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Abstract

We explore whether various complexity classes can have linear or more generally nk-sized
circuit families for some fixed k. We show

• The following are equivalent,

– NP is in SIZE(nk) (has O(nk)-size circuit families) for some k

– PNP

‖ is in SIZE(nk) for some k

– ONP/1 is in SIZE(nk) for some k.

where ONP is the class of languages accepted by NP machines with some witness depending
only on the input length.

• For all k, MA is in SIZE(nk) if and only if AM is in SIZE(nk).

• One cannot show ⊕P does not have n2-size circuit families without using nonrelativizing
techniques beyond those already used for similar results.

• For every k, the class PPP does not have nk-sized circuits with Σ⊕P

k
-gates.

• For a large number of natural classes C and constant k, C is in SIZE(nk) if and only if
C/1 ∩ P/poly is in SIZE(nk).

1 Introduction

Proving lower bounds for general nonuniform circuit results remains one of the most difficult tasks in
computational complexity. One has to go to the exponential-time version of Merlin-Arthur games to
find a class provably not having a polynomial-size circuit family [BFT98]. We currently do not have
any techniques for showing EXP cannot have poly-size circuits and certainly not super-polynomial
lower bounds for NP needed to settle the P versus NP question.

What if instead we ask to show that a class doesn’t have nk-sized circuits for some fixed k, like
whether NP has a quadratic-sized circuit family. That question remains open but we have seen
some progress on larger classes. In 1982, Kannan [Kan82] showed that Σp

2 does not have nk-sized
circuits for any k. In 2005, Vinodchandran [Vin05] showed that the class PP does not have nk-sized
circuits. Very recently Santhanam [San06] improved both results by showing that the promise
version of MA does not have nk circuits for any fixed k.

Can we prove a similar result for other classes like NP, PNP

‖ , ⊕P, AM and MA? These are the
questions we explore in this paper. We don’t settle any of these problems but we show several
connections between them and try to capture the limitations of known techniques.

Showing the separation for PNP

‖ would imply the separation for NP, more specifically, if PNP

‖

does not have a nk-size circuit family for any constant k then neither does NP. Similarly we show
that if AM does not have nk-size circuits then neither does MA.
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We explore the class ONP, “Oblivious” NP, implicitly defined by Chakaravarthy and Roy [CR06].
A language L is in ONP if for every n there is a single witness w that witnesses every x in L with
|x| = n. We show that ONP nearly captures the hardness of showing NP does not have small
circuits: If NP does not have nk-sized circuits then ONP/1 does not have nk-sized circuits.

Vinodchandran and Santhanam’s lower bounds [Vin05, San06] use nonrelativizing techniques
which suggests that oracle results cannot tell us much about the limitations of separation theorems.
The only nonrelativizing techniques they use is based on interactive proof systems (see [BFL91b]),
arguably the only true nonrelativizing technique currently available in computational complexity.
We exhibit a relativized world where ⊕P has a n2-sized circuit family and the conclusions of the
nonrelativizing techniques used by Vinodchandran and Santhanam also hold. This means that
to prove ⊕P does not have quadratic-size circuit families would require nonrelativizing techniques
beyond those already known.

We give lower bounds against stronger circuit models. We show that the class PPP does not
have small circuits with ⊕P or Σp

k gates and more generally for any k, PPP does not have nk-size

circuits with Σ⊕P

k -gates.
Finally we prove a general result for a wide variety of complexity classes such as NP, PNP, MA,

BPP and PP. For all these classes C and many more, if C does not have nk-size circuit families then
C/1 ∩ P/poly does not have nk-size circuits either.

2 Preliminaries

2.1 Complexity Classes, Promise Problems and Advice

We assume a basic familiarity with complexity classes such as P, RP, BPP, NP, MA, AM, Σ2,PP,
]P and PSPACE. The Complexity Zoo (http://qwiki.caltech.edu/wiki/ComplexityZoo) is an
excellent resource for basic definitions and statements of results.

We also use simultaneous time and space bounded classes. ΣkTISP(T, S) is the class of languages
accepted by Σk machines operating simultaneously in time T and space S.

Given a complexity class C, coC is the class of languages L such that L̄ ∈ C. Given a function
s : N → N, SIZE(s) is the class of Boolean functions f = {fn} such that for each n, fn has Boolean
circuits of size O(s(n)). For a Boolean function f , Ckt(f) is the circuit complexity of f , i.e., the
size of the smallest circuit computing f , Given a language L and an integer n, Ln = L ∩ {0, 1}n.

