Electronic Colloquium on Computational Complexity, Report No. 159 (2006) b rar

Computational Complexity of Some Enumeration Problemsuibo
Uniformly Sparse Boolean Network Automata

PREDRAG T. ToSIC
Department of Computer Science, University of lllinois abbha-Champaign
201 N. Goodwin Avenue, Urbana, IL 61801, U.S.A.
p-tosic@cs.uiuc.edu

Abstract

We study the computational complexity obuntingthe fixed pointconfigurations (FPs), therede-
cessorconfigurations and thancestorconfigurations in certain classesgrephor network automata
viewed as discrete dynamical systems. Some early resuttésoinvestigation are presented in two
recent ECCC reports [39, 40]. In particular, it is proven 49][ that both exact and approximate
counting of FPs in the two closely related classes of Bootedwork automata, calle8equentiahnd
Synchronous Dynamical Syste®DSs and SyDSs, respectively), are computationally étaide
problems when each node is required to update accordingriortoneBoolean function. In the
present paper, we further strengthen those results by shjatvat the intractability of exact enumera-
tion of FPs of a monotone Boolean SDS or SyDS still holds evieen(i) the monotone update rules
are restricted tdinear threshold functionsand (ii) the underlying graph isniformly sparseBy uni-
form sparsenesse mean that every node in the graph has its degree boundeg ky(1) for a small
value of constant. In particular, we prove that exactly enumerating FPs irhssDSs and SyDSs
remains#P-complete even when no node degree exceeds 3. Among other consequences, we
show that this result also implies intractability of det@ming the exact memory capacity of discrete
Hopfield networks withuniformly sparseindnonnegativénteger weight matrices.

Keywords: Cellular and network automata, sequential and synchrodgnamical systems, discrete
Hopfield networks, fixed point configurations, computatia@mplexity, #P-completeness

1 Introduction

We study certain classes pétwork automatahat can be used as an abstraction of the large-scale multi-
agent systems made of simple reactive agentaddioccommunication networks, and, more generally,
of dynamical systems whose complex dynamics stems fromliogupf and interaction among their rel-
atively simple individual components. These network ompbrautomata can also be viewed as a the-
oretical model for the computer simulation of a broad variet computational, physical, social, and
socio-technical distributed infrastructures [1, 9]. le fbresent work, as well as in several prior, loosely
related papers (see, e.9., [2, 3,4, 5, 6, 7, 33, 38, 39, 4824}, the general approach has been to investi-
gate mathematical and computatiopahfiguration space propertiesf such graph automata, as a formal
way of addressing the fundamental question: what are thalgeglobal behaviorof the entire system,
given the simple local behaviors of its components, andriteraction pattern among those components?
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Our recent [38, 39, 40, 42] and ongoing research focus hasdredeterminindhow manyfixed point
configurations such network automata have, lama hardis the computational problem abuntingthose
configurations.

In the present paper, we establish computational intrdityabf determining the exact number of the
fixed point configurations adparse Sequentiand Synchronous Dynamical Systeras well adiscrete
Hopfield networkswhose node update rules are restrictechtmotone linear threshold functionslore-
over, we show that intractability of the exact enumeratibfixed points holds even when the maximum
node degree in the underlying graph is bounded by a smaltamins/Ne also show similar intractability
results for the problems of exact enumeration of all presiemes and all ancestors of a given SDS, SyDS
or Hopfield network configuration. It will then follow thaipif the networked dynamical systems that can
be abstracted via a class of formal network automata, a gineinpredictable global dynamics can be
obtained even vianiformly sparsecouplings of simple, monotonic local interactions.

2 Preliminaries

In this section, we define the discrete dynamical system taatiedied in this paper, as well as their con-
figuration space propertieSequential Dynamical Systef®DSs) are proposed in [6, 7, 8] as an abstract
model for computer simulations. This model has been suftdsapplied in the development of large-
scale socio-technical simulations such asTRANSIMSproject at the Los Alamos National Laboratory
[9]. A more detailed discussion of the motivation behindsthenodels, as well as their application to
large-scale simulations, can be found in [1, 5, 38, 39], &ferences therein.

Definition 2.1 A Sequential Dynamical Systef8DS) S is atriple (G, F,II) whose components are as
follows:

1. G(V,E) is a connected undirected graph without multi-edges orlselfs. G = G g is referred
to as theunderlying graphof S. We often use to denotgV’| andm to denote E|.

