
Finding Large Cycles in Hamiltonian Graphs

Tomás Feder∗ Rajeev Motwani†

Abstract

We show how to find in Hamiltonian graphs a cycle of length nΩ(1/ log log n). This is a
consequence of a more general result in which we show that if G has maximum degree d and
has a cycle with k vertices (or a 3-cyclable minor H with k vertices), then we can find in O(n3)
time a cycle in G of length kΩ(1/ log d). From this we infer that if G has a cycle of length k, then
one can find in O(n3) time a cycle of length kΩ(1/(log(n/k)+log log n)), which implies the result
for Hamiltonian graphs. Our results improve, for some values of k and d, a recent result of
Gabow [10] showing that if G has a cycle of length k, then one can find in polynomial time a

cycle in G of length exp(Ω(
√

log k/ log log k)). We finally show that if G has fixed Euler genus
g and has a cycle with k vertices (or a 3-cyclable minor H with k vertices), then we can find in
polynomial time a cycle in G of length f(g)kΩ(1), running in time O(n2) for planar graphs.

1 Introduction

In spite of the significant progress over the last decade in the area of approximation algorithms and
hardness results, there has been very little progress in establishing positive or negative results for
the problem of finding long paths and cycles1 in undirected graphs. Until recently, there was no
known algorithm which guarantees approximation ratio better than n/polylog(n), and no hardness
of approximation results that explain this situation. This is true even for the problem of finding
long paths and cycles in bounded-degree Hamiltonian graphs, and indeed it has been conjectured
that this very special case is already very hard to approximate. In the very recent past, there has
been activity on this problem culminating in a breakthrough result of Gabow [10] which for the
first time led to an algorithm that could find paths and cycles of super-polylogarithmic length in
arbitrary graphs with long paths. In part based on Gabow’s techniques, we improve the bounds to
show how to find in Hamiltonian graphs a cycle of length nΩ(1/ log log n). This is a consequence of a
more general result that is described below.

Previous Work. Karger, Motwani, and Ramkumar [14] showed that obtaining a constant factor
approximation to the longest undirected path is NP-hard. Furthermore for any ε > 0, approxi-
mating to within a factor of 2O(log1−ε n) is quasi-NP-hard. Later, Bazgan, Santha, and Tuza [1]
established similar negative results for finding long paths in cubic Hamiltonian graphs. Stronger
hardness results for directed graphs were obtained by Björklund, Husfeldt, and Khanna [3].

Let k be the number of vertices in a longest cycle containing a given vertex v in an undirected
graph. Gabow [10] showed how to find a cycle through v of length exp(Ω(

√

log k/ log log k)) in

∗268 Waverley Street, Palo Alto, CA 94301. Email: tomas@theory.stanford.edu
†Department of Computer Science, Stanford University, Stanford, CA 94305. Supported in part by NSF

Grants IIS-0118173, EIA-0137761, and ITR-0331640, and grants from Microsoft, SNRC, and Veritas. Email:

rajeev@cs.stanford.edu
1Generally, all results apply equally well to finding paths or cycles, with or without a specified vertex or edge, so

we will ignore the differences between these variants.

1

Electronic Colloquium on Computational Complexity, Report No. 156 (2006)

ISSN 1433-8092

polynomial time. This implies the same bound for the longest cycle, longest vw-path and longest
path. The previous best bound for longest path is length Ω((log k)2/ log log k) due to Björklund
and Husfeldt [2].

Jackson [12] showed that 3-connected n-vertex cubic graphs have cycles through any two given
edges of length at least nc +1 for c = log2(1+

√
5)−1. Feder, Motwani, and Subi [7] considered the

problem of finding long cycles in 3-connected cubic graphs whose edges have weights wi ≥ 0, and

find cycles of weight at least (
∑

wa
i)

1

a for a = log2 3. A graph is 3-cyclable if for every set of three
vertices u, v,w, there is a cycle going through all three vertices; in particular 3-connected graphs
are 3-cyclable. It is also shown by Feder, Motwani, and Subi [7] how to find a cycle of length at
least k(log3 2)/2 in a graph with vertices of degree at most 3 that has a 3-cyclable minor with k edges
(or in particular, has a cycle of length k), in polynomial time. Their algorithms run in O(n2) time,
using a linear time algorithm for dividing a graph into triconnected components [11].

Jackson and Wormald [13] proved that 3-connected n-vertex graphs with maximum degree at
most d have a cycle of length at least 1

2nlogb 2 + 1, where b = 6d2. This bound was improved by

Chen, Xu, and Yu [5] to nlogb 2 + 2, where b = 2(d − 1)2 + 1, who also gave a polynomial time
algorithm for finding such a cycle; the algorithm runs in time O(n3).

Chen and Yu [6] showed that every planar 3-connected n-vertex graph has a cycle of length at
least cnlog

3
2 for some constant c > 0. Their proof gives an algorithm running in time O(n2) for

finding such a cycle. Böhme, Mohar and Thomassen [4] generalized this result by showing that
every 3-connected n-vertex graph of Euler genus g has a cycle of length at least f(g)nlog3 2 for
some f(g) > 0. It can be inferred from their proof that such a cycle can be found in polynomial
time for fixed g. Sanders and Zhao [18] showed that every graph of Euler genus g has a spanning
2-connected subgraph of degree at most 6 + 2g.

Results. In this paper we show that if G has maximum degree d and has a cycle of length k,
or more generally a 3-cyclable minor H with k vertices, then one can find in polynomial time a
cycle in G of length kΩ(1/ log d). The algorithm runs in time O(n3). From this we infer that if G
has a cycle of length k, then one can find in O(n3) time a cycle of length kΩ(1/(log(n/k)+log log n)).
In particular, a cycle of length nΩ(1/ log log n) is found in Hamiltonian graphs. This improves the
bound of Gabow [10] for finding a long cycle in graphs containing a cycle of length k in the case of
graphs of degree bounded by d ≤ exp(o(

√
log k log log k)), and in the case where the longest cycle

has length k ≥ n/ exp(o(
√

log n log log n)).
We also show that if G has Euler genus g, and has a cycle of length k, or more generally a

3-cyclable minor H with k vertices, then one can find in polynomial time a cycle in G of length
f(g)kΩ(1) for fixed g, where f(g) > 0. On planar graphs, the algorithm runs in time O(n2).

Our algorithm, like that of Gabow, requires finding a cycle through three specified vertices. A
more general result of Robertson and Seymour [17] gives a polynomial-time algorithm for the fixed
vertex subgraph homeomorphism problem, but with unreasonably large constants even for our case
of triangles. Fortunately, there is a linear time algorithm for our case of triangles due to LaPaugh
and Rivest [15], not involving any large hidden constants. Their paper gives a linear time algorithm
for finding a cycle through any three given edges, if such a cycle exists. By examining all cases of
their proof, one can show the following.

Lemma 1 A 3-connected graph G has a cycle through three edges e, f , and g if and only if it is
not the case that either e, f , and g separate G, or e, f , and g share a common vertex v.

The rest of this paper is organized as follows. In Section 2, we present first a simple algorithm
achieving the bound exp(Ω(

√

log k/ log d)), and then the algorithm achieving the bound kΩ(1/ log d).

2

This second algorithm depends on two other results obtained, namely finding a cycle with at least
kΩ(1/ log d) special edges in a 3-connected graph of maximum degree d having k special edges; and
finding in a 3-connected graph of maximum degree d whose edges have weight wi a cycle of total

weight at least (
∑

wb
i)

1/b
with b = O(log d). Then, in Section 3, we give the algorithm achieving

the kΩ(1/(log(n/k)+log log n)) bound, and in particular the nΩ(1/ log log n) bound for Hamiltonian graphs.
Section 4 shows the results on graphs of fixed Euler genus.

2 Long Cycles in Graphs with 3-Cyclable Minors

Before we establish the main result of this paper, we present a simpler result with a weaker bound.
This result exemplifies the main idea that will be used in the rest of the paper.