We also require the notion of circuit size for other circuit models. These are typically defined by
having one or more auxiliary inputs to a deterministic circuit and defining the language accepted by
the circuit using some condition on acceptance of auxiliary inputs. ⊕SIZE(s) is the class of Boolean
functions computed by Parity-circuits of size O(s), i.e., an input x is accepted by the circuit if the
circuit accepts on an odd number of auxiliary inputs. Similarly, we define the classes Σa − SIZE(s)
for any integer a, and PSIZE(s), where the circuit accepts an input if a majority of auxiliary inputs
are accepted.

In order to deal with promise classes in a general way, we take as fundamental the notion of a
complexity measure. A complexity measure CTIME is a mapping which assigns to each pair (M, x),
where M is a time-bounded machine (here a time function tM (x) is implicit) and x an input, one of
three values “0” (accept), “1” (reject) and “?” (failure of CTIME promise). We distinguish between
syntactic and semantic complexity measures. Syntactic measures have as their range {0, 1} while
semantic measures may map some machine-input pairs to “?”. The complexity measures DTIME

and NTIME are syntactic (each halting deterministic or non-deterministic machine either accepts
or rejects on each input), while complexity measures such as BPTIME and MATIME are semantic
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(a probabilistic machine may accept on an input with probability 1/2, thus failing the bounded-
error promise). For syntactic measures, any halting machine defines a language, while for semantic
measures, only a subset of halting machines define languages.

A promise problem is a pair (Y, N), where Y, N ⊆ {0, 1}∗ and Y ∩ N = ∅. We say that a
promise problem (Y, N) belongs to a class CTIME(t) if there is a machine M halting in time t on
all inputs of length n such that M fulfils the CTIME promise on inputs in Y ∪ N , accepting on
inputs in Y and rejecting on inputs in N .

For a complexity class C, Promise−C is the class of promise problems which belong to C. Some-
times, when C is a syntactic class, we abuse notation and use C and Promise − C interchangeably.

A language L is in CTIME(t)/a if there is a machine M halting in time t taking an auxiliary
advice string of length a such that for each n, there is some advice string bn, |bn| = a such that M
fulfils the CTIME promise for each input x with advice string bn and accepts x iff x ∈ L.

For syntactic classes, a lower bound with advice or for the promise version of the class translates
to a lower bound for the class itself.

Proposition 1. Let CTIME be a syntactic complexity measure. If CTIME(poly(n))/O(n) 6⊆ SIZE(s(n)),
then CTIME(poly(n)) 6⊆ SIZE(s(o(n))).

Proposition 2. Let CTIME be a syntactic complexity measure. If Promise − CTIME(poly(n)) 6⊆
SIZE(s(n)), then CTIME(poly(n)) 6⊆ SIZE(s(n)).

2.2 Oblivious Classes

Intuitively, if a class C is defined using ”proofs of acceptance” for each input and some condition on
the verifiability of proofs, the oblivious version of the class C is the class of languages for which the
same proof can be used on any input of a certain length. Oblivious versions of symmetric alternation
classes were defined by Chakaravarthy and Roy [CR06] for the purpose of obtaining tight uniform
characterizations of NP ⊆ SIZE(poly). Here, we extend the definitions to non-deterministic classes
(punctually!), and to Merlin-Arthur classes.

Definition 3. We say a language L is in ONTIME(t) if there is a relation R(x, y) computable
in deterministic time t(|x|), and a sequence of witnesses {wn}, n = 1 . . .∞, such that x ∈ L iff
R(x, w|x|) holds.

Definition 4. We say a language L is in OMATIME(t) if there is a relation R(x, y, z) computable
in deterministic time t(|x|) and a sequence of witnesses {wn}, n = 1 . . .∞, such that:

1. If x ∈ L, then for all z, R(x, w|x|, z) holds.

2. If x 6∈ L, then for any y, Prz R(x, y, z) < 1/2.

We have that ONP ⊆ OMA ⊆ SIZE(poly). The first inclusion is immediate; for the second
inclusion, note that we can amplify the success probability of an OMA protocol above 1− 2−n just
as we do for an MA protocol. By the union bound, there must be some random string z that gives
the correct answer for every input when we have guessed the oblivious witness y. Giving y and z
as advice for each input length is sufficient to decide the language.

