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Abstract

We propose a proof-theoretic approach for gaining evidéinaecertain parameterized problems
are not fixed-parameter tractable. We consider proofs titates that a given propositional for-
mula cannot be satisfied by a truth assignment that sets akmasables tdrue, considering: as
the parameter. One could separate the parameterized cdtpplasses FPT and W[2] by show-
ing that there is no proof system (for CNF formulae) that dadmpioofs of sizq”(k)no(l) where

f is a computable function anddenotes the size of the propositional formula. We providesa fi
step and show that tree-like resolution does not admit stambf@ \We obtain this result as a corol-
lary to a meta-theorem, the main result of this paper. Thastieorem extends Riis’ Complexity
Gap Theorem for tree-like resolution. Riis’ result estsitdis a dichotomy between polynomial
and exponential size tree-like resolution proofs for psifpanal formulae that uniformly encode
a first-order principle over a universe of size (1) either there are tree-like resolution proofs of
size polynomial im, or (2) the proofs have size at le@st' for some constant; the second case
prevails exactly when the first-order principle has no fibitié some infinite model.

We show that the parameterized setting allows a refinedifitag®n, splitting the second
case into two subcases: (2a) there are tree-like resolptimofs of size at moss*n® for some
constantsy, 3; or (2b) every tree-like resolution proof has size at ledst for some constant
0 < v < 1, the latter case prevails exactly if for every infinite mqdelcertain associated
hypergraph has no finite dominating set. We provide exampidgst-order principles for all
three cases.
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1 Introduction

In recent years parameterized complexity and fixed-pammadgorithms have become an important
branch of algorithm design and analysis; hundreds of rebgmpers have been published in the area
[1,4,5, 8]. In parameterized complexity one considers agtatjipnal problems in a two-dimensional
setting: the first dimension is the usumbut sizen, the second dimension is a positive integethe
parameter A problem is fixed-parameter tractable if it can be solvetrire O(f(k)n°®™")) where

f denotes a computable, possibly exponential, function.e@&\WP-hard problems have natural
parameterizations that admit fixed-parameter tractgbiibr example, given a graph withvertices,
one can check in tim@(1.273% 4 nk) (and polynomial space) whether the graph has a vertex cover
of size at mosk: [2]. On the other hand, several parameterized problemsaschQUE (has a given
graph a clique of size at leak®P) are believed to beot fixed-parameter tractabl&OUNDED CNF
SATISFIABILITY is a further problem that is believed to bet fixed-parameter tractable (and which
will play a special role in the sequel): given a propositidoamula in conjunctive normal form, is
there a satisfying truth assignment that sets at rhestriables tarue?

Parameterized complexity offers also a completenessyhBomerous parameterized problems
that appear to be not fixed-parameter tractable have beesifdd as being complete undipt-
reductionsfor complexity classes of the so-callegft hierarchyw[1] C W[2] C - - -. For example,
CLIQUE andBOUNDED CNF SATISFIABILITY are complete for the first two levels of the weft hierar-
chy, respectively. We will outline the basic notions of paederized complexity in Section 2.1; for
an in-depth treatment of parameterized complexity claasésfpt-reduction we refer the reader to
Flum and Grohe’s monograph [5].

It is widely believed that problems that are hard for the viérarchy are not fixed-parameter
tractable. Up to now there are mainly three types of evidence

1. Accumulative evidencaumerous problems are known which are hard or completddeses
of the weft hierarchy, and for which no fixed-parameter athar has been found in spite of
considerable efforts [1].

2. k-step Halting Problem$or non-deterministic Turing machines are complete fordlasses
WI[1] (single-tape) and W[2] (multi-tape) [5]. A Turing maicke is such an opaque and generic
object that it does not appear reasonable that we shouldlba@becide if a given Turing
machine on a given input has some accepting path withoutrigak the paths.

3. If a problem that is hard for a class of the weft hierarchysuout to be fixed-parameter
tractable, then thExponential Time HypotheqiETH) fails, i.e., there is a°(") time algorithm
for then-variable 3-SAT problem [6]. ETH is closely related to thegraeterized complexity
class M[1] which lies between FPT and W[1] (see [5]).

We propose a new approach for gaining further evidence #rdaia parameterized problems are
not fixed-parameter tractable. We generalize conceptsauff pomplexity to the two-dimensional
setting of parameterized complexity. This allows us to folate a parameterized version of the
program of Cook and Reckhow [3]. Their program attempts fo gaidence for NP£ co-NP, and

in turn for P ## NP, by showing that propositional proof systems are not patyially bounded.
We introduce the concept of parameterized proof systemsuinprogram, lower bounds for the
length of proofs in these new systems yield evidence thahiceparameterized problems are not
fixed-parameter tractable.

In propositional proof complexity one usually constructgeguence of tautologies (or contradic-
tions), and shows that the sequence requires proofs (datifus) of super-polynomial size in the
proof system under consideration. In the scenario of cdittians and refutations, such sequences
of propositional formulae frequently encode a first-orde®) sentence (such as the pigeon hole
principle) where thex-th formula of the sequence states that the FO sentence masdwel of sizen.



S. Riis [10] established a meta-theorem that exactly pimgainder which circumstances a given
FO sentence gives rise to a sequence of propositional faerthht have polynomial-sized proofs in
the system of tree-like resolution. Namely, if the sequema® not tree-like resolution refutations
of polynomial size, then shortest tree-like resolutiorutafions have size at lea&t" for a positive
constant that only depends on the FO sentence. Hence thergap hetween two possible proof
complexities. The case of exponential size prevails exadten the FO sentence has no finite but
an infinite model.