Theorem 1 Let G be a graph with maximum degree d that has a 3-cyclable minor H with k vertices
(or in particular, a cycle with k vertices). Then one can find in polynomial time a cycle in G of
length at least exp(c

√

log k/ log d) for some constant c > 0. The algorithm runs in time O(n3).

Proof. Let G be a graph in which we wish to find a long cycle. We assume G is 2-connected, since
every 3-cyclable minor lies in a 2-connected block. If G has two vertices u, v such that G − {u, v}
is not connected and has connected components Ri, then we may decompose G into graphs Gi

with vertices V (Ri) ∪ {u, v} and the edges of Ri, the edges joining the vertices of Ri to u and v,
plus a new copy of the edge (u, v). We may then further decompose the graphs Gi similarly, thus
obtaining a tree decomposition of G into graphs Gi such that each Gi is either (1) 3-connected, (2)
a cycle, or (3) a multigraph consisting of two vertices u, v joined by multiple parallel edges. In this
tree decomposition whose vertices are graphs, the root graph G0 has children Gi corresponding to
edges uv in G0, and similarly for the children Gi, until the leaf graphs Gj are reached. See Hopcroft
and Tarjan [11] for an algorithm to obtain such a decomposition.

Suppose G has maximum degree d and a 3-cyclable minor H with k vertices. We may choose
the root graph G0 to be any of the graphs Gi, so we assume that H involves an edge (u, v) in the
root graph G0. Consider each descendant G1 of G0 containing k1 vertices in H. For each edge
(ui, vi) in G1, other than (u0, v0) corresponding to the parent of G1, if (ui, vi) corresponds to a
subgraph Ri attached at u and v containing ki of the vertices in H, we assume inductively that
we have found a cycle in Ri going through (ui, vi) of length exp(c

√

log ki/ log d) for some constant
c > 0.

If G1 has r vertices and is 3-connected, then we may find a cycle C1 in Gi of length at least
exp(c′ log r/ log d) for some constant c′ by the result of Chen, Xu, and Yu [5] for 3-connected graphs.
If C1 does not go through the edge (u0, v0), then we may join u0 and v0 by disjoint paths to the
cycle C1 since G is 2-connected, and thus obtain a cycle C ′

1 going through (u0, v0) of length at least
|C1|/2 ≥ exp(c log r/ log d) for some constant c. This bound applies also if Gi is a graph with two
vertices joined by at most d parallel edges, or a cycle. Thus if r ≥ exp(

√
log k1 log d) we obtain a

cycle going through (u0, v0) of length at least exp(c
√

log k1/ log d).
Suppose instead r < exp(

√
log k1 log d). If the two edges of Gi corresponding to subgraphs

Ri with the most vertices, say ki, in H are (u2, v2) and (u3, v3), then we may inductively find
a cycle C ′′

1 going through (u0, v0), (u2, v2), and (u3, v3) of length at least exp(c
√

log k2/ log d) +
exp(c

√

log k3/ log d) by 3-cyclability and the algorithm of LaPaugh and Rivest [15].
Say k2 ≥ k3. If k2 ≥ k1(1 − 1/ exp(c

√

log k1/ log d)), then the cycle C ′′
1 has length at least

exp(c
√

log k2/ log d) + 1 ≥ exp(c
√

log k1/ log d).

3

Finally, if k2 < k1(1 − 1/ exp(c
√

log k1/ log d)), then k2 ≥ k3 ≥ (k1/ exp(c
√

log k1/ log d))/r ≥
k1/ exp((1+c)

√
log k1 log d), because at most two edges of G1 incident to a vertex v correspond to a

child Gi containing a vertex of H, by 3-cyclability of H, so that at most r edges of G1 correspond to
a child Gi containing a vertex of H. The cycle C ′′

1 then has length at least 2 exp(c
√

log k3/ log d) ≥
2 exp(c(

√

log k1/ log d − 1)) ≥ exp(c
√

log k1/ log d) for c > 0 small enough. This completes the
induction and the proof of the bound on the cycle length.

The tree decomposition of G can be found in time O(n2). The algorithm for finding a long
cycle by Chen, Xu, and Yu [5] in a 3-connected G1 takes O(r3) time. It follows from the analysis
of LaPaugh and Rivest [15] that a cycle through e0 = (u0, v0), e2 = (u2, v2), e3 = (u3, v3) in the
3-connected graph G1 exists if and only if (i) there is no vertex v to which all three edges e0, e2, e3

are incident and (ii) G1 −{e0, e2, e3} is connected, so the two edges e2, e3 can be found from a tree
decomposition of G − e0 in O(r3) time. Adding the complexity O(r3) over all choices of G1 gives
the O(n3) bound on the running time.

The following two results consider finding cycles going through certain special edges in a 3-
connected graph.

Theorem 2 Let G be a 3-connected graph with maximum degree d that has k special edges. Then
one can find in polynomial time a cycle in G that has at least ck1/(1+4(1+log2 3) log2(2(d−1)2+1))/d1/(1+log2 3)

special edges for some constant c > 0. The algorithm runs in time O(n3).

Proof. Find a minimal subgraph H of G containing all k special edges and such that H is 2-
connected. Find the tree decomposition of H into graphs Hi as in Theorem 1. For each Hi, there
exists a path p whose edges are not in H joining a vertex of Hi or one of its descendants in the tree
decomposition to a vertex of another Hj that is not a descendant of Hi, since G is 3-connected.
We repeatedly add such paths p to H to obtain a subgraph R of G such that if paths with internal
vertices of degree 2 are replaced by single edges in R, then we obtain a 3-connected graph R′.

If some path in R with internal vertices of degree 2 has B ≥ kε special edges, where ε > 0 will
be chosen later, then G has a cycle of length B. Otherwise R′ has at least k1−ε/d vertices, and we

may find in R′ a cycle C of length at least A = ck(1−ε)/ log2(2(d−1)2+1) for some constant c > 0 by
the algorithm in Chen, Xu, and Yu [5]. Either at least A/2 of the edges in C correspond to edges
in H or at least A/2 of the edges in C correspond to edges not in H.

Suppose at least A/2 of the edges in C correspond to edges not in H. Either (i) C contains a
path p of length at least

√

A/2 not involving edges in H, or (ii) C contains at least
√

A/2 paths
q not involving edges in H joining vertices in H. In case (i) we may extend

√

A/2 disjoint paths
inside the tree in R that does not have internal vertices in H containing p, where these paths lead
to different Hi from p. In case (ii) the paths q form the edges of a forest whose vertices are graphs
Gi, so C reaches at least

√

A/2 different Hi.
Suppose instead at least A/2 of the edges in C correspond to edges in H. Either (iii) C contains

edges in at least
√

A/2 different Hi, or (iv) C contains at least
√

A/2 edges in the same Hi. In case
(iv), Hi is either 3-connected or a cycle, else C can only have two edges in Hi. If Hi is 3-connected,
then each of the chosen edges in Hi must be special edges, otherwise they could have been removed
from H while preserving 2-connectivity, by minimality of H; thus C has at least

√

A/2 special
edges. If Hi is a cycle with at least

√

A/2 edges, then either at least
√

A/2/3 of these edges
correspond to descendants of Hi containing at least one special edge, thus giving a cycle with at
least

√

A/2/3 special edges within H; or there are at least
√

A/2/3 disjoint paths q coming out of
Hi, where each path q has internal vertices not in H and leads to a different Hj .

4

Thus in all four cases (i), (ii), (iii), (iv), we have either E =
√

A/2/3 special edges in C, or E
disjoint paths q starting at C (these paths may be of length 0) and ending in different Hi. Consider
the subtree T of the tree decomposition of H extending from the root H0 to all Hi reached by the
paths q starting at C. Suppose some Hi in T is adjacent to at least (d + 1)F leaf paths of Hj of
T , where F =

√
E. We may select F of the edges of Hi corresponding to these leaf paths of Hj,

so that these edges do not share endpoints. The selected edges of Hi can be interconnected by a
subtree Ti of Hi containing the selected edges. We may join F/(d + 1) pairs of these selected edges
by disjoint paths inside Ti. These F/(d+1) disjoint paths r correspond to paths joining pairs of the
(d + 1)F vertices in Hj ending paths q coming from C, and each such r can be chosen to contain
at least one special edge. We thus end up with F/(d + 1) disjoint paths t joining pairs of vertices
in C, by following q, then r, then q, and each such t contains at least one special edge.

