
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It remains to argue that x is in the convex hull of the x()’s. To that end, we define a distribution
D over the vectors x(*) such that x(*) is assigned the probability r(i;) — r(i;_1). Tt is easy to verify

now that Et[xg-t)] =gjforalljeV. O
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