
Computational Complexity of Some Enumeration Problems About
Uniformly Sparse Boolean Network Automata

PREDRAG T. TOŠIĆ

Department of Computer Science, University of Illinois at Urbana-Champaign
201 N. Goodwin Avenue, Urbana, IL 61801, U.S.A.

p-tosic@cs.uiuc.edu

Abstract

We study the computational complexity ofcountingthe fixed pointconfigurations (FPs), theprede-
cessorconfigurations and theancestorconfigurations in certain classes ofgraphor network automata
viewed as discrete dynamical systems. Some early results ofthis investigation are presented in two
recent ECCC reports [39, 40]. In particular, it is proven in [40] that both exact and approximate
counting of FPs in the two closely related classes of Booleannetwork automata, calledSequentialand
Synchronous Dynamical Systems(SDSs and SyDSs, respectively), are computationally intractable
problems when each node is required to update according to amonotoneBoolean function. In the
present paper, we further strengthen those results by showing that the intractability of exact enumera-
tion of FPs of a monotone Boolean SDS or SyDS still holds even when (i) the monotone update rules
are restricted tolinear threshold functions, and (ii) the underlying graph isuniformly sparse.By uni-
form sparsenesswe mean that every node in the graph has its degree bounded by� � � ��� for a small
value of constant�. In particular, we prove that exactly enumerating FPs in such SDSs and SyDSs
remains#P-complete even when no node degree exceeds� � �. Among other consequences, we
show that this result also implies intractability of determining the exact memory capacity of discrete
Hopfield networks withuniformly sparseandnonnegativeinteger weight matrices.

Keywords: Cellular and network automata, sequential and synchronousdynamical systems, discrete
Hopfield networks, fixed point configurations, computational complexity,#P-completeness

1 Introduction

We study certain classes ofnetwork automatathat can be used as an abstraction of the large-scale multi-
agent systems made of simple reactive agents, ofad hoccommunication networks, and, more generally,
of dynamical systems whose complex dynamics stems from coupling of and interaction among their rel-
atively simple individual components. These network or graph automata can also be viewed as a the-
oretical model for the computer simulation of a broad variety of computational, physical, social, and
socio-technical distributed infrastructures [1, 9]. In the present work, as well as in several prior, loosely
related papers (see, e.g., [2, 3, 4, 5, 6, 7, 33, 38, 39, 40, 41,42]), the general approach has been to investi-
gate mathematical and computationalconfiguration space propertiesof such graph automata, as a formal
way of addressing the fundamental question: what are the possibleglobal behaviorsof the entire system,
given the simple local behaviors of its components, and the interaction pattern among those components?

Electronic Colloquium on Computational Complexity, Report No. 159 (2006)

ISSN 1433-8092

Our recent [38, 39, 40, 42] and ongoing research focus has been on determininghow manyfixed point
configurations such network automata have, andhow hardis the computational problem ofcountingthose
configurations.

In the present paper, we establish computational intractability of determining the exact number of the
fixed point configurations ofsparse SequentialandSynchronous Dynamical Systems, as well asdiscrete
Hopfield networks, whose node update rules are restricted tomonotone linear threshold functions. More-
over, we show that intractability of the exact enumeration of fixed points holds even when the maximum
node degree in the underlying graph is bounded by a small constant. We also show similar intractability
results for the problems of exact enumeration of all predecessors and all ancestors of a given SDS, SyDS
or Hopfield network configuration. It will then follow that, for the networked dynamical systems that can
be abstracted via a class of formal network automata, a generally unpredictable global dynamics can be
obtained even viauniformly sparsecouplings of simple, monotonic local interactions.

2 Preliminaries

In this section, we define the discrete dynamical system models studied in this paper, as well as their con-
figuration space properties.Sequential Dynamical Systems(SDSs) are proposed in [6, 7, 8] as an abstract
model for computer simulations. This model has been successfully applied in the development of large-
scale socio-technical simulations such as theTRANSIMSproject at the Los Alamos National Laboratory
[9]. A more detailed discussion of the motivation behind these models, as well as their application to
large-scale simulations, can be found in [1, 5, 38, 39], and references therein.

Definition 2.1 A Sequential Dynamical System(SDS) � is a triple �� � � � � � whose components are as
follows:

1. � �� � � � is a connected undirected graph without multi-edges or self-loops. � 	 �� is referred
to as theunderlying graphof � . We often use
 to denote�� � and� to denote�� �.

2. Each node is characterized by itsstate. The state of a node�, denoted by��, takes on a value
from some finite domain,� . In this paper, we shall focus on� 	 �� � ��. We use�� to denote the
degree of the node�. Further, we denote by� ��� the set of neighbors of node� in � , including the
node� itself. Each node� has an associatednode update rule�� � � ��� � � � , for � � � �
 .
We also refer to�� as thelocal transition function.The inputs to�� are �� and the current states of
the neighbors of�. We use� 	 �� to denote theglobal mapof � , obtained by appropriately
composing together all the local update rules��, � 	 �� �
 .

3. Finally, � is a permutation of � 	 � � � ! � � " � specifying the order in which the nodes
update their states using their local transition functions. Alternatively,� can be envisioned as
a total ordering on the set of nodes V. In particular, we can view the global map as a sequential
composition of the local actions of each�� on the respective state��, where the node states are
updated according to the order� ; that is, �� 	 ��# $% &' % (� �# $% &') (� � �# $% &'* (�.

The nodes are processed in thesequentialorder specified by the permutation� . The processing associated
with a node consists of computing the new value of its state according to the node’s update function, and
changing its state to this new value.

2

If the nodes are required to update simultaneously, all at once, we arrive at the definition ofSyn-
chronous Dynamical Systems(SyDSs).

Definition 2.2 A Synchronous Dynamical System(SyDS) � � 	 �� � � � is an SDSwithout the node
permutation. In an SyDS, at each discrete time step, all the nodes perfectly synchronously in parallel
compute and update their state values.