Suppose instead no Hi in T is adjacent to at least (d + 1)F leaf paths Hj of T . Then we
may consider the tree T ′ obtained from T by removing leaf paths containing an odd number of
selected Hi, and select the Hj visited in T ′ or adjacent to a leaf in T . Either T ′ contains at least
s ≥ F/(8(d+1)) or there are at least t ≥ F/(8(d+1)) pairs of vertices on paths of degree 2 in T ′ or
leaf paths of T , since 6s+2t ≥ F/(8(d+1)). The selected F/(d+1) vertices in T ′ give F/(8(d+1)),
so again we end up with F/(8(d + 1)) disjoint paths t joining pairs of vertices in C, by following q,
then r, then q, and each such t contains at least one special edge.

We shall show how to construct from this gadget with at least G = F/(8(d+1)) special edges a
cycle going through at least J = cGδ special edges for δ = 1/(1 + log2 3). This will give the bound

J = c(F/d)δ = c(
√

E/d)
δ

= c(A1/4/d)
δ

= ck(1−ε)/(4(1+log2 3) log2(2(d−1)2+1))/d1/(1+log2 3),

or kε, whichever is smallest. Setting ε = 1/(1 + 4(1 + log2 3) log2(2(d − 1)2 + 1)) gives the desired
bound.

So we have a cycle C and pairwise disjoint paths t joining pairs of vertices in C, where each
such path contains at least one special edge, and the number of special edges in C plus the number
of paths t is at least G. If the number of special edges in C is at least G/2 we are done. Otherwise
the number of paths t is at least G/2. Number the paths i with internal vertices of degree 2 along
the cycle 1, 2, . . . , v. Consider pairs of paths (i, j) with i < j such that i, j separate the cycle plus
paths t, and no (i, j′) separate the cycle plus paths t for i < j′ < j. We assume (1, j) is such a
pair, if any. We cannot have two distinct such pairs (i, j), (i′, j′) with i ≤ i′ < j ≤ j′. Let L
be the maximum number of such pairs that pairwise satisfy i < i′ < j′ < j or i′ < i < j < j′.
For each 0 ≤ h ≤ L, consider the paths t with one endpoint between i and i + 1 and the other
endpoint between j and j + 1 with i < j, such that the maximum number of pairs (i′, j′) with
i + 1 ≤ i′ < j′ ≤ j that pairwise satisfy i′ < i′′ < j′′ < j′ or i′′ < i′ < j′ < j′′ is h. These paths t,
together with the cycle C, have a tree decomposition consisting of a cycle R0 at the root, children
Ri that are 3-connected cubic graphs or three parallel edges. If Ri consists of ri paths t containing

a special edge then we can find in Ri a cycle with r
1/ log2 3
i special edges by the result of Feder,

Motwani, and Subi [7], which may be made to go through the edge connecting to the cycle R0 while

reducing the number of special edges to r
1/ log2 3
i /2. Thus if all the Ri for h fixed have rh paths t,

we obtain a cycle with at least r
1/ log2 3
h /2 special edges. Since the rh add up to at least G/2, we

have a bound (G/(2L))1/ log2 3/2.
We may choose one path t for each 0 ≤ h ≤ L and remove all other paths t, so that now the

cycle C has vertices 0, 1, 2, . . . , 2L, 2L + 1 and the paths t have endpoints (i, 2L − i). Since G is

5

3-connected, there are three disjoint paths from 2L + 1 to L. Remove a maximal number of edges
from G other than C and the L paths t so that if we remove one more such edge then there are not
three disjoint paths from 2L + 1 to L. Every added edge e that thus remains participates in a cut
with two vertices u, v, where u is on the path going along U = 2L + 1, 0, 1, . . . , L and v is on the
path going along V = 2L + 1, 2L, 2L − 1, . . . , L. Thus the three disjoint paths p, q, r from 2L + 1
to L use all such added edges e.

Define sector i to consist of the four paths (i, 2L − i), (i + 1, 2L − (i + 1), (i, i + 1), and
(2L − i, 2L − (i + 1)) for 0 ≤ i < L − 1. For each sector i, at least one of the three disjoint paths
p, q, r must visit sector i. Otherwise the three disjoint paths contain edges ep, eq, er on paths that
join the parts of C and the L paths t before sector i and after sector i. So for two of these three
edges, say ep and eq, the corresponding cut vertices up, uq along U and vp, vq along V are either
all before or all after sector i, say all before sector i. Then one of ep, eq starts in U and the other
one in V , say ep in U and eq in V . Therefore uq precedes up in U , and vp precedes vq in V , and
so path r must visit both up and vq, say in that order, which is not possible since up comes after
the cut eq, uq, vq. Thus sectors i and i + 2 are both visited by p and q, and so it is possible to join
two vertices on p, q, r by a path contained in sectors i, i + 1, i + 1 visiting at least one of the special
edges in these sectors.

Similarly, it is not possible for any one of the paths p, q, r, say p, to visit first a vertex in sector
i + 2 or later, and then visit a vertex in sector i − 2 or earlier. Otherwise sector i is traversed
forward by p, say possibly with an edge ep, then backwards by p, say from i+1 to i, and then again
forward by p, say possibly with an edge e′p, while sector i is traversed by q involving possibly edges
eq, er, so again either two of ep, eq, er or two of e′p, eq, er must incur in cuts involving four vertices
that occur all before sector i or all after sector i, which is not possible as before.

Thus if we consider the selected paths with at least one special edge joining two vertices in
sectors 6i, 6i + 1, 6i + 2 and on the paths p, q, r, for 0 ≤ i ≤ (L − 3)/6, we have at least L/6 such
paths, which can be grouped into six cases, namely both endpoints in the same path, one of p, q,
or r, or both endpoints in different paths, p and q, p and r, or q and r. At least one of these six
cases occurs in at least L/36 of the chosen paths with a special edge. If one of the first three cases
occurs, say these L/36 special edges occur joining vertices in p, then we may visit them by going
forward along p and then backward along q, thus obtaining a cycle with at least L/36 special edges.
If one of the last three cases occurs, say these L/36 special edges occur joining p and q, then we
may visit them by going forward alternating between p and q, and then backward along r, thus
obtaining again a cycle with at least L/36 special edges.

The bound is thus the maximum of L/36 and (G/(2L))1/ log2 3/2, and the treadeoff happens at
L = G1/(1+log2 3). The running time O(n3) is verified by showing that deciding which edges to re-
move to get H from G takes O(n2) time per vertex v whose edges we wish to remove, by examining
the biconnected components of G minus v. Then a tree decomposition for H is obtained in time
O(n3), and the at most n trees added for R are obtained in O(n2) time each. The construction
for cases (i),(ii),(iii),(iv) requires O(n) traversals that can be done in O(n2) time each. Finally,
removing edges after finding the three disjoint paths p, q, r takes O(n) time per edge, as the graph
in this case has constant degree.

A slight modification of the preceding argument gives the following bound.

Theorem 3 Let G be a 3-connected graph with maximum degree d that has k special edges. Then
one can find in polynomial time a cycle in G that has at least k1/(c log d) special edges for some
constant c > 0. The algorithm runs in time O(n3).

6

Proof. Consider again the proof of Theorem 2. If E ≥ d4, then
√

E/d ≥ E1/4, and we may remove
the power of d in the denominator, so the result follows.

An edge e that is not special, at the end of a path p with internal vertices of degree 2, and
attached at the endpoint z of p may not be contracted if and only if some Hi in the tree decompo-
sition has an edge zt as the edge corresponding to the parent of Hi, and the forests attached to the
vertices of Hi other than z, t only reach the neighbor u of z in p out of all vertices in H outside of
Hi. We proceed to contract the edges e of H that are not special that may be contracted according
to this rule if at least one of the endpoints of p is a vertex in a 3-connected graph Hj. This requires
contracting per edge of Hj at most d path which must be of length at most d16, otherwise A ≥ d16
and E = A1/4 ≥ d4. This increases the degree to at most d18.

