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Abstract

Knowledge extraction is a fundamental notion, modelling machine possession of values (wit-
nesses) in a computational complexity sense. The notion provides an essential tool for crypto-
graphic protocol design and analysis, enabling one to argue about the internal state of protocol
players without ever looking at this supposedly secret state. However, when transactions are
concurrent (e.g., over the Internet) with players possessing public-keys (as is common in cryp-
tography), assuring that entities “know” what they claim to know, where adversaries may be
well coordinated across different transactions, turns out to be much more subtle and in need
of re-examination. Here, we investigate how to formally treat knowledge possession by parties
(with registered public-keys) interacting over the Internet. Stated more technically, we look into
the relative power of the notion of “concurrent knowledge-extraction” (CKE) in the concurrent
zero-knowledge (CZK) bare public-key (BPK) model.

We show the potential vulnerability of man-in-the-middle (MIM) attacks turn out to be a real
security threat to existing natural protocols running concurrently in the public-key model, which
motivates us to introduce and formalize the notion of CKE. Then, both generic (based on standard
polynomial assumptions) and efficient (employing complexity leveraging in a novel way) imple-
mentations for NP are presented for constant-round (in particular, round-optimal) concurrently
knowledge-extractable concurrent zero-knowledge (CZK-CKE) arguments in the BPK model. The
efficient implementation can be further high practically instantiated for specific number-theoretic
language. Along the way, we discuss and clarify the various subtleties surrounding the security
formulation and analysis, which provides insights into the complex CZK-CKE setting.

1 Introduction

Zero-knowledge (ZK) protocols allow a prover to assure a verifier of validity of theorems without
giving away any additional knowledge (i.e., computational advantage) beyond validity. This notion
was introduced by Goldwasser, Micali and Rackoff [43] and its generality was demonstrated by Gol-
dreich, Micali and Wigderson [42]. Since its introduction ZK has found numerous useful applications,
and by now has been playing a central role for modern cryptography (particularly in cryptographic
protocol design [70, 41]).

Traditional notion of ZK considers the security in a stand-alone (or sequential) execution of the
protocol. Motivated by the use of such protocols in an asynchronous network like the Internet, where
many protocols run simultaneously, studying security properties of ZK protocols in such concurrent
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settings has attracted much research efforts in recent years, starting by Dwork, Naor and Sahai [27].
Informally, a ZK protocol is called concurrent zero-knowledge (CZK) if concurrent instances are
all expected polynomial-time simulatable, namely, when a possibly malicious verifier concurrently
interacts with a polynomial number of honest prover instances and schedules message exchanges as
it wishes.

The concept of “proof of knowledge” (POK), informally discussed in [43], was then formally
treated (see [32, 5, 34, 6]). POK systems, especially zero-knowledge POK (ZKPOK) systems, play a
fundamental role in the design of cryptographic schemes and protocols, enabling a formal complexity
theoretic treatment of what does it mean for a machine to “know” something. Roughly speaking, a
“proof of knowledge” means that a possibly malicious prover can convince the verifier that an NP
statement is true if and only if it, in fact, “knows” (i.e., possesses) a witness to the statement (rather
than merely conveying “proof of language membership,” i.e., the fact that a corresponding witness
exists).

With the advancement of cryptographic models where parties initially publish public-keys (partic-
ularly for achieving round-efficient concurrently secure protocols [12]), knowledge extraction becomes
more subtle (due to possible dependency on published keys), and needs re-examination. Here, we
investigate the relative power of the notion of “concurrent knowledge-extraction” in the concurrent
zero-knowledge bare public-key model. Namely, we investigate how to formally treat knowledge
possessions for parties (which own public-keys) interacting over the Internet.

The bare public-key (BPK) model, originally introduced by Canetti, Goldreich, Goldwasser and
Micali [11], is a natural and relatively weak cryptographic model. A protocol in this model simply
assumes that all verifiers have each deposited a public key in a public file before (or while) user inter-
actions take place. No assumption is made on whether the public-keys deposited are unique or valid
(i.e., public keys can even be “nonsensical,” where no corresponding secret-keys exist or are known).
That is, no trusted third party is assumed, the underlying communication network is assumed to
be adversarially asynchronous (i.e., arbitrary message delays), and preprocessing is reduced to min-
imally non-interactively posting public-keys in a public file (dynamic posting is allowed assuming a
reasonable amount of time between key posting and key usage [11]). In many cryptographic settings,
availability of a public key infrastructure (PKI) is assumed or required, and in these settings the
BPK model is, both, natural and attractive (note that the BPK model is, in fact, a weaker version of
PKI where in the later added key certification is assumed). It was pointed out by Micali and Reyzin
[59] that the BPK model is, in fact, applicable to interactive systems in general.