In this paper we show a meta-theorem regarding the complekiparameterized tree-like res-
olution. To this aim we considgrarameterized contradictionshich are pairg F, k) whereF' is a
propositional formula in CNF and is an integer, such thdt cannot be satisfied by a truth assign-
ment that sets at mostvariables tatrue. Parameterized contradictions form a co-W[2]-complete
language. Hence FPE W[2] would follow if there were a proof system that admits pi®of size
at mostf(k)n®™) for parameterized contradictiofi#, k) wheren denotes the size df; we call
such a (hypothetical) proof systeft-bounded

In this paper we consider the relatively weak system of likeseresolution. A tree-like resolution
refutation for a parameterized contradictidn k) uses clauses with more tha&megated variables
as additional axioms. We show a meta-theorem that classifiastly the complexity of tree-like
resolution refutations for parameterized contradictio®sir theorem allows a refined view of the
exponential case of Riis’ Theorem: Consider the sequé€ige,),cn Of propositional formulae
generated from a FO sentengahat has no finite but some infinite model. For a positive iatég
we get a sequence of parameterized contradici@s,, k)).»cn. We show that exactly one of the
following two cases holds (and provide a criterion that desiwhich one).

e (Cyn, k) has a tree-like resolution refutation of sizén® for some constants and3 which
depend on) only.

e There exists a constafnt0 < v < 1, such that for every, every tree-like resolution refutation
of (Cy,n, k) is of size at least”” .

We establish the upper boupdn® via certain boolean decision trees. For the lower baufidwe
use a game theoretic argument.

We provide examples of FO sentence for each of the abovearédegin particular, the examples
for then®” case (Examples 5 and 7) show that parameterized tree-Bkéut@n is not fpt-bounded.

2 Preliminaries

2.1 Fixed-parameter Tractability

In the following letY denote an arbitrary but fixed finite alphabetparameterized languads a set

L C ¥* x N whereN denotes the set of positive integers.(If k) is in a parameterized language
L, then we calll the main partand k the parameter We identify a parameterized language with
the decision problem(7, k) € L?” and will therefore synonymously use the terpgsameterized
problemand parameterized language. A parameterized problencalledfixed-parameter tractable
if membership of I, k) in L can be deterministically decided in time

O(f(k)|1|°M) 1)

wheref denotes a computable function. FPT denotes the class ofedl-flarameter tractable deci-
sion problems; algorithms that achieve the time compldditare calledixed-parameter algorithms
The key point of this definition is that the exponential griowg confined to the parameter only, in
contrast to running times of the form

O(| 110Uy, 2)



There is theoretical evidence that parameterized problémscLIQUE are not fixed-parameter
tractable. This evidence is provided via a completenessryhwhich is similar to the theory of
NP-completeness. This completeness theory is based omltbeifhg notion of reductions: Let
L, € ¥7 x NandLy € ¥4 x N be parameterized problems. Apt-reductionfrom L, to Lo is a
mappingR : ¥ x N — X3 x N such that

1. (I,k) € Lyifandonly if R(I, k) € Lo.

2. R is computable by a fixed-parameter algorithm, i.e., there ég@mputable functiorf such
thatR(I, k) can be computed in tim@(f (k)|7|°™M).

3. There is a computable functigrsuch that wheneveR(1, k) = (I, k'), thenk’ < g(k).

A parameterized complexity clagsis the equivalence class of a parameterized problem untler fp
reductions. It is easy to see that FPT is closed under fptetezhs, thus FPT is a parameterized
complexity class. Parameterized problems appear to haeead@legrees of intractability, as mani-
fested by thaveft hierarchy The classes WI[t] of this hierarchy form a chain

FPTCW[1] CW[2] C --- C XP

where all inclusions are assumed to be proper. Here XP detindeclass of problems solvable in
time O(|I|7(*); it is known that FPT#£ XP [4]. Each class W([t] is defined as the equivalence class
of a certain canonical weighted satisfiability problem fecidion circuits. For W[2] the canonical
problem is equivalent to the following satisfiability prebi:

WEIGHTED CNF SATISFIABILITY

Instance:A propositional formulaF' in conjunctive normal form (CNF), and a positive
integerk.

Parameter:k.

Question: Can F' be satisfied by a truth assignmenthat sets exactly: variables to
true? (k is theweightof 7.)

Note that if the clauses of the CNF formula are required tdaiorat most three literals, we get the
WI[1]-complete problenWEIGHTED 3-CNF SATISFIABILITY. Let BOUNDED CNF SATISFIABILITY
denote the problem obtained froWEIGHTED CNF SATISFIABILITY by allowing truth assignments
of weightat mostk. Itis easy to see that this relaxation does not change tl@merized complexity
of the problem:

Lemma 1. BOUNDED CNF SATISFIABILITY is complete for the clas&/[2] under fpt-reductions.

Proof. We provide an fpt-reduction from the languag€IGHTED CNF SATISFIABILITY, which is
known to be W[2]-complete [4]. LetF, k) be an instance oVEIGHTED CNF SATISFIABILITY in
which the variables?, ..., v}, do not appear. We reduce it to the instaQfg, & + 1) of BOUNDED
CNF SATISFIABILITY inwhich F’ := F A (v] V...V u,). Itis transparent thal’ has a satisfying
assignment of weightt if and only if F/ has a satisfying assignment of weight at most1, and the
result follows. O

As in classical complexity theory, we can define for a paramimtd complexity clas§ the
complementary complexity class €o= { L : L € C } whereL = (X* x N) \ L for a parameterized
problemL C ¥* xN. Clearly FPT= co-FPT. Itis easy to see thatdfis closed under fpt-reductions,
then sois cas. Thus, in particular, each class WIt] of the weft hierarclvweg rise to a parameterized
complexity class co-WI[t].



2.2 Parameterized Proof Systems

Definition 1. Let L C ¥* x N be a parameterized language. parameterized proof system for
L is an onto mapping’ : (X x N) — L for some alphabet; whereI' can be computed by a
fixed-parameter algorithm.

We say thafl" is fpt-boundedif there exist computable functiorfsand g such that for every
(I,k) € Lthereis(I', k") € ¥ x Nwith (I’ k') = (I, k), |[I'| = O(f(k)|I|°M)), andk’ < g(k).

Note that the problems of the classes WI]t] of the weft hidradcave fpt-bounded proof sys-
tems since the yes-instances of these problems have sntaisses. Consider, for example, the
WI[2]-complete problenl, = BOUNDED CNF SATISFIABILITY. LetSE - ;, denote a string over some
alphabet that encodes a CNF formula together with a satisfying truth assignmenof weight
< k for F. A proof systeml" for L can now be defined by settii{w, k) = (F, k) if w encodes
Sr.rk, and otherwis& (w, k) = (Fo, ko) for some fixed Fo, ko) € L. Evidently,I" is fpt-bounded.