On the other hand, all sparse languages in NP are contained in ONP, and all sparse languages
in MA are contained in OMA. Thus we do not expect either of these classes to be easy - indeed,
ONP = P implies NEXP = EXP. Nor is it likely to be easy to show OMA ⊆ NP, since that would
imply MAE = NE, and solve long-standing derandomization questions.

Using the notions above, we can get tight uniform characterizations of C ⊆ SIZE(poly) for several
interesting classes C.
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Proposition 5. NP ⊆ SIZE(poly) iff NP ⊆ ONP iff NP ⊆ OMA.

Proof. From the preceding discussion, it is clear that NP ⊆ ONP implies NP ⊆ OMA, and NP ⊆
OMA implies NP ⊆ SIZE(poly). Thus we just need to show that NP ⊆ SIZE(poly) implies NP =
ONP. We will show that under this assumption, SAT ∈ ONP, and then use the fact that ONP is
closed under m-reductions to conclude NP = ONP.

Assume SAT ∈ SIZE(nk) for some k. We define the following ONP machine M for SAT. Given
a formula φ of size n, M guesses a circuit C of size nk for SAT on inputs of length n. If C accepts
on φ, M uses C to find a candidate satisfying assignment w via self-reducibility and paddability of
SAT. If w is a valid assignment, M accepts, otherwise it rejects. Note that no unsatisfiable formula
is ever accepted in this process, moreover if C is a correct circuit for SAT, all satisfiable formulae
are accepted. Thus C is an oblivious witness for SAT on length n. ¤

Proposition 6. EXP ⊆ SIZE(poly) iff EXP = OMA.

Proof. The backward direction follows since OMA ⊆ SIZE(poly). We show the forward direction.
It follows from work on instance checkers and interactive proofs [BFL91b, BFNW93] that if EXP ⊆
SIZE(poly), then EXP = MA. The proof of this result also gives EXP = OMA. ¤

Since Impagliazzo, Kabanets and Wigderson [IKW02] showed that NEXP ⊆ SIZE(poly) implies
NEXP = EXP we have the following corollary.

Corollary 7. NEXP ⊆ SIZE(poly) iff NEXP = MA iff NEXP = OMA.

3 Collapses of Circuit Lower Bounds

The question of fixed polynomial size circuit lower bounds was first considered by Kanan, who
proved lower bounds for Σ2.

Theorem 8. [Kan82] For any k > 0, Σ2 6⊆ SIZE(nk).

Theorem 8 has been strengthened progressively in a sequence of papers [BCG+96, KW98,
Cai01], and the smallest uniform complexity class for which we can show unconditional lower
bounds is SP

2 [Cai01]. Circuit lower bounds have recently been shown for the promise version of MA

[San06] but showing such lower bounds for uniform MA and smaller classes remains an important
open question. Such lower bounds for NP, apart from being interesting in their own right, would
also separate BPP and NEXP, which would be a major breakthrough in the area of derandomization.

One obstacle to proving lower bounds for classes smaller than SP
2 is that such results cannot

relativize. There have been non-relativizing results in this area [Vin05, San06], but there is a
paucity of non-relativizing techniques apart from the arithmetization technique used in work on
interactive proofs [LFKN92, Sha92].

Given the difficulty of actually proving circuit lower bounds, we settle for reductions between
them. We show for various pairs of classes B and C, where B ⊆ C that a fixed polynomial lower
bound for C also implies a fixed polynomial lower bound for the smaller class B. We call such
results collapses of circuit lower bounds.

One example of a collapse is the result that if the polynomial hierarchy contains a language of
superpolynomial circuit complexity, then so does NP. However, this result no longer holds if we
consider fixed polynomial size. Indeed, if it did, we would already have a superlinear circuit lower
bound for NP, by Theorem 8.

Our first result collapses circuit lower bounds for AM to circuit lower bounds for MA.
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Theorem 9. For any k > 0, AM 6⊆ SIZE(nk) iff MA 6⊆ SIZE(nk).

Proof. The forward direction follows from the fact that MA ⊆ AM [Bab85]. For the other direction
if MA ⊆ SIZE(nk) then NP ⊆ SIZE(poly) which implies AM = MA [AKSS95]. ¤

Next, we consider fixed polynomial size lower bounds for the class PNP

‖ , which lies between NP

and PNP. We show that such lower bounds would in fact imply lower bounds for NP.

