
The Complexity of Generalized Satisfiability

for Linear Temporal Logic

Michael Bauland1, Thomas Schneider2, Henning Schnoor1, Ilka Schnoor1, and
Heribert Vollmer1

1 Theoret. Informatik, Universität Hannover, Appelstr. 4, 30167 Hannover, Germany
{bauland,henning.schnoor,ilka.schnoor,vollmer}@thi.uni-hannover.de

2 Informatik, Friedrich-Schiller-Universität, 07737 Jena, Germany
schneider@cs.uni-jena.de

Abstract. In a seminal paper from 1985, Sistla and Clarke showed that
satisfiability for Linear Temporal Logic (LTL) is either NP-complete or
PSPACE-complete, depending on the set of temporal operators used. If,
in contrast, the set of propositional operators is restricted, the complexity
may decrease. This paper undertakes a systematic study of satisfiabil-
ity for LTL formulae over restricted sets of propositional and temporal
operators. Since every propositional operator corresponds to a Boolean
function, there exist infinitely many propositional operators. In order to
systematically cover all possible sets of them, we use Post’s lattice. With
its help, we determine the computational complexity of LTL satisfiabil-
ity for all combinations of temporal operators and all but two classes of
propositional functions. Each of these infinitely many problems is shown
to be either PSPACE-complete, NP-complete, or in P.

Keywords: computational complexity, linear temporal logic

1 Introduction

Linear Temporal Logic (LTL) was introduced by Pnueli in [Pnu77] as a formalism
for reasoning about the properties and the behavior of parallel programs and
concurrent systems, and has widely been used for these purposes. Because of
the need to perform reasoning tasks — such as deciding satisfiability, validity, or
truth in a structure generated by binary relations — in an automated manner,
their decidability and computational complexity is an important issue.

It is known that in the case of full LTL with the operators F (eventually),
G (invariantly), X (next-time), U (until), and S (since), satisfiability and deter-
mination of truth are PSPACE-complete [SC85]. Restricting the set of temporal
operators leads to NP-completeness in some cases [SC85]. These results imply
that reasoning with LTL is difficult in terms of computational complexity.

This raises the question under which restrictions the complexity of these
problems decreases. Since the semantics of LTL is rather fixed, such restrictions
can only be of syntactic nature. However, there are several possible constraints

that can be posed on the syntax. One possibility is to restrict the set of temporal
operators, which has been done almost exhaustively in [SC85].

Another constraint is to allow only a certain “degree of propositionality”
in the language, i. e., to restrict the set of allowed propositional operators. Ev-
ery propositional operator represents a Boolean function —e. g., the operator ∧
(and) corresponds to the binary function whose value is 1 if and only if both
arguments have value 1. There are infinitely many Boolean functions and hence
an infinite number of propositional operators.

If these propositional restrictions are considered in a systematic way, this will
lead to a complete classification of the complexity of the reasoning problems for
LTL. Not only will this reveal all cases in which, say, satisfiability is tractable.
It will also provide a better insight into the sources of hardness by explicitly
stating the combinations of temporal and propositional operators that lead to
NP- or PSPACE-hard fragments. In addition, the “sources of hardness” will be
identified whenever a proof technique is not transferable from an easy to a hard
fragment.

The effect of propositional restrictions on the complexity of the satisfiabil-
ity problem was first considered by Lewis for the case of classical propositional
logic in [Lew79]. He established a dichotomy —depending on the set of proposi-
tional operators, satisfiability is either NP-complete or decidable in polynomial
time. In the case of modal propositional logic, a trichotomy has been achieved
in [BHSS06]: modal satisfiability is PSPACE-complete, coNP-complete, or in P.
That complete classification in terms of restriction on the propositional operators
follows the structure of Post’s lattice of closed sets of Boolean functions [Pos41].

This paper analyzes the same restrictions for LTL and combines them with
restrictions on the temporal operators. Using Post’s lattice, we examine the
satisfiability problem for every combination of temporal and propositional op-
erators. We determine the computational complexity of these problems, except
for one case — the one in which only propositional operators based on the binary
xor function (and, perhaps, constants) are allowed. We show that all remaining
cases are either PSPACE-complete, NP-complete, or in P.

It is not the aim of this paper to focus on particular propositional restrictions
that are motivated by certain applications. We prefer to give a classification as
complete as possible which allows to choose a fragment that is appropriate, in
terms of expressivity and tractability, for any given application.

Among our results, we exhibit cases with non-trivial tractability as well as
the smallest possible sets of propositional and temporal operators that already
lead to NP-completeness or PSPACE-completeness, respectively. Examples for
the first group are cases in which only the unary not function, or only monotone
functions are allowed, but there is no restriction on the temporal operators. As
for the second group, if only the binary function f with f(x, y) = (x ∧ y) is
permitted, then satisfiability is NP-complete already in the case of propositional
logic [Lew79]. Our results show that the presence of the same function f sepa-
rates the tractable languages from the NP-complete and PSPACE-complete ones,
depending on the set of temporal operators used. According to this, minimal sets

2

of temporal operators leading to PSPACE-completeness together with f are, for
example, {U} and {F,X}.

The technically most involved proof is that of PSPACE-hardness for the lan-
guage with only the temporal operator S and the boolean operator f (Theo-
rem 3.3). The difficulty lies in simulating the quantifier tree of a Quantified
Boolean Formula (QBF) in a linear structure.

Our results are summarized in Table 1. The first column contains the propo-
sitional restrictions in terms of closed sets of Boolean functions (clones) whose
terminology is introduced in the following section. The second column shows the
classification of classical propositional logic as known from [Lew79] and [Coo71].
The last line in column 3 and 4 is largely due to [SC85]. All other entries are the
main results of this paper. The only open case appears in the third line and is
discussed in the Conclusion. Note that the case distinction also covers all clones
which are not mentioned in the present paper.

temporal operators ∅ {F}, {G}, any other

function class (propositional operators) {F, G}, {X} combination

below R1 or below D trivial trivial trivial

below M or below N in P in P in P

L0, L in P ? ?

above S1
NP-c. NP-c. PSPACE-c.

BF (all Boolean functions) NP-c. NP-c. PSPACE-c.

Table 1. Complexity results for satisfiability. The entries “trivial” denote cases in
which a given formula is always satisfiable. The abbreviation “c.” stands for “complete.”
Question marks stand for open questions.

2 Preliminaries

A Boolean function or Boolean operator is a function f : {0, 1}n → {0, 1}. We
can identify an n-ary propositional connector c with the n-ary Boolean operator
f defined by: f(a1, . . . , an) = 1 if and only if the formula c(x1, . . . , xn) becomes
true when assigning ai to xi for all 1 ≤ i ≤ n. Additionally to propositional
connectors we use the unary temporal operators X (next-time), F (eventually),
G (invariantly) and the binary temporal operators U (until), and S (since).

Let B be a finite set of Boolean functions and M be a set of temporal oper-
ators. A temporal B-formula over M is a formula ϕ that is built from variables,
propositional connectors from B, and temporal operators from M . More for-
mally, a temporal B-formula over M is either a propositional variable or of the
form f(ϕ1, . . . , ϕn) or g(ϕ1, . . . , ϕm), where ϕi are temporal B-formulae over

3

M , f is an n-ary propositional operator from B and g is an m-ary temporal
operator from M . In [SC85], complexity results for formulae using the temporal
operators F, G, X (unary), and U, S (binary) were presented. We extend these
results to temporal B-formulae over subsets of those temporal operators. The
set of variables appearing in ϕ is denoted with Vϕ. If M = {X,F,G,U,S} we call
ϕ a temporal B-formula, and if M = ∅ we call ϕ a propositional B-formula or
simply a B-formula. The set of all temporal B-formulae over M is denoted with
L(M,B).