However, the situation is different for the classes co-Ylecifically, in this case, for co-W/[2].
We can witness that a CNF formula withvariables has no satisfying assignment of weighi by
listing all O(k - n*) assignments of weight &, then checking that none is satisfying. However, this
listing requires too much space and apparently we cannatfas¢he construction of an fpt-bounded
proof system.

Lemma 2. LetC be a parameterized complexity class andlldte aco-C-complete parameterized
problem. If there is no fpt-bounded proof systemZipthenC # FPT.

Proof. Let L C ¥* x N be a co€-complete parameterized problem. We show the contraipesit
of the statement. Assunte = FPT. Since FPT= co-FPT, co€ = FPT follows. Consequently,
there is a fixed-parameter algorithm that decides memhensti; let M be a Turing machine that
implements this algorithm. Fdr, k) € L let M ; ;) be a string over some alphaliét that encodes
the computation steps @/ with input (I, k). By the fixed-parameter tractability df, there is a
computable functiory such thaf M ; ;| < O(f(k)|I|°M). We may assume thaf, k) can be
read off fromM; 1), say, by choosing an encoding whéie k) is encoded as a prefix off(; i)
wherefk is presented in unary. We define a mapplhg ¥ x N — L as follows. Consider
(I',k") € ¥ x N. If I’ encodes a computation @ for the input(Z, k), i.e., if I' = My,
then we letl'(I’, k') = (I, k). Otherwise, if(I’, k") does not encode a computation/df for some
input (I, k), we putl’(I’, k") = (I, ko) for some arbitrary fixedl, ko) € L. Clearlyl is a proof
system forL asT'(I’, k") can be computed in linear time. Furthermareis fpt-bounded, since
|M 1 1y < O(f(k)|I|°™M)) holds for(I,k) € L. O

In view of this lemma we suggest a program a la Cook-Recklavgéining evidence that the
complexity classes from the weft hierarchy are distinctrfi®®PT. This program consists of showing
that particular parameterized proof systems are not fpaded. For such an approach we would
start with weak systems such as a parameterized versioaesfike resolution.

2.3 From First-Order to Propositional Logic

Next we describe a translation of a FO sentence to a sequépcepmsitional CNF formulae. We
use the language of FO logic with equality but with neithardtion nor constant symbols. We omit
functions and constants only for the sake of a clearer ekiposnote that we may simulate constants
in a single FO sentence with addedtermostexistential quantification on new variables replacing
those constants. We assume that the FO sentence is givemagadtion of FO sentences, each of
which is in prenex normal form; thus, we need only explaintthaslation of a single FO sentence
in prenex normal form. The case of a purely universal segténeasy — a sentengeof the form

Va1, xe, ... F(1,22,. .. Tk),



whereF is quantifier-free, is translated into a sequence of praiposil formulae in CNRCy, ,,)nen,
of which thenth membelC,, ,, is constructed as follows. Lét] = {1,2,...n}. For instantiations
x1,Ta,...2; € [n], we can considef(z1, z2,...2zx) to be a propositional formula over propo-
sitional variables of two different kinds®(x;, , zs,, ... z;,), whereR is ap-ary predicate symbol,
and(z; = z;). We transformZ into CNF and then take the union of all such CNF formulae for
(z1,22,...x)) ranging overn]*. The variables of the forniw; = x;) evaluate to either true or
false, thus we are left with variables of the fofz;, , z;,, ... x;,) only.

The general case, a sentencef the form

Va1 3y Ve dys . . Vo Jye F(z1, 22, ... Tk, Y1, Y2, - - - Yk)s

can be reduced to the previous case by Skolemization. Wedute Skolem relations
Si(x1, 2, ... xi,y;) forl < i < k. S;(x1,x2,...2y;) Withesseg; for any givenzy, zo, . .. 2;, SO
we need to ad&kolem clausestating that such a witness always exists, i.e.,

n
\/ Si(Il, xro, ... Iz,yz) for all (xl,SCQ, Ce IZ) S [TL]Z .
yi=1

The original sentence can be transformed into the followaigely universal sentence

k
vxlvaV' - TkyY1,Y2, - - - Yk /\ _‘S’L'('rlv'IQa- l"myz) \/F(IMIQV' -TkyY1,Y2, - - yk)
=1

By construction it is clear that, for FO sentengeshe CNF formula’y, ,, is satisfiable if and only if
1 has a model of size. Thus satisfiability questions on the sequef&g,,).en relate to questions
on the existence of non-empty finite models for

Examplel. We consider (the negation of) the Pigeonhole Principle tddfened by the following
sentence)"HP of FO.

VaIyR(z,y) A IyVe-R(z,y) N (VaVwVy —R(z,y) V "R(w,y) V . = w).
We translate this to the conjunction of the following unaarclauses

Vavy =Sz (z,y) V R(z,y)
VyVz =S1(y) V ~R(z,y)
VaVyVw —R(z,y) V " R(w,y) V& = w

together with the Skolem clauses

Va3ySa(z,y)
FyS1(y).
Forz,y € [n] we now consideR(x,y), S2(z,y) andS;(y) to be propositional variableg.,; ,, is
therefore the system of clauses

ﬁ52(‘Ta y) \ R(.I', y)a ﬁSl (y) \ ﬁ‘R(‘Ta y) and
—R(x,y) V -R(w,y), forz,y,w € [n], w # x,

together with the Skolem clauses

n

\/ Sa(,i), forz € [n], and \/ S (i).
i=1

i=1



2.4 Parameterized Tree-like Resolution

A literal is either a propositional variable or the negation of a psitpgnal variable. Aclauseis a
disjunction of literals (and a propositional variable capear only once in a clause). A set of clauses
is a conjunction, i.e., it isatisfiableif there exists a truth assignment satisfying simultangoais

the clausesResolutioris a proof system designed tefutea given set of clauses, i.e., to prove that
it is unsatisfiable. This is done by means of a single dedwatile

CVvVv —-wVvD
CcvD ’

which we use to obtain a new clause from two already existiresoThe goal is to derive the empty
clause — resolution is known to be sound and complete, ieecam derive the empty clause from the
initial clauses if and only if the initial set of clauses wassatisfiable.