Theorem 10. If PNP

‖ 6⊆ SIZE(nk) for any k > 0, then NP 6⊆ SIZE(nk) for any k > 0.

Proof. We show that if NP has circuits of size nk for some k > 0, then PNP

‖ has circuits of size

nkpolylog(n). This implies the theorem.
Let L ∈ PNP

‖ , and M be a polynomial-time machine deciding L with parallel access to SAT. We

construct a circuit of size nkpolylog(n) deciding L. In order to do this, we first define a quasilinear-
time oracle machine M ′ and two NP languages L1 and L2 such that M ′ decides L when given oracle
access to L1 and L2.

Let x be an input of length n and q1 . . . qk be the oracle queries of M on input x, where
k = O(poly(n)). We define the L1 as the set of pairs 〈x, r〉 such that at least r queries that M(x)
makes to SAT are satisfiable.

Clearly, L1 ∈ NP since a non-deterministic Turing machine can generate the queries qi and
guess satisfying assignments for r of them. If at least r of the qi’s are satisfiable, then there is a
sequence of guesses that leads to acceptance, otherwise there isn’t.

We define L2 using a non-deterministic Turing machine M2. Given input 〈x, r〉, M2 generates
queries q1 . . . qk, guesses satisfying assignments for exactly r of the qi’s, and simulates M assuming
all other queries are answered 0. It accepts if M accepts. It rejects if it fails to guess satisfying
assignments for r different qi’s, or if M rejects at the end of the simulation. By definition, L2 ∈ NP.

Now we define the behavior of M ′. Given an input x, M ′ finds by binary search the greatest
r such that 〈x, r〉 ∈ L1, using oracle queries to L1. Since k = O(poly(n)), the binary search can
be done in O(n log(n)) time using O(log(n)) queries to L1. Having found r, M ′ determines if
〈x, r〉 ∈ L2, using one oracle query to L2. If the oracle query returns “yes”, M ′ accepts, otherwise
it rejects.

To see that M ′ decides correctly that x ∈ L, note that using the binary search, it obtains the
correct number r of queries qi that are in SAT. Hence, when M2 guesses r satisfying assignments
for queries qi1 . . . qir , these must be precisely the queries that are satisfiable, and the other queries
must be unsatisfiable. Hence, given 〈x, r〉, where r is the correct number of satisfiable queries, M2

accepts iff M accepts x.
Now, by assumption, there are circuits C1 and C2 of size O(nk) for L1 and L2 respectively. We

convert the oracle machine M ′ into an oracle circuit (with at most a polylogarithmic overhead in
size), and replace oracle queries in the circuit with copies of C1 or C2, as the case may be. Since M ′

makes O(log(n)) calls to L1 and 1 call to L2, the size of the resulting circuit is at most nkpolylog(n).
¤

The next result show that fixed polynomial lower bounds for NP also collapse, to fixed polyno-
mial lower bounds for the oblivious version of NP (using 1 bit of advice). An interesting aspect of
this result is that it illustrates that proving superpolynomial circuit lower bounds is a very different
problem than proving fixed polynomial lower bounds. On the one hand, ONP/1 ⊆ SIZE(poly) and
we do not expect NP ⊆ SIZE(poly), thus the two inclusions are very unlikely to be equivalent. On
the other hand, the inclusions of the two classes in fixed polynomial size are equivalent.
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Theorem 11. For any k, NP 6⊆ SIZE(nk) if and only if ONP/1 6⊆ SIZE(nk).

Proof. The ”if” direction is easy. If ONP/1 does not have circuits of size nk, then it follows that
NP/1 does not have circuits of size nk. Since NP is a syntactic class, this implies that NP does not
have circuits of size nk.

The other direction is more involved. Assume NP does not have circuits of size nk. We consider
two cases. If NP ⊆ SIZE(poly), then by Proposition 5 NP = ONP, and hence ONP does not have
circuits of size nk.