2. Each node is characterized by itstate. The state of a node;, denoted by;, takes on a value
from some finite domairp. In this paper, we shall focus dd = {0,1}. We usel; to denote the
degree of the node;. Further, we denote by¥ (i) the set of neighbors of nodgin G, including the
nodevw; itself. Each node; has an associatedode update rulef; : D%+ — D, for1 < i < n.
We also refer tgf; as thelocal transition function. The inputs tgf; are s; and the current states of
the neighbors ofv;. We useF = Fg to denote thglobal mapof S, obtained by appropriately
composing together all the local update rulgs : = 1, ..., n.

3. Finally, IT is a permutation of V' = {v1,vs,...,v,} specifying the order in which the nodes
update their states using their local transition functionlternatively,II can be envisioned as
a total ordering on the set of nodes V. In particular, we caemwihe global map as a sequential
composition of the local actions of eacfy on the respective statg, where the node states are
updated according to the ordell; thatis, Fg = (fr1(s;) fri-1(ss)s - - » ST 1(s0))-

The nodes are processed in feguentiabrder specified by the permutatibh The processing associated
with a node consists of computing the new value of its stateraking to the node’s update function, and
changing its state to this new value.



If the nodes are required to update simultaneously, all atpwe arrive at the definition dyn-
chronous Dynamical Syster(S8yDSs).

Definition 2.2 A Synchronous Dynamical Syste(8yDS) S’ = (G, F) is an SDSwithout the node
permutation. In an SyDS, at each discrete time step, all tues perfectly synchronously in parallel
compute and update their state values.

Thus, SyDSs are similar to the finite classical cellular engta (CA) [14, 19, 48, 50], except that in an
SyDS the nodes may be interconnected in an arbitrary fastibareas in a classical cellular automaton
the nodes are interconnected in a regular fashion. Anotifferehce is that, while in the classical CA
all nodes update according to the same rule, in an SyDS dlifferodes are allowed to use different local
update rules [39].

Much of the early work on sequential and synchronous dynansigstems has primarily focused on
the SDSs and SyDSs wigymmetric Boolean functioress the node update rules [1, 2, 3, 5, 6, 7]. By
symmetrids meant that the future state of a node does not depend omdéein which the input values
of this node’s neighbors are specified. Instead, the futiate ®fv; depends only onX;c ;) 55, i.€.,
on how many ob;’s neighbors are currently in the state= 1. In particular, symmetric Boolean SyDSs
correspond tdotalistic (Boolean) cellular automataf Wolfram [50, 51]. The computational complexity
of counting various configurations in SDSs and SyDSs withraginic Boolean update rules is addressed
in [39, 42].

We are presently interested in SDSs with the local updags tthiat are restricted tnoonotoneBoolean
functions. Our preliminary hardness results about the togiproblems in monotone Boolean SDSs and
SyDSs can be found in [38, 40]. The SDSs with the local traowsitules that are both monotone and
symmetric are, in essence, sequential threshold cellutareata [41, 43] that are defined owbitrary
finite graphs, as opposed to the ustggiular Cayley graphsf the classical cellular automata [14].

In this paper, we focus on the monotone update rules that@raatessarily symmetric; however,
these monotone Boolean functions will be required to belofear thresholdvariety, so that our subse-
guent results would imply analogous results dascrete Hopfield networ20], whose update rules are,
by default, always required to be linear (not necessarilpatane) threshold functions.

We next define the notion afionotone Boolean functions.

Definition 2.3 Given two Boolean vectors{ = (z1,z2,...,2,) and Y = (y1,y2,...,yn), define a
binary relation “<" as follows: X <Y if z; < y; forall 7, 1 <4 < n. Ann-input Boolean functiorf is
monotonaf X <Y implies that f(X) < f(Y).

Notice that the notion of monotonicity given in Definition32allows us to compare only Boolean
vectors of the same length.

A configuration of a Boolean SDS = (G, F,II) oran SyDSS’' = (G, F) isavector(by, bo,...,b,) €
{0,1}™. A configurationC can also be thought of as a functigh: V" — {0,1}".

The (global) map computed by an S(y)I3S denotedF = Fg, specifies for each configuratigh
the next configuratio®’ reached byS after carrying out the updates of all the node states, whéthe
parallel or in the order given bll. Thus, the mags : {0,1}" — {0,1}" is a total function on the set
of global configurations. This function therefore definesdignamics ofS. We say thatS moves from a
configurationC to a configurationFg(C) in a single transition step. Alternatively, we say that 5()
S moves from a configuratiorC at timet to a configuration Fig(C) at timet + 1. Assuming that
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each node update functigfy is computable in time polynomial in the size of the desaniptdf S, each
transition step will also take polynomial time in the sizelltd S(y)DS’s description.