In this paper, we shall work with a restricted version of fegon, namelytree-like resolutionIn
tree-like resolution we are not allowed to reuse any claugettas already been derived, i.e., we need
to derive a clause as many times as we use it (this, of counss, bt apply to the initial clauses). In
other words, a tree-like resolution refutation can be viéag a binary tree whose nodes are clauses.
Every leaf is labeled with one of the original clauses, ex#ayse at an internal node is obtained by
a resolution step from the clauses at the two children nadesthe root of the tree is labeled with
the empty clause. We measure #ireeof a tree-like resolution refutation by the number of nodes.

It is not hard to see that a tree-like resolution refutatiba given set of clauses is equivalent
to aboolean decision tresolving thesearch problenfor that set of clauses. The search problem
for an unsatisfiable set of clauses is defined as follows ésge,Krajicek’s book [7]): given a truth
assignment, find a clause which is falsified under the assighmA boolean decision tree solves
the search problem by querying values of propositionakdeis and then branching on the answer.
Without loss of generality, we may assume that no propositioariable is questioned twice on
the same branch and that a branch of the tree is closed as s@ofalsified clause is found, under
the partial assignment — conjunction of facts — obtainedas@long that branch. When a branch
is thus closed we say that atementary contradictiohas been obtained. Note that we consider a
node of the decision tree to be labeled by the conjunctioradtisfthus far obtained together with
the propositional variable there questioned. This is ajals to a node in a tree-like resolution
refutation being labeled with its clause together with theiable about to be resolved. Given the
equivalence between tree-like resolution refutationstaalean decision trees, we shall concentrate
on the latter. Whenever we need to show that there is a cérégrlike resolution refutation of some
unsatisfiable set of clauses, we shall construct a booleciside tree for the corresponding search
problem. On the other hand, whenever we claim a tree-likeduéen lower bound, we shall prove it
by an adversary argument against any boolean decision trigh wolves the search problem.

We give working definitions of parameterized contradictiom parameterized tree-like resolu-
tion, which we shall use to state and prove the complexityfgaparameterized tree-like resolution.

Definition 2. A parameterized contradictigma pair (F, k) whereF is a propositional CNF formula
andf is a positive integer such th& has no satisfying assignment of weight at niost

Example2. Let us consider an undirected gragh= (V, E) that does not have a vertex cover of
size< k. We introduce a propositional variakig for every vertexo € V. Then the pair

(/\{u,v}EE(pu V py), k)

is a parameterized contradiction.

Let PARAMETERIZED CONTRADICTIONSbe the language of parameterized contradictions. Note
that PARAMETERIZED CONTRADICTIONSIS the complement 0BOUNDED CNF SATISFIABILITY
and, as such, is co-W[2]-complete under fpt-reductions.



We can now define a parameterized version of tree-like résaluAs we have already explained,
we shall give the definition in terms of boolean decisiondree

Definition 3. Given a parameterized contradictioh = (F, k), a parameterized boolean decision
treeis a decision tree that queries values of propositional @alés and branches on the answers; a
branch of the tree is closed as soon as (1) or (2) happens:

(1) an elementary contradiction is reached, i.e., the pddssignment obtained along the branch
falsifiesF

(2) the partial assignment obtained along the branch hasativank propositional variables set
to true, i.e., has weight k.

3 Complexity Gap for Parameterized Tree-like Resolution

We first recall the complexity gap theorem for tree-like fason proven by Riis [10].

Theorem 1. Given aF'O sentence) which fails in all finite models, consider its translatiortora
sequence of propositional CNF contradictiof@$, ., )»en. Then either 1 or 2 holds:

1. Cy, has polynomial-size in tree-like resolution refutations.

2. There exists a positive constarguch that for every,, every tree-like resolution refutation of
Cy n is Of size at least*".

Furthermore, 2 holds if and only if has an infinite model.

In the parameterized setting, one can hope that the secerdatave, the hard one, splits into
two subcases. This is indeed true as we shall prove the foltpaomplexity gap theorem fqra-
rameterizedree-like resolution:

Theorem 2. Given aF'O sentence), which fails in all finite models but holds in some infinite
model, consider the sequence of parameterized contrad®{D.; » 1) nen = ((Cy n, k))neny Where
(Cy.n)nen is the translation of) already defined. Then either 2a or 2b holds:

2a. Dy 1 has a tree-like resolution refutation of siz&n® for some constants and 3 which
depend onp only.

2b. There exists a constaft 0 < v < 1, such that for every. > k, every tree-like resolution
refutation ofD,, ,, 1, is of size at least”” .

Furthermore, 2b holds if and only if has an infinite model whose induced hypergraph has no finite
dominating set.

By proving that Case 2b can be attained (see Examples 5 amnek@jerive the following as a
corollary.

Corollary 1. Parameterized tree-like resolution is not fpt-bounded.

If we could prove that no parameterized proof system (fof, BSRAMETERIZED CONTRADIG
TIONS) is fpt-bounded, then we would have derived W2FPT.

Before we prove Theorem 2, we need to give some definitionsaFaodel)/, let | M| denote
the universe of\/. Given a modelV of a FO sentence, either finite or infinite, thénypergraph
induced by the modéll has the elements ¢#/| as vertices and as hyperedges those{sgts . . y;}
such thaty, ..., y;) appears as a tuple in some relation. (Recall that there arkitwls of relations
— the extensionak relations which are present in the original FO sentencetla®mf relations that
we introduce when Skolemizing the sentence — both give odg/peredges.) A set of vertices is
independenif it contains no hyperedge as a subset. Given &5ef vertices, a vertey ¢ X, and a
setA such thatX U {y} C A C |M]|, we say thay is A-independent fronX if and only if



¢ thereis no self-loopty, i.e.,R;(y,y,...y)andS;(y,y, .. .y) are false for all relation symbols
R; andS;, and

e there is no hyperedge C A which containg; and intersects wittX .

We say thaty is independent fronX if y is M-independent fromX; otherwise we say thak’
dominateg. Finally, adominating sets a setX of vertices that dominates every other vertex of the
hypergraph.

3.1 Case 2a of Theorem 2

We can now prove Case 2a of Theorem 2. We shall start by rapy@ase 1 of Theorem 1. Note that
our proof is different from Riis’ proof [10] as our translatti, though equivalent, is slightly different.

