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Abstract

We construct the first constant time value approximation schemes

(CTASs) for Metric and Quasi-Metric MAX-rCSP problems for any r ≥ 2

in a preprocessed metric model of computation, improving over the pre-

vious results of [FKKV05] proven for the general core-dense MAX-rCSP

problems. They entail also the first sublinear approximation schemes for

constructing approximate solutions of the above optimization problems.

1 Introduction

In [FKKV05] a general result was proved on existence of PTAS for core dense

MAX-CSP problems. The result depends on a new method of approximating a

tensor by the sum of small number of rank-1 tensors similar to the traditional

Singular Value Decomposition. In this paper we are going to construct more

efficient (in fact, constant time) approximation schemes for the special case of

metric and quasimetric instances of the MAX-CSP problems.

Assume that r, n are integers where r ≥ 2 is fixed. Let V = {v1, v2, . . . , vn}

be a set of boolean variables.

An instance of Metric MAX-rCSP, a natural generalization of Metric MAX-

2CSP, is defined by a pair (F, d) where F = {f1, f2, . . . , fm} is a set of boolean

functions depending each on exactly r variables in V and d is a metric defined on

∗LRI, CNRS, Université de Paris-Sud. Research partially supported by the IST grant 14036

(RAND-APX), and by IST APPOL2 and by the PROCOPE project. Email: lalo@lri.lri.fr
†Dept. of Computer Science, University of Bonn. Research partially supported by DFG

grants, Max-Planck Research Prize, IST grant 14036 (RAND-APX), and the Excellence grant

EXC59-1. Research partially done while visiting IHÉS Institute, Bures-sur-Yvette. Email:
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V . We let f
(j)
i1,i2,...,ir

for j ∈ Ii1,i2,...,ir , denote the functions involving the variables

i1, i2, . . . , ir. We assume that F comprises at least one function for each r-set

{i1, i2, . . . , ir} ∈
(

V
r

)

. For each r-set {i1, i2, . . . , ir} the weight of each of the

functions f
(j)
i1,i2,...,ir

is defined to be the sum of the
(

r
2

)

pairwise distances:

Wi1,i2,...,ir =
∑

1≤k<j≤r

d(vik , vij) .

We are to find a boolean assignment A to the variables v1, v2, . . . , vn which

maximizes the sum

∑

i1,i2,...,ir



Wi1,i2,...,ir

∑

j∈Ii1,i2,...,ir

f
(j)
i1,i2,...,ir





of the weights of functions which are satisfied by A.

We assume that d is scaled so that the average of the n(n − 1)/2 distances

between points of V is 1. We define for each i

wi =
∑

j

d(vi, vj).

2 Results and Technique Overview

Metric MAX-rCSPs are core-dense in the sense of [FKKV05], and thus they have

PTASs running in time nO(1/ε2) for relative accuracy ε (see [FKKV05]). We give

here, by applying ideas of cloning (cf. [FK01]), a solution value PTAS running

in constant time 2O∼(1/ε2) in a preprocessed metric model of computation. This

yields a sublinear solution-constructing PTAS working in time 2O∼(1/ε2) · nr−1

for Metric MAX-rCSP problems for arbitrary r. This improves also an original

MAX-CUT approximation scheme of [FK01].

We use in our construction a cloning method introduced in [FK01], and a

fast approximate computation of the metric weights due to Indyk [I99b]. Then,

we use the main result of [AFKK02] which states, roughly speaking, that the

value of a MAX-rCSP is w.h.p. approximately equal to the value of the problem

induced on a random subset of the variables of size Ω(log(1/ε)/ε4) times a scaling

factor.

Our results easily extend to the case of general quasimetrics (see also

[FKKV05], [MS79]) which include important for various applications powers of

arbitrary metrics.

3 Model of Computation

Given a metric space (V, d), notice that the size of the input describing (V, d) is

Θ(n2). We consider two models of computation in the metric (or quasimetric)
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spaces. First, the Preprocessed Model where the sums of weights wi are being

precomputed and given by an oracle. (Recall that wi is the sum of the distances

to vi.) In the second model, we compute approximate values of the wi following

Indyk [I99a]. This can be done approximately in time O(npoly (log n)).

