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Abstract. Quantified constraint satisfaction is the generalization of con-
straint satisfaction that allows for both universal and existential quantifiers
over constrained variables, instead of just existential quantifiers. We study
quantified constraint satisfaction problems CSP(Q, S), where Q denotes a
pattern of quantifier alternation ending in exists or the set of all possible
alternations of quantifiers, and S is a set of relations constraining the com-
binations of values that the variables may take. These problems belong to
the corresponding level of the polynomial hierarchy or in PSPACE, depend-
ing on whether Q is a fixed pattern of quantifier alternation or the set of all
possible alternations of quantifiers. We also introduce and study the quan-
tified constraint satisfaction problems CSP′(Q,S) in which the universally
quantified variables are restricted to range over given subsets of the domain.
We first show that CSP(Q,S) and CSP′(Q,S) are polynomial-time equiv-
alent to the problem of evaluating certain syntactically restricted monadic
second-order formulas on finite structures. After this, we establish three
broad sufficient conditions for polynomial-time solvability of CSP′(Q,S)
that are based on closure functions; these results generalize and extend
earlier results by other researchers about polynomial-time solvability of
CSP(Q,S). Our study culminates with a dichotomy theorem for the com-
plexity of list CSP′(Q,S), that is, CSP′(Q,S) where the relations of S

include every subset of the domain of S. Specifically, list CSP′(Q, S) is ei-
ther solvable in polynomial-time or complete for the corresponding level of
the polynomial hierarchy, if Q is a fixed pattern of quantifier alternation (or
PSPACE-complete if Q is the set of all possible alternations of quantifiers).
The proofs are based on a more general unique sink property formulation.

1 Introduction

Constraint satisfaction problems are ubiquitous in several different areas of artificial
intelligence and computer science, because constraints are widely used to specify
design requirements (see [18]). Informally, an instance of a constraint-satisfaction
problem consists of a set of variables, a set of possible values for the variables, and
a set of constraints that restrict the combinations of values that certain tuples of
variables may take; the question is to determine whether there is an assignment
of values to the variables that satisfies the given constraints. As first articulated
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by Feder and Vardi [24], the Constraint Satisfaction Problem (CSP) can be
formalized as the Homomorphism Problem: given two finite relational structures
A and S, is there a homomorphism h from A to S? A different, but equivalent,
way to formalize CSP is to identify it with the Conjunctive Query Evaluation

Problem: given a conjunctive query q and a finite relational structure S (that is,
a relational database), does S satisfy q? Here, a conjunctive query is a first-order
formula of the form ∃x1 . . . ∃xmψ, where ψ is a conjunction of atomic formulas with
predicates from the vocabularyB of the structure S. Thus, CSP is also a fundamen-
tal problems in database query processing, since conjunctive queries (also known
as select-project-join queries), are the most frequently asked queries in databases.

In its full generality, CSP is an NP-complete problem; for this reason, there has
been an extensive pursuit of polynomial-time cases of CSP that are often called
“islands of tractability” of constraint satisfaction (see [31, 17, 32, 29]). An instance
of CSP consists of two parts: in the formulation of CSP as the Homomorphism

Problem, the two parts are a structure A and a structure S, while in the formu-
lation of CSP as the Conjunctive Query Evaluation Problem the two parts
are a conjunctive query q and a structure S. A parametrized family of constraint
satisfaction problems CSP(S) can be obtained by fixing the structure S, where
the input to each of these problems is a structure A in the first formulation, or a
conjunctive query q in the second formulation. Much of the research on the com-
plexity of CSP(S) is motivated from the dichotomy conjecture in [24], which asserts
that for each structure S, the decision problem CSP(S) is either NP-complete or
solvable in polynomial time. Schaefer’s Dichotomy Theorem [33] for generalized
satisfiability problems establishes this conjecture for Boolean structures, that is,
when the universe of S is a two-element domain. More recently, Bulatov [4] es-
tablished the dichotomy conjecture for structures S over a three element domain.
This conjecture, however, remains open for structures with domains of cardinality
bigger than three.