Verifier security (i.e., soundness) in the BPK model (against malicious provers) turned out to be
more involved than anticipated, as was demonstrated by Micali and Reyzin [59] who showed that
under standard intractability assumptions there are four distinct meaningful notions of soundness,
i.e., from weaker to stronger: one-time, sequential, concurrent and resettable soundness. Here, we
focus on concurrent soundness, which, roughly speaking, means that a possibly malicious probabilistic
polynomial-time (PPT) prover P ∗ cannot convince the honest verifier V of a false statement even
when P ∗ is allowed multiple interleaving interactions with V in the public-key model. They also
showed that any black-box ZK protocol with concurrent soundness in the BPK model (for non-
trivial languages outside BPP) must run at least four rounds [59]. It was also shown in [3, 59]
that black-box ZK arguments with resettable soundness only exist for trivial (i.e, BPP) languages
(whether in the BPK model or not).

Due to the above, it was implied that concurrent soundness might be the best verifier security one
can hope for in the case of black-box ZK arguments in the BPK model. In this work, we show that
this intuition is not entirely correct, at least not in the POK setting where provers are polynomial
time. Specifically, concurrent soundness only guarantees that concurrently interleaved interactions
cannot help a malicious prover validate a false statement in the public-key model. However, it does
not prevent a malicious prover from validating a true statement but without knowing any witness for
the statement being proved. One reason that this potential vulnerability is not merely a theoretical
concern is that: all concurrent ZK protocols in the BPK model involve a sub-protocol in which the
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verifier proves to the prover the knowledge of the secret-key corresponding to its registered public-
key; Further, this type of proofs are also quite common in practical cryptographic protocols in the
public-key model. A malicious prover, in turn, can potentially exploit these proofs by the verifier
in other sessions, without possessing a witness to these sessions’ statements. We show concrete
instances of this vulnerability. This issue, therefore, motivates the need for careful definitions and
for achieving concurrent verifier security for concurrent ZK POK in the BPK model, so that provably
one can remedy the above security vulnerability.

1.1 Our contributions

We start by investigating the subtleties of concurrent verifier security in the public-key model in
the case of proof of knowledge. Specifically, we show concurrent interleaving and malleating attacks
against some existing natural protocols running concurrently in the BPK model, which shows that
concurrent soundness and normal arguments of knowledge (and also traditional concurrent non-
malleability) do not guarantee concurrent verifier security in the BPK model.

Then, we formulate concurrent verifier security that remedies the vulnerability as demonstrated
by the concrete attacks which are of the man-in-the-middle nature. The security notion defined is
named concurrent knowledge-extraction (CKE) in the public-key model, which essentially means
that for statements whose validations are successfully conveyed by a possibly malicious prover to an
honest verifier (with registered public-key) by concurrent interactions, the prover must “know” the
corresponding witnesses. We then present both generic (based on standard polynomial assumptions)
and efficient (employing complexity leveraging in a novel way) implementations of constant-round
(in particular, round-optimal) CZK-CKE arguments for NP in the BPK model. The efficient imple-
mentation can be further high practically instantiated for specific number-theoretic language. The
techniques developed in this work for achieving CZK and CKE simultaneously could be of inde-
pendent interests. Specifically, although some non-malleable building tools seem to be intrinsically
required for achieving CZK-CKE in the BPK model, our solution does not employ any non-malleable
tools. Along the way, we discuss and clarify the various subtleties surrounding the security formula-
tion and analysis, which provides insights into the complex CZK-CKE setting.

As knowledge-extraction and zero-knowledge (and also the public-key model) are fundamental to
cryptography, we suggest that the clarifications and formulation of CKE in the public-key model, the
(both generic and efficient) CZK-CKE constructions and techniques developed in this work, along
with the discussions and clarifications of the various subtleties surrounding the security formulation
and analysis, are fundamental and can serve as a basis to formulate and achieve more complex cryp-
tographic protocols in the public-key model. In particular, the CZK-CKE protocols are themselves
the concurrent version, in the public-key model, of the highly useful and fundamental zero-knowledge
arguments of knowledge.