4 Main Results

We formulate now our main results. We note that sizes of inputs for MAX-rCSP

problems are Θ(nr), and thus running times in o(nr) are sublinear in the input

sizes.

Theorem 1. There exist constant time 2O∼(1/ε2) approximation schemes

(CTASs) in the preprocessed model of computation for estimating the optimum

value of metric and quasimetric Max-rCSPs for any r ≥ 2.

By approximate implementation of the preprocessed metric model we obtain

Theorem 2. There exists sublinear time value approximation schemes work-

ing in time 2O∼(1/ε2) +O
(

npoly
(

1
ε
log n

))

for metric and quasimetric Max-rCSPs

for any r ≥ 2.

Using a method of Section 9, we are able to formulate a result on constructing

approximate solution-assignments for Max-rCSP problems.

Theorem 3. There exists sublinear time approximation schemes working in

time 2O∼(1/ε2)nr−1 + O
(

npoly
(

1
ε
log n

))

for metric and quasimetric Max-rCSPs

for any r ≥ 2.

The proofs of Theorems 1-3 are given in the following sections of the paper.

5 Cloning

The main idea of our CTASs for Metric MAX-rCSP, is that of cloning similar to

[FK01], i.e. constructing a new MAX-rCSP problem (F̃ , W̃ ) by replacing each

variable vi by a certain number mi, say, of copies vi,1, vi,2, ..., vi,mi
, called clones.

For each {i, j, ..., `} ∈
(

V
r

)

, F̃ will comprise mimj...m` functions identical to fi,j,...,`

and each acting on a particular r-tuple of clones of the form vi,s, vj,t, ..., v`,u. We

take in fact

mi = dwie.

Let us denote by Ṽ the new set of variables. Now we assign to all the r-tuples of

the form vi,s, vj,t, ..., v`,u for fixed i, j, ..., ` the same weight denoted by W̃i,j,...,` :

W̃i,j,...,` =
Wi,j,...,`

mimj ...m`
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We end up in this way, as we prove in the next section, with a dense weighted

instance in the sense of [FK00] for which we can use known approximation algo-

rithms. Note that here as in [FK01] cloning is just a convenient disguised form

of a special weighted sampling.

6 Cloned Instances are Weighted Dense

In this section, we prove that the instances (F̃ , W̃ ) are dense in the sense that

the maximum weight of a constraint does not exceed the average of the weights

by more than a constant factor. We will use as in [FK01] the inequalities

wu ≥
n

2
. (1)

d(u, v) ≤
wu + wv

n
. (2)

Since each pair of vertices {vi, vj} belongs to precisely r!
(

n−2
r−2

)

r − sets, the sum

S, say, of the weights in the original instance:

S = r!

(

n − 2

r − 2

)

∑

1≤j<k≤n

d(vi, vj) ,

S ∼
r(r − 1)nr

2

the last because the sum of the distances is
(

n
2

)

. The sum of the weights in the

cloned instance, say S ′ would be the same as S if we had mi = wi. From our

choice mi = dwie, it follows that we have S ′ = S(1 + O(1/n)) and

S ′ ∼
r(r − 1)nr

2
. (3)

Now the number of functions in F̃ is

|F̃ | =
∑

(i1,i2,...,ir)∈V r

mi1mi2 ...mir

≤ 2
∑

(i1,i2,...,ir)∈V r

wi1wi2 ...wir

≤ 2

(

∑

u∈V

Wu

)r

|F̃ | ≤ 2n2r (4)

Upon dividing, we get that the mean weight in F̃ is bounded below by

r(r − 1)

4nr
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We denote by c the maximum weight. c is clearly bounded above by the maximum

over all the choices of i1, i2, ..., ir of the ratio

∑

j,k∈{i1,i2,...,ir}
d(vij , vik)

wi1wi2 ...wir

By (2) we get that

c ≤
(r − 1)

∑r
j=1 wij

n wi1wi2...wir

and, since wi is at least n/2, we get

c ≤
r(r − 1)2r−1

nr
(5)

Using the previous bound for the mean weight, we get that the ratio of this

maximum to the average does not exceed 2r+1. (Our computations give actually

the bound 2r(1 + o(1)) as n tends to infinity.)