When formulated as the Conjunctive Query Evaluation Problem, con-
straint satisfaction can be viewed as an important special case of the Model

Checking Problem for first-order logic: given a first-order formula ϕ and a struc-
ture S, does S satisfy ϕ? In turn, this suggests generalizing constraint satisfaction
to quantified constraint satisfaction QCSP, as follows: given a first-order sentence
of the form Q1x1 . . .Qxmψ and a structure S, does S satisfy ψ? Here, each Qi

is an existential or a universal quantifier, and ψ is a conjunction of atomic for-
mulas with predicates from S. In other words, QCSP is the evaluation problem
for positive disjunction-free first-order queries. Quantified constraint satisfaction
is a PSPACE-complete problem and contains QSAT (also known as QBF) as a
special case. As with CSP, one can obtain a parametrized family QCSP(S) of
quantified constraint satisfaction problems by fixing the structure S. For Boolean
structures S, this family contains Q3SAT as a member, one of the prototypical
PSPACE-complete problems. The following dichotomy theorem for the complexity
of Boolean QCSP(S) was established in [14, 13]: for every Boolean structure S,
either QCSP(S) is PSPACE-complete or QCSP(S) is solvable in polynomial-time.
More recently, researchers have embarked on a systematic investigation of the com-
putational complexity of QCSP(S), where S is a structure over a finite domain
[1, 2, 8]. Specifically, Börner et al. [1, 2], using techniques from universal algebra,



found sufficient conditions for tractability of QCSP(S) that are based on closure
functions. Furthermore, they obtained a trichotomy theorem for the complexity of
QCSP(S), when the relations in S include all graphs of permutations: each such
QCSP(S) problem is polynomial-time solvable, NP-complete or PSPACE-complete.
Additional broad sufficient conditions for tractability of QCSP(S) based on closure
functions were obtained by Chen and others [8–11].

In this paper, we extend the study of quantified constraint satisfaction in two
different, but related, directions. First, we consider the class of problems CSP(Q,S),
where Q is a pattern of quantifier alternation. Thus, standard constraint satisfac-
tion CSP(S) coincides with CSP(∃, S), while QCSP(S) coincides with CSP(Q,S)
where Q ranges over all possible patterns of quantifier alternation. Note that if the
pattern Q has k alternation of quantifiers for some fixed integer k, then CSP(Q,S)
belongs to the k-th level of the polynomial hierarchy PH. We also introduce the
class of problems CSP′(Q,S) where universally quantified variables are required
to vary over given subsets of the domain of S. One could also consider the ex-
tension CSP′′(Q,S) of quantified constraint satisfaction where both universally
quantified variables and existentially quantified variables are required to vary over
given subsets of the domain of S. It turns out, however, that this extension is sub-
sumed by the previous one, since it is easy to see that CSP′′(Q,S) coincides with
CSP′(Q,S ∪ R) where R is the set of all subsets of the domain of S (that is, all
possible unary constraints on the domain are present). Clearly, CSP′(Q,S) con-
tains CSP(Q,S) as a subproblem. Consequently, tractability of CSP′(Q,S) implies
tractability of CSP(Q,S), while C-hardness of CSP(Q,S) for a complexity class C
implies C-hardness of CSP′(Q,S).

Our investigation of CSP(Q,S) and CSP′(Q,S) begins by showing that these
problems are polynomial-time equivalent to the problem of evaluating certain syn-
tactically restricted monadic second-order formulas on finite structures. After this,
we establish three broad sufficient conditions for tractability of CSP′(Q,S) that are
based on closure functions. Specifically, we show that CSP′(Q,S) (and, a fortiori,
CSP(Q,S)) is solvable in polynomial time if one of the following conditions holds:
(1) all relations of S are closed under a commutative-conservative operation; (2)
all relations of S are closed under a near-unanimity operation; (3) all relations of
S are closed under a Maltsev operation. We also point out that CSP(Q,S) may be
tractable, while at the same time CSP′(Q,S) may be intractable. Our study of the
complexity of CSP′(Q,S) culminates with a dichotomy theorem for list CSP′(Q,S),
that is, CSP′(Q,S) where the relations of S include every subset of the domain of
S. Specifically, in this case CSP′(Q,S) is solvable in polynomial time or is com-
plete for the k-th level of the polynomial hierarchy PH, if Q has k alternations
of quantifiers (or is PSPACE-complete, if Q ranges over all patterns of quantifier
alternation). The proofs are based on a more general unique sink property formu-
lation. Finally, we obtain a dichotomy theorem for CSP′(Q,S) where the relations
in S include all graphs of permutations.