The configuration space Ps of an SDS or SyDSS s a directed graph defined as follows. There
is a vertex inPs for each global configuration &. There is a directed edge from a vertex represent-
ing configurationC to that representing configuratiat if Fg(C) = C'. Since an SDS or SyDS is
deterministic, each vertex in its configuration space haoth-degree of 1.

Definition 2.4 Given two configurationsC’ and C of an SDS or SyDSS, configurationC’ is a
predecessoof C if Fg(C') = C, thatis, if S moves fromC’ to C in one global transition step.
Similarly, C' is an ancestowof C if there is a positive integett > 1 such thatFSt(C’) =_C, thatis, if
S evolves fromC’ to C in one or more transitions.

In particular, a predecessor of a configuration is a speaig of an ancestor of that configuration.

Definition 2.5 A configuration C of an S(y)DSS s a fixed point (FP) configuration if Fig(C) = C,
that is, if the transition out ofC is back toC itself.

Note that a fixed point is a configuration that is its own predsor.

We shall focus in this paper on the computational complexitthe problems otountinghow many
fixed pointconfigurations (FPs), predecessor configurations, anaMoeséor configurations a given se-
guential or synchronous dynamical system has. We will sthatithese problems in general remain hard,
even when both the underlying graph structure of an SDS o0iS$gbd the local update rules, are severely
restricted. Moreover, we will also establish similar résdibr discrete Hopfield networks.

3 Related Work

Various models otellular andnetwork automatdave been studied in a variety of contexts, from uncon-
ventional models for parallel and distributed computing.(d14, 32, 43]), to complex dynamical systems
(e.g., [15, 16, 27]), to theoretical biology (e.g., [28, RBeside the classical (parallel) cellular automata
[14, 19] and their sequential or asynchronous variants4234, perhaps the most studied class of models
of network or graph automata aropfield network$20, 21]. While our original interests in the area of
cellular and network automata have primarily focused odystg the structural and behavioral properties
of Sequential and Synchronous Dynamical Systems [5, 38(8312], given the prominence of Hopfield
networks in the literature, we shall also briefly addresspiidinent counting problems in the context of
(discrete-time) Hopfield nets towards the end of this paper.

The SDS and SyDS models introduced in Section 2 are closkliedeto thegraph automatgGA)
models studied in [31, 34] and the one-way cellular autorstitdied in [36]. In fact, the general finite-
domain SyDSs exactly correspond to the graph automata dftNi@and Remila in [34]. Barrett, Mortveit
and Reidys [6, 7, 33] and Laubenbacher and Pareigis [30Fiigate the mathematical properties of
sequential dynamical systems. Barrettal. study the computational complexity of several problems
about the configuration space structure of SDSs and SyD®seTlgroblems include theeERCHABILITY ,
PREDECESSOR EXISTENCEINd FERMUTATION EXISTENCE problems [3, 4]. Problems related to the
existence OfGARDEN OF EDEN andFIXED POINT configurations are studied in [5]. In particulddP-
completeness for the problemmikED POINT EXISTENCE (FPE) in various restricted classes of Boolean

! Also sometimes calleghase spaci the literature; see, e.g., [4, 5].
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S(y)DSs is proven in [5]. However, the FPE problem becomey ®dnen all the nodes of a Boolean
S(y)DS are required to update accordingrtonotone functions.

The subarea of computational complexity that addressa#ioguor enumeration of various combina-
torial structures dates back to the seminal work of L. Vdliathe late 1970s [45, 46]. Counting problems
naturally arise in many contexts, from approximate reasp@ind Bayesian belief networks in Al (e.g.,
[37]), to network reliability and fault-tolerance (e.g44]), to statistical physics (e.g., [25, 27]).

It has been observed, however, that the progress in unddnsgethe complexity of counting problems
has been much slower than the progress related to our uadéirsgy of decision and search problems
[18, 44]. Since the reductions used in proving counting [@wois hard have to preserve the number of
solutions, rather than just whether a solution exists or tiaty are in general more difficult to devise
than the reductions used to establish, $§;completeness of the corresponding decision problems. For
example, most standard reductions used to establish catignal hardness of certain decision or search
problems on graphs tend to “blow up” the underlying grapkreby destroying the local structures that
impact the number of that problem’s solutions [18]. One avbare this understanding of the complexity
of counting has been particularly poor, is whether the gdreunting problems that are provably hard
remain hard when various restrictions are placed on thelgmoinstances [44]. Some of the relatively
recent results in this area, such as those on the hardnesartfrg inplanar graphg23], and especially
in sparse graphg18, 44], have directly inspired our recent work (see [38, 89, 42]), as well as the
investigations summarized in the present paper.