Suppose instead E < d4. Then k ≤ rc log d for some constant c > 0 and r ≤ d. If a tree in
the forest that was added to H has a path P of length at least d32 joining two vertices x, y in H,
then we may find a cycle C ′ in H going through x, y, and either C ′ has length at least d16, or
C ′ has length at most d16, in which case some subpath P ′ of P of length d16 does not have any
intermediate vertices in C ′, so P ′ can be extended to a cycle of length at least d16. This then gives
A ≥ d16 and thus E = A1/4 ≥ d4. We may thus assume that the added forests have diameter at
most d32.

A well know fact is that an edge of a 3-connected graph with at least five vertices may be either
contracted or removed (while dropping intermediate vertices of degree 2 in a path after removal)
while preserving 3-connectivity. Since the edges e of the forests that were added to H may not
be removed, these edges e may be contracted, while preserving 3-connectivity. Since the forests F
that were attached to H have diameter at most d32, we may contract paths p′ in such forests F ,
increasing the degree to at most d50. If F has f vertices, a set S with at most cd vertices separates
F into components with at most f/d vertices. We may thus select a tree T spanning S in F , with T
consisting of at most d33 vertices, and contract T , increasing the degree to at most d51. Repeating
this process inductively on the components with f/d vertices gives a new forest F ′ with diameter at
most r = c logd k for some constant c > 0, with the degrees bounded by d′ = d51. By the algorithm
of Chen, Xu, and Yu [5], we can find a cycle of length at least kc′/ log d′ = kc′′/ log d, and this cycle
has at least t = kc′′/ log d/r = ec′′r/r ≥ ec′′′r = kc′′′/ log d edges that are not in forests F ′ and are thus
in the graph H, for constants c′, c′′, c′′′ > 0.

We then proceed as in the proof of Theorem 2 with these t edges of H, except that the situation
where we twice divide by d′ + 1 does not arise. The reason is that this situation arose when we
had some number f of these edges e in F hanging paths of the tree decomposition attached to a
3-connected component Hj. Each such hanging path containing e has a cycle with at least one
special edge containing e, unless e has an endpoint in Hj and could not be contracted. In that
case, the edge e = zt has an associated component Hi joined at t by a forest, and there is a cycle
containing zt and a special edge in Hi, which involves only possibly one hanging path containing Hi,
so the bound f is achieved without dividing twice by d′+1, and the result follows as in Theorem 2.

The case with special edges in a 3-connected graph is now generalized to the case with edges of
various weights in a 3-connected graph.

Theorem 4 Let G be a 3-connected graph with maximum degree d where edge ei has weight wi ≥ 0.

Then one can find in polynomial time a cycle in G of total weight at least Lb(w) = (
∑

wb
i)

1/b
, where

b = c log d for some constant c > 0. The algorithm runs in time O(n3).

Proof. By Theorem 3, we can find a cycle that has at least ka special edges for a = 1/(c′ log d)
with c′ > 0 constant in a 3-connected graph of maximum degree d with k special edges.

7

Given a 3-connected graph G of maximum degree d and edge weights wi, we may divide all edge
weights by the weight of the second largest edge weight wj. As a result, the second largest edge
weight is now wj = 1. Group the edges into sets S0, S1, S2, . . . , as follows. The set S0 contains the
two edges of largest weight, namely z ≥ 1 and 1. The set Si with i ≥ 1 contains all edges of weight
1/2i < wj ≤ 1/2i−1.

Apply Theorem 3 to each problem on G having the set Si as special edges. If Si has si special
edges, then we find a cycle with ri ≥ sa

i special edges. For S0, we have ri = si = 2 and the solution
has total weight z + 1. For Si with i ≥ 1, the solution has total weight at least ri/2

i ≥ sa
i /2

i.
Let b = c/a for some constant c > 0 to be chosen later. If the solution found has total weight

f , then f b is at least the maximum of (z + 1)c/a and sc
i/2

ic/a. Define x ≥ z and ti ≥ si so that

f b = (x + 1)c/a = tci/2
ic/a for all i ≥ 1. Then, for c ≥ 2

(Lb(w))b ≤ xc/a + 1 +
∑

i≥1

ti/2
(i−1)c/a

= xc/a + 1 +
∑

i≥1

(f b2ic/a)
1/c

/2(i−1)c/a

= xc/a + 1 +
∑

i≥1

(f b)
1/c

/2((c−1)i−c)/a

≤ xc/a + 1 + (f b)
1/c

(21/a + 1 + 2−1/a + . . .)

≤ xc/a + 1 + (f b)
1/c

(21/a + 2)

= xc/a + 1 + (x + 1)1/a(21/a + 2)

≤ (x + 1)c/a = f b

where the last inequality holds for c constant large enough. Thus the solution found has total
weight at least f ≥ Lb(w), completing the proof of the bound. The running time is dominated by a
single execution of the O(n3) algorithm in Theorem 3, as the bounds for each Si can be evaluated
to find the Si giving the maximum lower bound before executing the algorithm.

Finally, the case of 3-connected graphs with edge weights is applied to give the result for 3-
cyclable graphs, or graphs with a large 3-cyclable minor.

Theorem 5 Let G be a graph with maximum degree d that has a 3-cyclable minor H with k vertices
(or in particular, a cycle with k vertices). Then one can find in polynomial time a cycle in G of
length at least k1/(2c log d) for the constant c > 0 from Theorem 4. The algorithm runs in time
O(n3).

Proof. Let G be a graph in which we wish to find a long cycle. We assume G is 2-connected, since
every 3-cyclable minor lies in a 2-connected block. Find as in Theorem 1 the tree decomposition
of G into graphs Gi such that each Gi is either (1) 3-connected, (2) a cycle, or (3) a multigraph
consisting of two vertices u, v joined by multiple parallel edges.

Assume first G itself is 3-cyclable. We assign a weight wi to each Gi in the tree decomposition,
so that if Gi and all its descendant Gj have at least ni +1 vertices, then wi ≥ ni

a, where a = 1/b =
1/c log d. We do this inductively, starting at the leaves. So suppose for a given Gi, we have assigned
weights wj to the children graphs Gj . This assigns weight wj to the edge of Gi corresponding to
Gj ; an edge of Gi not corresponding to a child of Gi is assigned weight 1, and the edge of Gi

corresponding to the parent of Gi is assigned weight 0. If Gi is 3-connected, apply then Theorem 4

8

to Gi, obtaining a cycle of weight w ≥ (
∑

wb
j)

1/b ≥ (
∑

nj)
1/b = na

i . If Gi is a cycle, then we
obtain a cycle of weight w =

∑

wj ≥
∑

na
j ≥ na

i . If Gi consists of multiple parallel edges, then
Gi has at most one child Gj , otherwise G would not be 3-cyclable; we obtain a cycle of weight
w = wj ≥ na

j = na
i . Assign weight w to Gi, completing the induction.

Unfortunately, the cycles that we selected for each Gi to define the weights of Gi do not
necessarily connect, since the cycle for a child Gj may not go through the special edge e that
links it to its parent in the tree. We shall define cycles that do go through e so that if Gi has weight

w, then the cycle through e visits at least w1/2 ≥ n
a/2
i edges other than e, and this will complete

the proof.
Consider a Gi whose weight w was defined by finding a cycle C of weights wj, and suppose

for each j we have found a path inside the corresponding Gj of length at least wj
1/2. We write

wj = εjw, with
∑

εj = 1. Clearly, if C goes through e, we can just select C and have a cycle
through e of length at least

∑

wj
1/2 ≥ w1/2, since

∑

εj
1/2 ≥ 1 where the sums are over the weights

in C.
Suppose C does not go through e. By 2-connectivity, we can obtain two disjoint paths joining

the two endpoints of e to C, respectively, such that the two disjoint paths enter C at two distinct
vertices, thus decomposing the weights of C into two subsets S and T delimited by these two
vertices. If

∑

εj
1/2 ≥ 1 when the sum is taken over the weights in either S or T , then we are done.