A model in linear temporal logic is a linear structure of states, which intu-
itively can be seen as different points of time, with propositional assignments.
Formally a structure S = (s, V, ξ) consists of an infinite sequence s = (si)i∈N

of distinct states, a set of variables V , and a function ξ : {si | i ∈ N} → 2V

which induces a propositional assignment of V for each state. For a temporal
{∧,¬}-formula over {X,U,S} with variables from V we define what it means
that S satisfies ϕ in si (S, si � ϕ): let ϕ1 and ϕ2 be temporal {∧,¬}-formulae
over {X,U,S} and x ∈ V a variable.

S, si � x if and only if x ∈ ξ(si),
S, si � ϕ1 ∧ ϕ2 if and only if S, si � ϕ1 and S, si � ϕ2,
S, si � ¬ϕ1 if and only if S, si 2 ϕ1,
S, si � Xϕ1 if and only if S, si+1 � ϕ1,
S, si � ϕ1Uϕ2 if and only if there is a k ≥ i such that S, sk � ϕ2,

and for every i ≤ j < k, S, sj � ϕ1,
S, si � ϕ1Sϕ2 if and only if there is a k ≤ i such that S, sk � ϕ2,

and for every k < j ≤ i, S, sj � ϕ1.

The remaining temporal operators are interpreted as abbreviations: Fϕ =
trueUϕ and Gϕ = ¬F¬ϕ. Therefore and since every Boolean operator can be
composed from ∧ and ¬, the above definition generalizes to temporal B-formulae
for arbitrary sets B of Boolean operators.

A temporal B-formula ϕ overM is satisfiable if there exists a structure S such
that S, si � ϕ for some state si from S. That allows us to define the problems we
want to look at in this paper: Let B be a finite set of Boolean functions and M a
set of temporal operators. Then SAT(M,B) is the problem to decide whether a
given temporal B-formula over M is satisfiable. In the literature, another notion
of satisfiability is sometimes considered, where we ask if a formula can be satisfied
at the first state in a structure. It is easy to see that, in terms of computational
complexity, this does not make a difference for our problems as long as we do
not have the temporal operator S in our language. For this paper, we only study
the satisfiability problem as defined above.

Sistla and Clarke analyzed the satisfiability problem for temporal {∧,∨,¬}-
formulae over some sets of temporal operators.

Theorem 2.1 ([SC85]).

(1) SAT({F}, {∧,∨,¬}) is NP-complete.

4

(2) SAT({F,X}, {∧,∨,¬}), SAT({U}, {∧,∨,¬}), and SAT({U,S,X}, {∧,∨,¬})
are PSPACE-complete.

Since there are infinitely many finite sets of Boolean functions, we introduce
some algebraic tools to classify the complexity of the infinitely many arising
satisfiability problems. We denote with idn

k the n-ary projection to the k-th
variable, i.e., idn

k (x1, . . . , xn) = xk, and with cna the n-ary constant function
defined by cna(x1, . . . , xn) = a. For c11(x) and c10(x) we simply write 1 and 0. A set
C of Boolean functions is called a clone if it is closed under superposition, which
means C contains all projections and C is closed under arbitrary composition
[Pip97]. For a set B of Boolean functions we denote with [B] the smallest clone
containing B and call B a base for [B]. In [Pos41] Post classified the lattice of
all clones and found a finite base for each clone.

With ⊕ we denote the binary exclusive or. Let f be an n-ary Boolean func-
tion. We define some properties for f :

– f is 1-reproducing if f(1, . . . , 1) = 1.
– f is monotone if a1 ≤ b1, . . . , an ≤ bn implies f(a1, . . . , an) ≤ f(b1, . . . , bn).
– f is 1-separating if there exists an i ∈ {1, . . . , n} such that f(a1, . . . , an) = 1

implies ai = 1.
– f is self-dual if f ≡ dual(f), where dual(f)(x1, . . . , xn) = ¬f(¬x1, . . . ,¬xn).
– f is linear if f ≡ x1 ⊕ · · · ⊕ xn ⊕ c for a constant c ∈ {0, 1} and variables
x1, . . . , xn.

In Table 2 we define those clones that are essential for this paper plus four
basic ones, and give Post’s bases [Pos41] for them. The inclusions between them
are given in Figure 1. The definitions of all clones as well as the full inclusion
graph can be found, for example, in [BCRV03].

Name Definition Base

BF All Boolean functions {∨,∧,¬}
R1 {f ∈ BF | f is 1-reproducing } {∨,↔}
M {f ∈ BF | f is monotone } {∨,∧, 0, 1}
S1 {f ∈ BF | f is 1-separating } {x ∧ y}
D {f | f is self-dual} {xy ∨ xz ∨ (y ∧ z)}
L {f | f is linear} {⊕, 1}
L0 [{⊕}] {⊕}
V {f | There is a formula of the form c0 ∨ c1x1 ∨ · · · ∨ cnxn {∨, 1, 0}

such that ci are constants for 1 ≤ i ≤ n that describes f}
E {f | There is a formula of the form c0 ∧ (c1 ∨ x1) ∧ · · · ∧ (cn ∨ xn) {∧, 1, 0}

such that ci are constants for 1 ≤ i ≤ n that describes f}
N {f | f depends on at most one variable} {¬, 1, 0}
I {f | f is a projection or constant} {0, 1}
I2 {f | f is a projection} ∅

Table 2. List of some closed classes of Boolean functions with bases

There is a strong connection between propositional formulae and Post’s lat-
tice. If we interpret propositional formulae as Boolean functions, it is obvi-

5

ous that [B] includes exactly those functions that can be represented by B-
formulae. This connection has been used various times to classify the complexity
of problems related to propositional formulae: For example, Lewis presented a
dichotomy for the satisfiability problem for propositional B-formulae: SAT(∅, B)
is NP-complete if S1 ⊆ [B], and solvable in P otherwise [Lew79].

R1

BF

M

S1

D

L

L0

V E

I

I2

N

Fig. 1. Graph of some closed
classes of Boolean functions

Post’s lattice was applied for the equiva-
lence problem [Rei01], counting [RW05] and
finding minimal [RV03] solutions, and learn-
ability [Dal00] for Boolean formulae. The
technique has been used in non-classical logic
as well: Bauland et al. achieved a trichotomy
in the context of modal logic, which says
that the satisfiability problem for modal for-
mulae is, depending on the allowed proposi-
tional connectives, PSPACE-complete, coNP-
complete, or solvable in P [BHSS06]. For
the inference problem for propositional cir-
cumscription, Nordh presented another tri-
chotomy theorem [Nor05].

An important tool in restricting the
length of the resulting formula in many of our
reductions is the following lemma. It shows
that for certain sets B, there are always short
formulae representing the functions and , or , or not, respectively. Point (2) and
(3) follow directly from the proofs in [Lew79], point (1) is Lemma 3.3 from
[Sch05].

Lemma 2.2.

(1) Let B be a finite set of Boolean functions such that V ⊆ [B] ⊆ M (E ⊆ [B] ⊆
M, resp.). Then there exists a B-formula f(x, y) such that f represents x∨y
(x∧y, resp.) and each of the variables x and y occurs exactly once in f(x, y).

(2) Let B be a finite set of Boolean functions such that [B] = BF. Then there
are B-formulae f(x, y) and g(x, y) such that f represents x∨ y, g represents
x ∧ y, and both variables occur in each of these formulae exactly once.

(3) Let B be a finite set of Boolean functions such that N ⊆ [B]. Then there is
a B-formula f(x) such that f represents ¬x and the variable x occurs in f

only once.

3 Results

3.1 Hard cases

The following lemma gives our general upper bounds for various combinations of
temporal operators. The proof of part (1) and (2) is a variation of the proof for
Theorem 3.4 in [BHSS06], where, using a similar reduction, an analogous result
for circuits was proved.

6

Lemma 3.1. Let B be a finite set of Boolean functions. Then the following
holds:

(1) If M ⊆ {F,G,U,S,X}, then SAT(M,B) is in PSPACE,
(2) if M ⊆ {F,G}, then SAT(M,B) is in NP, and
(3) if M ⊆ {X}, then SAT(M,B) is also in NP.