1.2 Related works

Let us review some recent results and developments; we have been involved in numerous recent
works which we review together with related works. While the list of related works and related
issues is quite lengthy, the bottom line is that the notion defined and achieved herein is unique and
independent of various related issues and works, and it captures knowledge extraction as a basic
issue in concurrent executions in public key models.

Concurrent ZK (actually, resettable ZK that is stronger than CZK) arguments for NP with a
provable sub-exponential-time CKE property in the BPK model were first achieved in [73], which
make sense only for sub-exponentially hard languages. Standard polynomial-time CKE for concur-
rent ZK arguments in the BPK model were left over there as an open problem, which we answer
here. We note that the techniques used in [73] do not render CZK with polynomial-time concurrent
knowledge-extraction, and the subtle issues of knowledge-extraction independence were not realized
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and formalized there.
Two constructions for concurrent ZK arguments with sequential soundness in the BPK model

under standard assumptions were proposed in the incomplete work of [76] (the early version since
January 2004). But, the security proof of concurrent soundness turned out to be flawed, as observed
independently in [24, 75]. One construction was fixed to be concurrently sound in [24] by introducing
some new techniques, and recently another construction was fixed to be concurrently sound in [20]
following the spirit of [24]. Given these works, the current work (with its preliminary version appeared
in [72]) further shows that the concurrently sound CZK arguments of [24, 20] do not capture CKE
and are not concurrently knowledge-extractable when it comes to proofs of knowledge.

Recently in another separate work [71], which deals with concurrent non-malleability (CNM) in
the BPK model, we further clarify that the formulations of concurrent non-malleability (CNM) in
existing works [63, 21] do not capture CKE in the public-key model. (Note that the preliminary
version of this work, appeared in August-2006 update of the incomplete work of [76], is independent
of [63, 21].) It is also demonstrated there that the CNMZK protocol of [21] is not concurrently
knowledge-extractable (in the sense that concrete attacks exist). The line of CNM explorations in
the BPK model is outside of the scope of the current work.

In general, the issue of concurrent composition of proof of knowledge (POK) could be traced back
to the works [26, 37].

1.3 Organization

We recall basic notions and tools in Section 2. In Section 3, we describe (an augmented version) of the
BPK model with adaptive language selections based on public-keys. In Section 4, we present the mo-
tivation, by concrete attacks on naturally existing protocol, for concurrent knowledge-extractability
in the public-key model. In Section 5, we formulate CKE in the BPK model, and make clarifica-
tions and justification of the CKE formulation. In Section 6, we present the generic implementation
of constant-round CZK-CKE arguments for NP in the BPK model under standard hardness as-
sumptions. In Section 7, we present the efficient and practical implementations of constant-round
CZK-CKE arguments forNP in the BPK model with the usage of complexity leveraging in a minimal
and novel way, and discuss and clarify in depth the various subtleties.

2 Preliminaries

We use standard notations and conventions below for writing probabilistic algorithms, experiments
and interactive protocols. If A is a probabilistic algorithm, then A(x1, x2, · · · ; r) is the result of
running A on inputs x1, x2, · · · and coins r. We let y ← A(x1, x2, · · · ) denote the experiment of
picking r at random and letting y be A(x1, x2, · · · ; r). If S is a finite set then x ← S is the operation
of picking an element uniformly from S. If α is neither an algorithm nor a set then x ← α is a simple
assignment statement. By [R1; · · · ; Rn : v] we denote the set of values of v that a random variable
can assume, due to the distribution determined by the sequence of random processes R1, R2, · · · , Rn.
By Pr[R1; · · · ; Rn : E] we denote the probability of event E, after the ordered execution of random
processes R1, · · · , Rn.

Let 〈P, V 〉 be a probabilistic interactive protocol, then the notation (y1, y2) ← 〈P (x1), V (x2)〉(x)
denotes the random process of running interactive protocol 〈P, V 〉 on common input x, where P has
private input x1, V has private input x2, y1 is P ’s output and y2 is V ’s output. We assume w.l.o.g.
that the output of both parties P and V at the end of an execution of the protocol 〈P, V 〉 contains
a transcript of the communication exchanged between P and V during such execution.

The security of cryptographic primitives and tools presented in this section is defined with re-
spect to uniform polynomial-time or sub-exponential-time algorithms (equivalently, polynomial-size
or sub-exponential-size circuits). When it comes to non-uniform security, we refer to non-uniform
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polynomial-time or sub-exponential-time algorithms (equivalently, families of circuits of polynomial
or sub-exponential size).