7 Cloned Metric MAX-rCSPs Are Optimized

by Pure Assignments

Call an assignment to Ṽ pure, if for each 1 ≤ i ≤ n all the clones vi,1, vi,2, . . . , vi,mi

of vi are assigned to the same truth value. A pure assignment defines in the

obvious way a solution to the original problem (F, W ) with the same value as

the solution it defines on
(

F̃ , W̃
)

.

For an assignment A to Ṽ , we denote by val(A) the corresponding value

of the objective function in the instance
(

F̃ , W̃
)

. The following claim implies

immediately the assertion of the title of this section.

Claim: Let A = Ṽ → {0, 1} be an assignment to Ṽ . Assume that A is not

pure for the variable v1. Let A(o) (resp. A(1)) be the assignment obtained from

A by assigning all the clones of v1 to 0 (resp. to 1) and keeping A unmodified

elsewhere. Then one of val(A(o)) and val(A(1)) is at least val(A).

For the proof, recall that m1 denotes the number of clones of v1. For each

j ∈ {1, 2, . . . , k1} the set of clauses in the disjunctive normal form of F containing

v1,j is of the form

{v1,j ∧ C : C ∈ C1}

say, where C1 is a certain set of (r − 1)- conjunctions which does not depend on

j. Similarly, the set of clauses in the disjunctive normal form of F containing

v̄1,j is of the form

{v̄1,j ∧ D : D ∈ D1}
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say, where D1 is a certain set of (r − 1)- conjunctions which does not depend on

j. (This is because
(

F̃ , W̃
)

is invariant when we interchange v1,j and v1,k, k 6= j)

Write:

- c1 for the weighted number of conjunctions C ∈ C1 true under A where each

C has the weight of (v1,1 ∧ C)

- d1 for the weighted number of conjunctions D ∈ D1 true under A where

each D has the weight of (v̄1,1 ∧D) - n
(0)
1 for the number of v1,j assigned to 0 by

A

- n
(1)
1 for the number of v1,j assigned to 1 by A

- A(res) for the restriction of A to the set Ṽ \{v1,1, v1,2, . . . , v1,k1
}

We have then that:

val(A(0)) − val(A(res)) = m1c1 (6)

val(A(1)) − val(A(res)) = m1d1 (7)

val(A) − val(A(res)) = n
(0)
1 c1 + n

(1)
1 d1 (8)

Since m1 = n
(0)
1 + n

(1)
1 it is clear than one of 6 and 7 is at least as big as 8.

8 The PTASs

We apply in this section an extension of the results of [AFKK02] (see for the

background results also [AKK95], [F96], and [FK97]).

Let F = {f1, f2, . . . , fm} be a set of m distinct boolean functions of n vari-

ables v1, v2, . . . , vn each involving r of the variables and let a1, a2, . . . , am be

non-negative weights bounded by b, say, where b does not depend on n. We

let Max(F ) denote the maximum weighted number of functions which can be

satisfied by a truth assignment to the variables, where fi has the weight ai. For

a subset Q of the variables we let F Q denote the subset of F which are functions

of only variables in Q.

Theorem 1 of [AFKK02] has been stated without weights. We generalize it to

the above case of non-negative weights a1, a2, . . . , am. The proof carries through

directly to that weighted situation. (We did not attempt the strongest possible

form of the theorem here.)

Theorem 4. Let r,n, be positive integers, with r fixed. Suppose ε is a positive

real. There exists a positive integer q ∈ O(log(1/ε)/ε4) such that for any F as

above, if Q is a random subset of {v1, v2, . . . , vn} of cardinality q, then with

probability at least 9/10, we have
∣

∣

∣

∣

nr

qr
Max(F Q) − Max(F )

∣

∣

∣

∣

≤ εnr .