If this is not the case, then we will show that the largest weight w1 = ε1w in S and the largest
weight w2 = ε2w in T satisfy ε1

1/2 + ε2
1/2 > 1. If w2 = 1, then the cycle through e and S goes

through the edge of weight w1 and at least one other edge (of weight at least w2 = 1). So we can
assume w1, w2 > 1, and obtain a cycle through e and the edges of weight w1, w2 by 3-cyclability.

It remains to prove the claim about the sum of the ε
1/2
j . Notice that if wj ≥ wj′ and 0 ≤ δ ≤ wj′ ,

then wj
1/2 + wj′

1/2 ≥ (wj + δ)1/2 + (wj′ − δ)1/2. For the argument, we modify the weights by
choosing the appropriate values δ, as follows. We can ensure that S will have at most one non-zero
weight smaller than w1, and similarly that T will have at most one non-zero weight smaller than
w2. Thus S has s ≥ 1 weights equal to w1 and one weight 0 ≤ w′

1 < w1; similarly T has t ≥ 1
weights equal to w2 and one weight 0 ≤ w′

2 < w2.

We thus have sε1 + ε′1 + tε2 + ε′2 = 1, with sε
1/2
1 + ε′1

1/2 < 1 and tε
1/2
2 + ε′2

1/2 < 1. We write
ε′1 = λε1 with 0 ≤ λ < 1, and let s′ = s + λ. Similarly, we write ε′2 = µε2 with 0 ≤ µ < 1, and let

t′ = t + µ. Then s′ε1 + t′ε2 = 1. Also, s′ε
1/2
1 ≤ (s + λ1/2)ε

1/2
1 < 1, and similarly t′ε

1/2
2 < 1. But

then s′ε1 < ε
1/2
1 and t′ε2 < ε

1/2
2 , so ε

1/2
1 + ε

1/2
2 > 1. This completes the proof for the case where G

is 3-cyclable.
Suppose G is not 3-cyclable. We proceed to simplify the graph as follows, from the leaf graphs

Gj up to the root. If Gi consists of multiple parallel edges, we keep only one child Gj , the one with
most vertices, so that for other children we are left with an edge in Gi that corresponds to no child.

As we go up the tree, we must also make sure we will be able to obtain, from a cycle in a graph
Gi, a new cycle going through the special edge e. This is not possible if the two edges f1 and f2

with weights w1 and w2, together with e, separate the 3-connected graph Gi, or if e, f1, f2 are all
incident to the same vertex v. For one of f1, f2, the one corresponding to a child Gj of smaller size,
we remove the child Gj .

If the 3-cyclable minor of size k reaches the root of the tree, then the simplified graph will have
n ≥ k vertices, by induction from the leaves up to the root of the tree of Gi The reason is that
when f1 or f2 is removed or reduced to a single edge, the 3-cyclable minor of size k necessarily
does have vertices in one of the two subgraphs corresponding to f1 and f2. We then get a cycle of

length at least n
a/2
i with the previous algorithm.

9

If the 3-cyclable minor of size k does not reach the root of the tree consider the Gi closest to
the root that it reaches. The 3-cyclable minor does not have vertices corresponding to the special
edge e connecting this Gi to its parent. If Gi is 3-connected, we do not simplify the graph for pairs
of edges f1, f2 which together with e disconnect the graph of Gi mponent (neither in the case of P3

nor in the case of a 3-connected graph); we assign to e weight 1. If Gi consists of multiple parallel
edges, then we keep the two children of Gi with the most vertices. As before, we have ni ≥ k
vertices by induction from the leaves of the tree up to this Gi, and get a cycle of length at least

n
a/2
i with the previous algorithm.

The tree decomposition can be found in time O(n3), and the running time for each Gi is dom-
inated by the cubic time algorithm of Theorem 4.

3 Long Cycles in Hamiltonian Graphs

We infer from Theorem 5 that one can find long cycles in Hamiltonian graphs.

Theorem 6 Let G be an n-vertex graph that has a Hamiltonian cycle. Then one can find in G a
cycle of length at least n1/(c log log n) for some constant c > 0 in O(n3) time.

Proof. The first stage of the algorithm finds a spanning tree with vertices of degree O(log n).
Suppose we have found a spanning forest F consisting of r trees with vertices of degree at most
d. Initially F consists of the n vertices and no edges. Find a maximal matching M of trees in F ,
where two trees t1, t2, may be matched if they are joined by an edge e, which can be added to F .
This partitions F into two sets of trees F1, F2, where the trees in F1 are matched, while there are
no edges joining trees in F2. There must exist a matching of the trees in F2 into vertices in F1 given
by edges joining F2 to F1 in the Hamiltonian cycle. Find such a matching M ′. After adding the
two matchings M and M ′ to F , we have a forest F ′ with at most r/2 trees and vertices of degree
at most d + 2. Repeating this process log2 n times, we obtain a single spanning tree with vertices
of degree at most 2 log2 n.

The second stage of the algorithm finds a spanning 2-connected subgraph with vertices of degree
O(log n). Suppose we have found a spanning 2-connected subgraph H with r1 blocks, of which r2

do not have exactly 2 cutpoints, and with r3 cutpoints, of which r4 do not belong to exactly 2
blocks. Let r′ = r2 + r4, and let d be the maximum degree in H. Initially H is the spanning tree
found before. Consider the maximal sequences b1, c1, b2, c2, b3, . . . , ... where b1 is a block with only
cutpoint c1, each ci is a cutpoint belonging only to the two blocks bi and bi+1, and each bi, i ≥ 2
is a block with only cutpoints ci−1 and ci. For each such sequence, say a1, a2, a3, . . . proceed as
follows. Join a1 to the last ai that a1 has an edge to, then join one of a2, . . . , ai−1 to the last aj

with j > i that there is an edge to, then join one of ai, . . . , aj−1 to an aj′ with j′ > 1, and so on.
This combines an initial set of blocks b1, b2, . . . bj′′ into a single block b′ that does not have edges
to subsequent blocks in the sequence, while increasing the degrees by 2. Assume thus that each b1

has this property stated for b′.
We now proceed as for F above. Find a maximal matching M of components b1 starting the

above sequences. The unmatched components b1 can be matched by M ′ to vertices not in the
corresponding sequence b1, c1, . . ., except possibly for the cutpoint belonging to at least 3 blocks
after the sequence, and not in other choices of unmatched components b1, where each vertex is
used for at most 2 choices of b1, since the Hamiltonian cycle contains such an M ′. Adding the
edges of M and M ′, at most 3 edges per vertex, we are left with the case where the sequences

10

b1, c1, . . . , consist of just b1. The same process again matches each b1 to vertices not in b1, reducing
the number of such b1 by half and adding at most 3 edges per vertex. Reducing the number of b1

by half also reduces the value r′ defined above to at most 4r′/3. Since this process adds a total of
6 edges to each vertex and can be repeated at most log4/3 n times, the number of edges added to
each vertex is at most 6 log4/3 n. In the end, we have obtained a 2-connected spanning subgraph
H with degrees at most 2 log2 n + 6 log4/3 n.

If the 2-connected spanning subgraph H with vertices of degree O(log n) is 3-cyclable, then we
can apply Theorem 5 and obtain a cycle of length at least n1/(c log log n). We shall satisfy the degree
bound O(log n), and obtain a 2-connected spanning subgraph H ′ that is not necessarily 3-cyclable,
but satisfies the conditions for the algorithm of Theorem 5, thus obtaining a cycle of length at
least n1/(c′ log(c log n)) = n1/(c′′ log log n). Obtain the three decomposition of H into graphs Hi. This
decomposition does not satisfy the conditions implied by 3-cyclability needed for Theorem 5 if there
are graphs Hi with edge e = (u, v) containing either (i) a set of at least two other edges fj incident
to u such that each such fj correspond to a child Hj of Hi; (ii) same as (i) for v; (iii) two edges
g1, g2 that together with e separate Hi.