Thus, SyDSs are similar to the finite classical cellular automata (CA) [14, 19, 48, 50], except that in an
SyDS the nodes may be interconnected in an arbitrary fashion, whereas in a classical cellular automaton
the nodes are interconnected in a regular fashion. Another difference is that, while in the classical CA
all nodes update according to the same rule, in an SyDS different nodes are allowed to use different local
update rules [39].

Much of the early work on sequential and synchronous dynamical systems has primarily focused on
the SDSs and SyDSs withsymmetric Boolean functionsas the node update rules [1, 2, 3, 5, 6, 7]. By
symmetricis meant that the future state of a node does not depend on the order in which the input values
of this node’s neighbors are specified. Instead, the future state of� depends only on

�� �� &�(�� , i.e.,
on how many of� ’s neighbors are currently in the state�� 	 �. In particular, symmetric Boolean SyDSs
correspond tototalistic (Boolean) cellular automataof Wolfram [50, 51]. The computational complexity
of counting various configurations in SDSs and SyDSs with symmetric Boolean update rules is addressed
in [39, 42].

We are presently interested in SDSs with the local update rules that are restricted tomonotoneBoolean
functions. Our preliminary hardness results about the counting problems in monotone Boolean SDSs and
SyDSs can be found in [38, 40]. The SDSs with the local transition rules that are both monotone and
symmetric are, in essence, sequential threshold cellular automata [41, 43] that are defined overarbitrary
finite graphs, as opposed to the usualregular Cayley graphsof the classical cellular automata [14].

In this paper, we focus on the monotone update rules that are not necessarily symmetric; however,
these monotone Boolean functions will be required to be of alinear thresholdvariety, so that our subse-
quent results would imply analogous results fordiscrete Hopfield networks[20], whose update rules are,
by default, always required to be linear (not necessarily monotone) threshold functions.

We next define the notion ofmonotone Boolean functions.

Definition 2.3 Given two Boolean vectors,� 	 �� � � � ! � � �" � and 	 	 �
 � �
! � �
" �, define a
binary relation “�” as follows: � � 	 if � � �
 � for all

�
, � � � �
 . An
-input Boolean function� is

monotoneif � � 	 implies that � �� � � � �	 �.

Notice that the notion of monotonicity given in Definition 2.3 allows us to compare only Boolean
vectors of the same length.

A configuration of a Boolean SDS� 	 �� � � � � � or an SyDS� � 	 �� � � � is a vector�� � � �! � � �" �
�� � ��" . A configuration� can also be thought of as a function� � � � �� � ��" .

The (global) map computed by an S(y)DS� , denoted� 	 �� , specifies for each configuration�
the next configuration� � reached by� after carrying out the updates of all the node states, whether in
parallel or in the order given by� . Thus, the map�� � �� � ��" � �� � ��" is a total function on the set
of global configurations. This function therefore defines the dynamics of� . We say that� moves from a
configuration � to a configuration�� �� � in a single transition step. Alternatively, we say that S(y)DS
� moves from a configuration� at time � to a configuration �� �� � at time � � �. Assuming that

3

each node update function�� is computable in time polynomial in the size of the description of � , each
transition step will also take polynomial time in the size ofthe S(y)DS’s description.

Theconfiguration space� �� of an SDS or SyDS� is a directed graph defined as follows. There
is a vertex in�� for each global configuration of� . There is a directed edge from a vertex represent-
ing configuration� to that representing configuration� � if �� �� � 	 � �. Since an SDS or SyDS is
deterministic, each vertex in its configuration space has the out-degree of 1.

Definition 2.4 Given two configurations� � and � of an SDS or SyDS� , configuration� � is a
predecessorof � if �� �� � � 	 � , that is, if � moves from� � to � in one global transition step.
Similarly, � � is an ancestorof � if there is a positive integer� � � such that�� � �� � � 	 � , that is, if
� evolves from� � to � in one or more transitions.

In particular, a predecessor of a configuration is a special case of an ancestor of that configuration.

Definition 2.5 A configuration � of an S(y)DS� is a fixed point (FP) configuration if �� �� � 	 � ,
that is, if the transition out of� is back to � itself.

Note that a fixed point is a configuration that is its own predecessor.
We shall focus in this paper on the computational complexityof the problems ofcountinghow many

fixed pointconfigurations (FPs), predecessor configurations, and/or ancestor configurations a given se-
quential or synchronous dynamical system has. We will show that these problems in general remain hard,
even when both the underlying graph structure of an SDS or SyDS, and the local update rules, are severely
restricted. Moreover, we will also establish similar results for discrete Hopfield networks.

3 Related Work

Various models ofcellular andnetwork automatahave been studied in a variety of contexts, from uncon-
ventional models for parallel and distributed computing (e.g., [14, 32, 43]), to complex dynamical systems
(e.g., [15, 16, 27]), to theoretical biology (e.g., [28, 29]). Beside the classical (parallel) cellular automata
[14, 19] and their sequential or asynchronous variants [24,43], perhaps the most studied class of models
of network or graph automata areHopfield networks[20, 21]. While our original interests in the area of
cellular and network automata have primarily focused on studying the structural and behavioral properties
of Sequential and Synchronous Dynamical Systems [5, 38, 39,40, 42], given the prominence of Hopfield
networks in the literature, we shall also briefly address thepertinent counting problems in the context of
(discrete-time) Hopfield nets towards the end of this paper.

The SDS and SyDS models introduced in Section 2 are closely related to thegraph automata(GA)
models studied in [31, 34] and the one-way cellular automatastudied in [36]. In fact, the general finite-
domain SyDSs exactly correspond to the graph automata of Nichitiu and Remila in [34]. Barrett, Mortveit
and Reidys [6, 7, 33] and Laubenbacher and Pareigis [30] investigate the mathematical properties of
sequential dynamical systems. Barrettet al. study the computational complexity of several problems
about the configuration space structure of SDSs and SyDSs. These problems include the REACHABILITY ,
PREDECESSOR EXISTENCEand PERMUTATION EXISTENCE problems [3, 4]. Problems related to the
existence ofGARDEN OF EDEN and FIXED POINT configurations are studied in [5]. In particular,NP-
completeness for the problem ofFIXED POINT EXISTENCE (FPE) in various restricted classes of Boolean

%Also sometimes calledphase spacein the literature; see, e.g., [4, 5].