2 CSP(Q, S), CSP′(Q, S), and MMSNP(Q, F )

Let Q be an alternation of ∀ and ∃ quantifiers of length k ending in ∃, or let Q
be the set of all possible alternations of quantifiers. We shall allow both of these



cases for Q unless otherwise indicated. We let CQ be the complexity class ΣP
k if k

is odd, the complexity class ΠP
k if k is even (that is, CQ is one of the levels of the

polynomial hierarchy PH), and the complexity class PSPACE if Q consists of all
possible alternations of quantifiers. In particular C∃ = ΣP

1
=NP and C∀∃ = ΠP

2
.

Let S be a fixed finite relational structure, that is, S = (V,R1, . . . , Rm) where
V is a finite set and each Ri is a relation on V . An instance of CSP(Q,S) is a
first-order sentence Q1x1 . . . Qlxl(p1 ∧ . . .∧ pq), where each pi is an atomic formula
involving one of the relations Rj from S, x1, . . . , xl are the variables appearing in
the pi, and Q1, . . . , Ql is a sequence of quantifiers with alternation pattern Q, that
is, after identifying consecutive identical Qi and possibly adding some additional
quantifiers to the sequence of Qi, we can obtain Q. The question is whether the
structure S satisfies the sentence Q1x1 . . . Qlxl(p1 ∧ . . . ∧ pq). We note that every
problem CSP(Q,S) is in the complexity class CQ.

An instance of CSP′(Q,S) is defined similarly, except that in the first-order
sentence, if Qi is a ∀ quantifier, we may use Qixi ∈ Si instead of Qixi, where Si is
an arbitrary subset of the elements of S. More formally, an instance of CSP′(Q,S)
has two parts: the first part is a first-order sentence Q1x1 . . . Qlxl(p1 ∧ . . . ∧ pq),
where each Qi is the existential quantifier ∃ or a bounded universal quantifier
(∀xi ∈ Si) for some unary relation symbol Si; the second part is a collection
of subsets S′

i1
, . . . , S′

ir

of the universe V of S that interpret the unary relation
symbols Si1 , . . . , Sir

occurring in the bounded universal quantifiers of the sentence.
The question is whether the expanded structure S′ = (V,R1, . . . , Rm, S

′

i1
, . . . , S′

ir

)
satisfies the sentence Q1x1 . . .Qlxl(p1 ∧ . . .∧pq). Again, every problem CSP′(Q,S)
is in the complexity class CQ.

Every instance of CSP(Q,S) is also an instance of CSP′(Q,S), but not in the
other direction. Indeed, an instance of CSP(Q,S) coincides with the instance of
CSP′(Q,S) in which every unary relation symbol Si in the bounded quantification
(∀xi ∈ Si) is interpreted by the universe V of S.

Feder and Vardi [24] studied the class of problems MMSNP, or monotone
monadic strict NP without inequality. We study a more general class. Let Q be
an alternation of quantifiers of length k ending in ∃. The problem MMSNP(Q,F )
is defined by a second-order formula F with a second-order prefix that quantifies
over monadic relations and has quantifier alternation Q as defined above, and a
first-order universal part without the equality or inequality relations such that ev-
ery input relation, not quantified in the second-order part, appears with negative
polarity, that is, under the scope of an odd number of negations. An instance is
a finite structure T having vocabulary given by the input relations in F , and the
question is whether T satisfies F . Again, every problem MMSNP(Q,F ) is in the
complexity class CQ. Feder and Vardi showed the following.

Theorem 1. [24] Every CSP(∃, S) problem is an MMSNP(∃, F ) problem for some
F dependent on S. For every MMSNP(∃, F ) problem, there exists a CSP(∃, S)
problem such that the MMSNP(∃, F ) problem reduces in polynomial time to the
CSP(∃, S) problem, and the CSP(∃, S) problem reduces in randomized polynomial
time to the MMSNP(∃, F ) problem.

We generalize the first statement of this theorem.



Theorem 2. For every CSP(Q,S) or CSP′(Q,S) problem, where Q is an alterna-
tion of quantifiers of length k ending in ∃, there exists a polynomial time equivalent
MMSNP(Q,F ) problem.