If NP 6⊆ SIZE(poly), then SAT 6∈ SIZE(poly). We use the fact that there is a ”smoothly
parametrized” version of Proposition 5. If NP ⊆ SIZE(s), then we get NP ⊆ ONTIME(poly(s)),
for arbitrary circuit size s. By letting s be the circuit complexity of SAT, we get that SAT ∈
ONTIME(poly(s)) but SAT does not have circuits of size s− 1. We then scale this separation down
using an advice-efficient padding argument to conclude that a padded version of SAT is in ONP

but does not have circuits of size O(nk).
The above is a brief sketch. We now proceed more formally. We define the following language

L:

L = {x1r|x ∈ SAT, r is a power of 2, r > |x|, Ckt(SAT|x|) 6 (|x| + r)2k}

First we show L ∈ ONP/1, and then we show L 6∈ SIZE(nk).
We define a non-deterministic polynomial time machine M taking one bit of advice, such that

when the advice bit is correct for length n, there is a polynomial-size witness wn which works for
any input of that length. Given an input y of length n, M first checks if it can be decomposed
as x1r for r a power of 2, such that r > |x|. For any input y, there can be at most one such
decomposition. This check can be performed in linear time, and if it succeeds, the corresponding x
and r can be obtained. M uses its bit of advice to check if Ckt(SAT|x|) 6 (|x| + r)2k. This is just
one bit of information given n since n uniquely determines |x| and r. If the check using the advice
fails, M rejects. Otherwise, M guesses a circuit C of size n2k. It simulates C on x. If C accepts
on x, it uses self-reducibility and paddability of SAT to find a candidate satisfying assignment for
x. If the assignment works, M accepts, otherwise M rejects.

Clearly, M runs in polynomial time. Also, there is a single witness of size poly(n), namely a
correct circuit C for SATon inputs of length |x| which works for any input x1r ∈ L, when M is
given the correct bit of advice. Thus L ∈ ONP/1.

Assume, for the purpose of contradiction, that L ∈ SIZE(nk). Hence there is a sequence of
circuits Dn of size O(nk) deciding Ln for each n. We show that this implies that there for infinitely
many m, there is a circuit Cm of size less than Ckt(SATm) deciding SATon inputs of length m.
We define the circuits Cn as follows. Given an input x of length m, we non-uniformly determine
the least r(m) a power of 2 such that r(m) > m and Ckt(SATm) 6 (m + r(m))2k. Such an
r(m) exists for each m. Also, there are infinitely many m such that r(m) > 2m, for otherwise
Ckt(SATm) 6 (3m)2k = O(poly(m)), which is a contradiction to our assumption that SAT does
not have polynomial-size circuits. Now, for each m such that r(m) > 2m, it must be the case that
Ckt(SATm) > (m + r(m)/2)2k, just by assumption on minimality of r(m). Thus, for these m, it
must be the case that Ckt(SATm) > (m + r(m))2k/22k. Now, given x, we non-uniformly form the
new input x1r(m) and run Dm+r(m) on this input. The resulting circuit decides SATm correctly

and has size at most O((m + r(m))k), by the assumption on size of {Dn}. For large enough m,
O((m + r(m))k) < (m + r(m))2k/22k, which implies that for infinitely many m, SATm has circuits
of size less than Ckt(SATm) - a contradiction. ¤
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A corollary of Theorem 11 is that if NP doesn’t have circuits of size O(nk), then NP/1 ∩
SIZE(poly) doesn’t have circuits of size O(nk). This follows since ONP/1 ⊆ NP/1 ∩ SIZE(poly).
In fact, this kind of collapse result, showing that a fixed polynomial circuit lower bound for a
class implies a fixed polynomial circuit lower bound for a language in the class with polynomial-
size circuits, holds much more generally, for any complexity measure satisfying a certain natural
condition. This condition corresponds to “closure under deterministic transductions” as defined by
van Melkebeek and Pervyshev [vMP06], but rather than state it formally, we just observe that our
proof works for any reasonable complexity class for which we wish to show a circuit lower bound.
The proof abstracts out the translation argument in the proof of Theorem 11.

Theorem 12. Let C be a complexity class such as NP, PNP, MA, BPP or PP. If C does not have
circuits of size O(nk), then C/1 ∩ SIZE(poly) does not have circuits of size O(nk).

Proof. Let L′ ∈ C be a language such that L′ does not have circuits of size O(nk). We define a
padded language L′′ such that L′′ in C/1 ∩ SIZE(poly) and L′′ does not have circuits of size O(nk).
L′′ is defined from L′ in exactly the same way as the language L is defined from SAT in the proof
of Theorem 11.