4

S(y)DSs is proven in [5]. However, the FPE problem becomes easy when all the nodes of a Boolean
S(y)DS are required to update according tomonotone functions.

The subarea of computational complexity that addresses counting or enumeration of various combina-
torial structures dates back to the seminal work of L. Valiant in the late 1970s [45, 46]. Counting problems
naturally arise in many contexts, from approximate reasoning and Bayesian belief networks in AI (e.g.,
[37]), to network reliability and fault-tolerance (e.g., [44]), to statistical physics (e.g., [25, 27]).

It has been observed, however, that the progress in understanding the complexity of counting problems
has been much slower than the progress related to our understanding of decision and search problems
[18, 44]. Since the reductions used in proving counting problems hard have to preserve the number of
solutions, rather than just whether a solution exists or not, they are in general more difficult to devise
than the reductions used to establish, say,NP-completeness of the corresponding decision problems. For
example, most standard reductions used to establish computational hardness of certain decision or search
problems on graphs tend to “blow up” the underlying graph, thereby destroying the local structures that
impact the number of that problem’s solutions [18]. One areawhere this understanding of the complexity
of counting has been particularly poor, is whether the general counting problems that are provably hard
remain hard when various restrictions are placed on the problem instances [44]. Some of the relatively
recent results in this area, such as those on the hardness of counting inplanar graphs[23], and especially
in sparse graphs[18, 44], have directly inspired our recent work (see [38, 39, 40, 42]), as well as the
investigations summarized in the present paper.

Insofar as the complexity of counting in the context of discrete dynamical systems, there have been
surprisingly few theoretical results. Some results along the lines of our work in [39, 40] and the present
paper, but in the context ofdiscrete Hopfield networks, can be found in [10, 11, 12]. We will discuss at
the end of the next Section how our results on Boolean SDSs andSyDSs with monotone linear threshold
rules strengthen those in [10] for thesymmetricdiscrete Hopfield nets withsparseandnonnegativeinteger
weight matrices.

4 Counting Various Configurations of Monotone Boolean SDSs and SyDSs

MonotoneBoolean functions, formulae and circuits [47] have been extensively studied in many areas of
computer science, from machine learning to connectionist models in AI to VLSI circuit design. Cellular
and other types of network automata with the local update rules restricted to monotone Boolean functions
have also been of a considerable interest (e.g., [5, 41]). The problem of counting FPs inmonotoneBoolean
SDSs and SyDSs is originally addressed in [38, 40]. It is shown there that, in general, counting FPs of such
S(y)DSs either exactly or approximately is computationally intractable. This intractability holds even for
the graphs that are simultaneously bipartite, planar, and very sparseon average[38, 40]. In particular:

Lemma 4.1 [40] Counting exactly the fixed points of a monotone Boolean SDS orSyDS defined over a
star graph, and such that the update rule of the central node is given as aMONOTONE 2CNF Boolean
formula of size� �
 �, where
 is the number of nodes in the star graph, is#P-complete.

Moreover, by the results of D. Roth in [37], subsequently strengthened by S. Vadhan in [44], the
problem ofapproximatelycounting FPs in the setting as in Lemma 4.1 above can be readily shown to be
NP-hard [40].

In summary, enumerating the fixed points ofmonotoneBoolean SDSs and SyDSs defined on bipartite,
planar and sparse on average underlying graphsexactlyis #P-complete, and for any� � �, approximating

5

the number of FPs in such monotone S(y)DSs to within� �� �%$� is NP-hard. Our next goal is to show
that the hardness of the exact enumeration of FPs for monotone S(y)DSs holds even when the underlying
graphs are required to beuniformly sparse.We will also argue that, as a consequence of our constructionin
the proof of Theorem 4.1 below, the problem of enumerating the stable configurations ofdiscrete Hopfield
networkswith very sparseweight matricesis also in general computationally intractable.

Given the importance of the number of stable configurations of a Hopfield network viewed as an
associative memory(e.g., [15]), we now informally introducediscrete Hopfield networks, and briefly
summarize what has been known about the problem of counting their stable configurations.

A discrete Hopfield network(DHN) [20] is made of
 binary-valued nodes; the set of node states
is, by convention,�� �� � ��. Associated to each pair of nodes�� � � � is (in general, real-valued)weight,� �� � . Theweight matrixof a DHN is defined as� 	 �� �� 	"�
�� �. Each node also has a fixedthreshold,� � � . A node� updates its state� � from time step� to step� � � according to

� �� �� ��
 �
"�

� �
�
� �� � � �� � � � � (1)

In the sequel, we will not bother to explicitly distinguish between an S(y)DS’s or DHN’s node,�, and
this node’s state,�� or � �; the intended meaning will be clear from the context.

In the standard DHN model, the nodes update synchronously inparallel, similarly to the classical
cellular automata and the SyDSs as defined in Section 2. However, asynchronous Hopfield networks,
where the nodes update sequentially, one at a time, have alsobeen studied [12, 20]. In these sequential
DHNs, unlike SDSs, it is not required that the nodes update according to afixed permutation. However,
these differences are inconsequential insofar as the fixed points are concerned [33]. For simplicity and
space constraints reasons, we will focus on synchronously updating,parallel DHNs in the rest of the
paper.

In much of the Hopfield networks literature, the weight matrix � is assumed symmetric, i.e., for all
pairs of indices�� � � �, � �� 	 � � � holds. A DHN is calledsimpleif � �� 	 � for all

� 	 �� �
 [12].
Simple DHNs are thus a generalization ofmemorylessfinite cellular automata with linear threshold update
rules [14, 50].