Let T be the subtree of the tree decomposition containing the root H0 and every Hi that does
not satisfy the conditions, such that every leaf of Hi does not satisfy the conditions. The leaves Hi

of T are in paths H1,H2, . . . ,Ht such that each Hi for 2 ≤ i ≤ t has only the child Hi−1 in T . We
shall take care of each Hi that does not satisfy the conditions in such paths with only increase in
degree by a constant, thus not including such paths from T . Since this needs to be done at most
O(log n) times as above, the total increase in degree is O(log n).

For each such path H1,H2, . . . ,Ht, join H1 to the latest Hi it has an edge to, then join an Hj

with j ≤ i or one of its descendants not in Hj−1 to the latest Hi′ it has an edge to, otherwise
proceed to Hi+1, and so on. This increases the degrees by at most 2, and shortens the path so that
in the resulting path no two Hi are joined by an edge. Consider the earliest Hp in this new path
that has an edge going out of the path in the Hamiltonian cycle, and such that Hp does not satisfy
the conditions. Suppose we have taken care of each Hi with i < p by adding edges for Hi and its
descendants not in Hp−1 with total increase in degree O(logc−1 n). It suffices then to include an
edge from Hj to a vertex not in the path. This can be done as before by first finding a maximal
matching among such Hj in different paths, possibly coming out of the descendants of Hj, and then
matching the unmatched Hj to vertices not in their path or in other unmatched Hj, with increase
at most 3.

It thus suffices to take care of each Hi with i < p with edges within Hi and its descendants not
in Hi−1. This can be done in such a way that takes care of all Hi with i < j′ for some j′ that will be
guaranteed to satisfy j′ ≥ p. We first do this for case (i) for Hi that has edge e = (u, v) connecting
to its parent. There is thus a set of at least two other edges fj incident to u such that each such
fj correspond to a child Hj of Hi, and say f0 corresponds to the child Hi−1 on the path. Since
there are no edges coming out of Hi−1, the Hamiltonian cycle must have edges coming out of Hj

with fj 6= f0. Again we find a maximal matching among these Hj, and then match the remaining
unmatched Hj to vertices not in any unmatched Hj and contained in Hi or its descendants other
than Hi−1, with increase degree at most 3. Note that the vertices u and v of the edge e = (u, v)
may occur in several such Hi, so we try to avoid edges to both u and v. If this cannot be done, then
the Hamiltonian cycle is required to have such edges. In that case, we go up the path H1, . . . ,Ht

and choose in each case whether to avoid u or v, with no u or v being used for more than 2 graphs
Hi, since these vertices have only 2 edges incident to them in the Hamiltonian cycle. When this
can be done no longer, we have taken care of all Hi with i < j′ with j′ ≥ p. Note that in the special
case of Hi = H1, there is no particular edge f0 corresponding to a special child Hi−1, so the above

11

matching procedure can leave out any one fj for which Hj remains unmatched. Thus for case (i),
and similarly case (ii), the degree goes up only by a constant.

For case (iii), two edges g1, g2 that together with e = (u, v) separate Hi. The general case
has pairs of edges g1q, g2q with 1 ≤ q < s that together with e separate Hi into components
R1, R2, . . . , Rs, such that e joins R1 to Rs, and the edges g1q, g2q join Rq to Rq+1. An edge gjq may
correspond to a child graph Hjq that is a cycle, in which case gjq represents a path gjq1, gjq2, . . . , gjqr.
In such a path, we may join gjq1 to the latest gjqh that it has an edge to, then join one of gjq1, . . . , gjqh

to the latest gjqh′ it has an edge to, and so on, with a constant increase in degree that reduces
the number of edges gjqh on the path and guarantees that no two gjqh on the path are joined by
edges. If there is an edge joining a g1qh to a g2qh′ , then we add such an edge, thus introducing an
intermediate Rj between Rq and Rq+1 with g′1q, g

′
2q joining Rq to Rj and g′′1q, g

′′
2q joining Rj to Rq+1,

and so on, with a constant increase in degree after which it is guaranteed that no edge joins a g1qh

to a g2qh′ as well. Finally, consider the sequence R1, (g11, g21), R2, (g12, g22), R3, (g13, g23), . . . , Rs.
Denote this sequence by A1, A2, . . . , A2s−1. Join A1 to the latest Aj it has an edge to. If Aj is
(g1j , g2j), then join to both g1j and g2j if possible, and also join as late in the corresponding paths
of g1jh and g2jh. Then join one of A1, . . . , Aj to the latest Aj′ with j′ > j. If such an edge can
only be made to come out of g1j or g2j , then if g1jh and g2jh′ were reached, then the edge must be
chosen coming out of no later than g1j(h+1) or g2j(h+1). Proceed then similarly with an edge out of
one of A1, . . . , Aj′ . By the time we reach As, with a constant increase in degree, there are no pairs
of edges g1jh, g2jh′ which form a cut together with e, thus taking care of Hi. As in case (i), the
vertices u, v from the edge e may be used for multiple Hi, so again we must avoid them if possible.
We thus go up the path H1, . . . ,Ht while guaranteeing that each u, v is used in at most 2 graphs
Hi, since these vertices have at most 2 incident edges in the Hamiltonian cycle. When this can be
done no longer, we have taken care of all Hi for i < j′ and with j′ ≥ p as before.

This completes the algorithm that finds a graph with degrees O(log n), so that Theorem 5 can
be applied to find a cycle of length at least n1/(c log log n) for some constant c > 0. Each iteration
requires finding matchings for the Hi in time O(n2.5), for a total of O(n2.5 log n) time over the
O(log n) iterations to reduce to the problem of Theorem 5, whose solution takes O(n3) time.

In the above proof, the degree of the spanning tree can be improved to 3 in polynomial time, see
Fürer and Raghavachari [9], and the degree of the 2-connected spanning graph can be improved to
O(log n/ log log n) in time nO(log n/ log log n), see Ravi, Raghavachari and Klein [16]. For more details
along these lines, see Feder, Motwani, and Zhu [8].

Theorem 6 generalizes to the case of graphs with very long cycles as follows. The proof is a
special case of a more general result that appears in [8].

Theorem 7 Let G be an n-vertex graph that has a cycle of length k. Then one can find in G a
cycle of length at least k1/(c(log(n/k)+log log n)) for some constant c > 0 in O(n3) time.

Proof. We first find a tree in G of maximum degree O(r(n/k) log2 n) that contains at least
k(1 − 1/r) of the vertices of the cycle K of length k, for any r ≥ 2. Let t = r log n. We consider
a series of log n phases i = 0, 1, . . . , log n during which we select edges to form a subgraph H.
In phase i, we consider components of H that have between 2i and 2i+1 vertices. By the end of
the phase, these components will be combined into components with at least 2i+1 vertices, or not
considered as part of H. The number of vertices that are thus removed from H but belong to K in
each phase will be at most k/t, and the degree increase in each phase will be at most 2tn/k. Thus
over all log n phases we have removed from H a total of (k/t) log n = k/r vertices that belong to
K, and the maximum degree is at most (2tn/k) log n = (2rn/k) log2 n, as required.

12

Consider H as selected at the beginning of phase i. The components that have between 2i

and 2i+1 can be joined in pairs by a maximal collection of disjoint paths that do not go through
H and are added to H. Eventually, we are left with such components that can not be combined
in pairs by paths not going through H. Suppose there are at least k/t vertices of K that belong
to such components. Then the number of such components that contain vertices of K is at least
s = dk/(t2i+1)e. These components can be joined together by the cycle K. These s components
have s representative vertices in K that can be joined in pairs as disjoint paths. These disjoint
paths necessarily go through other components of H that have at least 2i+1 vertices, so we can
set a flow problem where the sources are the components having between 2i and 2i+1 vertices and
the sinks are the components having at least 2i+1 vertices, thus obtaining at least s ≥ dk/(t2i)e
paths. Since the total number of such components to be joined is at most n/2i, the computation of
disjoint paths by flow happens at most (n/2i)/(k/(t2i)) = tn/k times, for an increase of degree at
most tn/k during a phase. When such a flow can no longer be found, the phase is complete, which
happens only when fewer than k/t vertices of K belong to such components that have between 2i

and 2i+1 vertices. The time complexity is dominated by pushing O(n) units of flow in O(m) time
each, for a total O(nm) time.