Proof. For (1), we will show that SAT(M,B) ≤log
m SAT({U,S,X} , {∧,∨,¬}), and

for (2), we will show that SAT(M,B) ≤log
m SAT({F} , {∧,∨,¬}). The complexity

result for these cases then follows from Theorem 2.1.
The construction for (1) and (2) is nearly identical: Let ϕ be a formula

with arbitrary temporal operators and Boolean functions from B. We recursively
transform the formula to a new formula using only the Boolean operators ∧, ∨,
and ¬, and the temporal operators U, S, and X for the first case and the temporal
operator F for the second cases. For this we construct several formulae, which
will be connected via conjunction. Let k be the number of subformulae of ϕ.
Accordingly let ϕ1, . . . , ϕk be those subformulae with ϕ = ϕ1. Let x1, . . . , xk be
new variables, i.e., distinct from the input variables of ϕ. For all i from 1 to k
we make the following case distinction:

– If ϕi = y for a variable y, then let fi(ϕ) = xi ↔ y.
– If ϕi = Xϕj , then let fi(ϕ) = xi ↔ Xxj .
– If ϕi = Fϕj , then let fi(ϕ) = xi ↔ Fxj .
– If ϕi = Gϕj , then let fi(ϕ) = xi ↔ Gxj .
– If ϕi = ϕjUϕ`, then let fi(ϕ) = xi ↔ xjUx`.
– If ϕi = ϕjSϕ`, then let fi(ϕ) = xi ↔ xjSx`.
– If ϕi = g(ϕi1 , . . . , ϕin

) for some g ∈ B, then let fi(ϕ) = xi ↔ h(xi1 , . . . , xin
),

where h is a formula using only ∧, ∨, and ¬, representing the function g.

Such a formula h always exists with constant length, because the set B is
fixed and does not depend on the input. Now let f(ϕ) = x1 ∧

∧k
i=1(Gfi(ϕ) ∧

¬(trueS¬fi(ϕ))) for case (1) and f(ϕ) = x1∧
∧k

i=1 Gfi(ϕ) for case (2). The part
Gfi(ϕ) makes sure that fi(ϕ) holds in every future state of the structure and
¬(trueS¬fi(ϕ))) does the same for the past states of the structure. Additionally
we consider x ↔ y as a shorthand for (x ∧ y) ∨ (¬x ∧ ¬y). For case (1) we
consider Fx as a shorthand for trueUx and Gx as a shorthand for ¬(trueU¬x),
and for case (2) we consider Gx as a shorthand for ¬F¬x. Thus we have that
f(ϕ) is from L({U,S,X}, {∧,∨,¬}) in case (1) and from L({F}, {∧,∨,¬}) in
case (2). Furthermore f is computable in logarithmic space, because the length
of fi is polynomial and neither ↔ nor the formulae h occur nested. In order to
show that f is the reduction we are looking for, we still need to prove that ϕ
is satisfiable if and only if f(ϕ) is satisfiable. Assume an arbitrary structure S,
such that S, si � f(ϕ) for some si. We first prove by induction on the structure
of the formula that xi holds if and only if ϕi holds in every state s of S (for
(1)) respectively in every state which lies in the future of si (for (2)). Therefore
for (1) let s be an arbitrary state and for (2) let s be an arbitrary state in the
future of si. Thus by construction of f(ϕ) the formulae fp(ϕ) hold at s for all
1 ≤ p ≤ k. Then the following holds:

7

– If ϕp = y for a variable y, then fp(ϕ) = xp ↔ y and trivially S, s � xp iff
S, s � y.

– If ϕp = Xϕj , then fp(ϕ) = xp ↔ Xxj . Thus S, s � xp iff for the successor
state s′ of s, we have S, s′ � xj . By induction this is equivalent to S, s′ � ϕj

and therefore S, s � ϕp iff S, s � xp.
– The cases for the temporal operator F or G work analogously.
– If ϕp = ϕjUϕ`, then fp(ϕ) = xp ↔ xjUx`. Thus S, s � xp iff there exists a

state s′ in the future of s, such that S, s′ � x` and in all states sm in between
(including s) S, sm � xj . By induction this is equivalent to S, s′ � ϕ` and for
all states in between S, sm � ϕj and therefore S, s � ϕp iff S, s � xp.

– If ϕp = ϕjSϕ`, then fp(ϕ) = xp ↔ xjSx`. Thus S, s � xp iff there exists a
state s′ in the past of s, such that S, s′ � x` and in all states sm in between
(including s) S, sm � xj . By induction this is equivalent to S, s′ � ϕ` and for
all states in between S, sm � ϕj and therefore S, s � ϕp iff S, s � xp.

– If ϕp = g(ϕi1 , . . . , ϕin
), then fp(ϕ) = xp ↔ h(xi1 , . . . , xin

), where h is a
formula using only ∧, ∨, and ¬, representing the function g. Thus S, s � xp

iff S, s � h(xi1 , . . . , xin
). Let I be the subset of In = {i1, . . . , in}, such that

S, s � xm for all m ∈ I and S, s � ¬xm for all m ∈ In \ I. By induction
S, s � ϕm for all m ∈ I and S, s � ¬ϕm for all m ∈ In \I and therefore S, s �

h(ϕi1 , . . . , ϕin
). Since h represents the function g, we have that S, s � ϕp iff

S, s � xp.

Now, assume that f(ϕ) is satisfiable. Then there exists a structure S, si �

f(ϕ) and thus S, si � x1. Since in every state xj holds if and only if ϕj holds, we
have that S, si � ϕ = ϕ1. For the other direction, assume that ϕ is satisfiable.
Then there exists a structure S, si � ϕ = ϕ1. Now we can extend S by adding
new variables x1, . . . , xk in such a way, that xj holds in a state s from S if and
only if ϕj holds in that state. Call this new structure S′. Then by construction
of f(ϕ), we have S′, si � f(ϕ), since in every state xj holds if and only if ϕj

holds. This concludes the proof of the first two cases.

We now show (3). For a formula ϕ in which X is the only temporal operator, let
depth

X
(ϕ) denote the maximal nesting degree of the X-operator in ϕ, which we

call the X-depth of ϕ. It is obvious that this number is linear in the length of
ϕ. Therefore, to show that the problem can be solved in NP, it suffices to prove
the following:

(a) Such a formula ϕ is satisfiable if and only if there is a structure S with the
sequence (si)i∈N such that for every i > depth

X
(ϕ) , every variable in si is

false, and S, s0 |= ϕ.

(b) Given the assignments to the variables in the first depth
X
(ϕ) states in the

structure above, it can be verified in polynomial time if S, s0 |= ϕ.

These claims immediately imply the complexity result. For the first point, it
obviously suffices to show one direction. Therefore, let S be an arbitrary structure
with sequence (si)i∈N such that S, s0 |= ϕ, and let S′ be the structure with

8

sequence (s′i)i∈N obtained from S as follows: For i ≤ depth
X
(ϕ) , the assignment

of the variables in the state s′i is the same as in si. For i > depth
X
(ϕ) , every

variable is false in s′i. To prove claim (a) above, it suffices to prove that S′, s′0 |= ϕ.

To show this, we prove that for every subformula ψ of ϕ and every i ≤
depth

X
(ϕ) , if depth

X
(ψ) ≤ depth

X
(ϕ)−i, then S, si |= ψ if and only if S′, s′i |= ψ.

For i = 0 and ψ = ϕ, this implies the desired result S′, s′0 |= ϕ.

We show the claim by induction on the formula ψ. If ψ is a variable, then,
by construction, S′, s′i |= ψ if and only if S, si |= ψ, since the truth assignments
of s′i and si are identical. Now let ψ be of the form f(ψ1, . . . , ψn) for an n-
ary function f ∈ B. In this case, it immediately follows that depth

X
(ψ) =

max {depth
X
(ψ1) , . . . ,depth

X
(ψn)} . Because of the prerequisites, depth

X
(ψ) ≤

depth
X
(ϕ) − i, and hence we know that for each j ∈ {1, . . . , n} , it holds that

depth
X
(ψj) ≤ depth

X
(ϕ) − i. Therefore, we can apply the induction hypothesis

to all of the ψj , and we know that S, si |= ψj if and only if S′, s′i |= ψj . This
immediately implies that S, si |= ψ if and only if S′, s′i |= ψ, since f is a Boolean
function.