In [10], Floreen and Orponen establish the following two interesting results:!
(i) the problem of determining the number of fixed point configurations of a simple discrete Hopfield

network, with a symmetric weight matrix� 	 �� �� 	 such that all the weights� �� are integers, and with� �� 	 � along the main diagonal, is#P-complete; and
(ii) the problem of determining the number of predecessor configurations of a given configuration of

a simple discrete Hopfield network, with a symmetric weight matrix � 	 �� �� 	 such that all the weights� �� are from the set�� �� � � � ��, and with� �� 	 � along the main diagonal, is#P-complete.
For proving (i), Floreen and Orponen devise a Hopfield network that is relatively dense, i.e., with

quite a few non-zero weights� �� . This would correspond to an SDS or SyDS where there are, informally
speaking, several nodes each of which having many neighbors. In contrast, our result in Lemma 4.1 allows
only for asingle nodethat has a large neighborhood; see [38, 40] for more details.

Prior to proving our first main result, for the sake of completeness, we state the following

)
We (slightly) rephrase these results from the language originally used in [10] into the discrete dynamical systems language

we have used in [38, 39, 40] and the present paper, in order to make the comparison and contrast with our results more transparent.

6

Lemma 4.2 Counting FPs of an arbitrary SDS or SyDS all of whose nodes useBoolean-valued linear
threshold rules is#P-complete.

We shall show next that the result (i) from [10] can be considerably strengthened along several di-
mensions. That is, the hardness of counting FPs will be proven to still hold even when the following
restrictions on problem instances aresimultaneouslyimposed:

– the underlying graphs will be required to beuniformly sparse,with no node degree exceeding 3;
– all linear threshold update rules will be restricted tomonotonefunctions by disallowing negative

weights;
– only two (positive) integer values for the weights will be allowed; and
– each S(y)DS node will choose one from only two allowed monotone linear threshold functions.
Since each node of an SDS or SyDS in the Theorem below is required to have only� ��� neighbors,

the issue ofencodingof the local update rules, that is discussed in detail in [40], is essentially irrelevant
here. In particular, even a truth table with one row for each combination of the values of a given node’s
neighbors is permissible [39, 40]. In the sequel, BOOL-MON-S(Y)DS will stand for amonotone Boolean
SDS or SyDS.

Theorem 4.1 Counting the fixed points ofBOOL-MON-S(Y)DSs exactly is #P-complete, even when
all of the following restrictions on the structure of such anS(y)DSsimultaneouslyhold:

– the monotone update rules arelinear threshold functions– in particular, monotonicity of the
linear threshold update rules implies that all weights satisfy� �� � �;

– the S(y)DS is with memory, and such that, along the main diagonal, � �� 	 � for all indices
�
,

� � � � �� � (where �� � denotes the number of the S(y)DS’s nodes);

– at most two different positive integer weights are used by each local update rule;

– each node has at most three neighbors in the underlying graphof this S(y)DS;

– only two different monotone linear threshold functions areused by the S(y)DS’s nodes.

Proof: We first describe the construction of a BOOL-MON-SYDS from an instance of aBoolean mono-
tone 2CNF(MON-2CNF) formula [13] such that no variable appears in more than three different clauses.
We then outline why is this reduction from the problem of counting satisfying assignments of such a
formula to the problem of counting FPs in the resulting SyDSweakly parsimonious[13].

Let’s assume that a MON-2CNF Boolean formula is given, such that there are
 variables,� clauses,
each variable appears in at least one clause, and no variableappears in more than three clauses. In partic-
ular, these requirements imply that� 	 � �
 �, but we shall keep� and
 as two distinct parameters for
clarity.

The corresponding SyDS� is constructed as follows. To each variable in the formula corresponds a
variable node, and to each clause, a clause node. In addition, acloned clause nodeis introduced for each
of the original� clause nodes. Thus, the underlying graph of� has exactly
 � �� nodes. A variable
node is adjacent to a clause node if and only if, in the Booleanformula, the corresponding variable appears
in the corresponding clause. Each clause node is adjacent toits clone. Finally, the cloned clause nodes
form a ring among themselves. Therefore, the underlying graph of this SyDS looks as inFigure 1.

In the sequel, we shall slightly abuse the notation and use� � to denotebotha variable in the Boolean
formula, and the correspondingvariable clausein the S(y)DS or discrete Hopfield network we are con-
structing; similarly,�

�
will denote both a clause in a Boolean formula, and a clause node in the S(y)DSs

7

or Hopfield network that is being constructed from that formula. The intended meaning will be clear from
the context.

C’C’C’

. . .

C1 . . .

x x x x x4 n21 3

 . . .

1

C Cm2 C
3

C4

2 3 4 mC’ C’

Figure 1: The underlying graph of a bounded-degree monotone linear threshold Boolean S(y)DS in the
construction of Theorem 4.1. The original clause nodes are marked�

�
, the cloned clause nodes are

primed, as in� �� , and the variable nodes are denoted by� �.

With this convention in mind, we now define the update rules for the clause nodes, the cloned clause
nodes, and the variable nodes of the SyDS that we are constructing from a MON-2CNF Boolean formula.
The cloned clause nodes� �� and the variable nodes� � will update according to the BooleanAND rule.
The original clause nodes,�

�
, will update according to the following monotone linear threshold update

rule:

�
�

�
�� if �� �� � �

� � �� % � ��) � �
� � otherwise

(2)

where�� % � ��) is a shorthand for the two variable nodes that are adjacent tothe clause node�
�
.

The given construction can be slightly rephrased, in order to emphasize that the resulting SyDS also
satisfies thesymmetry requirementas it is usually defined in the Hopfield networks literature, namely, so
that the underlying matrix of weights is a symmetric matrix.To that end, the BooleanAND rule used by
the cloned clause nodes can be written in an equivalent, but more “linear-threshold-like”, form:

� ��
�

�� if ��� � � �� � � �� � � � � �� � � � �
� � otherwise

(3)

Notice that the function defined in equation (3) evaluates to1 if and only if all of its inputs are 1, and thus,
indeed, the given formula is nothing but a linear-threshold-like way of writing the ordinary BooleanAND
of four variables. If this latter convention on how we write the update rules at the cloned clause nodes and
the variable nodes is adopted, then the resulting� can be also viewed as a discrete Hopfield network with
parallel node updates.