Proof. The input structure for the MMSNP(Q,F ) problem is a given structure
with relations of the same name and arity as S, plus additional monadic relations
Mi to be added later.

For every quantifier type Qi out of the k quantifier types in the alternation Q
of length k and every element vj in S, introduce a monadic relation Rij which is
quantified by Qi. Require in the first-order part of F that for each existential Qi

and each variable x ranging over the input structure, exactly one Rij(x) holds, for
exactly one choice of j, giving the corresponding choice vj in S for x ranging over
the input structure. Also condition the first-order part for each universal Qi and
each x to choices of Rij such that exactly one Rij(x) holds, for exactly one choice
of j, giving the corresponding choice of an element vj in S for x ranging over the
input structure.

For each quantifier type Qi out of the k quantifier types in the alternation Q,
add an input monadic relation Mi, and require that at most one Mi(x) hold for
each element x, indicating that quantification Qi has been chosen for x ranging
over the input structure. Finally, for each relation A in S of arity r, require that
if A(x1, . . . , xr) holds and some corresponding Mi(xi) holds, then A(v1, . . . , vr)
holds in S, where the vj are given by the Rij corresponding to the quantifier Qi

represented by Mi.
Thus a sentence Q1x1 . . . Qlxl(p1∧ . . .∧pq) that gives an instance of CSP(Q,S)

corresponds to an instance T of MMSNP(Q,F ), where the structure T consists
of the relations p1, . . . , pq on its elements, and the relations Mi on its elements to
indicate the chosen quantification Qi. Conversely, an instance T of MMSNP(Q,F )
gives such a formula, since we may assume that exactly only one Mi(x) holds by
discarding elements that are not constrained by any Mi, since the formula is false
when two Mi(x) hold for the same x.

The same holds for CSP′(Q,S) by adding for each subset S′ of the elements
of S a monadic relation MS′ such that ¬MS′(x) indicates that x is restricted to
S′, and adding a disjunct to the first order part that holds when ¬MS′(x) and the
element vi chosen for x with universal quantification Qi is not in S′.

Courcelle’s Theorem states that any problem in monadic second-order logic
has a linear-time algorithm on instances of bounded treewidth [12, 19]. Thus for
a fixed alternation of quantifiers Q of length k, all problems MMSNP(Q,F ), and
in particular problems CSP(Q,S) or CSP′(Q,S), have a linear-time algorithm on
instances of bounded treewidth.

We may consider extensions of the class of all problems MMSNP(Q,F ). A
problem is MMSNP′(Q,F ) if we also include the inequality relation as an input
relation to an MMSNP(Q,F ) problem. A problem is MMSNP′′(Q,F ) if it satisfies
the requirements for MMSNP(Q,F ) except for the condition that the formula be
monotone in the input relations, so that input relations may appear with both
positive and negative polarity. A problem is MMSNP′′′(Q,F ) if it satisfies the
requirements for MMSNP(Q,F ) except for the last existential second-order quan-
tifier in Q, which may quantify over binary relations as well. Feder and Vardi [24]



conjectured that every problem MMSNP(∃, F ) is either polynomial time solvable
or NP-complete, and showed that this conjecture fails for the three extensions of
MMSNP(∃, F ).

Theorem 3. [24] Every problem in NP has a polynomial time equivalent prob-
lem in each of the three classes of problems MMSNP′(∃, F ), MMSNP′′(∃, F ) and
MMSNP′′′(∃, F ). In particular, if P6=NP, these three classes contain problems that
are neither in P nor NP-complete [30], and whether problems in each of these
classes are polynomial or NP-complete is undecidable, even for problems guaran-
teed to be polynomial or NP-complete ahead of time.

We obtain a similar result and conjecture for a quantification Q.

Theorem 4. For a fixed alternation of quantifiers Q of length k ending in ∃, every
problem in CQ has a polynomial time equivalent problem in each of the three classes
of problems MMSNP′(Q,F ), MMSNP′′(Q,F ) and MMSNP′′′(Q,F ).