Proof of Case 1, Theorem T.he idea is to take a (finite) resolution refutation of the E@rfulay
(such a refutation exists as the formula has no model), atrdnaform it into a polynomial size in
n tree-like resolution refutation @y, ,,.

As we have explained, we can consider a boolean decisionnstead of a tree-like resolution
refutation. In the FO case, constructing a boolean dectséanis very similar to producing a tableau
refutation. (Our method therefore differs slightly frormgly inverting the classical FO resolution,
as we consider only instantiations of terms as opposednwstdremselves.) The decision tree tries to
build up a model of), starting by witnessing some unary Skolem relatjowith the constant and
deriving further constants as Skolem witnesses of alreadyet] constants as and when necessary
Note that, while we do not allow constants in our signatuves refer to those elements that have
been mentioned in decision tree questions as constants.

Let C be the set of constants thus far witnessed, and et some tuple ovef’. At each point
two kinds of queries are allowed: (I) querying the booledneaf someR;(¢) and (II) querying the
witnessy of someS; (¢, y). In the latter case there are two possibilitiesgoit could be a constant
that is already known or it could be a new one, thus extendiagsét of constants. For Case |, the
branching factor i&: corresponding tdz;(¢) being true () or false (L). For Case II, the branching
factor is|C| + 1: we label these branches with the element€§'afr a new constant’ according to
the conceded witness 6 (¢, v).

The order in which the boolean decision tree performs theseieg is as follows. We start with
the single constant, witnessing a unary Skolem relationof i.e. setC := {1}, and first query all
possibleR; relations on all possible tuples ovér, closing any branch as soon as a contradiction is
reached. We then pick up a Skolem relatiytc, y) and aj-tuplec of constants o€ and query the
witnessy. There aréC| + 1 possible outcomesg-is either one of the already known constants from
C or a different constant, which we denote 8y If y € C, we pick anotheS; (¢, y) and do the
same (we assume a reasonable order over the Skolem rel&fians tuples irC). In the case where
y is a new constant which is not iff, we extend the set of constants, i.e. €et= C' U {¢'} and
repeat the same procedure, i.e. query all possthlielations over all possible tuples in the expanded
C and so on.

It is easy to see that the boolean decision tree construttibdsiway is finite. Indeed, suppose it
were infinite. Then, by Konig's Lemma, there must be an itdibranch which constitutes an infinite
model ofy — a contradiction. Let the depth of this tree/band the maximum size @ along any
of its branches be:. Let us now turn this finite refutation af into polynomial size im refutation
of Cy . We note that a node, which queries Anrelation in the FO case, remains the same in the
propositional case, and, in particular, has a branchingfac A node, which witnesses a Skolem
relationsS; (¢, y), is of constant branching factor in the FO case (bounded}yn the propositional
case, such a node can be translated into a sequenceades, thé-th node querying thé); (¢, )

1As is customary in Proof Complexity, we discount the emptydeio It is, therefore, possible to hayewith no finite
models and no outermost existential quantifier. In this @asenay instantiate a single constant at the outset to geting.go



only if all the nodesS;(z, 1), S,(¢,2),...,5;(¢,l — 1) got negative answers. If the answers to all
gueries were negative, we arrive at a contradiction withclkalase\/;‘:1 S;(¢,y), while a positive
answer gives us the desired witness. Thus a node queryifgrafation in the FO case can be
thought as a single node of branching factan the propositional case. As the FO tree is of constant
heighth that depends on the formujaonly, the boolean decision tree in the propositional casé is
size at mostmax{m,n})" which isO(n"), i.e., polynomial in» as claimed. O

We can now modify the proof above in order to prove Case 2a ebfidm 2.

Proof of Case 2a, Theorem 3Ve shall construct a boolean decision tree for the parameteFO
case in a similar manner, but with the following modificatieshenever we witness a new constant
and extend the set of constants by adding it, weautathernew constant that imdependenfrom

all the others. That is, we actually introduce new constemts in pairs,¢’ andc”, wherec' is a
Skolem witness for some constantGhandc” is assumed independent frathu {¢’} (we make no
assumption of the independencebfrom C). Thereafter, we may also close branches whenever we
directly contradict the independenceiffrom C'U{¢'}. Now, suppose for the sake of contradiction
that the boolean decision tree constructed in this way isitefi Again, by Konig’'s Lemma, there
must be an infinite branch which constitutes an infinite modlél with the additional property that it
has no finite dominating set. Indeed, by the constructiarevery finite set of constants, we always
add a new constant that is independent from the set. This gise¢he desired contradiction, thus
showing that the decision tree we have constructed is fihié¢ the depth of this tree big and the
maximum size of” along any of its branches he.

What remains is to estimate the branching factor of the gaéni the propositional case. Tl
and$ queries have branching fact@andn as before. The only problem is in finding a new constant
that is independent from all existing constants. The baoliecision tree in the propositional case
can “search” for such a constant in the following way. Dentbie set of elements of the finite
universeln] that have not been queried at all so farBy= {z1, 22, ... z,} and the set of already
known constants bg'. The decision tree first queries all possitileand S relations with arguments
overC U {2z} that could possibly make; dominated byC' If all answers are negative then is
independent fronT, so it is success =, is added toC' and we proceed further according to the
decision tree in the FO case. Otherwise, on the first positisaver (i.e., having found out that
is dominated byC), we abandon; and proceed the same way with and so on. For every;
which we query the branching factor is boundedrby On the other hand, we do not need to test
more thank elements ofZ as we are now in the parameterized setting where the bookasiah
tree cannot take more th@npositive answers and we need to move onto a new elemeftaf a
positive answer only. This gives us a subtree of heigéd branching factarn, which is equivalent
to a single node of branching factet®. To conclude, let us recall that the parameterized FO tree
was of constant heighit that depends on the formula only, and thus, the boolean decision tree
in the parameterized propositional case is of size at fiask{m*, n})" which is not greater than
(m")*n" as claimed. O

Example3. We give an example of a decision tree constructed as in Caseebrem 1. We consider
the following sentencé which has no models:

Vody R(z,y) A JaVy —R(z,y).

As per our translation to propositional clauses, this isvedent to the conjunction of the universal
clauses
(i.) VaVy -Sa(z,y)V R(x,y)and
(i1.) VaVy =Si(z) vV ~R(z,y),
together with the Skolem clauses
Vz3y S2(x,y) and
Jz Sy (z).