8

We now show that the reduction from the counting problem #MON-2CNF-SAT to the counting prob-
lem #FP for the constructed SyDS is, indeed, weakly parsimonious. To that end, we will just summarize
the case analysis. If, at any time step�, any of the cloned clause nodes� �� evaluates to 0, that will ensure
that, within no more than�! � � parallel steps, all the cloned clause nodes will become 0, and stay in
state 0 thereafter. This will also cause all the original clause nodes’ states�� , and, consequently, also all
the variable nodes’ states� �, to become 0, as well. Thus, if at any point a single cloned clause node’s
state becomes 0, the entire SyDS will eventually collapse tothe “sink” fixed point�"�!� . Clearly, this
sink FP does not correspond to a satisfying assignment to theoriginal Boolean formula.

Now, the only way that no cloned clause node ever evaluates to0 is that the following two conditions
simultaneously hold:

– each� �� and�� is initially in the state 1, for� � � � � ; and
– the initial states� � of the variable nodes are such that they correspond to a satisfying truth assign-

ment to the variables in the original Boolean formula.
If these conditions hold, then each such global configuration ��" � � � � � �� � 	 ��"'�� � �� � �� � is a

fixed point of � , where�"'�� �� � ��" is a short-hand for any
-tuple of Boolean values that corresponds
to a satisfying truth assignment�� � � � �" � to the original monotone 2CNF formula. Moreover, the sat-
isfying truth assignments of the original Boolean formula are in a one-to-one correspondence with these
non-sink FPs of� .

Since no variable in the MON-2CNF formula from which we are constructing the SyDS appears in
more than three clauses, each variable node� � in the SyDS has at most three neighbors. Since we use
2CNF, each clause node�

�
has two variable node neighbors, plus one cloned clause neighbor, � �� , for

the total of three neighbors. Finally, each cloned clause node � �� clearly has exactly three neighbors.
In particular, by the result of C. Greenhill in [18], we can make the underlying graph of SyDS� be
3-regular, and the#P-completeness of the counting problem #FP will still hold.

We also observe thatonly two different monotone linear threshold functions are used in the con-
struction above; furthermore, at most two different integer weights are used in each of those two linear
threshold functions. Hence, the claim of the Theorem follows insofar as the monotone linear threshold
SyDSs are concerned. Finally, by the invariance of FPs with respect to the node update ordering [33],
it follows that exactly enumerating the fixed point configurations of the monotone linear threshold SDSs
defined on uniformly sparse graphs is#P-complete, as well.

In the construction above, the SyDS dynamics fromeverystarting global configurations that is not
of the form ��"'�� � �� � �� � will eventually converge to the sink state�"�!� . In particular, thebasin of
attraction of � 	 �"�!� includes all configurations of the form��"�"'�� � �� � �� �, where�"�"'�� is a
shorthand for an ordered
-tuple of Boolean values that corresponds to anunsatisfying(i.e., falsifying)
truth assignment to the corresponding variables�

� � � �" in the original MON-2CNF formula. The rest
of the configurations in the sink’s basin of attraction are such that ��� � � �� � �	 ��� � �� � (and where�" �� � ��" is arbitrary).

Hence, in order to determineexactlythe size of the basin of attraction for the sink state� 	 �"�!� ,
that is, the number of this configuration’s ancestors, we must be able to exactly determine the number
of falsifying truth assignments to the original MON-2CNF Boolean formula. It is easy to see that one
can find an ordering� under which the same claim holds for the corresponding BOOL-MON-SDS. As a
consequence, we have

9

Corollary 4.1 The problem of counting exactly all theancestorsof an arbitrary configuration of aBOOL-
MON-S(Y)DS, denoted#ANC, is #P-complete. Moreover, this intractability result holds even when all
restrictions fromTheorem 4.1are simultaneously imposed on the S(y)DS’s structure.

4.1 Counting Configurations of Discrete Hopfield Networks

We now turn to the corresponding hardness of counting results for discrete Hopfield networks with appro-
priately restricted weight matrices. We start with the problem of fixed point enumeration in the context of
Hopfield nets where each of the nodes has exactly one bit of memory – namely, its own (binary-valued)
current state.

Theorem 4.2 Determining the exact number of stable configurations of a parallel or asynchronous dis-
crete Hopfield network is#P-complete even when all of the following restrictions on theweight matrix
� 	 �� �� 	 simultaneously hold:

– the matrix is symmetric:� �� 	 � � � for all pairs of indices
� � � ��� � �� �� (where �� �

denotes the number of nodes in the underlying graph of this DHN);

– � �� 	 � along the main diagonal for all
� ��� � �� ��;

– � �� �� � �� �� for all pairs of indices
� � � ��� � �� ��;

– each row and each column of� has at most three(alternatively, exactly three) nonzero
entries off the main diagonal.

Proof sketch: In case of the DHNs whose nodes update synchronously in parallel, the claim holds by
virtue of Theorem 4.1, since an SyDS that is constructed as inthe proof of that theorem can also be viewed
as a parallel discrete Hopfield network whose weight matrix satisfies all the above listed conditions.� In-
sofar as the asynchronous DHNs whose nodes update in arbitrary sequential orders are concerned, while
indeed these sequences of node updates need not be repetitions of a fixed permutation as in the corre-
sponding SDSs, this difference can be easily shown to be immaterial insofar as the fixed point configura-
tions are concerned. Therefore, Theorem 4.2 about discreteHopfield networks is nothing but rephrasing
Theorem 4.1, with parallel DHNs in place of SyDSs with monotone linear threshold update rules, and
asynchronous/sequential DHNs replacing SDSs with the samekind of update rules.