Proof. As in [24] for MMSNP′(∃, F ), we use the result of Hillebrand, Kanellakis,
Mairson and Vardi [26] showing that monadic Datalog with inequality (but without
negation) can verify a polynomial time encoding of a Turing machine computation.
As in [24], the Turing machine may be assumed to be oblivious, and we may use
existentially quantified monadic relations to guess nondeterministic inputs to the
machine and the resulting states for the machine reaching an accepting state. With
additional monadic relations quantified according to Q, we may allow for both
nondeterministic existential and universal inputs to the machine, thus encoding a
CQ machine as an MMSNP′(Q,F ) formula.

For MMSNP′′(Q,F ), as in [24], we may consider the MMSNP′(Q,F ) encoding
of a CQ machine, and since the formula is now not required to be monotone, we
may replace the occurrences of equality with a binary input relation eq. We require
that eq be an equivalence relation (reflexive, symmetric, transitive). For all other
input input relations and existential monadic relations are required to hold on
some elements if and only if they hold on other elements related to these via the
equivalence relation eq (for example, if M(x) and eq(x, y) then M(y) as well). Thus
equality and inequality are simulated via eq and its negation, and therefore every
CQ machine is encoded as an MMSNP′′(Q,F ) formula.

For MMSNP′′′(Q,F ), as in [24], we include additional input and exsistential
monadic and binary relations that force certain elements in the input structure to
be marked and also force a uniquely defined existential binary equivalence relation
eq on marked elements, so that the encoding of a CQ machine as an MMSNP′(Q,F )
formula yields an encoding as an MMSNP′′′(Q,F ) formula by representing inequal-
ity using eq.

Conjecture 1. For a fixed alternation of quantifiersQ, every problem MMSNP(Q,F )
is either solvable in polynomial time or complete for some class ΣP

k or ΠP
k .



3 The Graph of Closure Functions and the Unique Sink

Property

Let f be a function of r arguments on the domain of S. We say that S is f -closed
if for all relations R in S, of arity p, if R(a1j , . . . , apj) holds in S for all 1 ≤ j ≤ r,
and f(ai1, . . . , air) = bi for all 1 ≤ i ≤ p, then R(b1, . . . , bp) also holds in S.

We shall consider problems such that if S is f -closed then f is idempotent, that
is f(x, x, . . . , x) = x for all x in S. We define the graph of closure functions of S to
be a digraph G given as follows. The vertices of G are the elements of the domain
of S. Given two distinct elements x, y in S, we include in G a directed edge (x, y)
if S is f -closed for some f of some arity p such that for some choice of aij ∈ {x, y}
for 1 ≤ i, j ≤ p, we have aii = y for all 1 ≤ i ≤ p and f(ai1, . . . , aip) = x for all
1 ≤ i ≤ p.

We generalize the problems CSP(Q,S) and CSP′(Q,S) by defining the problem
CSPP (Q,S) for a collection P of subsets Pi of the domain of S. In CSPP (Q,S)
the universally quantified variables are only allowed to range over chosen subsets
Pi from P . Thus CSP(Q,S) has P consisting only of the domain P0 of S, and
CSP′(Q,S) has P consisting of all nonempty subsets Pi of P .

We say that a problem CSPP (Q,S) has the unique sink property if S has G as
the graph of its closure functions, and each subgraph Gi of G induced by a choice
of Pi from P has a vertex vi in Pi that is reachable from every vertex in Gi.

Theorem 5. Let Q be either a fixed alternation or an arbitrary alternation of
quantifiers, and suppose CSPP (Q,S) has the unique sink property. then CSPP (Q,S)
is polynomially equivalent to CSP(∃, S), that is, these two problems reduce in poly-
nomial time to each other. Thus CSPP (Q,S) is in NP (possibly polynomial or
NP-complete).

Proof. Clearly CSP(∃, S) reduces to CSPP (Q,S), so we reduce CSPP (Q,S) to
CSP(∃, S). For each graph Gi corresponding to each Pi define an oriented tree Ti

spanning Gi, rooted at vi, and with the edges oriented towards the root vi.
We would like to consider all possible values of universal quantifiers. However,

we shall restrict attention to some specific choices of combinations of values for
universal quantifiers. For the trees Ti, consider cosen subtrees Ui of Ti containing
vi. Then we consider assignments to universal variables such that if there are m
universal variables ranging over Pi and assigned a particular value x of Pi not in
Ui, and the edge (x, y) in Ti was obtained from a closure function f of arity p, then
m < p.