Definition 2.1 (one-way function) A function f : {0, 1}∗ −→ {0, 1}∗ is called a one-way function
(OWF) if the following conditions hold:

1. Easy to compute: There exists a (deterministic) polynomial-time algorithm A such that on
input x algorithm A outputs f(x) (i.e., A(x) = f(x)).

2. Hard to invert: For every probabilistic polynomial-time PPT algorithm A′, every positive poly-
nomial p(·), and all sufficiently large n’s, it holds Pr[A′(f(Un), 1n) ∈ f−1(f(Un))] < 1

p(n) ,
where Un denotes a random variable uniformly distributed over {0, 1}n. A OWF f is called
sub-exponentially strong if for some constant c, 0 < c < 1, for every sufficiently large n, and
every circuit C of size at most 2nc

, Pr[C(f(Un), 1n) ∈ f−1(f(Un))] < 2−nc
.

Definition 2.2 ((public-coin) interactive argument/proof system) A pair of interactive ma-
chines, 〈P, V 〉, is called an interactive argument system for a language L if both are probabilistic
polynomial-time (PPT) machines and the following conditions hold:

• Completeness. For every x ∈ L, there exists a string w such that for every string z,
Pr[〈P (w), V (z)〉(x) = 1] = 1.

• Soundness. For every polynomial-time interactive machine P ∗, and for all sufficiently large n’s
and every x /∈ L of length n and every w and z, Pr[〈P ∗(w), V (z)〉(x) = 1] is negligible in n.

An interactive protocol is called a proof for L, if the soundness condition holds against any (even
power-unbounded) P ∗ (rather than only PPT P ∗). An interactive system is called a public-coin
system if at each round the prescribed verifier can only toss coins and send their outcome to the
prover.

Commitment schemes enable a party, called the sender, to bind itself to a value in the initial
commitment stage, while decurving it from the receiver (this property is called hiding). Furthermore,
when the commitment is opened in a later decommitment stage, it is guaranteed that the “opening”
can yield only the single value determined in the commitment phase (this property is called binding).
Commitment schemes come in two different flavors: statistically-binding computationally-hiding and
statistically-hiding computationally-binding.

Definition 2.3 (statistically/perfectly binding bit commitment scheme) A pair of PPT in-
teractive machines, 〈P, V 〉, is called a perfectly binding bit commitment scheme, if it satisfies the
following:

Completeness. For any security parameter n, and any bit b ∈ {0, 1}, it holds that
Pr[(α, β) ← 〈P (b), V 〉(1n); (t, (t, v)) ← 〈P (α), V (β)〉(1n) : v = b] = 1.

Computationally hiding. For all sufficiently large n’s, any PPT adversary V ∗, the following two
probability distributions are computationally indistinguishable: [(α, β) ← 〈P (0), V ∗〉(1n) : β]
and [(α′, β′) ← 〈P (1), V ∗〉(1n) : β′].

Perfectly Binding. For all sufficiently large n’s, and any adversary P ∗, the following probability is
negligible (or equals 0 for perfectly-binding commitments): Pr[(α, β) ← 〈P ∗, V 〉(1n); (t, (t, v)) ←
〈P ∗(α), V (β)〉(1n); (t′, (t′, v′)) ← 〈P ∗(α), V (β)〉(1n) : v, v′ ∈ {0, 1}∧

v 6= v′].

That is, no ( even computational power unbounded) adversary P ∗ can decommit the same
transcript of the commitment stage both to 0 and 1.
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Below, we recall some classic perfectly-binding commitment schemes.
One-round perfectly-binding (computationally-hiding) commitments can be based on any one-

way permutation OWP [8, 42]. Loosely speaking, given a OWP f with a hard-core predict b (cf.
[34]), on a security parameter n one commits a bit σ by uniformly selecting x ∈ {0, 1}n and sending
(f(x), b(x)⊕ σ) as a commitment, while keeping x as the decommitment information.

For practical perfectly-binding commitment scheme, in this work we use the DDH-based ElGamal
(non-interactive) commitment scheme [29]. To commit to a value v ∈ Zq, the committer randomly
selects u, r ∈ Zq, computes h = gu mod p and sends (h, ḡ = gr, h̄ = gvhr) as the commitment. The
decommitment information is (r, v). Upon receiving the commitment (h, ḡ, h̄), the receiver checks
that h, ḡ, h̄ are elements of order q in Z∗p . It is easy to see that the commitment scheme is of
perfectly-binding. The computational hiding property is from the DDH assumption on the subgroup
of order q of Z∗p (for more details, see [29]). We also note that in [57] Micciancio and Petrank presented
another implementation of DDH-based perfectly-binding commitment scheme with advanced security
properties.