We may assume G is 2-connected by considering individual 2-connected components. We find
a 2-connected subgraph of G of maximum degree O(r(n/k) log6 n) that contains at least k(1− 1/r)
of the vertices of the cycle K of length k, for any r ≥ 2. Let t′ = r log3 n. We initially find the tree
of degree O(r(n/k) log2 n) above. We shall gradually add paths to this tree H until H becomes
2-connected. At any stage, H consists of a collection of disjoint 2-connected components joined by
single vertices in a tree structure. The degree of a component is the number of other components
joined at single vertices to it. Consider removing all paths joining leaf components to components
of degree at least 3, going through components of degree 2. If we repeatedly remove these paths, the
number of paths going through components of degree 2 in H is halved each time, so we may remove
such hanging paths at most log n times. This sets up log n phases, where each phase considers the
hanging paths of components.

A phase that deals with hanging paths of components first begins by consider each such path,
one at a time. It starts with the leaf component and finds the path not going through H that
connects to the latest component on the path of components starting at this leaf, thus forming a
single 2-connected component that constitutes a new leaf, and the operation is performed again.
Since vertices in the earlier leaf are not used to start a new path, this increases degrees by at most
2. When the leaf component can no longer be connected, we proceed to the parent of the leaf
component as we had with the leaf. In the end, we have reduced the number of components on the
path as much as possible by paths not going through H, and increased the degree by at most 2.

The hanging paths of components are then taken care in log n sub-phases by considering paths
of components with between n/2i+1 and n/2i vertices in phases 0 ≤ i < log n. For each such path
of components, we consider the components containing the bottom half of vertices closer to the leaf.
As with the construction of the tree before, we first connect these to one another by disjoint paths
not going through H, and when this is no longer possible, find disjoint paths for the remaining ones
joining them to the rest of the graph. We divide the at most 2i bottom halves into groups of size 2j

with 1 ≤ j ≤ i, and attempt in sub-sub-phase j flows joining the bottom of one part of size 2j−1 to
the top of the other part of size 2j−1 in successive flows giving disjoint paths. Each sub-sub-phase
may not join in flows at most of (k/t′)/(n/2i) bottom halves, or (k/t′)/(n/2j) bottom halves per
group. Since the number of bottom halves per group is 2j , the degrees increase by at most t′n/k
in each sub-sub-phase, or (t′n/k) log3 n = O(r(n/k) log6 n) over all log3 n sub-sub-phases. The k/t′

vertices of K that may not be joined in a sub-sub-phase give a total of (k/t′) log3 n = k/r vertices

13

over all log3 n sub-sub-phases. The time complexity is dominated by pushing O(n) units of flow in
O(m) time each, for a total O(nm) time.

Finally, we strengthen the conditions on the 2-connected subgraph found by requiring that
the conditions implied by 3-cyclability that are used in Theorem 5 hold. These conditions for a
2-connected graph with tree decomposition into Gi are: (1) there is at most one edge incident to
u in Gj other than uv that corresponds to a child graph Gj′ of Gj ; (2) there is at most one edge
incident to v in Gj other than uv that corresponds to a child graph Gj′ of Gj ; (3) if three edges
uv, e, f separate Gj into two parts, then at most one of u, v corresponds to a child graph Gj′ of Gj .

We proceed as we did to obtain the 2-connected subgraph from the tree, but instead of starting
with the tree, we begin with the tree decomposition of the 2-connected subgraph. We thus proceed
to log n phases for the hanging paths of the tree decomposition, with each phase grouped into
log n sub-phases and each sub-phase grouped into log n sub-sub-phases. Again, we attempt in each
sub-sub-phase to link the bottom half of the hanging paths of Gj so that the Gj in the top halves
are not separated by just 2 vertices. However, we measure the number of vertices to be obtained for
a solution from such a Gj not by the total number of vertices in Gj , but by the number of vertices
that would have to be removed to satisfy conditions (1),(2),(3) if Gj remained only 2-connected,
that is, if we counted only the vertices corresponding to only one edge incident to u other than
uv, counted only the vertices corresponding to only one edges incident to v other than uv, and for
every pair of edges e, f such that uv, e, f separate Gj counted only the vertices for one of e, f .

Before considering connecting the bottom halves of paths among one another and to the rest
of the graphs, we process each path individually, by going up the path from the leaves Gj , joining
Gj together as much as possible. In addition, to attempting to join Gj as close as possible to the
leaf as possible to an ancestor on the path, we consider taking care of each Gj encountered by
going up the path individually, in order to partially satisfy conditions (1),(2),(3) within Gj . For
condition (3), the pairs of edges ei, fi that together with uv separate Gj into two parts decom-
pose Gj into subgraphs H1, . . . ,Hs such that uv joins H1 to Hs, and ei, fi join Hi to Hi+1, and
each ei, fi corresponds to a path of edges in a child of Gj . We may thus consider the sequence
H1, (e1, f1),H2, (e2, f2),H3, . . . ,Hs−1, (es−1, fs−1),Hs, and proceed as follows. First join H1 to the
last item in this sequence by a path, and if this last item is (ei, fi) then join H1 to the last possible
edge on the two paths for ei and for fi. Then proceed similarly starting anywhere up to this last
item, which is now part of H1. If it is not possible to proceed from H1, we proceed through the
edges in the paths for e1, f1 by connecting them to the last possible edge similarly. Each time we
add intermediate vertices of maximum degree 3, the degree of the vertices from which the paths
are started increases by 2, and the degree of the vertices where the paths are ended increases by
1, for a total increase of 3 in the degrees. For the remaining (ei, fi) that cannot be taken care of
in this way, we will have to remove the vertices corresponding to ei or fi, whichever has the least
number of vertices. This takes care of condition (3).

For conditions (1) or (2) of Gj , say condition (1), we consider each descendant Gj′ of Gj

attached at the vertex u from the edge uv in Gj corresponding to the parent of Gj . In each Gj′ , a
path starting at u with edges e1, . . . , ea is subdivided into new graphs Gi corresponding to paths
e1, . . . , ei for 1 ≤ i ≤ a. Thus each edge e other than uv incident to u in Gj corresponds to a path
of graphs Ge1, . . . , Gea from the leaves going up to Gj , and we proceed from the leaf Ge1 to connect
to the highest Gei and so on up the path, as from before, to reduce the number of Gei on the path
corresponding to e. Then we proceed to join the paths of corresponding to different e to one another
and to the rest of Gj , by considering the bottom halves of such paths, again by counting the number
of vertices that might be included from each Gei by joining it to the rest of Gj . If Gj has nj vertices
not in the child Gj , then instead of attempting to join at least (k/t′)/(n/2i) bottom halves per

14

flow as before in sub-sub-phases, we consider joining at least (nj/n)(k/t′)/(nj/2
i) bottom halves

per flow, or (nj/n)(k/t′)/d vertices, so the degree goes up by at most 4t′n/k, and the number of
vertices not joined is at most

∑

j(nj/n)(k/t′) ≤ k/t over all Gj . Here this is incurred in log n

sub-phases corresponding to the different values of 1 ≤ 2i ≤ nj for each Gj . This completes the
cases for conditions (1),(2) and (3) and the construction of the almost 3-cyclable subgraph. The
time complexity is dominated by pushing O(n) units of flow in O(m) time each, for a total O(nm)
time.

Applying Theorem 5 to the 2-connected subgraph meeting the sufficient conditions implied by
3-cyclability, having at least k/2 vertices, and degree at most d′ = O((n/k) log6 n) gives the bound
k1/(c log d′) ≥ k1/(c′(log(n/k)+log log n)) on the length of the cycle found in O(n3) time, for constants
c, c′ > 0.

The following generalization of Theorem 7 appears in [8].

Theorem 8 If a graph G with n vertices has a 3-cyclable minor K with k vertices of vertex degree at
most d, then for we can find in O(n3) time a cycle in G of length at least k1/(c(log d+log(n/k)+log log n))

for some constant c > 0.