If we let Ui = Ti, then we are considering all combinations of assignments to
universally quantified values as needed. But if we only let Ui = {vi}, then we are
only considering a polynomial number of assignments, since if the maximum arity
of functions f used is p, the maximum size of Pi is q, and the number of sets Pi in
P is r, then only a constant number pqr of universally quantified variables could be
assigned values different from the special value vi, giving at most npqrqpqr possible
assignments to universal variables. Thus this last case reduces to CSP(∃, S) as
a polynomial number of instances may be combined into a single instance. When
combining instances for different assignments to universally quantified variables, we
make sure that existentially quantified variables for different universal combinations



are the same variable if the universally quantified variables preceeding them have
the same assignments of values. This identification of existential variables in the
multiple instances combined is needed as existential variables depend only on the
values of preceeding universal variables.

We shall show that solving the problem with Ui = {vi} as we indicated also
solves the problem of Ui = Ti. For this purpose, we start with Ui = Ti and succe-
sively remove some leaf from some Ui, until we get all Ui = {vi}. Consider say the
step where we remove x from U1 to obtain U ′

1
. We must then drop all assignments

that assign value x to p′ ≥ p universal variables ranging over P1, where p is the
arity of the closure function f that gave the edge (x, y) in T1. We show how to
take care of the removal of an assignment with p′ ≥ p largest. Consider the first p
variables w1, . . . , wp out of these p′ variables assigned x, and consider the p sub-
stitutions that replace their values x, . . . , x with a1j, . . . , apj , for each 1 ≤ j ≤ p.
These assignments each have ajj = y and all aij ∈ {x, y}, thus reducing the num-
ber p′ of occurrences of x to p′ − 1 at least. From a solution for each of these p′

derived assignments we may obtain a solution for x, . . . , x as in the original assign-
ment by componentwise applying f , since S is f -closed and f is idempotent, by
the definition of f .

Repeatedly taking care of the assignments with largest p′ ≥ p will eventually
guarantee p′ < p as required. We must also make sure when performing this sub-
stitution by p solutions with smaller p′ that the values of existentially quantified
variables only depend on preceeding existentially quantified variables, so a similar
substitution is performed for each other assignment to universal variables that as-
sign x to wi for some 1 ≤ i ≤ p. If after removing this assignment with large p′ ≥ p

the existential variables depend only on the universal variables preceeding them,
then componentwise applying f to both universal and existential variables will
preserve the property of having existential variables depending only on preceeding
universal variables. Once all p′ < p, we may substitute U1 with U ′

1
consisting of

removing x from U1. Thus overall, we successfully solve the problem for all Ui = Ti

by solving the problem obtained when we reach all Ui = {vi}, completing the proof.

The simplest problems having the unique sink property are the cases where
the graph G of the closure functions contains a tournament, so that every pair of
elements in the domain of S are joined by an edge in either or both directions. The
following are examples of this.

A function f of two arguments is a commutative conservative binary operation
on S if f(a, b) = f(b, a) ∈ {a, b} for all a, b ∈ S. We note that the Horn and dual-
Horn cases are f -closed for such a function f . Bulatov and Jeavons [7] showed that
if S is f -closed for such a function f , then CSP(∃, S) can be solved in polynomial
time.

A function g of r ≥ 3 arguments is a near-unanimity operation on S if for a
choice of elements ai in S for 1 ≤ i ≤ r such that there exists an element a in S

and some 1 ≤ j ≤ r such that ai = a for i 6= j, we have f(a1, . . . , ar) = a. In the
special case r = 3, the near-unanimity operation is called a majority operation. A
special case of a majority operation is the dual discriminator operation defined by
d(x, y, z) = y if y = z and d(x, y, z) = x otherwise. We note that the bijunctive case



is d-closed for the dual discriminator operation d. It is shown in [1, 2] that if S is d-
closed for the dual discriminator operation d, then CSP(Q,S) is in nondeterministic
logarithmic space, and thus in polynomial time. It is shown in [24] that if S is g-
closed for a near-unanimity operation g, then CSP(∃, S) can be solved in polynomial
time.

A function h of three arguments is a coset operation on S if there exists a group
operation on S such that h(x, y, z) = xy−1z. We note that the affine case (the case
of linear equations modulo p) is h-closed for a coset operation h. It is shown in [1,
2] that if S is h-closed for the coset operation of an Abelian group, then CSP(Q,S)
can be solved in polynomial time. Without assuming the group to be abelian, it is
shown in [24] that if S is h-closed for a coset operation h, then CSP(∃, S) can be
solved in polynomial time.