Statistically-binding commitments can be based on any one-way function (OWF) but run in
two rounds [60, 45]. On a security parameter n, let PRG : {0, 1}n −→ {0, 1}3n be a pseudorandom
generator, the Naor’s OWF-based two-round public-coin perfectly-binding commitment scheme works
as follows: In the first round, the commitment receiver sends a random string R ∈ {0, 1}3n to the
committer. In the second round, the committer uniformly selects a string s ∈ {0, 1}n at first; then to
commit a bit 0 the committer sends PRG(s) as the commitment; to commit a bit 1 the committer
sends PRG(s) ⊕ R as the commitment. Note that the first-round message of Naor’s commitment
scheme can be fixed once and for all and, in particular, can be posted as a part of public-key in the
public-key model.

Definition 2.4 (trapdoor bit commitment scheme) A trapdoor bit commitment scheme (TC)
is a quintuple of probabilistic polynomial-time (PPT) algorithms TCGen, TCCom, TCVer, TCK-
eyVer and TCFake, such that

Completeness. For any security parameter n, and any bit b ∈ {0, 1}, it holds that:
Pr[(TCPK, TCSK) ← TCGen(1n); (c, d) ← TCCom(1n, TCPK, b) :
TCKeyVer(1n, TCPK) = TCVer(1n, TCPK, c, b, d) = 1] = 1.

Computationally Binding. For all sufficiently large n’s and for any PPT adversary A, the fol-
lowing probability is negligible in n: Pr[(TCPK, TCSK) ← TCGen(1n); (c, v1, v2, d1, d2) ←
A(1n, TCPK) :
TCVer(1n, TCPK, c, v1, d1) = TCVer(1n, TCPK, c, v2, d2) = 1

∧
v1, v2 ∈ {0, 1}∧

v1 6= v2].

Perfectly (or computationally) Hiding. For all sufficiently large n’s and any TCPK such that
TCKeyVer(1n, TCPK) = 1, the following two probability distributions are identical (or com-
putationally indistinguishable): [(c0, d0) ← TCCom(1n, TCPK, 0) : c0] and
[(c1, d1) ← TCCom(1n, TCPK, 1) : c1].

Perfect (or Computational) Trapdoorness. For all sufficiently large n’s and any (TCPK, TCSK) ∈
{TCGen(1n)}, ∃v1 ∈ {0, 1}, ∀v2 ∈ {0, 1} such that the following two probability distributions
are identical (or computationally indistinguishable):
[(c1, d1) ← TCCom(1n, TCPK, v1); d′2 ← TCFake(1n, TCPK, TCSK, c1, v1, d1, v2) : (c1, d

′
2)]

and [(c2, d2) ← TCCom(1n, TCPK, v2) : (c2, d2)].

Feige-Shamir trapdoor commitments (FSTC) [31]. Based on Blum’s protocol for DHC,
Feige and Shamir developed a generic (computationally-hiding and computationally-binding) trap-
door commitment scheme [31], under either any one-way permutation or any OWF (depending on
the underlying perfectly-binding commitment scheme used). The TCPK of the FSTC scheme is
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(y = f(x), G) (for OWF-based solution, TCPK also includes a random string R serving as the first-
round message of Naor’s OWF-based perfectly-binding commitment scheme), where f is a OWF and
G is a graph that is reduced from y by the Cook-Levin NP-reduction. The corresponding trapdoor
is x (or equivalently, a Hamiltonian cycle in G). The following is the description of the Feige-Shamir
trapdoor bit commitment scheme, on a security parameter n.

Round-1. Let f be a OWF, the commitment receiver randomly selects an element x of length n in
the domain of f , computes y = f(x), reduces y (by Cook-Levin NP-reduction) to an instance
of DHC, a graph G = (V, E) with q = |V | nodes, such that finding a Hamiltonian cycle in G is
equivalent to finding the preimage of y. Finally, it sends (y,G) to the committer. We remark
that to get OWF-based trapdoor commitments, the commitment receiver also sends a random
string R of length 3n.