Next, we consider the problems of enumerating predecessorsas well as all ancestors of a given Hop-
field network configuration. We shall establish the computational complexity of those two related counting
problems in the context ofsimpleDHNs, whose weight matrices satisfy� �� 	 � for

� � ��� � �� ��.
Before we proceed with a formal reduction from the problem #MON-2CNF-SAT to the problem

#PRED of enumerating all predecessor configurations of a given DHNconfiguration, we establish the
following additional conventions. First, the reduction will be from the MON-2CNF Boolean formulae
with each variable appearing in at least one, and in at most (alternatively, exactly) four clauses. Second,
we will abandon the usual convention in the Hopfield networksliterature that the underlying graph is fully
connected (i.e., a clique), and instead consider those pairs of vertices�� � � � such that� �� 	 � � � 	 � not
to be connected by an edge at all. We will require that the underlying DHN weight matrix� is symmetric

�
For simplicity of the argument, in this proof sketch we are ignoring the syntactic difference that the state space of a node in

a Hopfield network is���� � ��, not �	 � ��.

10

in the usual, Hopfield network sense; as a consequence, the underlying graph of such a discrete Hopfield
network will be undirected, which is also in accordance withour convention about S(y)DSs. Third, in
the construction used in proving Theorem 4.1, we will eliminate the cloned clause nodes� �� and, instead,
connect the ordinary close nodes into a ring.

We recall that, in a DHN, the set of possible states of a node istraditionally �� �� � �� (instead of
�� � ��); while it’s not essential, we will adopt this convention through the rest of the paper insofar as the
Hopfield networks are concerned.

We define the update rule of a clause node�
�

to be

�
�

�� �� if ��� � � � ��� � � � �� % � ��) � �
� �� otherwise

(4)

For each variable� � in the MON-2CNF formula from which we are constructing our DHN, let� �
denotethe number of clauses in which� � appears; thus, under our assumptions, for any

� ��� � �� ��,
we have � � ��� � � � � � �. We now define the variable node update rules as

� �
�� �� if � �� �� �

��� � �
�
� � � � �

� �� otherwise
(5)

Thus a variable node� � updates to� � if and only if all of the clause nodes�� &�(corresponding to
those clauses in the formula in which variable� � appears are currently in the state� �.

Finally, we observe that the resulting weight matrix� , while symmetric and with all entries� ��
�� � �� ��, also has� �� 	 � along the main diagonal; therefore, the constructed Hopfield network issimple
(i.e.,memoryless) [10, 12].

We are now ready to establish the second main result of this paper:

Theorem 4.3 The problem#PRED of determining the exact number of predecessors of a given configu-
ration of asimplediscrete Hopfield network is#P-complete. Moreover, this claim holds even when all of
the following restrictions on the Hopfield net’s weight matrix � 	 �� �� 	 are simultaneously imposed:

– the matrix is symmetric:� �� 	 � � � for all pairs of indices
� � � ��� � �� ��;

– � �� 	 � along the main diagonal for all
� ��� � �� ��;

– � �� �� � �� �� for all pairs of indices
� � � ��� � �� ��;

– each row and each column hasat most / exactly fournonzero entries.

Proof sketch: The claim of the Theorem will follow from the fact that the satisfying truth assignments
to the Boolean variables� � � � �" in the original MON-2CNF Boolean formula are in a one-to-one cor-
respondence with the set of all predecessors of the configuration �� ��"�� in the Hopfield net constructed
from that formula. The case analysis is similar to that in theproof of Theorem 4.1. In particular, any
configuration with at least one clause node�

�
in the state�� �� will eventually converge to the sink fixed

point ��" � �� � 	 ��� ��" � �� ��� �. Among the configurations of the form��" � �� � 	 ��" � �� ��� �,
those and only those such that the
-tuple�" corresponds to a satisfying truth assignment to the original
MON-2CNF Boolean formula	 will evolve to the other fixed point configuration,��" � �� � 	 �� ��"�� .

Here, we identify Boolean value FALSE of a variable in the MON-2CNF formula with the corresponding DHN variable
node’s state��, whereas Boolean value TRUE is identified with the state� � of the corresponding DHN variable node.

11

Moreover, this convergence to�� ��"�� is easily seen to take a single parallel transition. That is,the
predecessors of�� ��"�� are precisely the configurations of the form��"'�� � �� ��� �.

It follows from the discussion in the proof sketch above thatall ancestors of the configuration� 	
�� ��"�� are also this configuration’s predecessors; that is, the convergence to� from every configuration
in the basin of attraction of� takesexactly one(global) parallel step.

Corollary 4.2 The problem#ANC of determining the exact number of all ancestors of an arbitrary con-
figuration of a simple discrete Hopfield network is, in the worst case,#P-complete. Moreover, this in-
tractability holds even when all the restrictions fromTheorem 4.3on the Hopfield network instances are
simultaneously imposed.

5 Summary and Future Work

We have shown in [39, 40] that enumerating the fixed point configurations of two related classes of net-
work automata, called Sequential and Synchronous Dynamical Systems (SDSs and SyDSs, respectively)
is, in general, computationally intractable. We continue the general line of inquiry from [39, 40] in the
present paper, as well. However, we now focus on those SDSs and SyDSs each of whose nodes is required
to update its state according to amonotone Boolean function, and whose underlying network topologies
areuniformly sparse, so that, in particular, each node has� ��� neighbors.

Our main result in this paper is that exactly counting the fixed points of monotone, uniformly sparse
Boolean SDSs and SyDSs such that no node has more than three neighbors is#P-complete. This result
immediately implies similar intractability results for the sparse discrete Hopfield networks. Viewing a
Hopfield net as an associative memory, our results imply thatdetermining exactly how many different
patterns can be stored in such an associative memory is, in general, computationally intractable – even
when no inhibitive connections (i.e., no edges with negative weights) are allowed, and, simultaneously,
no row or column of the weight matrix has more than four nonzero entries. Moreover, this intractability
holds even for those DHNs with integer weight matrices all ofwhose entries are from the set�� � �� ��.