A function h of three arguments is a Maltsev operation on S if h(x, x, y) =
h(y, x, x) = y for all elements x, y in S. It is shown in [3] that if S is h-closed for a
Maltsev operation h, then CSP(∃, S) can be solved in polynomial time. An example
of a Maltsev operation is the switching operation given by s(x, x, y) = s(y, x, x) = y

and s(x, y, z) = y otherwise.

The following results were obtained by Bulatov, Chen [1, 8] and others for
CSP(Q,S). Here we obtain immediate corollaries of Theorem refmain

Corollary 1. If Q consists of all or some alternations of quantifiers, and S is
f -closed for an operation that is commutative conservative, near unanimity, coset,
or Maltsev, then CSPP (Q,S) is polynomial time solvable for all choices of P .

The preceeding corollary also applies to various forms of majority-minority oper-
ations, see e.g. Dalmau [16]. The most general result in this direction is a k-edge op-
eration, which has recently been shown to be tractable by Idziak, Markovic, McKen-
zie, Valeriote, and Willard [27]. It is given as an operation g of arity k+1 that satis-
fies g(x, x, y, . . . , y) = g(x, y, x, y, . . . , y) = g(y, y, y, x, y, . . . , y) = g(y, y, y, y, x, y, . . . , y) =
. . . = g(y, y, y, . . . , y, x) = y for all x, y. Clearly this operation gives the unique sink
property and is thus polynomial with arbitrary alternations of quantifiers as well
as shown here.

Let R be the set of all subsets of the domain of S. Bulatov [5] showed that
if the monadic relations constituting R are in S, that is, the fixed structure S

contains all monadic relations, then CSP(∃, S) is either polynomial time solvable
or NP-complete.

Theorem 6. Let R be the set of all subsets of S, and suppose R ⊆ S. Then
CSP′(Q,S) is either polynomial time solvable or CQ-complete; The criterion dis-
tinguishing polynomial and CQ-complete cases is the same as the criterion distin-
guishing polynomial and NP-complete cases for CSP′(∃, S) in [5].

Proof. The NP-complete cases of CSP(∃, S) in [5] simulate the one-in-three SAT
relation T = {001, 010, 100} on two particular elements 0 and 1 in S, so CQ-
completeness for CSP′(Q,S) follows the known classification of the Boolean domain
case [25]. The polynomial cases follow from Theorem 5 since the graph G contains
a tournament.



The result of [5] for the case where all subsets appear as monadic relations in
S has been generalized to the case where subsets of size at most three appear as
monadic relations in S. The proof involves a similar G containing a tournament
derived from [5], so the preceeding theorem carries over to this case as well. A
similar conjecture when only subsets of size at most two are required to appear
as constraints remains open. We may also conjecture polynomiality more generally
whenever G contains a tournament.

When G does not contain a tournament, one can construct examples of S for
which CSP(∃, S) is instead NP-complete. For this it suffices to include only relations
involving pairs of values x, y, and if the edge (x, y) is directed only in one direction
only use Horn clauses on this pair of values, and when no edge joins x, y include the
NP-complete one-in-three SAT problem on these two values. However CSP(Q,S)
remains NP-complete if the unique sink property does hold. However if the unique
sink property does not hold then CSP(Q,S) can go up in complexity as high as
CQ-complete.

A semilattice operation is a binary operation satisfying f(a, a) = a, f(a, b) =
f(b, a), f(a, f(b, c)) = f(f(a, b), c). Bulatov and Chen [6] have shown that for the
problem of f -closed structures for a semilattice operation f , then CSP(Q,S) and
CSP′(Q,S) are polynomial if the unique sink property holds in either case, other-
wise the problems are coNP-complete for any alternation of quantifiers involving
at least one for-all (while still polynomial with just one exists), and for arbitrary
alternations they become PSPACE-complete. It is easy to extend these results to
CSPP (Q,S) in the obvious manner.