10



Figure 1: Decision tree for Example 3.

Figure 1 shows a FO decision tree for this system of claudes nimber following eaclft specifies
the clause that has been contradicted. For example, thenboigght# comes from the knowledge
S2(1,2) and—R(1, 2) — which contradicts the first universal clause.

Exampled. We consider the sentengewhich is the conjunction of the following.

Jz U(x) U-existence

Vo -U(z) V ﬂR(:z:, x) U-antireflexivity

Vavy -U(xz) V -U(y) V = R(z,y) V - R(y, x) U-antisymmetry

VaVyVz —U(z) vV -U(y) V -U(z) V =~R(x,y) V - R(y, 2) V R(z, 2) U-transitivity
Vavy -U(xz) vV -U(y) V R(x,y) V R(y, z) U-totality

Vy3z U(y) — (U(z) A R(x,y)) U-non-minimality

Javy U(y) V R(x,y) ~U-dominator

The sentence asserts the existence of a bipartition, in which theart is a non-empty strict total
R-order without minimal element, and such that there is alsieement with ar?-edge to all the
elements of the-U-part. Depending on which part this single element is in, @ehof ) will have
a dominating set of sizeor 2. As per our translation, this is equivalent to the univectalises

(i.) Vo —S1(x) vV U(z)
(#4.) Vo -U(z) V -R(x,x)
(4ii.) VaVy —U(x) V -U(y) V -R(x,y) V - R(y, )
(iv.)  VaVyVz -U(xz) VvV -U(y)V-U(z) V =R(z,y) V - R(y, 2) V R(x, z)
(v.) VaVy -U(xz) vV =U(y) V R(z,y) V R(y, x)
(vi.) YyVax —Se(z,y) vV -U(y) vV U(x)
(vi'.) YyVax —Se(x,y) V =U(y) V R(x,y)
(vii.) VaVy =Ss5(x) VU (y) V R(z,y),
together with the Skolem clauses
Iz Sy (x)
Vy3z Sa(z,y)
JxS3(x).

Note that the Skolem relatiofi; is somewhat redundant and is included for the sake of fotynali
(it would preserve meaning if we were to remove cla(iseand substitutélz U (z) for the Skolem
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#[1,2 U(2)?
T 1
28, (x, 2)/ \#(vz’i.)
RPN
#[1, 2] R(2,2)7 °
Sl
#(ii.) #(vi') U(4)?
S
R(2,4)? R(1,4)?
pat |
#[2,4] R(4,2)? #[1,4] 44 (vid.)
e
#(2, 4] #(v.)

Figure 2: Decision tree for Example 4

clausedx S;(x)). Figure 2 shows a FO decision tree for this system in therpeterized case. (Note
that we have questioned constants and relations in anigeet| rather than natural, order. This is so
that we might keep the size of the tree to a minimum; the tre@ldvstill close if we chose a natural
order.) The bullet pointse] indicate where, having just witnessed a new constant, wedoce
another new, independent constant. In the decision tre&new that2 must be independent from
1, and that4 must be independent from 2 and3; we do not know tha8 is independent from
either2 or 1. The contradictions labeled with square brackets ariga frimlating the independence
condition. For example, a#[1,4] we have just learned the truth &(1,4), which violates the
assumed independencelodnd4.

The height of our tree i% = 9 and we never involve more than = 4 constants. As in
the previous proof, using the bourich™)*n", we can state thab,, ,, , has a tree-like resolution
refutation of size bounded ®/8%n?.

Owing to the rules that allow us to introduce independenstamts, the character of the FO
decision tree in the parameterized case is different fragrotidinary FO decision tree. Notice that
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we have closed our tree without witnessing the Skolem reiefi (z). It would not be possible to
close an ordinary FO decision tree without this, since, aiththe U-existence clausé.), ¢ has
finite models.

3.2 Case 2b of Theorem 2

We now turn our attention to proving Case 2b of Theorem 2. @guraent will be facilitated by a
game based on those described by Pudlak [9] and Riis [10hictwProver (female) plays against
Adversary(male). In this game, a strategy for Prover gives rise to ddaoodecision tree on a set of
clauses. Prover questions the propositional variabledabeal the nodes of the tree and Adversary
attempts to answer these so as neither to violate any speleifise nor to have conceded that more
thank variables are truer(), for in either of these situations Prover is deemed the @in®f course,
assuming the set of clauses was unsatisfiable, Adversaegimdd to lose: the question is how large
he can make the tree in the process of losing. Note that eaciclvof the tree corresponds to a play
of this game, hence each decision tree corresponds to arRtoategy. We will be concerned with
Adversary strategies that perform well over all Provertegges, and hence induce a lower bound on
all decision trees and, consequently, all parameterizsdlike resolution refutations.

When considering a certain Prover strategy — a decision-Hnge will actually consider only a
certain subtree in which the missing branches correspoptat®s where the Adversary has simply
given up, already conceding the imminent violation of a stauln this way, there are two types
of non-leaf nodes in this subtree, those of out-dedgreewhich Adversary’s decision wa®rced
(because he conceded defeat on the alternative valuatidnthase of out-degrezin which he is
happy to continue on either outcome. In the latter case, weanasider that he has given Prover a
free choiceas to the value of the relevant variable. The free choice siplig/ a vital role in ensuring
the large size of this subtree, which in turn places a lowemnoon the size of the decision tree of
which it is a subset.

Let Cy . be the propositional translation of some FO sentepaghich has no finite models,
but holds in some infinite model. We formally define the gaifé, ., k) as follows. At each turn
Prover selects a propositional variable®f,, that she has not questioned before, and Adversary
responds either by answering that the variable is tileof that it is false (), or by allowing Prover
a free choice over those two. The Prover wins if at any poiathabids information that contradicts
aclause ot ,, or she holds more thanvariables evaluated true. In this formalism, given a Prover
strategy on her moves, and considering both possibilittethe free choice nodes, we generate a
game treethe subtree of the decision tree alluded to in the previemagraph.

Henceforth, we consider only the case in which some modél lofis no finite dominating set.
We will give a strategy for Adversary in the gargéC,, ,,, k) that guarantees a large game tree for
all opposing Prover strategies.