Finally, let ψ be of the form Xξ for some formula ξ. Hence, depth
X
(ψ) =

depth
X
(ξ) + 1. Since depth

X
(ψ) ≤ depth

X
(ϕ) − i, this implies that depth

X
(ξ) ≤

depth
X
(ϕ)− (i+1). Hence, we can apply the induction hypothesis, and conclude

that S, si+1 |= ξ if and only if S′, s′i+1 |= ξ. This immediately implies that
S, si |= ψ if and only if S′, s′i |= ψ, and hence concludes the induction and the
proof of claim (a).

For claim (b), assume that ϕ and the truth assignments for the first depth
X
(ϕ)

states in the structure S are given, where all variables are assumed to be false
in all further states. We can now, for each subformula ψ of ϕ, mark those states
si (for i ≤ depth

X
(ϕ)) in which ψ holds. Starting with j = 0, consider the

subformulae of X-depth j. The question if a formula of X-depth j holds at a
given state can easily be decided when this is known for all formulae of lower
X-depth. For j = 0, this can be decided easily, since the subformulae of X-depth
0 are exactly the propositional subformulae, and for these, each state can be
considered separately. Additionally, observe that in the structure S, all states
beyond the first depth

X
(ϕ) states satisfy exactly the same set of subformulae of

ϕ, hence only depth
X
(ϕ) + 1 many states need to be considered. �

The following two theorems show that the case in which our Boolean opera-
tors are able to express the function x ∧ y, leads to PSPACE-complete problems
in the same cases as for the full set of Boolean operators. This function already
played an important role in the classification result from [Lew79], where it also
marked the “jump” in complexity from polynomial time to NP-complete.

Theorem 3.2. Let B be a finite set of Boolean functions such that S1 ⊆ [B].
Then SAT({G,X}, B) and SAT({F,X}, B) are PSPACE-complete.

Proof. Since we can express F using G and negation, Theorem 2.1 implies that
SAT({G,X}, {∧,∨,¬}) and SAT({F,X}, {∧,∨,¬}) are PSPACE-hard. Now, let
ϕ be a formula in which only temporal operators G and X, or F and X, and
the Boolean connectives ∧,∨, and ¬ appear. Let B′ = B ∪ {1}. The complete

9

structure of Post’s lattice [BCRV03] shows that [B′] = BF. Now we can rewrite ϕ
as a B′-formula with the same temporal operators appearing. Due to Lemma 2.2,
we can express the crucial operators ∧,∨,¬ with short B′-formulae, i.e., formulae
in which every relevant variable occurs only once. Therefore, this transformation
can be performed in polynomial time. Now, in the B′-representation of ϕ, we
exchange every occurrence of 1 with a new variable t, and call the result ϕ′, which
is a B-formula. It is obvious that ϕ is satisfiable if and only if the B-formula
ϕ′ ∧ t ∧ Gt is. Since B ⊇ S1, we can express the occurring conjunctions using
operators from B (since these are a constant number of conjunctions, we do
not need to worry about needing long B-formulae to express conjunction). This
finishes the proof for SAT({G,X}, B). For the problem SAT({F,X}, B), observe
that the function g(x, y) = x ∧ y generates the clone S1, and therefore there is

some B-formula equivalent to g. Now observe that the formula t ∧ F(t ∧ Xt) =
g(t,F(g(t,Xt))) is equivalent to Gt. Since this formula is independent of the
input formula ϕ, this can be computed in polynomial time, and therefore this
formula can be used to express ϕ′ ∧ t ∧ Gt in the same way as in the first
case. Additionally, observe that if the operator F appears in the original formula
ϕ, then a subformula Fψ can be expressed as (1Uψ). Hence we conclude from
Theorem (2) that SAT({U,X},BF) is PSPACE-complete. �

The construction in the proof of Theorem 3.2 does not seem to be applicable
to the languages with U and/or S, as it requires a way to express Gt using these
operators. Hence, proving the desired completeness result requires significantly
more work.

Theorem 3.3.

(1) Let B be a finite set of Boolean functions with [B] = BF. Then SAT({S}, B)
is PSPACE-complete.

(2) Let B be a finite set of Boolean functions with S1 ⊆ [B]. Then SAT({S}, B)
and SAT({U}, B) are PSPACE-complete.

Proof. Since the membership for PSPACE is shown in Lemma 3.1 we only need
to show hardness.

(1) We first prove an auxiliary proposition.

Claim. Let ϕ1, . . . , ϕn be satisfiable propositional formulae such that ϕi → ¬ϕj

is true for all i, j ∈ {1, . . . , n} with i 6= j. Then the formula

ϕ = ϕ1 ∧ (ϕ1S(ϕ2S(. . .S(ϕn−1Sϕn) . . .))) ∧ ((. . . ((ϕ1Sϕ2)Sϕ3)S . . .)Sϕn)

is satisfiable and every structure S that satisfies ϕ in a state sm fulfills the
following property: there exist natural numbers 0 = a0 < a1 < · · · < an ≤ m+1
such that m− ai < j ≤ m− ai−1 implies S, sj � ϕi for every i ∈ {1 . . . , n}.

Proof. Clearly ϕ is satisfiable: since all formulae ϕi are satisfiable we can find a
structure S such that S, s0 � ϕn, S, s1 � ϕn−1, . . . , S, sn−1 � ϕ1. One can verify
that S satisfies ϕ in sn−1.

10

Let S be a structure that satisfies ϕ in a state sm. Since ϕi → ¬ϕj is true for
all i, j ∈ {1, . . . , n} with i 6= j, in every state only one of the formulae ϕi can be
satisfied by S. Therefore and since S, sm � ϕ1S(ϕ2S(. . .S(ϕn−1Sϕn) . . .)) holds,
there are natural numbers 0 = a0 ≤ a1 ≤ · · · ≤ an−1 < an ≤ m + 1 such that
m−ai < l ≤ m−ai−1 implies S, sl � ϕi for every i ∈ {1 . . . , n}. Since S, sm � ϕ1,
it holds that a1 > 0. Because S, sm � (. . . ((ϕ1Sϕ2)Sϕ3)S . . .)Sϕn we conclude
that a1 < · · · < an−1, which proves the claim. �

To show hardness for PSPACE, we reduce QBF, which is PSPACE-complete due
to [Sto77], to SAT({S}, B). Let ψ = Q1x1 . . . Qnxnϕ for some propositional
{∧,∨,¬}-formula ϕ with variables x1, . . . , xn and for quantifiers Q1, . . . , Qn ∈
{∀,∃}.
Let I∀ = {p1, . . . , pk} = {i ∈ {1, . . . , n} | Qi = ∀} and I∃ = {q1, . . . , ql} = {i ∈
{1, . . . , n} | Qi = ∃} such that p1 < · · · < pk and q1 < · · · < ql.
We construct a temporal formula ψ′ ∈ L({S}, B) such that ψ is valid if and
only if ψ′ is satisfiable. Let t0, . . . , tn, u0, . . . , un be new variables. We construct
subformulae of ψ′ which we will combine afterwards.