Insofar as the complexity of counting in the context of diserdynamical systems, there have been
surprisingly few theoretical results. Some results aldrglines of our work in [39, 40] and the present
paper, but in the context afiscrete Hopfield networkgan be found in [10, 11, 12]. We will discuss at
the end of the next Section how our results on Boolean SDSS$@b&s with monotone linear threshold
rules strengthen those in [10] for tegmmetriaiscrete Hopfield nets witbparseandnonnegativenteger
weight matrices.

4 Counting Various Configurations of Monotone Boolean SDSsral SyDSs

MonotoneBoolean functions, formulae and circuits [47] have beermsively studied in many areas of
computer science, from machine learning to connectionadets in Al to VLSI circuit design. Cellular
and other types of network automata with the local updatesmdstricted to monotone Boolean functions
have also been of a considerable interest (e.g., [5, 41 .pFbblem of counting FPs imonotoneBoolean
SDSs and SyDSs is originally addressed in [38, 40]. Itis shihwere that, in general, counting FPs of such
S(y)DSs either exactly or approximately is computatignaitractable. This intractability holds even for
the graphs that are simultaneously bipartite, planar, &ng sparsen average[38, 40]. In particular:

Lemma 4.1 [40] Counting exactly the fixed points of a monotone Boolean SCEyDS defined over a
star graph, and such that the update rule of the central ngdgivien as &MONOTONE 2CNF Boolean
formula of sizeD(n), wheren is the number of nodes in the star graph#R-complete.

Moreover, by the results of D. Roth in [37], subsequentleragthened by S. Vadhan in [44], the
problem ofapproximatelycounting FPs in the setting as in Lemma 4.1 above can be yestdilvn to be
NP-hard [40].

In summary, enumerating the fixed pointsnabnotoneBoolean SDSs and SyDSs defined on bipartite,
planar and sparse on average underlying graghstlyis #P-complete, and for any > 0, approximating
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the number of FPs in such monotone S(y)DSs to withi' ™ is NP-hard. Our next goal is to show
that the hardness of the exact enumeration of FPs for moa@&¢y)DSs holds even when the underlying
graphs are required to lmiformly sparseWe will also argue that, as a consequence of our construiction
the proof of Theorem 4.1 below, the problem of enumeratiegstable configurations discrete Hopfield
networkswith very sparseveight matricess also in general computationally intractable.

Given the importance of the number of stable configuratidna blopfield network viewed as an
associative memorge.g., [15]), we now informally introduceiscrete Hopfield networksand briefly
summarize what has been known about the problem of courtgiggtable configurations.

A discrete Hopfield networkDHN) [20] is made ofn binary-valued nodes; the set of node states
is, by convention{—1, +1}. Associated to each pair of nodg@s, v,) is (in general, real-valuedyeight
w;; € R. Theweight matrixof a DHN is defined a8/ = [w;;]7*;_;. Each node also has a fixétteshold,

h; € R. A nodev; updates its state; from time step to stept 4+ 1 according to

n
ot sgn(d ] wij - ah — hy) (1)
j=1
In the sequel, we will not bother to explicitly distinguiskettveen an S(y)DS’s or DHN’s node;, and
this node’s states; or x;; the intended meaning will be clear from the context.

In the standard DHN model, the nodes update synchronougbairallel, similarly to the classical
cellular automata and the SyDSs as defined in Section 2. Hawasynchronous Hopfield networks,
where the nodes update sequentially, one at a time, havdedsostudied [12, 20]. In these sequential
DHNSs, unlike SDSs, it is not required that the nodes updaterding to afixed permutation However,
these differences are inconsequential insofar as the figgdspare concerned [33]. For simplicity and
space constraints reasons, we will focus on synchronoysiiating, parallel DHNs in the rest of the
paper.

In much of the Hopfield networks literature, the weight maifii is assumed symmetric, i.e., for all
pairs of indices{i, j}, w;; = wj holds. A DHN is calledsimpleif w; =0 forall i =1,...,n [12].
Simple DHNs are thus a generalizatiommaémoryles$inite cellular automata with linear threshold update
rules [14, 50].

In [10], Floreen and Orponen establish the following tweresting results:

(i) the problem of determining the number of fixed point confagions of a simple discrete Hopfield
network, with a symmetric weight matri¥’ = [w;;] such that all the weights;; are integers, and with
w;; = 0 along the main diagonal, #P-complete; and

(i) the problem of determining the number of predecessaifigarations of a given configuration of
a simple discrete Hopfield network, with a symmetric weiglattnix W = [w;;] such that all the weights
w;; are from the sef—1,0,+1}, and withw;; = 0 along the main diagonal, #P-complete.