4 Long Cycles in Graphs of Fixed Euler Genus

We now show how to find long cycles in graphs of fixed Euler genus

Theorem 9 Let G be a 3-connected graph of fixed Euler genus g that has k special edges, so that
every vertex of G is incident to at most two special edges. Then one can find in polynomial time a
cycle in G that has at least f ′(g)klog3 2/(1+log2 3) special edges, with f ′(g) > 0. The algorithm runs
in time O(n2) for planar graphs.

Proof. Let G be a 3-connected graph. Say that an edge e in G is contractable if the graph obtained
from G after contracting edge e is 3-connected, and removable if the graph obtained from G, after
removing e and then replacing any resulting vertex v of degree 2 and incident edges uv, vw with a
single edge uw, is 3-connected. A well known fact is that every edge of a 3-connected graph with
at least five vertices is either contractable or removable.

Select a set K of at least k/3 special edges that do not share endpoints. Repeatedly contract
or remove from G edges e = (u, v) such that neither u nor v is in K, depending on whether e is
contractable or removable. This results in a 3-connected graph G′ such that the vertices v that are
not incident to an edge in K have all their neighbors incident to an edge in K. Find in G′ a cycle
C of length at least r = f(g)klog3 2 by the result from [4] in polynomial time, or in time O(n2) if
G′ is planar by the result from [6]. The cycle C has at least r/2 vertices incident to an edge in K,
which can be decomposed as 2s+ t ≥ r/2, where s is the number of edges of K with both endpoints
in C, and t is the number of edges of K with exactly one endpoint in C. Let L be the set of these
t edges.

Repeatedly contract or remove from G edges e = uv such that neither u nor v is in C or incident
to an edge in L, depending on whether e is contractable or removable. This results in a 3-connected
graph G′ such that the vertices v that are neither in C nor incident to an edge in L have all their
neighbors either in C or incident to an edge in L. By the result from [18], G′′ has a 2-connected
spanning subgraph H of maximum degree 6 + 2g. The vertices v not in C incident to an edge
e = uv in L can be joined by paths in H of length at most 2 not going through u to other vertices

15

w that are either in L or in C. Each such path of length at most 2 meets at most cg2 other such
paths by the 6 + 2g degree bound, for some constant c > 0. Therefore there exist at least t/(cg2)
disjoint such paths, which can be found in O(n2) time by flow.

We thus have max(s, t/(cg2)) ≥ r/(c′g2) disjoint paths containing at least one special edge join-
ing two endpoints in C for some constant c′ > 0. We can then find as in Theorem refthm2 a cycle

containing at least c′′(r/g2)
1/(1+log2 3)

= c′′(f(g)klog3 2/g2)
1/(1+log2 3)

= f ′(g)klog3 2/(1+log2 3) special
edges with 0 < f ′(g) ≤ 1. The complexity is O(n2) as 3-connected graphs can be recognized in
linear time [11].

The argument that derives Theorem 4 from Theorem 3 carries over to deriving the following
from Theorem 9.

Theorem 10 Let G be a 3-connected graph of fixed Euler genus g where edge ei has weight wi ≥ 1,
and every vertex is incident to at most two edges of weight wi > 1. Then one can find in polynomial
time a cycle in G of total weight at least f ′′(g)Lc(w) = f ′′(g)(

∑

wc
i)

1/c for some constant c ≥ 1,
with f ′′(0) = 1 and 0 < f ′′(g) ≤ 1. The algorithm runs in time O(n2) for planar graphs.

We finally show the main result of this section.

Theorem 11 Leg G be a graph of fixed Euler genus g that has a 3-cyclable minor H with k vertices
(or in particular, a cycle with k vertices). Then one can find in polynomial time a cycle in G of
length at least f(g)k1/(2c) for the constant c ≥ 1 from Theorem 10 and 0 < f(g) ≤ 1. The algorithm
runs in time O(n2) for planar graphs.

Proof. The argument that derives Theorem 5 from Theorem 4 carries over to deriving the re-
sult from Theorem 10. This follows first by observing that a 3-cyclable minor can only lead to
at most two special edges incident to a vertex in a 3-connected component Gi, so Theorem 10
applies. Second, the children Gj of the children of a 3-connected component Gi share at most one
vertex with Gi, so the Euler genus of the union of Gi and Gj is at least the sum of the Euler
genus of each of Gi and Gj . Therefore there are at most c′g components Gi of genus gi ≥ 1 on a
path from the root component G0 to a leaf component Gi, so in going up to the root we multiply
by f ′′(g) from Theorem 10 at most c′g times. This gives the bound f(g)k1/(2c) for f(g) = f ′′(g)c′g.

References

[1] C. Bazgan, M. Santha, and Z. Tuza. “On the Approximability of Finding A(nother) Hamilto-
nian Cycle in Cubic Hamiltonian Graphs.” Journal of Algorithms 31 (1999), pp. 249–268.

[2] A. Björklund and T. Husfeldt, “Finding a path of superlogarithmic length.” SIAM Journal
on Computing 32–6 (2003), pp. 1395–1402.

[3] A. Björklund, T. Husfeldt, and S. Khanna. “Approximating longest directed path.” ICALP
(2004).

[4] T. Böhme, B. Mojar, and C. Thomasen. “Long cycles in graphs on a fixed surface.” Journal
of Combinatorial Theory, Series B 85 (2002), pp. 338–347.

16

[5] G. Chen, J. Xu, and X. Yu. “Circumference of graphs with bounded degree.” SIAM Journal
on Computing 33–5 (2004), pp. 1136–1170.

[6] G. Chen and X. Yu. “Long cycles in 3-connected graphs.” Journal of Combinatorial Theory,
Series B 86 (2002), pp. 80–99.

[7] T. Feder, R. Motwani, and C. Subi. “Approximating the longest cycle problem in sparse
graphs.” SIAM Journal on Computing 31–1 (2003), pp. 1596–1607.

[8] T. Feder, R. Motwani, and A. Zhu. “k-connected spanning subgraphs of low degree.” Electornic
Colloquium on Computational Complexity (ECCC) TR06-41 (2006).

[9] M. Fürer and B. Raghavachari, “Approximating the minimum degree spanning tree to within
one from the optimal degree.” In: Proceedings of the Third Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), 1992, pp. 317–324.

[10] H.N. Gabow. “Finding paths and cycles of superpolylogarithmic length.” In: Proceedings of the
Thirty-Sixth Annual ACM Symposium on Theory of Computing (STOC), 2004, pp. 407–416.

[11] J.E. Hopcroft and R.E. Tarjan. “Dividing a graph into triconnected components.” SIAM
Journal on Computing 2–3 (1973), pp. 135–158.

[12] B. Jackson. “Longest cycles in 3-connected cubic graphs.” Journal of Combinatorial Theory,
Series B 41 (1986), pp. 17–26.

[13] B. Jackson and N.C. Wormald. “Longest cycles in 3-connected graphs of bounded maximum
degree.” In: Graphs, Matrices, and Designs, R.S. Rees (editor), Marcle and Dekker
(1993), pp. 237–254.

[14] D. Karger, R. Motwani, and G.D.S. Ramkumar. “On approximating the longest path in a
graph.” Algorithmica 18 (1997), pp. 82–98.

[15] A.S. LaPaugh and R.L. Rivest. “The subgraph homeomorphism problem.” Journal of Com-
puter and System Sciences 20 (1980), pp. 133–149.

[16] R. Ravi, B. Raghavachari, and P. Klein. “Approximation through local optimality: designing
networks with small degree.” In Proceedings of the 12th Conference on Foundations of Software
Tech. and Theoret. Comp. Sci, Lect. Notes in Comp. Sci 652 (1992) pp. 279–290.

[17] N. Robertson and P.D. Seymour. “Graph Minors XIII: The disjoint paths problem.” Journal
of Combinatorial Theory, Series B 63 (1995), pp. 65–110.

[18] D.P. Sanders and Y. Zhao. “On 2-connected spanning subgraphs with low maximum degree.”
Journal of Combinatorial Theory, Series B 74 (1986), pp. 64–86.

17

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