α = u0 ∧ t0 ∧ (u0 ∧ t0)S((u0 ∧ t0)S(u0 ∧ t0))) ∧ (((u0 ∧ t0)S(u0 ∧ t0))S(u0 ∧ t0))

β
1[i] =

(ui−1 ∧ ti−1 ∧ ui ∧ ti ∧ xi)S

((ui−1 ∧ ti−1 ∧ ui ∧ ti ∧ xi)S

((ui−1 ∧ ti−1 ∧ ui ∧ ti ∧ xi)S

((ui−1 ∧ ti−1 ∧ ui ∧ ti ∧ xi)S

((ui−1 ∧ ti−1 ∧ ui ∧ ti ∧ xi)S

(ui−1 ∧ ti−1 ∧ ui ∧ ti ∧ xi)))))

β
2[i] =

(((((ui−1 ∧ ti−1 ∧ ui ∧ ti ∧ xi)

S(ui−1 ∧ ti−1 ∧ ui ∧ ti ∧ xi))

S(ui−1 ∧ ti−1 ∧ ui ∧ ti ∧ xi))

S(ui−1 ∧ ti−1 ∧ ui ∧ ti ∧ xi))

S(ui−1 ∧ ti−1 ∧ ui ∧ ti ∧ xi))

S(ui−1 ∧ ti−1 ∧ ui ∧ ti ∧ xi)

γ
1[i] = (ui−1 ∧ ti−1 ∧ ui ∧ ti ∧ xi)S

((ui−1 ∧ ti−1 ∧ ui ∧ ti ∧ xi)S

((ui−1 ∧ ti−1 ∧ ui ∧ ti ∧ xi)))

γ
2[i] = (ui−1 ∧ ti−1 ∧ ui ∧ ti ∧ xi)S

((ui−1 ∧ ti−1 ∧ ui ∧ ti ∧ xi)S

((ui−1 ∧ ti−1 ∧ ui ∧ ti ∧ xi)))

Since [B] = BF and due to Lemma 2.2, there exist short B-representations for
∧,∨ and ¬. Let ϕ′ be a copy of ϕ that uses these representations instead of
∧,∨ and ¬. Due to the short representations, ϕ′ can be computed in polynomial
time. We now define the formula ψ′, which constitutes the reduction.

ψ′ = α ∧
∧

i∈I∀

((β1[i] ∧ β2[i])S t0) ∧
∧

i=∈I∃

((γ1[i] ∨ γ2[i])S t0) ∧ (ϕ′
S t0)

Since the operators ∧,∨, and ¬ are nested only in constant depth we can use
their B-representations without increasing the size of ψ′ significantly.
Assume that S is a structure that satisfies ψ′ in a state sm. We prove by induction
over n that there are natural numbers 0 = a0 < · · · < a3(2k) ≤ m + 1 and for
every q ∈ I∃ a function σq : {0, 1}q−1 → {0, 1} such that S satisfies the following
property: if m− ai < j ≤ m− ai−1, then

11

1. S, sj � xph
iff d i

3(2k−h)
e is even

2. S, sj � xqh
iff σqh

(a1 . . . , aqh−1) = 1 where -ad = 1 if xd ∈ ξ(sj) and ad = 0
otherwise

3. S, sj � t0 iff i = 3(2k)

4. S, sj � tph
iff i = c · 3(2k−h) for some c ∈ N

5. S, sj � tqh
iff S, sj � tph−1

6. S, sj � u0 iff i = 1

7. S, sj � uph
iff i = c · 3(2k−h) + 1 for some c ∈ N

8. S, sj � uqh
iff S, sj � uph−1

Note that due to point 1 for every possible assignment π to {xp1
, . . . , xpk

} there
is a j ∈ {m−a3(2k)+1, . . . ,m} such that S, sj � xpi

if and only if π(xpi
) = 1.

This is the main feature of the construction. The other variables ti and ui are
necessary to ensure this condition.

For n = 0 it holds that ψ′ = α ∧ (ϕ′S t0). Since α satisfies the prerequisites of
the auxiliary proposition, there exist natural numbers 0 = a0 < a1 < a2 < a3 ≤
m+ 1 such that

• m− a1 < j ≤ m− a0 implies S, sj � u0 ∧ t0
• m− a2 < j ≤ m− a1 implies S, sj � u0 ∧ t0
• m− a3 < j ≤ m− a2 implies S, sj � u0 ∧ t0

The only occurring variables are u0 and t0 and it is easy to see that the above
property holds for both.

For the induction step assume that n > 1 and the claim holds for n− 1. There
are two cases to consider:

Case 1: Qn = ∀. That means

ψ′ = α ∧
∧

i∈I∀\{n}

((β1[i] ∧ β2[i])S t0) ∧
∧

i∈I∃

((γ1[i] ∨ γ2[i])S t0) ∧ (ϕ′
S t0)

∧ ((β1[n] ∧ β2[n])S t0)

It follows that there are natural numbers 0 = a0 < · · · < a3(2k−1) ≤ m + 1
and for every q ∈ I∃ a function σq : {0, 1}q−1 → {0, 1} such that S fulfills the
properties of the claim (note that the subformula (ψ′S t0) is not necessary for
our argument). Since S, sm � (β1[n]∧ β2[n])S t0 and for m− a3(2k−1) < j ≤ m it
holds that S, sj � t0 if and only if j ≤ m−a3(2k−1)−1, we have S, sj � β1[n]∧β2[n]
for every m−a3(2k−1)−1 < j ≤ m. Let i = c ·3 for some c ∈ N, then it holds that
m − ai+1 < j ≤ m − ai implies S, sj � un−1 which means that for these states
sj it holds that S, sj � un−1 ∧ tn−1 ∧ un ∧ tn ∧ xn. Due to our proposition there
are natural numbers 0 = bi0 < bi1 < · · · < bi6 ≤ ai + 1 such that

• ai − bi1 < j ≤ ai − bi0 implies S, sj � un−1 ∧ tn−1 ∧ un ∧ tn ∧ xn

• ai − bi2 < j ≤ ai − bi1 implies S, sj � un−1 ∧ tn−1 ∧ un ∧ tn ∧ xn

• ai − bi3 < j ≤ ai − bi2 implies S, sj � un−1 ∧ tn−1 ∧ un ∧ tn ∧ xn

• ai − bi4 < j ≤ ai − bi3 implies S, sj � un−1 ∧ tn−1 ∧ un ∧ tn ∧ xn

• ai − bi5 < j ≤ ai − bi4 implies S, sj � un−1 ∧ tn−1 ∧ un ∧ tn ∧ xn

• ai − bi6 < j ≤ ai − bi5 implies S, sj � un−1 ∧ tn−1 ∧ un ∧ tn ∧ xn

12

sm−a
3·(2k)

sm−a
3·(2k

−1)+2

sm−a
3·(2k

−1)+1

sm−a
3·(2k

−1)

sm−a
3·(2k

−2)+2

sm−a
3·(2k

−2)+1

sm−a
3·(2k

−2)

sm−a
3·(2k

−3)+2

sm−a
3·(2k

−3)+1

sm−a
3·(2k

−3)

sm−a
3·(2k

−4)+2

sm−a
3·(2k

−4)+1

sm−a
3·(2k

−4)

sm−a6

sm−a5

sm−a4

sm−a3

sm−a2

sm−a1

sm

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

xp1
. . . xpk−2

xpk−1
xpk

xp1
. . . xpk−2

xpk−1
xpk

xp1
. . . xpk−2

xpk−1
xpk

xp1 . . . xpk−2
xpk−1

xpk

xp1 . . . xpk−2
xpk−1

xpk

xp1
. . . xpk−2

xpk−1
xpk

xp1
. . . xpk−2

xpk−1
xpk

xp1
. . . xpk−2

xpk−1
xpk

xp1
. . . xpk−2

xpk−1
xpk

xp1
. . . xpk−2

xpk−1
xpk

xp1 . . . xpk−2
xpk−1

xpk

xp1 . . . xpk−2
xpk−1

xpk

xp1 . . . xpk−2
xpk−1

xpk

xp1 . . . xpk−2
xpk−1

xpk

xp1 . . . xpk−2
xpk−1

xpk

xp1 . . . xpk−2
xpk−1

xpk

xp1 . . . xpk−2
xpk−1

xpk

xp1 . . . xpk−2
xpk−1

xpk

tp0
. . . tn

upk
. . . un

tpk
. . . tn

upk−1
. . . un

tpk−1
. . . tn

upk
. . . un

tpk
. . . tn

upk−2
. . . un

tpk−1
. . . tn

upk
. . . un

tpk
. . . tn

u0 . . . un

Fig. 2. Structure for the proof of Theorem 3.3

13

The nearest state before sm−ai
that satisfies un−1 is sm−ai+1

and the nearest
state before sm−ai

that satisfies tn−1 is sm−ai+2
, therefore it holds that bi1 =

ai+1 − ai and bi5 = ai+2 − ai. By denoting bij + ai with c2i+j we define natural
numbers c0, . . . , c3(2k) for which it can be verified that they fulfill the claim.
Case 2: Qn = ∃. In this case we have

ψ′ = α ∧
∧

i∈I∀

((β1[i] ∧ β2[i])S t0) ∧
∧

i∈I∃\{n}

((γ1[i] ∨ γ2[i])S t0) ∧ (ϕ′
S t0)

∧ ((γ1[n] ∨ γ2[n])S t0).