For proving (i), Floreen and Orponen devise a Hopfield netwbat is relatively dense, i.e., with
quite a few non-zero weighis;;. This would correspond to an SDS or SyDS where there areniafidy
speaking, several nodes each of which having many neighlvoecentrast, our result in Lemma 4.1 allows
only for asingle noddhat has a large neighborhood; see [38, 40] for more details.

Prior to proving our first main result, for the sake of compietss, we state the following

2We (slightly) rephrase these results from the languagéraliy used in [10] into the discrete dynamical systems lsuge
we have used in [38, 39, 40] and the present paper, in ordeake the comparison and contrast with our results more tesiesp



Lemma 4.2 Counting FPs of an arbitrary SDS or SyDS all of whose nodesBa#ean-valued linear
threshold rules igtP-complete.

We shall show next that the result (i) from [10] can be consily strengthened along several di-
mensions. That is, the hardness of counting FPs will be préwestill hold even when the following
restrictions on problem instances aimultaneouslymposed:

— the underlying graphs will be required to beiformly sparse,with no node degree exceeding 3;

— all linear threshold update rules will be restrictedntonotonefunctions by disallowing negative
weights;

—only two (positive) integer values for the weights will devaed; and

— each S(y)DS node will choose one from only two allowed monetinear threshold functions.

Since each node of an SDS or SyDS in the Theorem below is egjtorhave onlyO(1) neighbors,
the issue okencodingof the local update rules, that is discussed in detail in,[#0gssentially irrelevant
here. In particular, even a truth table with one row for eammlgination of the values of a given node’s
neighbors is permissible [39, 40]. In the sequebd@-MON-S(Y)DS will stand for amonotone Boolean
SDS or SyDS.

Theorem 4.1 Counting the fixed points oBooL-MON-S(Y)DSs exactly is #P-complete, even when
all of the following restrictions on the structure of such&fy)DS simultaneoushhold:

— the monotone update rules ataear threshold functions in particular, monotonicity of the
linear threshold update rules implies that all weights sBtiv;; > 0;

— the S(y)DS is with memory, and such that, along the main daga;; = 1 for all indicess,
1 <14 < |V]| (where|V| denotes the number of the S(y)DS’s nodes);

— at most two different positive integer weights are used lop éacal update rule;
— each node has at most three neighbors in the underlying godpis S(y)DS;
— only two different monotone linear threshold functions ased by the S(y)DS’s nodes.

Proof: We first describe the construction of @BL-MoON-SyDS from an instance of Boolean mono-
tone 2CNHMoN-2CNF) formula [13] such that no variable appears in mora theee different clauses.
We then outline why is this reduction from the problem of ding satisfying assignments of such a
formula to the problem of counting FPs in the resulting Syix&kly parsimoniougL3].

Let's assume that a BIN-2CNF Boolean formula is given, such that therenrasariables;n clauses,
each variable appears in at least one clause, and no vaajgpéars in more than three clauses. In partic-
ular, these requirements imply that = O(n), but we shall keeprn andn as two distinct parameters for
clarity.

The corresponding SyDS is constructed as follows. To each variable in the formulaesponds a
variable node, and to each clause, a clause node. In addit@boned clause nodis introduced for each
of the originalm clause nodes. Thus, the underlying graph®has exactlyn + 2m nodes. A variable
node is adjacent to a clause node if and only if, in the Booleanula, the corresponding variable appears
in the corresponding clause. Each clause node is adjacéstdimne. Finally, the cloned clause nodes
form a ring among themselves. Therefore, the underlyinghlgad this SyDS looks as iRigure 1

In the sequel, we shall slightly abuse the notation andry$e denotebotha variable in the Boolean
formula, and the correspondingriable clausdn the S(y)DS or discrete Hopfield network we are con-
structing; similarly,C; will denote both a clause in a Boolean formula, and a clausle imothe S(y)DSs

7



or Hopfield network that is being constructed from that folanT he intended meaning will be clear from
the context.

5 <&

X, X, X X4 X,

Figure 1: The underlying graph of a bounded-degree monotone lingasktiold Boolean S(y)DS in the
construction of Theorem 4.1. The original clause nodes akeu C}, the cloned clause nodes are
primed, as inC’, and the variable nodes are denotedAy

With this convention in mind, we now define the update rulegtie clause nodes, the cloned clause
nodes, and the variable nodes of the SyDS that we are cotistyfiom a MON-2CNF Boolean formula.
The cloned clause nodé€s; and the variable nodes; will update according to the BooleaND rule.
The original clause nodes;;, will update according to the following monotone linearetinold update
rule:

o {1, if 2C% + Cj + ), + 5, > 4 @

0, otherwise

wherez;,, z;, is a shorthand for the two variable nodes that are adjacehetolause nod€’;.