L′′ = {x1r|x ∈ L′, r is a power of 2, r > |x|, Ckt(L′
|x|) 6 (|x| + r)2k}

The proof that L′′ 6∈ SIZE(nk) is exactly as in the proof of Theorem 11. For the upper bound,
we define a CTIME machine M with one bit of advice accepting L′′. Given an input y of length
n, M first decomposes y as x1r, where r is a power of 2 and r > |x|, if such a decomposition is
possible. If not, M rejects. If such a decomposition exists, it uniquely determines |x| and r. The
bit of advice just specifies if Ckt(L′

|x|) 6 (|x| + r)2k. If yes, M simulates the CTIME machine for

L′′ on x, accepting iff the simulated machine does. If not, M rejects.
If CTIME is able to simulate deterministic time, as is the case for all the complexity classes in

the statement of the theorem, then L′′ ∈ C/1, since every stage of the process above, including
the simulation of the machine for L′, can be implemented in polynomial time. Also, just by using
the optimal circuits for L′ to decide L′′ on appropriately padded inputs, it follows that L′′ has
polynomial size circuits, in fact circuits of size O(n2k). ¤

Theorem 12 can be stated as an equivalence for the polynomial-time versions of syntactic mea-
sures.

Corollary 13. Let CTIME be a syntactic measure, and C be the polynomial-time version of that
measure, such as NP, PNP or PP. C does not have circuits of size nk iff C/1 ∩ SIZE(poly) does not
have circuits of size nk.

The forward implication in Corollary 13 follows from Theorem 12 , and the backward implication
from Proposition 1.

We next consider the question of what space complexity is required of languages for which we
would like to prove circuit lower bounds. The proof of Theorem 8 yields an nk size lower bound
for a language decided by a Σ2 machine using polynomial time and nkpolylog(n) space. Can we
show such a lower bound for a language with a smaller space requirement? We prove that an nk

size circuit lower bound for a language in the polynomial hierarchy which can be decided in space
nk(1−Ω(1)) would imply non-trivial circuit lower bounds for NP, and is therefore likely to be hard.

We require two lemmas. The first one, due to Nepomnjascii [Nep70] and Reischuk [Rei90],
shows that a language decidable in the polynomial hierarchy with sublinear space, can be decided
much more efficiently with extra alternations.
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Lemma 14. Given constant β > 0 and integer a > 0, there is an integer b such that Σa −
TISP(poly(n), n1−β) ⊆ Σb − TIME(O(n)).

The second lemma is a collapse lemma showing that circuit lower bounds in the linear-time
hierarchy imply circuit lower bounds for non-deterministic linear time.

Lemma 15. If Σb − TIME(O(n)) 6⊆ SIZE(nk), then NTIME(O(n)) 6⊆ SIZE(nk1/c
) for any c > b.

Proof. The proof is by induction. We show that for each i > 0, if NTIME(O(n)) ⊆ SIZE(nl), then
Σi − TIME(O(n)) ⊆ SIZE((npolylog(n))li).

The base case is trivial. For the inductive case, suppose Σi−TIME(O(n)) ⊆ SIZE((npolylog(n))li).
Let L ∈ Σi+1 − TIME(O(n)). Then there is a relation R(x, y) such that R ∈ Πi − TIME(O(n)),
and x ∈ L iff ∃O(n)yR(x, y). By assumption, R ∈ SIZE((npolylog(n))li), where n = |x| (since
|y is linear in |x|). Thus, L ∈ NSIZE((npolylog(n))li). Since NTIME(O(n)) ⊆ SIZE(nl), Cook’s
theorem gives that NSIZE(O(n)) ⊆ SIZE(nlpolylog(n)), and by padding, NSIZE((npolylog(n))li) ⊆
SIZE((npolylog(n))li+1

). Thus L ∈ SIZE((npolylog(n))li+1

), which finishes the induction. ¤

Theorem 16. If there is an integer a > 0 and a constant γ > 0 such that Σa−TISP(poly(n), nk−γ) 6⊆
SIZE(nk), then NTIME(O(n)) does not have linear-size circuits.

Proof. Assume Σa − TISP(poly(n), nk−γ) 6⊆ SIZE(nk). Then, by translation, there is δ > 0 such
that Σa −TISP(poly(n), n1−β) 6⊆ SIZE(n1+δ), where β = γ/k − δ. By Lemma 14, this implies there
is a constant b such that Σb − TIME(O(n)) 6⊆ SIZE(n1+δ). Applying Lemma 15 with k = 1 + δ, we
get that NTIME(O(n)) 6⊆ SIZE(n). ¤

Note that superlinear circuit lower bounds are not known for NP, let alone for NTIME(O(n)).