Because of the induction hypothesis there are natural numbers 0 = a0 < a1 <

· · · < a3(2k) ≤ m+1 such that the required properties are satisfied. Analogously
to the first case S, sj � γ1[i] ∨ γ2[i] is true for every m − a3(2k) < j ≤ m. Let
i = c · 3, then for m − ai+1 < j ≤ m − ai it holds that S, sj � un−1 ∧ tn−1 ∧
un ∧ tn ∧ xn or S, sj � un−1 ∧ tn−1 ∧ un ∧ tn ∧ xn, because S, sj � un−1. For
m − ai+2 < j ≤ m − ai+1 we have that S, sj � un−1 ∧ tn−1 ∧ un ∧ tn ∧ xn or
S, sj � ui−n ∧ ti−n ∧ un ∧ tn ∧ xn and for m− ai+3 < j ≤ m− ai+2 it must hold
S, sj � un−1∧tn−1∧un∧tn∧xn or S, sj � un−1∧tn−1∧un∧tn∧xn. If S, sai

� γ1[n],
then in all these states xn is satisfied; if S, sai

� γ2[n], then xn is. Therefore
with σn defined by σn(d1, . . . , dn−1) = 1 if and only if S, s3(d12n−2+···+dn−120) �

γ2[n], the induction is complete, because the binary numbers correspond to the
assignments to the ∀-quantified variables.
Note that for a structure that satisfies ψ′ with the above notation, S, sj � ϕ

holds for every m− a3(2k) < j ≤ m, since ϕ′S t0 is a conjunct of ψ′.
Now assume that ψ′ is satisfiable in a state sm of a structure S. This is if and
only if for every q ∈ I∃ there is a function σq : {0, 1}q−1 → {0, 1} such that S
fulfills the above property. Hence each possible assignment J to the ∀-quantified
variables {xp1

, . . . , xpk
} can be extended to an assignment to {x1, . . . , xn} by

J(xqi
) = σqi

(J(x1), . . . , J(xqi−1)) which is equivalent to the validity of ψ.

(2) The complete structure of Post’s lattice [BCRV03] shows that [B ∪ {1}] =
BF. We modify the above reduction and show that QBF ≤P

m SAT({S}, B). Let ψ
be a QBF-instance and let ψ′ be defined as in the proof of (1) where ϕ′ is a copy of
ϕ using short B∪{1}-representations for {∧,∨,¬} which exist due to Lemma 2.2.
Let χ be a copy of ψ′ modified by adding the new variable t to every conjunctive
clause and first replacing every occurrence of ∨ by its B ∪ {1}-representation
and then every occurrence of the constant 1 by t. Hence, χ is a formula from
L({S}, B ∪ {∧}). Since S1 ⊃ E2 we can express ∧ with functions from B, that
means t does not appear in the ∧-representations and therefore their behavior
is independent from t. Note that ∧ is nested only in constant depth, hence the
size of χ is polynomial in the size of ψ. Because t appears in every conjunctive
clause, t must be true in every relevant state of a satisfying structure. Thus we
have simulated the constant 1 with t. Therefore, if ψ′ is satisfied by a structure
S then χ is satisfied by S with additionally every t assigned true in every state.
Hence, ψ′ can be satisfied if and only if χ can and that proves the reduction.
We can prove PSPACE-hardness for SAT({U}, B) with an analogous construc-
tion. �

14

In the following, we use the result from Lewis [Lew79] and the previously
established upper bounds to obtain NP-completeness results:

Proposition 3.4. Let B be a finite set of Boolean functions such that S1 ⊆ [B].
Then SAT({F}, B), SAT({G}, B), SAT({F,G}, B), and SAT({X}, B) are NP-
complete.

Proof. Trivially, it holds that SAT(∅, B) ≤log
m SAT(M,B) for each set M of

temporal operators, and SAT(∅, B) is NP-complete due to [Lew79]. The upper
bound follows from Theorem (1) and Lemma 3.1.

�

3.2 Polynomial time results

The following theorem shows that for some sets B of Boolean functions, there
is a satisfying model for every temporal B-formula over any set of temporal
operators. These are the cases where B ⊆ R1, or B ⊆ D. In the first case, every
propositional formula over these operators is satisfied by the assignment giving
the value 1 to all appearing variables. In the second case, every propositional B-
formula describes a self-dual function. For such a formula it holds in particular
that if it is not satisfied by the all-zero assignment, then it is satisfied by the all-
one assignment. Hence, such formulae are always satisfiable. It is easy to see that
this is also true for temporal formulae involving these propositional operators.

Theorem 3.5.

(1) Let B be a finite subset of R1. Then every formula ϕ from L({F,G,X,U,S}, B)
is satisfiable.

(2) Let B be a finite subset of D. Then every formula ϕ from L({F,G,X,U,S}, B)
is satisfiable.

Proof.

(1) Since R1 is the class of 1-reproducing Boolean functions, any ψ ∈ R1 is true
under the assignment that makes every propositional variable in ψ true. If
we apply this fact to formulae ϕ ∈ L({F,G,X,U,S}, B), then it is easy to see
that any such formula ϕ is true in every state of a structure Sϕ where the
assignment of every state is Vϕ.

(2) We show by induction on the operators that this holds for all formulae. Let S1

(S0) denote the structure where the assignment of every state is Vϕ (∅, resp.)
and let s1 (s0, resp.) be the first state. We claim that ϕ ∈ L({F,G,X,U,S}, B)
is satisfied by S1 iff ϕ is not satisfied by S0. If ϕ is purely propositional the
claim holds trivially. We now have to look at the following cases:
– ϕ = Fϕ1: Assume the claim holds for ϕ1. Since for all states s in S1

the submodel starting at s are isomorphic, obviously ϕ is satisfied by S1

iff Fϕ is satisfied by S1 and the same argument also holds for S0. Thus
S0, s0 2 ϕ iff S1, s1 � ϕ.

– ϕ = Gϕ1: This works analogously to F.

15

– ϕ = Xϕ1: This also works analogously to F.
– ϕ = ϕ1Uϕ2: Assume the claim holds for ϕ2. Then S0, s0 2 ϕ iff S0, s0 2

ϕ2 iff S1, s1 � ϕ2 iff S1, s1 � ϕ.
– ϕ = ϕ1Sϕ2: This works analogously to U.
– ϕ = f(ϕ1, . . . , ϕn), such that f is a self-dual function from B: Assume

the claim holds for ϕi, 1 ≤ i ≤ n, i.e., S1, s1 � ϕi iff S0, s0 2 ϕi.
Then S1, s1 2 f(ϕ1, . . . , ϕn) implies S0, s0 � f(ϕ1, . . . , ϕn) and S1, s1 �

f(ϕ1, . . . , ϕn) implies S0, s0 2 f(ϕ1, . . . , ϕn).
�

The following two theorems prove that satisfiability for formulae with any
combination of modal operators, but only very restricted Boolean operators (i.e.,
negation and constants in the first case and only disjunction, conjunction, and
constants in the second case), is always easy to decide.

Theorem 3.6. Let B be a finite subset of N. Then SAT({F,G,X,U,S}, B) can
be decided in polynomial time.