The given construction can be slightly rephrased, in ordemtphasize that the resulting SyDS also
satisfies thesymmetry requiremerats it is usually defined in the Hopfield networks literaturamely, so
that the underlying matrix of weights is a symmetric matiie. that end, the BooleaAND rule used by
the cloned clause nodes can be written in an equivalent, brg ffinear-threshold-like”, form:

®3)

o o {1, if 2C; +C4+Cl_  +Clyy > 5
I 0, otherwise

Notice that the function defined in equation (3) evaluatesif@nd only if all of its inputs are 1, and thus,
indeed, the given formula is nothing but a linear-thresHitdel way of writing the ordinary BooleaAND

of four variables. If this latter convention on how we wriketupdate rules at the cloned clause nodes and
the variable nodes is adopted, then the resulfir@an be also viewed as a discrete Hopfield network with
parallel node updates.



We now show that the reduction from the counting problemaV2CNF-SAT to the counting prob-
lem #FP for the constructed SyDS is, indeed, weakly parsiongn To that end, we will just summarize
the case analysis. If, at any time stg@ny of the cloned clause nodé’g} evaluates to 0, that will ensure
that, within no more than% + 1 parallel steps, all the cloned clause nodes will become @ sty in
state O thereafter. This will also cause all the originalistanodes’ stateS;,, and, consequently, also all
the variable nodes’ stateg, to become 0, as well. Thus, if at any point a single clonedsgdanode’s
state becomes 0, the entire SyDS will eventually collapsbed'sink” fixed point0™+2™. Clearly, this
sink FP does not correspond to a satisfying assignment toriimal Boolean formula.

Now, the only way that no cloned clause node ever evaluat@sstthat the following two conditions
simultaneously hold:

—eachC;, andCj, is initially in the state 1, fod < k¥ < m; and

— the initial stateg;; of the variable nodes are such that they correspond to dysagigruth assign-
ment to the variables in the original Boolean formula.

If these conditions hold, then each such global configunati¢r, C™, C'"™) = (z7,,,1™,1™) is a

sat?

fixed point of S, wherez?,, € {0,1}" is a short-hand for ang-tuple of Boolean values that corresponds
to a satisfying truth assignmefity, ..., z, ) to the original monotone 2CNF formula. Moreover, the sat-
isfying truth assignments of the original Boolean formula i a one-to-one correspondence with these
non-sink FPs ofS.

Since no variable in the EIN-2CNF formula from which we are constructing the SyDS appéar
more than three clauses, each variable nedm the SyDS has at most three neighbors. Since we use
2CNF, each clause nodg; has two variable node neighbors, plus one cloned cIaus@h:mi,gC]’-, for
the total of three neighbors. Finally, each cloned clausterd® clearly has exactly three neighbors.
In particular, by the result of C. Greenhill in [18], we cankeahe underlying graph of SyD& be
3-regular, and th&P-completeness of the counting problem #FP will still hold.

We also observe thainly two different monotone linear threshold functions are usecha don-
struction above; furthermore, at most two different integeights are used in each of those two linear
threshold functions. Hence, the claim of the Theorem fallamsofar as the monotone linear threshold
SyDSs are concerned. Finally, by the invariance of FPs vésipect to the node update ordering [33],
it follows that exactly enumerating the fixed point configioas of the monotone linear threshold SDSs
defined on uniformly sparse graphs#fie-complete, as well. [

In the construction above, the SyDS dynamics frewerystarting global configurations that is not
of the form (z7,,,1™,1™) will eventually converge to the sink stat@*2™. In particular, thebasin of
attraction of C = 0"*2™ includes all configurations of the forifx?,,..;, 1™, 1™), wherez?, .. is a
shorthand for an ordereattuple of Boolean values that corresponds touasatisfying(i.e., falsifying)
truth assignment to the corresponding variahles.., z,, in the original MON-2CNF formula. The rest
of the configurations in the sink’s basin of attraction arehsthat(C™,C"™) # (1™,1™) (and where
z" € {0,1}" is arbitrary).

Hence, in order to determirexactlythe size of the basin of attraction for the sink si@te- 0» 2™,
that is, the number of this configuration’s ancestors, wetrbasable to exactly determine the number
of falsifying truth assignments to the originaldW-2CNF Boolean formula. It is easy to see that one
can find an orderin@l under which the same claim holds for the correspondimgpBMON-SDS. As a

conseguence, we have



Corollary 4.1 The problem of counting exactly all ta@cestoref an arbitrary configuration of 800L-
MON-S(Y)DS, denoted#ANC, is #P-complete. Moreover, this intractability result holds ewghen all
restrictions fromTheorem 4.%are simultaneously imposed on the S(y)DS’s structure.