Adversary’s Strategy

At any pointin the game — node in the game tree — Adversarnhaile conceded certain information
to Prover. He always has in mind two disjoint sets of alreagyntioned constant® and Q on
which he has conceded certain information: initially thests are both empty. The ggtis to be a

(P U Q)-independent set whose members are al3o ()-independent fronP. In some sens® is

the only set of constants for which Adversary has actualiyceded an interpretation; all he concedes
of Q is that it is a floating set with certain independence progertlf X is a set of constants, let
M x be the class of models gf that are consistent with the information Adversary has eded on

X. At each point Prover will ask Adversary a question of therfdk,(¢) or S;(¢). The Adversary
answers as follows:

I. If all constants of¢ are in P, then Adversary should choose some modeMip and answer
according to that.

13



II. If all constants ofé are in P U @, and there is at least one fro@, then Adversary should
answer false ().

Il If some constantirgis notin P U @ then

— if no model in M p satisfies the question, then Adversary should answer falgeoh-
erwise

— he should give Prover a free choice on the question.

In all cases the setB and( remain the same, except in Case Ill Part 2. If the Prover g®otae
(T), then Adversary places all the constants of P, possibly removing some frof) in the process.
If the Prover chooses false J, then Adversary places any constantg that are not already ifUQ
into Q. It turns out that, in Cases Il and lll, the situation nevéses in which Adversary is forced
to answer true. In particular, in Case lll, it will never betbase that all models i p satisfy the
guestion. This is vital to the success of Adversary’s statand we will return to it later. We must
now prove that this strategy leads to a large decision treeyill need the following lemmas.

Lemma 3. Lety be a sentence af O in which no model has a finite dominating set. Rétbe a
model ofy) and letP be a finite subset df\/|. For any number, there exists an independent gt
of sizeq such that all elements @ are independent fron®.

Proof. Suppose for contradiction somé fails to have this property. Consider any finite of sizep,
in | M]|. If there is ag such that all set§® C |M|\ P are either not independent or some elemeng in
is not independent fror®, then there is a maximal, the cardinality of a sef), that is independent
and whose elements are independent fl@nBut, P U Q) is now a finite dominating set d¥/ by
the maximality ofgg. O

Lemma 4. Consider any path in the game tree®fCy; ,, k) from the root to a leaf. If there arg
or fewer propositional variables evaluated to true by thafJ¢hen every one of theconstants must
have appeared in a free choice node along that path.

Proof. We give a sketch proof of the lemma; for a fuller explanatisee Riis’ paper [10]. It is
important to see that Adversary plays faithfully accordiogome (infinite) models of, because
this means that an elementary contradiction can only béneshioy the violation of a Skolem clause.
In order to see that Adversary plays so, it becomes necessaxplain why in Case Il of his strategy
he never loses any of his putative modgéls> and why in Case Il he is never forced to answer true
(m).

In Case II, Adversary never loses a modélin M p because) can always be chosen to be
independent, and independent frémby Lemma 3. Indeed, if such an interpretation is putpim
M, then Adversary’s answer is forced to be faldg.(

Suppose, in Case lll, that Adversary were forced to answer(fr), i.e., all models\ in Mp
satisfy the questiof;(¢) or S;(¢). By the floating nature of all elements that are naPithis would
generate a finite dominating set BfU Q on M. Let us dwell on this point further. Let be the
subtuple of: consisting of those constants of the latter that are n&tiny). Some of the constants of
¢ could have been mentioned in questions before, but only &s éor which Adversary’s response
had been forced false. Suppose tRat/ Q were not a dominating set fav/, then there exists an
elementr € M, independent froni U Q. But this element is such that it can fill the tugleand
falsify R;(¢) or .S;(¢) in M (and falsify any questions that previously involved it, efhhad already
been answered false). This contradicts the question h&édag forced true in the first place.

Recalling that we can only reach an elementary contradittyahe violation of a Skolem clause,
we can now complete the proof. Létbe a constant that never appears in a free choice node in our
game tree. In order to violate a Skolem clause, Adversaryt lrage denied somg(c, x), for each
of then constants substituted fer But that his denial of (¢, ¢’) was forced implies a contradiction.
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Sincec’ is uninterpreted in any of the modelsM p, it follows thatS(¢, ¢”) is false for allc” in any
model inMp. This tells us that\ p is empty and, consequently, thathad no infinite model. [

We are now in a position to argue the key lemma in this section.

Lemma 5. Leta be the maximum arity of any relation imand suppose that there are no more than
b different relations in the propositional translation ¢f(including Skolem relations in both cases).
Following the strategy that we have detailed for the g&it@, ,,, k), and withp andg the cardinality

of the sets? andQ, respectively, Adversary cannot lose while bpth k£'/*® andp + ¢ < n.

Proof. Consider the game tree 6fC,, ., k). Note that Adversary only answers true in the case that
all involved constants are then added to hisi3etr, of course, were already there. Thus, at a certain
node in the game tree, the number of true answers given iallyibounded by the size of the set
of all possible questions oR, which is certainly bound by®. Hence, whilsp®® < k, there must

be fewer thark propositional variables evaluated to true. Furthermdrg, 4 ¢ < n at this node,
then not all of the: constants can have appeared in a free choice (since canitabhave appeared

in a free choice are necessarily added to eithesr Q). It follows from the previous lemma that
Adversary has not yet lost. O

We are now in a position to settle Case 2b.

Proof of Case 2b, Theorem 3Ve aim to provide a lower bound on the size of any game tree for
G(Cy.n, k). Since a lower bound on the size of a game tree induces a lawugrdoon the size of a
boolean decision tree, the result follows.

Consider a game tree f6i(Cy ., k). Recall that, at any node in this tree, Adversary has in mind
two setsP andQ, of sizep andg, respectively, and, by the previous lemma, whilst k'/%® and
p + q¢ < n, he has not lost. Consider, therefore any node in this gageeaind the set® and( that
Adversary there has in mind. L&tp, ¢) be some lower bound on the size of the subtree of the game
tree rooted at the chosen node; whes¢e, 0) is a lower bound on the size of the game tree itself.
In showing thatS(p, ¢) satisfies the recurrence relation

e S(p.q) 2 S(p+a,q) + 5(p, g+ a) +1, with
® S(pvq) >0, Whenp > kl/ab orp-+gq >,

we are able to derive the following statement whose full pegpears in the appendix (Lemma 6).
Letn, k, a andb be positive integers such that

(Ya>2 (i)n>k (i)n>7a+1 (iv.)EY?® > (16a2)2

then
5(0,0) > n*" wherey := 1/16a%b.