Similarly, determining the exact size of the basin of attraction of a given stable configuration of a dis-
crete Hopfield network with a symmetric weight matrix is equally intractable; moreover, this intractability
holds even when the Hopfield network is required to besimple, with a uniformly sparse weight matrix,
and the same restrictions on the allowed values of weights� �� as in our corresponding result about the
enumeration of the stable configurations.

Insofar as the future work is concerned, it needs to be pointed out that our results in this paper, as
well as similar in spirit results in our prior, related work [38, 39, 40, 42], all pertain to theworst-case
complexityof counting the stable configurations and other structures of discrete dynamical systems. What
is of a considerable interest to statistical physics, connectionist AI and large-scale multi-agent systems
research communities, however, is theaverage complexityof the relevant decision, search and counting
problems about the underlying system’s dynamics. While ourconstructions in the proofs of Theorem 4.1
and Theorem 4.3 suggest that there may be many uniformly sparse monotone SDSs, SyDSs and Hop-
field networks for which enumerating the stable configurations (FPs), as well as the predecessor and the
ancestor configurations, are all computationally intractable, whether the average cases of these important
counting problems are computationally tractable or not is still open. We hope to address the average case
complexity of those and other similar problems in our futurework.

12

Acknowledgements: The author expresses his gratitude to Gul Agha, Harry Hunt, Michael Loui,
Madhav Marathe, Paul Schupp and Mahesh Viswanathan for useful discussions and feedback on various
matters related to the research summarized in this paper. The early stages of this work were supported by
the ONR MURI Grant, Contract N00014-02-1-0715.

References

[1] C. Barrett, B. Bush, S. Kopp, H. Mortveit and C. Reidys. “Sequential Dynamical Systems and Ap-
plications to Simulations”, Technical Report, Los Alamos National Laboratory, Los Alamos, New
Mexico, September 1999

[2] C. Barrett, H. B. Hunt III, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz, R. E. Stearns. “Dichotomy
Results for Sequential Dynamical Systems”, Los Alamos National Laboratory Report, LA–UR–00–
5984, Los Alamos, New Mexico, 2000

[3] C. Barrett, H. B. Hunt III, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz, R. E. Stearns. “Predeces-
sor and Permutation Existence Problems for Sequential Dynamical Systems”, Los Alamos National
Laboratory Report, LA–UR–01–668, Los Alamos, New Mexico, 2001

[4] C. Barrett, H. B. Hunt III, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz, R. E. Stearns. “Reachability
problems for sequential dynamical systems with threshold functions”, Theoretical Comp. Sci.,vol.
295, issues 1–3, pp. 41 – 64, February 2003

[5] C. L. Barrett, H. B. Hunt, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz, R. E. Stearns, P. T. Tosic.
“Gardens of Eden and Fixed Points in Sequential Dynamical Systems”, Proc. AA DM–CCG,Discrete
Math. & Theoretical Comp. Sci., pp. 95 – 110, 2001

[6] C. Barrett, H. Mortveit, and C. Reidys. “Elements of a theory of simulation II: sequential dynamical
systems”Applied Math. & Comput., vol 107/2-3, pp. 121 – 136, 2000

[7] C. Barrett, H. Mortveit and C. Reidys. “Elements of a theory of computer simulation III: equivalence
of SDS”,Applied Math. & Comput.,vol. 122, pp. 325 – 340, 2001

[8] C. Barrett and C. Reidys. “Elements of a theory of computer simulation I: sequential CA over random
graphs”Applied Math. & Comput., vol. 98, pp. 241 – 259, 1999

[9] R. Beckman et. al. “TRANSIMS – Release 1.0 – The Dallas-Forth Worth case study”, Tech. Report
LA UR 97–4502, Los Alamos National Laboratory, Los Alamos, New Mexico, 1999

[10] P. Floreen, P. Orponen. “On the Computational Complexity of Analyzing Hopfield Nets”,Complex
Systems, vol. 3, pp. 577 – 587, 1989

[11] P. Floreen, P. Orponen. “Attraction radii in binary Hopfield nets are hard to compute”,Neural Com-
putationsvol. 5, pp. 812 – 821, 1993

[12] P. Floreen, P. Orponen. “Complexity Issues in DiscreteHopfield Networks”, NeuroCOLT Technical
Report Series,NC–TR–94–009, October 1994

[13] M. R. Garey and D. S. Johnson.“Computers and Intractability: A Guide to the Theory of NP-
completeness”,W. H. Freeman and Co., San Francisco, California, 1979

[14] M. Garzon. “Models of Massive Parallelism: Analysis of Cellular Automata and Neural Networks”,
Springer, 1995

13

[15] E. Goles, S. Martinez (editors).“Cellular Automata, Dynamical Systems and Neural Networks”,
Math. and Its Applications series (vol. 282), Kluwer, 1994

[16] E. Goles, S. Martinez (editors).“Cellular Automata and Complex Systems”,Nonlinear Phenomena
and Complex Systems series, Kluwer, 1999

[17] F. Green. “NP-Complete Problems in Cellular Automata”, Complex Systems, vol. 1, No. 3, pp. 453 –
474, 1987

[18] C. Greenhill. “The Complexity of Counting Colourings and Independent Sets in Sparse Graphs and
Hypergraphs”,Comput. Complexity,vol. 9, pp. 52 – 72, 2000

[19] H. Gutowitz (Editor).“Cellular Automata: Theory and Experiment”, North Holland, 1989

[20] J. J. Hopfield. “Neural networks and physical systems with emergent collective computational abili-
ties”, Proc. Nat’l Academy of Sciences (USA),vol. 79, pp. 2554 – 2558, 1982

[21] J. J. Hopfield, D. W. Tank. “Neural computation of decisions in optimization problems”,Biological
Cybernetics,vol. 52, pp. 141 – 152, 1985