4 Relativized Circuit Upper Bound

Theorem 17. There exists a an oracle relative to which ⊕P is contained in SIZE(nk) for some
constant k.

Proof. Beigel, Buhrman and Fortnow [BBF98] created an oracle relative to which

P = ⊕P and NP = EXP.

We will use the same oracle.
By Valiant-Vazirani [VV86], NP is in BPP⊕P. Since we have ⊕P = P and BPP ⊆ SIZE(poly) we

have EXP = NP ⊆ SIZE(poly).
Under a standard padding argument ⊕P = P implies ⊕E and so we have

⊕E ⊂ EXP ⊂ SIZE(poly).

Let L be a linear-time complete set for ⊕E. There is some k such that L is in SIZE(nk) and
since L is linear-time complete we have

⊕P ⊂ ⊕E ⊂ SIZE(nk).

¤
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By an analysis of the proof of Beigel, Buhrman and Fortnow [BBF98], we can show that
⊕P ⊆ SIZE(n4) relative to their oracle. With a more careful reworking of their proof we can
show ⊕P ⊆ SIZE(n2) for a relativized world (proof omitted).

Vinodchandran [Vin05] shows that PP 6⊆ SIZE(nk) for any fixed k and his proof does not
relativize. The nonrelativizing part of Vinodchandran’s proof uses the fact that PPP ⊆ SIZE(poly)
implies PPP ⊆ MA (see [BFL91a]). Since P⊕P ⊆ SIZE(poly) also implies P⊕P ⊆ MA [FF93] perhaps
one can prove a similar circuit lower bound for ⊕P despite Theorem 17?

However P⊕P ⊆ MA (and the much stronger EXP = BPP) relative to the Beigel-Buhrman-
Fortnow oracle. We have the following contrasting results.

Corollary 18 (Vinodchandran). Relative to all oracles, if PPP ⊆ MA then PP is not contained
in SIZE(nk) for any fixed k.

Corollary 19 (Theorem 17). Relative to some oracle, P⊕P ⊆ MA but ⊕P is contained in
SIZE(n2).

Thus to prove ⊕P 6⊆ SIZE(n2) one would need nonrelativizing techniques beyond those used by
Vinodchandran.

5 Circuit Lower Bounds

In this section, we show fixed polynomial circuit lower bounds for circuit models that are more
powerful than conventional deterministic circuits. Vinodchandran [Vin05] showed that PP does
not have circuits of size nk for any k. We show a much stronger lower bound for PPP.

Theorem 20. For any k > 0, PPP 6⊆ ⊕SIZE(nk).

Proof. Theorem 8 gives that Σ2 6⊆ SIZE(nk). This theorem relativizes, hence we have that Σ⊕P

2 6⊆
⊕SIZE(nk). By Toda’s theorem [Tod89], Σ⊕P

2 ⊆ BPP⊕P ⊆ PPP, which yields our result. ¤

It would be interesting to strengthen Theorem 20 to derive the same lower bound for PP. Unlike
Theorem 20, this cannot be done in a relativizing way, since Aaronson [Aar05] constructed an oracle
relative to which PP has linear size circuits.

We can show a stronger version of Theorem 20 using a similar proof:

Theorem 21. For any k > 0 and a > 0, PPP does not have circuits of size nk with Σ⊕P
a oracle

gates.

We can also show a lower bound for PEXP against fixed polynomial size advice by combining a
diagonalization technique with closure properties of PP.

Theorem 22. For any k > 0, PEXP 6⊆ PE/nk.

Proof. Let M1, M2, . . . be an enumeration of relativized PE machines. For each Mi pick a sufficiently
large input length n. By a standard counting argument there must be a circuit of size nk+1 that
is not computed by Mi using nk bits of advice. We can compute the lexicographically least such
circuit in EXPPEXP

|| by asking for all advice strings a and inputs x whether Mi(x) accepts using
advice a and then searching in EXP for the first circuit that differs. Fortnow and Reingold [FR96]
show that PPP

|| = PP and thus EXPPEXP

|| = PEXP. ¤
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