Proof. We give a recursive polynomial-time algorithm deciding the following
question: Given a formula ϕ built from propositional negation, constants, vari-
ables and arbitrary temporal operators, which of the following three cases occurs:
ϕ is unsatisfiable, ϕ is a tautology, or ϕ is not equivalent to a constant function.
We also show that in the latter case, ϕ is equivalent to a formula using only
the above operators in which no constant appears. We will call these formulae
temporal ¬-formulae.

We give inductive criteria for these cases. Obviously, a constant c is constant,
and a variable is not, and can be written in the way defined above. The formula
¬ϕ is equivalent to the constant c if and only if ϕ is equivalent to ¬c, otherwise
it is equivalent to a temporal ¬-formula. If ϕ = Fϕ1, ϕ = Gϕ1, or ϕ = Xϕ1, then
ϕ is equivalent to a constant c if and only if ϕ1 is equivalent to c : Obviously
Fc ≡ Gc ≡ Xc ≡ c for a constant. On the other hand, if ϕ1 is not equivalent to a
constant, then due to induction, it is equivalent to a temporal ¬-formula. Hence,
Fϕ1, Gϕ1 and Xϕ1 are equivalent to temporal ¬-formulae as well, and due to the
proof of Theorem 3.5. (2), these formulae are not equivalent to constants. Hence,
if ϕ1 is not equivalent to a constant, then ϕ is not equivalent to a constant either,
and can be written as a temporal ¬-formula.

Now, let ϕ = ϕ1Uϕ2. If ϕ2 is a tautology, i.e., equivalent to the constant 1,
then, by the definition of U, ϕ is a tautology as well. Similarly, if ϕ2 is equivalent
to the constant 0, then so is ϕ. Now assume that ϕ2 is not constant. Then,
by induction, ϕ2 is equivalent to a temporal ¬-formula. If ϕ1 is equivalent to
the constant 0, then ϕ1Uϕ2 is equivalent to ϕ2, and if ϕ1 is equivalent to 1,
then ϕ1Uϕ2 is equivalent to Fϕ2. If ϕ1 is not equivalent to a constant, then, by
induction, it can be written as a temporal ¬-formula, and obviously, this also
holds for ϕ1Uϕ2. Again due to the proof of Theorem 3.5. (2), it follows that the
entire formula ϕ is not equivalent to a constant.

For the operator S, a similar argument can be made: Consider the formula
ϕ1Sϕ2. If ϕ2 is a constant, then obviously the formula ϕ1Sϕ2 is equivalent to the

16

same constant. If ϕ1 is the constant 0, then ϕ1Sϕ2 is equivalent to ϕ2, and if ϕ1 is
the constant 1, then ϕ1Sϕ2 is equivalent to “ϕ2 was true at one point in the past.”
If ϕ2 is not a constant, then this is equivalent to ¬ϕ2Sϕ2, and thus this can be
written as a temporal ¬-formula as well. As above, this formula is not equivalent
to a constant. Now if both ϕ1 and ϕ2 are not equivalent to a constant function,
then, by induction, both can be written as temporal ¬-formulae, and then ϕ1Sϕ2

can be written as such a formula as well. In particular, with another application
of the proof for Theorem 3.5 (2), ϕ1Sϕ2 is not equivalent to a constant.

This gives us a recursive algorithm deciding whether ϕ is a constant, and if it
is, which constant is equivalent to ϕ. The polynomial-time computable function
AN is defined as follows: On input ϕ, AN (ϕ) = c ∈ {0, 1} if ϕ is equivalent to
the constant c, and AN (ϕ) is the symbol NOCONSTANT if ϕ is not equivalent to a
constant.

The function can be computed as follows: AN (c) is defined as c. For a variable
x, AN (x) is the symbol NOCONSTANT. On input Xϕ, Gϕ, or Fϕ, the algorithm
returns AN (ϕ). On input ϕ1Uϕ2, if ϕ2 is a constant c, then AN (ϕ1Uϕ2) = c.
Otherwise, if ϕ1 is equivalent to 0, then return AN (ϕ2), and if ϕ1 is equivalent
to 1, return AN (Fϕ2). If neither ϕ1 nor ϕ2 are constant, then return the symbol
NOCONSTANT. Similarly, on input ϕ1Sϕ2, if ϕ2 is a constant c, then AN (ϕ1Sϕ2) =
c. Otherwise, if ϕ1 is the constant 0, then AN (ϕ1Sϕ2) = AN (ϕ2), and if ϕ1 is the
constant 1, and ϕ2 is not a constant, then AN (ϕ1Sϕ2) is defined as the symbol
NOCONSTANT. If ϕ1 and ϕ2 both are not a constant, then AN (ϕ1Sϕ2) is again
defined as the symbol NOCONSTANT. The function AN can obviously be computed
in polynomial time, since there is at most one recursive call for each operator
symbol in ϕ.

By the argument above, this algorithm correctly determines if ϕ is equivalent
to the constant 0 or the constant 1. In particular, it determines if a given formula
is satisfiable. �

Theorem 3.7. Let B be a finite subset of M. Then SAT({F,G,X,U,S}, B) can
be decided in polynomial time.

Proof. Remember that M is the clone of all monotone functions. Let ϕ be an arbi-
trary formula from L({F,G,X,U,S}, B). The following algorithm decides whether
ϕ is satisfiable.

Algorithm LTL-M-Sat

repeat
Replace all propositional sub-formulae that are unsatisfiable by 0
Replace all sub-formulae F0 by 0
Replace all sub-formulae G0 by 0
Replace all sub-formulae X0 by 0
Replace all sub-formulae 0Uψ by ψ
Replace all sub-formulae ψU0 by 0
Replace all sub-formulae 0Sψ by ψ
Replace all sub-formulae ψS0 by 0

17

Replace all sub-formulae ψ(ϕ1, . . . , ϕk) by 0 if ψ ∈ B and ψ(ϕ′
1, . . . , ϕ

′
k),

where ϕ′
i = 0 if ϕi = 0 and ϕ′

i = 1 otherwise, is not true
until there are no changes anymore
if ϕ = 0 then

return “unsatisfiable”
else

return “satisfiable”
end if

Since checking satisfiability of propositional B-formulae is in P (a B-formula
ϕ is satisfiable iff ϕ(1, . . . , 1) = 1) and there are at most as many replacements
as there are operators in ϕ, LTL-M-Sat runs in polynomial time.

We prove that LTL-M-Sat is correct. If ϕ is satisfiable, then LTL-M-Sat re-
turns “satisfiable.” This is because all replacements in LTL-M-Sat do not affect
satisfiability, so it follows that every formula LTL-M-Sat decides to be unsatis-
fiable is unsatisfiable. For the converse direction, let ϕ ∈ L({F,G,X,U,S}, B) be
such that LTL-M-Sat returns “satisfiable” and let ϕ′ be the formula generated
by LTL-M-Sat in its REPEAT loop. We show by induction on the structure of
ϕ that S, s0 � ϕ, where S = (s, Vϕ, ξ) is the structure in which every variable is
true in every state, i.e., ξ(si) = Vϕ for every i ∈ N.

(1) If ϕ is a variable, it is satisfied in S, s0 trivially.

(2) If ϕ = Fψ for a formula ψ ∈ L({F,G,X,U,S}, B), let ψ′ be the formula
generated in the REPEAT loop when performing LTL-M-Sat on ψ. Assume
that ψ′ = 0. Since every subformula replaced in ψ by LTL-M-Sat will be
replaced in ϕ, too, it holds that Fψ will be replaced by F0 and that will be
replaced by 0. It follows that ϕ′ = 0, but then LTL-M-Sat would return
“unsatisfiable.” Thus, ψ′ 6= 0, that means LTL-M-Sat returns “satisfiable”
when performed on ψ. By induction it follows that S, s0 � ψ and therefore
S, s0 � ϕ holds as well.