4.1 Counting Configurations of Discrete Hopfield Networks

We now turn to the corresponding hardness of counting efuitdiscrete Hopfield networks with appro-
priately restricted weight matrices. We start with the peaibof fixed point enumeration in the context of
Hopfield nets where each of the nodes has exactly one bit ofarpemnamely, its own (binary-valued)

current state.

Theorem 4.2 Determining the exact number of stable configurations of rlpe or asynchronous dis-
crete Hopfield network igP-complete even when all of the following restrictions on wedght matrix
W = [w;;] simultaneously hold:

— the matrix is symmetricw;; = wj; for all pairs of indices 4,j € {1,...,|V|} (where|V|
denotes the number of nodes in the underlying graph of thislpH

— wy = 1 along the main diagonal for alt € {1, ...,|V|};
— wj; € {0,1,2} for all pairs of indicesi, j € {1,...,|V|};

— each row and each column of¥/ has at most thregalternatively, exactly thre¢ nonzero
entries off the main diagonal.

Proof sketch: In case of the DHNs whose nodes update synchronously iniglathle claim holds by
virtue of Theorem 4.1, since an SyDS that is constructed teiproof of that theorem can also be viewed
as a parallel discrete Hopfield network whose weight mattisBes all the above listed conditiohdn-
sofar as the asynchronous DHNs whose nodes update in aytstrquential orders are concerned, while
indeed these sequences of node updates need not be repatitia fixed permutation as in the corre-
sponding SDSs, this difference can be easily shown to be teriabinsofar as the fixed point configura-
tions are concerned. Therefore, Theorem 4.2 about diskl@déield networks is nothing but rephrasing
Theorem 4.1, with parallel DHNs in place of SyDSs with mometdinear threshold update rules, and
asynchronous/sequential DHNs replacing SDSs with the &imdeof update rules. [

Next, we consider the problems of enumerating predeceasosgll as all ancestors of a given Hop-
field network configuration. We shall establish the compaoital complexity of those two related counting
problems in the context afimpleDHNs, whose weight matrices satisiy; = 0 for Vi € {1, ...,|V|}.

Before we proceed with a formal reduction from the problemaiVRCNF-SaT to the problem
#PRED of enumerating all predecessor configurations of a given Dddhfiguration, we establish the
following additional conventions. First, the reductionliviie from the MoN-2CNF Boolean formulae
with each variable appearing in at least one, and in at méstifatively, exactly) four clauses. Second,
we will abandon the usual convention in the Hopfield netwditkgature that the underlying graph is fully
connected (i.e., a clique), and instead consider thoss phiertices{v;, v;} such thatw;; = w;; = 0 not
to be connected by an edge at all. We will require that the liyidg DHN weight matrixi¥ is symmetric

3For simplicity of the argument, in this proof sketch we anediing the syntactic difference that the state space of a iod
a Hopfield network i{—1,+1}, not{0, 1}.
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in the usual, Hopfield network sense; as a consequence, tleelying graph of such a discrete Hopfield
network will be undirected, which is also in accordance vaitin convention about S(y)DSs. Third, in
the construction used in proving Theorem 4.1, we will eliatenthe cloned clause node*; and, instead,
connect the ordinary close nodes into a ring.

We recall that, in a DHN, the set of possible states of a nodeaditionally {—1,+1} (instead of
{0,1}); while it's not essential, we will adopt this conventiomrdhgh the rest of the paper insofar as the
Hopfield networks are concerned.

We define the update rule of a clause n6geo be

(4)

. +1, if QCj_l —|—20j+1 + x5 +zj, > 3
I —1, otherwise

For each variable; in the MoN-2CNF formula from which we are constructing our DHN, dgt
denotethe number of clauses in whial appears thus, under our assumptions, for ang {1,...,|V|},
we havea; € {1,2,3,4}. We now define the variable node update rules as

T; — +1, |f Z{j.:wie()j} CJ > CLZ'—].
—1, otherwise

(®)

Thus a variable node; updates tot1 if and only if all of the clause node§;;, corresponding to
those clauses in the formula in which variableappears are currently in the staté.

Finally, we observe that the resulting weight mat##k while symmetric and with all entries;; €
{0,1,2}, also hasv;; = 0 along the main diagonal; therefore, the constructed Hapfietwork issimple
(i.e.,memoryless[10, 12].