[22] B. Huberman, N. Glance. “Evolutionary games and computer simulations”,Proc. Nat’l Academy of
Sciences (USA),1999

[23] H. B. Hunt, M. V. Marathe, V. Radhakrishnan, R. E. Stearns. “The Complexity of Planar Counting
Problems”,SIAM J. Computing,vol. 27, pp. 1142 – 1167, 1998

[24] T. E. Ingerson and R. L. Buvel. “Structure in asynchronous cellular automata”,Physica D: Nonlinear
Phenomena,vol. 10 (1-2), pp. 59 – 68, January 1984

[25] M. Jerrum. “Two-dimensional monomer-dimer systems are computationally intractable”,J. Statist.
Physics,vol. 48, pp. 121 – 134, 1987. Erratum in vol. 59, pp. 1087 – 1088, 1990

[26] M. Jerrum, A. Sinclair. “Approximating the permanent”, SIAM J. Comp., vol. 18, pp. 1149 – 1178,
1989

[27] M. Jerrum, A. Sinclair. “Polynomial-time approximation algorithms for the Ising model”,SIAM J.
Comp., vol. 22, pp. 1087 – 1116, 1993

[28] S. A. Kauffman. “Metabolic stability and epigenesis inrandomly connected nets”,J. Theoretical
Biology, vol. 22, pp. 437 – 467, 1969

[29] S. A. Kauffman. “Emergent properties in random complexautomata”, Physica D: Nonlinear Phe-
nomena, Volume 10, Issues 1–2, pp. 59 – 68, January 1984

[30] R. Laubenbacher and B. Pareigis. “Finite Dynamical Systems”, Technical report, Dept. of Mathemat-
ical Sciences, N. Mexico State Univ., Las Cruces, New Mexico, 2000

[31] B. Martin. “A Geometrical Hierarchy of Graphs via Cellular Automata”, Proc. MFCS’98 Satellite
Workshop on Cellular Automata, Brno, Czech Republic, August 1998

[32] M. Mitchell. “Computation in Cellular Automata: A Selected Review”, in T. Gramms, S. Bornholdt,
M. Gross, M. Mitchell, T. Pellizzari (editors),“Nonstandard Computation”, pp. 95 – 140, Weinheim:
VCH Verlagsgesellschaft, 1998

[33] H. Mortveit, C. Reidys. “Discrete sequential dynamical systems”,Discrete Mathematics, pp. 281 –
295, vol. 226 , Issue 1–3, 2001

14

[34] C. Nichitiu and E. Remila. “Simulations of Graph Automata”, Proc. MFCS’98 Satellite Workshop on
Cellular Automata, Brno, Czech Republic, August 1998

[35] C. Papadimitriou.“Computational Complexity” ,Addison-Wesley, Reading, Massachusetts, 1994

[36] Sz. Roka. “One-way cellular automata on Cayley graphs”, Theoretical Computer Science,132 (1–2),
pp. 259 – 290, September 1994

[37] D. Roth. “On the Hardness of Approximate Reasoning”,Artificial Intelligence, vol. 82, pp. 273 –
302, 1996

[38] P. Tosic. “On Counting Fixed Point Configurations in Star Networks”, Advances in Parallel & Dis-
tributed Computational ModelsWorkshop (APDCM’05), withinThe 19th IEEE Int’l Parallel & Dis-
tributed Processing Symp., Denver, Colorado, April 2005, inProc. IEEE-IPDPS’05(CD-Rom)

[39] P. Tosic. “On Complexity of Counting Fixed Point Configurations in Certain Classes of Graph Au-
tomata”, Electronic Colloquium on Computational Complexity, ECCC–TR05–051, April 2005

[40] P. Tosic. “Counting Fixed Points and Gardens of Eden of Sequential Dynamical Systems on Planar
Bipartite Graphs”,Electronic Colloquium on Computational ComplexityECCC–TR05–091, August
2005

[41] P. Tosic, G. Agha. “Characterizing Configuration Spaces of Simple Threshold Cellular Automata”, in
Proc. of the 6th Int’l Conference on Cellular Automata for Research and Industry(ACRI’04), Amster-
dam, The Netherlands, October 2004; Springer’s LNCS series, vol. 3305, pp. 861 – 870

[42] P. Tosic, G. Agha. “On computational complexity of counting fixed points in certain classes of graph
automata”, Proc. of the 4th Int’l Conf. on Unconventional Computation(UC’05), Sevilla, Spain,
October 2005; Springer’sLecture Notes in Computer Science(LNCS) series, vol. 3699, pp. 191 – 205

[43] P. Tosic, G. Agha. “Parallel vs. Sequential Threshold Cellular Automata: Comparison and Contrast”,
in Proc. of the First European Conference on Complex Systems(ECCS’05), paper # 251; European
Complex Systems Society, Paris, France, November 2005 (CD-Rom)

[44] S. Vadhan. “The Complexity of Counting in Sparse, Regular and Planar Graphs”,SIAM J. Computing,
vol. 31 (2), pp. 398 – 427, 2001

[45] L. Valiant. “The Complexity of Computing the Permanent”, Theoretical Computer Science, vol. 8, pp.
189 – 201, 1979

[46] L. Valiant. “The Complexity of Enumeration and Reliability Problems”,SIAM J. Computing, vol. 8
(3), pp. 410 – 421, 1979

[47] I. Wegener.“The Complexity of Boolean Functions”, Teubner Series Comp. Sci., Wiley, 1987

[48] S. Wolfram. “Computation theory of cellular automata”, Commun. Math. Physics, vol. 96, 1984

[49] S. Wolfram. “Twenty problems in the theory of cellular automata”, Physica Scripta, T9, pp. 170 –
183, 1985

[50] S. Wolfram.“Theory and applications of cellular automata”, World Scientific, 1986

[51] S. Wolfram (ed.).“Cellular Automata and Complexity (collected papers)”, Addison-Wesley, 1994

15

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