By applying Theorem 4 to our weighted instance (F̃ , W̃ ) and computing

Max(F Q) by exhaustive search we get an approximation to the optimum value
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within εnr. Now, by the preceding section we know that there is a pure solution

at least as good as the approximation we have. (Note that we do not compute

such an assignment.) This pure solution induces in the obvious way an approxi-

mation to the original instance (F, W ) with the same relative error. Adding the

easy observation that the optimum of (F̃ , W̃ ) rescaled to average weight 1 gives

constant time approximation scheme working in time 2O∼(1/ε2) (cf. [AFKK02])

provided an oracle gives us approximate values of the wi.

Without oracle the overall time is dominated by the time needed for the

approximate computation of the wi. The later is in O(npoly(log n)) by a result

of Indyk [I99a].

9 Extracting Assignments from Solution Val-

ues: Proof of Theorem 3

Recall that Theorem 3 asserts the following.

There exists sublinear time approximation schemes working in time

2O∼(1/ε2)nr−1 +O
(

npoly
(

1
ε
log n

))

for metric and quasimetric Max-rCSPs for any

r ≥ 2.

Proof. We assume the preprocessed model of computation (see Section 3).

By working on the space of clones (see Section 5) we can assume that the instance

is dense. Now we claim the following:

Proposition. Assume that we have an instance of MAX-rCSP defined by a

collection of functions F. and assume we pick a random sample S of the r-sets of

variables by choosing randomly each r-set with probability p, and let m = p
(

n
r

)

.

Let G be the set of functions in F corresponding to these r-sets. Let val(F, A)

resp. val(G, A) be the number of functions in F , resp. in G, true under the

assignment A. If m = nr−1f(n) with f(n) = ω(1), then we have w.h.p.

max
A

|val(F, A) −

(

n
r

)

m
val(G, A)| ≤ εnr

where the max is taken over the set of all assignments.

Proof. Fix an assignment A and let Sat(A, F ), resp. Sat(A, G), denote the

set of functions in f resp. G satisfied by A. Let m = |Sat(A, F )|. We have that

|Sat(A, G)| =
∑

Y ∈(V

r)

nY BY (1, p)

where nY is the number of functions of the r-tuple Y satisfied by A and the

BY (1, p) are Bernouilli variables each with parameter p Therefore, using the
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bound nY ≤ 22r

by Hoeffding we have that

Pr(||Sat(A, G)| − mp| ≥ εnr) ≤ 2 exp

(

−
2−2r+1ε2n2r

mp

)

≤ 2 exp

(

−
2−2r+1ε2n

f

)

.

Using the union bound we find that, for any fixed ε if f = C(r)/ε2, where C(r)

depends only on r, the event ||Sat(A, G)| −mp| ≥ εnr is true simultaneously for

all assignments A with probability at least 3/4.

2

Theorem 3 follows almost immediately from the above proposition. We sam-

ple the cloned instance which can be done in the required time. Then we compute

an assignment A for which the number of constraints in the set of G correspond-

ing to the sample is approximately maximized. By the above proposition, A is

also, with high probability, approximately maximizing for F . For let B be an

optimal assignment for F and A an optimal assignment for G But we have that

val(F, A) ≥

(

n
r

)

m
val(G, A) − ε(nr)

and

val(F, B) ≤

(

n
r

)

m
val(G, B) + ε(nr)

With the previous inequality, this gives

val(F, B) − val(F, A) ≤ 2ε(nr)

which shows that A is approximately optimal for F .

2

10 Some New Constructability Consequences

The results of Section 9 entail also the following improvements of hitherto known

results for dense unweighted instances of Max-rCSP.

Corollary. There exists sublinear time approximation schemes for construct-

ing an almost optimal assignment for dense Max-rCSP problems working in time

2Õ(1/ε2)nr−1 for any r ≥ 2.

We notice also that our results improve over the best known algorithms for

Metric MAX-CUT (see [FK01] and [I99b]) and give for the first time sublinear

approximation schemes for that problem.

Finally, our results can be extended to obtain sublinear approximation algo-

rithms for constructing approximate solution-assignments for Metric Max- and

Min-Bisection problems (see also [FKK04]).
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An interesting open question remains about the existence of sublinear approx-

imation schemes for the metric k-Clustering problems for arbitrary fixed k (see

[FKKR03]).
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