We are now ready to establish the second main result of tipisrpa

Theorem 4.3 The problem#PRED of determining the exact number of predecessors of a givefigte
ration of asimplediscrete Hopfield network i#P-complete. Moreover, this claim holds even when all of
the following restrictions on the Hopfield net's weight nvali’ = [w;;] are simultaneously imposed:

— the matrix is symmetricw;; = wj; for all pairs of indicesi, j € {1,...,|V|};
— w;; = 0 along the main diagonal for ali € {1, ..., |V|};

— wj; € {0,1,2} for all pairs of indicesi, j € {1,...,|V|};

each row and each column hasmost / exactly founonzero entries.

Proof sketch: The claim of the Theorem will follow from the fact that theiséting truth assignments
to the Boolean variables,, ..., z,, in the original MON-2CNF Boolean formula are in a one-to-one cor-
respondence with the set of all predecessors of the configuifa-1)"*™ in the Hopfield net constructed
from that formula. The case analysis is similar to that in pheof of Theorem 4.1. In particular, any
configuration with at least one clause nddgin the statg—1) will eventually converge to the sink fixed
point (z",C™) = ((—1)",(—1)™). Among the configurations of the forx", C"™) = (z", (+1)™),
those and only those such that thxuple ™ corresponds to a satisfying truth assignment to the ofigina
MoN-2CNF Boolean formutawill evolve to the other fixed point configuratiofl™, 1) = (41)"*+™,

“Here, we identify Boolean valueAESE of a variable in the MVN-2CNF formula with the corresponding DHN variable
node’s state-1, whereas Boolean valuerRDE is identified with the statg-1 of the corresponding DHN variable node.
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Moreover, this convergence te-1)""™ is easily seen to take a single parallel transition. Thathis,
predecessors @ft1)"*" are precisely the configurations of the fotaf,,, (+1)™).
[ ]

It follows from the discussion in the proof sketch above thlhiancestors of the configuratiah =
(+1)™*™ are also this configuration’s predecessors; that is, theecgance t@ from every configuration
in the basin of attraction af takesexactly ongglobal) parallel step.

Corollary 4.2 The problem#ANc of determining the exact number of all ancestors of an aabjticon-
figuration of a simple discrete Hopfield network is, in the starase #P-complete. Moreover, this in-
tractability holds even when all the restrictions fratheorem 4.3n the Hopfield network instances are
simultaneously imposed.

5 Summary and Future Work

We have shown in [39, 40] that enumerating the fixed point gonitions of two related classes of net-
work automata, called Sequential and Synchronous Dyn&®icdiems (SDSs and SyDSs, respectively)
is, in general, computationally intractable. We continie general line of inquiry from [39, 40] in the
present paper, as well. However, we now focus on those SOESWHDNSs each of whose nodes is required
to update its state according tar@notone Boolean functipand whose underlying network topologies
areuniformly sparseso that, in particular, each node haél) neighbors.

Our main result in this paper is that exactly counting thedigeints of monotone, uniformly sparse
Boolean SDSs and SyDSs such that no nhode has more than tligebars is#P-complete. This result
immediately implies similar intractability results forelsparse discrete Hopfield networks. Viewing a
Hopfield net as an associative memory, our results imply die&rmining exactly how many different
patterns can be stored in such an associative memory ishigrgle computationally intractable — even
when no inhibitive connections (i.e., no edges with negatieights) are allowed, and, simultaneously,
no row or column of the weight matrix has more than four noozartries. Moreover, this intractability
holds even for those DHNs with integer weight matrices alvbbse entries are from the s, 1, 2}.

Similarly, determining the exact size of the basin of atiacof a given stable configuration of a dis-
crete Hopfield network with a symmetric weight matrix is dtyutractable; moreover, this intractability
holds even when the Hopfield network is required toslmaple with a uniformly sparse weight matrix,
and the same restrictions on the allowed values of weightsas in our corresponding result about the
enumeration of the stable configurations.

Insofar as the future work is concerned, it needs to be poiate that our results in this paper, as
well as similar in spirit results in our prior, related worB8], 39, 40, 42], all pertain to theorst-case
complexityof counting the stable configurations and other structuregsorete dynamical systems. What
is of a considerable interest to statistical physics, cotioeist Al and large-scale multi-agent systems
research communities, however, is tineerage complexitgf the relevant decision, search and counting
problems about the underlying system’s dynamics. Whilecomstructions in the proofs of Theorem 4.1
and Theorem 4.3 suggest that there may be many uniformhsespaonotone SDSs, SyDSs and Hop-
field networks for which enumerating the stable configureti(FPs), as well as the predecessor and the
ancestor configurations, are all computationally intdaletawhether the average cases of these important
counting problems are computationally tractable or notilisopen. We hope to address the average case
complexity of those and other similar problems in our futwmak.
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