The result follows immediately from the this statement faffisiently largek (> (16a2)2%*) and
n (> 7a + 1). By noting that all boolean decision trees of Case 2b arézef>s 2, we can modify
the givery to one that works for ath, & > 1. Note that the assumption that (maximum arity} 2
is innocuous — there are no unary FO sentegcetich have no finite models but possess an infinite
one, therefore we would be in neither Case 2a nor Case 2b. O

Examples. We consider the (negation of the) least number principlé /I8P~ be the conjunction
of the following.

Vo - R(x,x) antireflexivity
VaVy - R(z,y) V ~R(y, x) antisymmetry
VaVyVz = R(z,y) V ~R(y, z) V R(x, 2) transitivity
Vy3z R(x,y) no least element
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"NP= has models without a finite dominating set. For exampl&, i§ the set of integers, then
N x Z under the strict partial ordering

(n,z) < (n',2") ifand only if n = n" andz < 2’

provides such a model.

Examples. Definey"NP1 to bey-NP= with the additional conjunct (axionw:Vy R(z,y)V R(y, x).
This ensures that the partial order is total. All models/6FP: have a dominating set of size
moreover, every element of the model will be such a domigagat. It is straightforward to verify
that<DwLNP1 n.k)neN has tree-like resolution refutations of sizke, independent from.

Example7. We return to the sentenee’™HP defined in Example 1. This has models without a finite
dominating set: for example the positive integBrswith R(z,y) < y = x + 1, provides such a
model.
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Appendix
Lemma 6. Letn, k, a andb be positive integers such that

(i)a>2 (i)yn>Fk (i)n>T7a+1 (iv.) kY% > (164%)%,
then

5(0,0) > n*" wherey := 1/16a3b.
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The reminder of the appendix is devoted to proving this lemma

We consider the combinatorial choose functi@jﬁ) to be defined on the integers and to be
m!/(rl(m — r!)), whenm > r andm andr are non-negative, and to loeotherwise. The proof
of Lemma 6 requires three technical lemmas.

Lemma 7. Consider a game tree f@(Cy », k). Leta be the maximum arity of any relation ¢f
Then a subtree size-bounding functi®fp, ¢) satisfies the following properties:

o S(p,q) > S(p+a,9) + S(p, g+ a) + 1, with
e S(p,q) > 0, whenp > kv orp4 g > n.

Proof. The second part follows from Lemma 5. For the first part, wesaer only the free choice
branching points in the game tree — that is we consider tharpinee that is a minor of the game
tree in the natural way. At these points, on answering tragesconstants — at most— may be
added toP. Some may have been taken frap but since the functio$ is monotonic decreasing
the bound still holds. If the answer is false then at mosbnstants may be added@and the bound
holds for similar reasons. O

Lemma 8. The recurrence relation of the previous lemma satisfies:

S(p,q) > <L%J> -1

L1/ab_
=]

Proof. By induction on the (binary tree minor of the) game treed¢€,, ,,, k), starting from the the
leaves.

(Base case.) The choose function evaluatelsao0 whenp + ¢ > n orp > k'/?. Therefore
S(p, q) is defined and i$> 0.

(Inductive step.) Assume the solution holds farsteps, or less, in from a leaf. We will prove
that it holds form + 1 steps in. Consider such a (free choice) node. T9ignq) := S(p + a,q) +
S(p, ¢+ a) + 1 where the two child nodes are or fewer steps from the leaves. So, by the inductive
hypothesis, we have

S(p,q) > <LLﬁJJ>+(LﬁJ>_2+I
(YR e
= (Lt’ﬁﬂ)_l'

a

Note that the previous lemma implies that that

5(0,0) = (ﬁij) 1

a

Lemma 9. Letm andr be positive integers such that > r2; m > 7. Then
m >m'/4,
iy e
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Proof. Fromm > r2; m > 7, we may derivém — r) > (m — r'/2) > m3/4, Thence

<m> . (m—r)" . (m — m1/2)r m3r/4 ——
r) = ’r = mr/2 = /2
([l

Lemma 10. Letm, r andc be non-negative reals such that> 1.

A. Ifm > /(=D then(%)T >mr/e,

B. Ifr >2andm > 3then(m —1)" — 1> m'/2.

C. lfm" > ¢¢/(c=1) then“%r > mr/e,
Proof. May be easily verified. O

We are now in a position to proceed with the proof of Lemma 6.

Proof of Lemma 6By Lemma 9, and the knowledge that the preconditions yietti b | > 7 and
2] > L%/abj? we have that

\_%J n %LkléabJ
<L—k“jj’” J> -1 [7) L

Noting that the preconditions yield > 1 andk'/2® > 1, we derive

1/ab _
1/ab k 1
Tl

— 4a
PJ 12D 1
a a

Now, by Part A of the previous lemma, together with the knalgke that the preconditions yield
n— 1> a1 we have that

pl/ab_q
— B 1/ab_
(n—1) 1>n—1) "= -1

a

By Part B of the previous lemma, together with the fact thatgreconditions yielef% >2and
n — 1> 3, we have

Rkl/ab_q rkl/ab_q
(n—1)" %> —1>n" s
. . . /ab 1 kl/ab .
Noting that the preconditions yle@a—2 — 527 = Tgaz We derive
kl/ab71 kl/ab
n~ 8a2 > n 16a2 |

Finally, we deploy Part C of the previous lemma, togethehwie knowledge that preconditi¢iv.)
yieldsk!/ab > (16a2)6a”/(16a°~1) to demonstrate that

kl/ab 1/16a3b
n 162 > n .

Hence we have shown that
[ %]
Lk(l/ab) J

However, as noted above, it follows from Lemma 8 that

500,0)> <ﬁi )

a

) —1>n*" wherey := 1/164%b.

so our proof of Lemma 6 is conluded. O
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