(3) If ϕ = Gψ for a formula ψ ∈ L({F,G,X,U,S}, B), we can use exactly the
same arguments as in 2.

(4) If ϕ = Xψ for a formula ψ ∈ L({F,G,X,U,S}, B), we can use the same
arguments as in 2.

(5) If ϕ = ψ1Uψ2 for formulae ψ1, ψ2 ∈ L({F,G,X,U,S}, B), we have that ψ2

cannot be replaced by 0 (otherwise ϕ would be replaced by 0 and LTL-M-

Sat would return “unsatisfiable”). So by induction it follows that S, s0 � ψ2.
Hence, it holds that S, s0 � ϕ as well.

(6) If ϕ = ψ1Sψ2 for formulae ψ1, ψ2 ∈ L({F,G,X,U,S}, B), we can use the same
arguments as for 5.

(7) If ϕ = ψ(ϕ1, . . . , ϕk) for formulae ψ ∈ B and ϕi ∈ L({F,G,X,U,S}, B), for all
i = 1, . . . , k, let ϕ′

1, . . . , ϕ
′
k be the replacements of ϕ1, . . . , ϕk. By induction

it follows that S, s0 � ϕi if and only if ϕ′
i 6= 0 for any i ∈ {1, . . . , k}. Since

ϕ′ 6= 0 and because of the last replacement rule, S, s0 � ϕ.

�

18

Finally, we show that satisfiability for formulae that have X as a modal
operator and the xor function ⊕ as a propositional operator is in P. This is true
because functions described by these formulae have a high degree of symmetry.

Theorem 3.8. Let B be a finite subset of L. Then SAT({X}, B) can be decided
in polynomial time.

Proof. First observe that any function from L is of the form f(x1, . . . , xn) =
xi1 ⊕ · · · ⊕ xik

⊕ c, where the xij
are pairwise different variables from the set

{x1, . . . , xn} , and c is either 0 or 1. Therefore, it is obvious that temporal B-
formulae can be rewritten using only the connectors ⊕ and the constant 1 (the 0
can be omitted in the representation above). Hence, we can assume that the set
B contains only the functions ⊕ and 1. Now observe that any formula ϕ from
L({X}, {⊕, 1}) can be written as

ϕ = Xψ1 ⊕ · · · ⊕ Xψk ⊕ ψ,

where ψ is a propositional formula. This representation can be computed in poly-
nomial time, and we can determine in polynomial time whether ψ is a constant
function.

If ψ is not a constant function, then ϕ is satisfiable: Let S = (s, Vϕ, ξ) be
an arbitrary structure. If ϕ is not satisfied at s0, then we can “switch over”
the current truth value of ψ, thus achieving that one more (or one less) of the
arguments of the outermost xor function becomes true. For this purpose, we
change the assignment of the propositional variables at s0 in such a way that
the new assignment satisfies ψ if and only if the old assignment does not. Since
this change does not affect the validity of the Xψi parts, ϕ holds at s0 with the
new assignment.

Now, if ψ is constant, this trick does not work. Instead, let

ϕ′ = ψ1 ⊕ · · · ⊕ ψk.

Observe that in this case ϕ is satisfiable if and only if ψ is the constant 0 and
ϕ′ is satisfiable, or if ψ is the constant 1 and ϕ′ is no tautology; and that ϕ
is a tautology if and only if ψ is the constant 0 and ϕ′ is a tautology, or ψ is
the constant 1 and ϕ′ is not satisfiable. Thus we have an iterative algorithm
deciding SAT({X}, {⊕, 1}), since for a propositional B-formula, these questions
can be efficiently decided. �

4 Conclusion

We have almost completely classified the computational complexity of satisfiabil-
ity for LTL with respect to the sets of propositional and temporal operators per-
mitted. The only case left open is the one in which only propositional operators
constructed from the binary xor function (and, perhaps, constants) are allowed.
This case has already turned out to be difficult to handle — and hence was left
open— in [BHSS06] for modal satisfiability under restricted frames classes. The

19

difficulty here and in [BHSS06] is reflexivity, i. e., the property that the formula
Fϕ is satisfied at some state if ϕ is satisfied at the same state. This does not allow
for a separate treatment of the propositional part (without temporal operators)
and the remainder of a given formula.

Our results bear an interesting resemblance to the classifications obtained
in [Lew79] and in [BHSS06]. In all of these cases (except for one of the several
classifications obtained in the latter), it turns out that sets of Boolean functions
B which generate a clone above S1 give rise to computationally hard problems,
while other cases seem to be solvable in polynomial time. Therefore, in a precise
sense, it is the function represented by the formula x∧y which turns problems in
this context computationally intractable. These hardness results seem to indicate
that x ∧ y and other functions which generate clones above S1 have properties
that make computational problems hard, and this notion of hardness is to a large
extent independent of the actual problem considered.

It is worth knowing whether our results are transferable to what is called
“determination of truth” in [SC85] — the model checking problem. In the case
of LTL with no restrictions on the propositional operators, model checking has
the same complexity as satisfiability [SC85]. We have done first steps towards a
similar classification of this problem. The first partial results suggest that the
behavior of model checking is not quite the same as that of satisfiability.

The results from this paper leave two open questions. Besides the unsolved
xor case, it would be interesting to further classify the polynomial-time solvable
cases. Further work could also examine related specification languages, such as
CTL, CTL∗, or hybrid temporal languages.

Acknowledgments

We thank Martin Mundhenk and the anonymous referees for their helpful com-
ments and suggestions.

References

[BCRV03] E. Böhler, N. Creignou, S. Reith, and H. Vollmer. Playing with Boolean
blocks, part I: Post’s lattice with applications to complexity theory.
SIGACT News, 34(4):38–52, 2003.

[BHSS06] M. Bauland, E. Hemaspaandra, H. Schnoor, and I. Schnoor. Generalized
modal satisfiability. In STACS, volume 3884 of Lecture Notes in Computer
Science, pages 500–511. Springer, 2006.

[Coo71] S. A. Cook. The complexity of theorem proving procedures. In Proceedings
of the 3rd Symposium on Theory of Computing, pages 151–158. ACM Press,
1971.

[Dal00] V. Dalmau. Computational Complexity of Problems over Generalized For-
mulas. PhD thesis, Department de Llenguatges i Sistemes Informàtica,
Universitat Politécnica de Catalunya, 2000.

[Lew79] H. Lewis. Satisfiability problems for propositional calculi. Mathematical
Systems Theory, 13:45–53, 1979.

20

[Nor05] G. Nordh. A trichotomy in the complexity of propositional circumscription.
In Proceedings of the 11th International Conference on Logic for Program-
ming, volume 3452 of Lecture Notes in Computer Science, pages 257–269.
Springer Verlag, 2005.

[Pip97] N. Pippenger. Theories of Computability. Cambridge University Press,
Cambridge, 1997.

[Pnu77] A. Pnueli. The temporal logic of programs. In FOCS, pages 46–57. IEEE,
1977.

[Pos41] E. Post. The two-valued iterative systems of mathematical logic. Annals
of Mathematical Studies, 5:1–122, 1941.

[Rei01] S. Reith. Generalized Satisfiability Problems. PhD thesis, Fachbereich
Mathematik und Informatik, Universität Würzburg, 2001.

[RV03] S. Reith and H. Vollmer. Optimal satisfiability for propositional calculi and
constraint satisfaction problems. Information and Computation, 186(1):1–
19, 2003.

[RW05] S. Reith and K. W. Wagner. The complexity of problems defined by
Boolean circuits. In Proceedings of the International Conference Mathe-
matical Foundation of Informatics, (MFI99); World Science Publishing,
2005.

[SC85] A. Sistla and E. Clarke. The complexity of propositional linear temporal
logics. Journal of the ACM, 32(3):733–749, 1985.

[Sch05] H. Schnoor. The complexity of the Boolean formula value problem. Tech-
nical report, Theoretical Computer Science, University of Hannover, 2005.

[Sto77] L. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Sci-
ence, 3:1–22, 1977.

21