Round-2. The committer first checks the NP-reduction from y to G and aborts if G is not reduced
from y. Otherwise, to commit to 0, the committer selects a random permutation, π, of the
vertices V , and commits (using the underlying perfectly-binding commitment scheme) the
entries of the adjacency matrix of the resultant permutated graph. That is, it sends an q-by-q
matrix of commitments so that the (π(i), π(j))th entry is a commitment to 1 if (i, j) ∈ E, and
is a commitment to 0 otherwise; To commit to 1, the committer commits an adjacency matrix
containing a randomly labeled q-cycle only.

Decommitment stage. To decommit to 0, the committer sends π to the commitment receiver
along with the revealing of all commitments, and the receiver checks that the revealed graph
is indeed isomorphic to G via π; To decommit to 1, the committer only opens the entries of
the adjacency matrix that are corresponding to the randomly labeled cycle, and the receiver
checks that all revealed values are 1 and the corresponding entries form a simple q-cycle.

Definition 2.5 (witness indistinguishability WI) Let 〈P, V 〉 be an interactive system for a lan-
guage L ∈ NP, and let RL be the fixed NP witness relation for L. That is, x ∈ L if there exists
a w such that (x, w) ∈ RL. We denote by view

P (w)
V ∗(z)(x) a random variable describing the transcript

of all messages exchanged between a (possibly malicious) PPT verifier V ∗ and the honest prover P
in an execution of the protocol on common input x, when P has auxiliary input w and V ∗ has aux-
iliary input z. We say that 〈P, V 〉 is witness indistinguishable for RL if for every PPT interactive
machine V ∗, and every two sequences W 1 = {w1

x}x∈L and W 2 = {w2
x}x∈L for sufficiently long x,

so that (x, w1
x) ∈ RL and (x, w2

x) ∈ RL, the following two probability distributions are computation-
ally indistinguishable by any non-uniform polynomial-time algorithm: {x, view

P (w1
x)

V ∗(z) (x)}x∈L, z∈{0, 1}∗

and {x, view
P (w2

x)
V ∗(z) (x)}x∈L, z∈{0, 1}∗. Namely, for every non-uniform polynomial-time distinguishing

algorithm D, every polynomial p(·), all sufficiently long x ∈ L, and all z ∈ {0, 1}∗, it holds that

|Pr[D(x, z, view
P (w1

x)
V ∗(z) (x) = 1]− Pr[D(x, z, view

P (w2
x)

V ∗(z) (x) = 1]| < 1
p(|x|)

Definition 2.6 (strong witness indistinguishability SWI) Let 〈P, V 〉 and all other notations
be as in Definition 2.5. We say that 〈P, V 〉 is strongly witness-indistinguishable for RL if for
every PPT interactive machine V ∗ and for every two probability ensembles {X1

n, Y 1
n , Z1

n}n∈N and
{X2

n, Y 2
n , Z2

n}n∈N , such that each {Xi
n, Y i

n, Zi
n}n∈N ranges over (RL × {0, 1}∗) ∩ ({0, 1}n × {0, 1}∗ ×

{0, 1}∗), the following holds: If {X1
n, Z1

n}n∈N and {X2
n, Z2

n}n∈N are computationally indistinguishable,
then so are {〈P (Y 1

n ), V ∗(Z1
n)〉(X1

n)}n∈N and {〈P (Y 2
n ), V ∗(Z2

n)〉(X2
n)}n∈N .

WI vs. SWI: It is clarified in [35] that the notion of SWI actually refers to issues that are
fundamentally different from WI. Specifically, the issue is whether the interaction with the prover
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helps V ∗ to distinguish some auxiliary information (which is indistinguishable without such an inter-
action). Significantly different from WI, SWI does not preserve under concurrent composition. More
details about SWI are referred to [35]. But, an interesting observation is: the protocol composing
commitments and SWI can be itself regular WI.

Commit-then-SWI: Consider the following protocol composing a statistically-binding commit-
ment and SWI:

Common input: x ∈ L for an NP-language L with corresponding NP-relation RL.

Prover auxiliary input: w such that (x,w) ∈ RL.

The protocol: consisting of two stages:

Stage-1: The prover P computes and sends cw = C(w, rw), where C is a statistically-binding
commitment and rw is the randomness used for commitment.

Stage-2: Define a new language L′ = {(x, cw)|∃(w, rw) s.t. cw = C(w, rw) ∧ RL(x, w) = 1}.
Then, P proves to V that it knows a witness to (x, cw) ∈ L′, by running a SWI protocol.