4 Trichotomies for Graphs of Permutations

Assume S contains at least three elements. Let ∆ be the set of all graphs of permu-
tations on the elements of S, that is, the set of all binary relations {(x, y) : y = π(x)}
for permutations π. Börner, Krokhin, Bulatov, and Jeavons [1, 2] classified the com-
plexity of CSP(Q,S) in the cases where Q consists of all alternations of quantifiers
and ∆ ⊆ S, obtaining a trichotomy as polynomial, NP-complete, or PSPACE-
complete. The polynomial cases remain polynomial if Q is a fixed alternation of
quantifiers ending in ∃. The NP-complete cases are such that CSP(∃, S) is also
NP-complete, and thus remain NP-complete if Q is a fixed alternation of quanti-
fiers ending in ∃. The PSPACE-complete cases are such that S is f -closed for a
surjective function f if and only if f is a projection. Note if S is f -closed for a func-
tion f , then f must be surjective because S contains all graphs of permutations,
so that if f(a1, . . . , ak) = b then f(π(a1), . . . , π(ak)) = π(b) for every permutation
π. Thus the PSPACE-complete cases are such that S is f -closed for a function f

(surjective or not) if and only if f is a projection. Thus by a result of Post (see
also Jeavons [28]), CSP(∃, S) simulates all relations, and in particular simulates
the binary relation W of a complete irreflexive graph on the elements in S. The
proof in [1] that CSP(Q, {W}) is PSPACE-complete when Q consists of all alter-
nations of quantifiers gives a reduction from CSP(Q, {NAE}) for the not-all-equal
relation NAE, which is PSPACE-complete by Theorem 6, and adapts to a proof
that CSP(Q, {W}) is CQ-complete for a fixed alternation of quantifiers Q ending
in ∃ with a corresponding reduction from CSP(Q, {NAE}) and Theorem 7. Thus



the PSPACE-complete cases become CQ-complete in this case. A similar proof can
be found in [2]

Theorem 7. If W is an irreflexive clique on r ≥ 3 elements, then CSP(Q, {W})
is CQ-complete.

Proof. The proof that CSP(Q, {W}) is CQ-complete for a clique W of size r ≥ 3
encodes an instance of CSP(Q, {NAE}) by making

(

r

2

)

copies of the variables vi

and constraints NAE(vi, vi′ , vi′′ ), then replaces each universally quantified vi in the
resulting instance with two variables xi, yi with an edge (xi, yi), each existentially
quantified vi with a variable yi, and also replaces each constraint NAE(vi, vi′ , vi′′)
with a triangle (ti, ti′ , ti′′ ) and edges (yi, ti), (yi′ , ti′), (yi′′ , ti′′). Finally, a clique
(u1, . . . , ur−2) is added with edges joining the yi to all uj and edges joining the ti
to all uj other than ur−2. The quantification for the vi is replicated as a universal
quantification for the corresponding xi or as an existential quantification for the
corresponding yi, followed by existential quantification on the yi corresponding to
universally quantified variables and on the ti at the end of the formula, and with
the first existential quantifiers applied to the uj .

If we consider the
(

r

2

)

choices of pairs of possible values a, b for the first uni-

versally quantified xi and use them in the
(

r

2

)

corresponding copies of the original
instance, we may assume that variables u1, . . . , ur−2 do not take the two values a, b
in one of these copies, in which case the variables yi take values a, b, corresponding
to values 0, 1 on the vi that must satisfy the NAE constraints as required by the
triangles of ti. The cases where some xi do not take values among a, b are more
easily satisfied.

As argued above, Theorem 17 implies the following.

Theorem 8. Suppose S contains the set ∆ of all graphs of permutations. Then
CSP(Q,S) is either polynomial, NP-complete, or CQ-complete.

The polynomial cases in Theorem 18 are those that are closed under the dual
discriminator d, or the switching operation s, or an affine operation, so these cases
remain polynomial for CSP′(Q,S) as well by Theorems 9 and 11. The NP-complete
cases in Theorem 18 are such that CSP(∃, S) simulates the not-all-equal relation
N on a 2-element subdomain [15], and so Theorems 6 and 7 imply that CSP′(Q,S)
is CQ-complete. The CQ-complete cases in Theorem 18 remain CQ-complete for
CSP′(Q,S).

Theorem 9. Suppose S contains the set ∆ of all graphs of permutations. Then
CSP′(Q,S) is either polynomial or CQ-complete.
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