One interesting observation for the above commit-then-SWI protocol is that commit-then-SWI
is itself a regular WI for L.

Proposition 2.1 Commit-then-SWI is itself a regular WI for the language L.

Proof (of Proposition 2.1). For any PPT malicious verifier V ∗, possessing some auxiliary
input z ∈ {0, 1}∗, and for any x ∈ L and two (possibly different) witnesses (w0, w1) such that
(x,wb) ∈ RL for both b ∈ {0, 1}, consider the executions of commit-then-SWI: 〈P (w0), V ∗(z)〉(x)
and 〈P (w1), V ∗(z)〉(x).

Note that for 〈P (wb), V ∗(z)〉(x), b ∈ {0, 1}, the input to SWI of Stage-2 is (x, cwb
= C(wb, rwb

)),
and the auxiliary input to V ∗ at the beginning of Stage-2 is (x, cwb

, z). Note that (x, cw0 , z) is
indistinguishable from (x, cw1 , z). Then, the regular WI property of the whole composed protocol is
followed from the SWI property of Stage-2. ¤

Definition 2.7 (system for argument/proof of knowledge [34, 6]) Let R be a binary relation
and κ : N → [0, 1]. We say that a probabilistic polynomial-time (PPT) interactive machine V is a
knowledge verifier for the relation R with knowledge error κ if the following two conditions hold:

• Non-triviality: There exists an interactive machine P such that for every (x,w) ∈ R all possible
interactions of V with P on common input x and auxiliary input w are accepting.

• Validity (with error κ): There exists a polynomial q(·) and a probabilistic oracle machine K
such that for every interactive machine P ∗, every x ∈ LR, and every w, r ∈ {0, 1}∗, machine
K satisfies the following condition:

Denote by p(x, w, r) the probability that the interactive machine V accepts, on input x, when
interacting with the prover specified by P ∗

x,w,r (where P ∗
x,w,r denotes the strategy of P ∗ on com-

mon input x, auxiliary input w and random-tape r). If p(x,w, r) > κ(|x|), then, on input x
and with oracle access to P ∗

x,w,r, machine K outputs a solution w′ ∈ R(x) within an expected
number of steps bounded by

q(|x|)
p(x, w, r)− κ(|x|)

The oracle machine K is called a knowledge extractor.

An interactive argument/proof system 〈P, V 〉 such that V is a knowledge verifier for a relation R and
P is a machine satisfying the non-triviality condition (with respect to V and R) is called a system
for argument/proof of knowledge (AOK/POK) for the relation R.
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The above definition of POK is with respect to deterministic prover strategy. POK also can be
defined with respect to probabilistic prover strategy. It is recently shown that the two definitions are
equivalent for all natural cases (e.g., POK for NP-relations) [6].

We mention that Blum’s protocol for directed Hamiltonian Cycle DHC [9] is just a 3-round
public-coin WIPOK for NP, which is recalled below.

Blum’s protocol for DHC [9]. The n-parallel repetitions of Blum’s basic protocol for proving
the knowledge of Hamiltonian cycle on a given directed graph G [9] is just a 3-round public-coin
WIPOK for NP (with knowledge error 2−n) under any one-way permutation (as the first round of
it involves one-round perfectly-binding commitments of a random permutation of G). But it can be
easily modified into a 4-round public-coin WIPOK for NP under any OWF by employing Naor’s
two-round (public-coin) perfectly-binding commitment scheme [60]. The following is the description
of Blum’s basic protocol for DHC:

Common input. A directed graph G = (V,E) with q = |V | nodes.

Prover’s private input. A directed Hamiltonian cycle CG in G.

Round-1. The prover selects a random permutation, π, of the vertices V , and commits (using a
perfectly-binding commitment scheme) the entries of the adjacency matrix of the resulting
permutated graph. That is, it sends a q-by-q matrix of commitments so that the (π(i), π(j))th

entry is a commitment to 1 if (i, j) ∈ E, and is a commitment to 0 otherwise.

Round-2. The verifier uniformly selects a bit b ∈ {0, 1} and sends it to the prover.

Round-3. If b = 0 then the prover sends π to the verifier along with the revealing of all commitments
(and the verifier checks that the revealed graph is indeed isomorphic to G via π); If b = 1, the
prover reveals to the verifier only the commitments to entries (π(i), π(j)) with (i, j) ∈ CG (and
the verifier checks that all revealed values are 1 and the corresponding entries form a simple
q-cycle).

We remark that the WI property of Blum’s protocol for DHC relies on the hiding property of
the underlying perfectly-binding commitment scheme used in its first-round.

Statistical WI argument/proof of knowledge (WIA/POK). We employ, in a critical way,
constant-round statistical WIA/POK in this work. We briefly note two simple ways for achieving
statistical WIA/POK systems. Firstly, for any statistical/perfect Σ-protocol (defined below), the
OR-proof (i.e., the ΣOR-protocol) is statistical/perfect WI proof of knowledge. The second approach
is to modify the (parallel repetition of) Blum’s protocol for DHC [9] (that is computational WIPOK)
into constant-round statistical WIAOK by replacing the statistically-binding commitments used in
the first-round of Blum’s protocol by constant-round statistically-hiding commitments. One-round
statistically-hiding commitments can be based on any collision-resistant hash function [19, 48]. Two-
round statistically-hiding commitments can be based on any claw-free collection with an efficiently
recognizable index set [38, 36, 34] (statistically-hiding commitments can also be based on general
assumptions, in particular any OWF, with non-constant rounds [61, 47, 46]).

2.1 Σ and ΣOR Protocols

Σ-protocols are very useful cryptographic tools that are 3-round public-coin protocols satisfying a
special honest-verifier zero-knowledge (SHVZK) property and a special soundness property in the
sense of knowledge extraction.

Definition 2.8 (Σ-protocol [14]) A 3-round public-coin protocol 〈P, V 〉 is said to be a Σ-protocol
for an NP-language with relation RL if the following hold:

• Completeness. If P , V follow the protocol, the verifier always accepts.
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• Special soundness. From any common input x of length poly(n) and any pair of accepting
conversations on input x, (a, e, z) and (a, e′, z′) where e 6= e′, one can efficiently compute w
such that (x,w) ∈ RL. Here a, e, z stand for the first, the second and the third message
respectively and e is assumed to be a string of length k (such that 1k is polynomially related to
the security parameter 1n) selected uniformly at random in {0, 1}k.

• Special honest verifier zero-knowledge (SHVZK). There exists a probabilistic polynomial-time
(PPT) simulator S, which on input x (where there exists a w such that (x,w) ∈ RL) and a
random challenge string ê, outputs an accepting conversation of the form (â, ê, ẑ), with the prob-
ability distribution that is indistinguishable from that of the real conversation (a, e, z) between
the honest P (w) and V on input x.

A Σ-protocol is called perfect/statistical Σ-protocol, if it is perfect/statistical SHVZK. A Σ-
protocol is called partial witness-independent, if the generation of its first-round message is indepen-
dent of (i.e., without using) the witness for the common input. A very large number of Σ-protocols
have been developed in the literature. In particular, (the n-parallel repetition of) Blum’s protocol for
DHC [9] is a (partial witness-independent) computational Σ-protocol for NP; That is, the n-parallel
repetition of Blum’s protocol for DHC [9] is also a three-round (partial witness-independent) WI for
NP. Most practical Σ-protocols for number-theoretical languages (e.g., DLP and RSA [68, 44], etc)
are (partial witness-independent) perfect Σ-protocols. For a good survey of Σ-protocols and their
applications, the reader is referred to [18].

Σ-Protocol for DLP [68]. The following is a Σ-protocol 〈P, V 〉 proposed by Schnorr [68] for
proving the knowledge of discrete logarithm, w, for a common input of the form (p, q, g, h) such that
h = gw mod p, where on a security parameter n, p is a uniformly selected n-bit prime such that
q = (p − 1)/2 is also a prime, g is an element in Z∗p of order q. It is also actually the first efficient
Σ-protocol proposed in the literature.

• P chooses r at random in Zq and sends a = gr mod p to V .

• V chooses a challenge e at random in Z2k and sends it to P . Here, k is fixed such that 2k < q.

• P sends z = r + ew mod q to V , who checks that gz = ahe mod p, that p, q are prime and that
g, h have order q, and accepts iff this is the case.

The OR-proof of Σ-protocols [15]. One basic construction with Σ-protocols is the OR of
a real protocol conversation and a simulated one, called ΣOR, that allows a prover to show that
given two inputs x0, x1 (for possibly different NP-relations R0 and R1 respectively), it knows a w
such that either (x0, w) ∈ R0 or (x1, w) ∈ R1, but without revealing which is the case (i.e., witness
indistinguishable WI) [15]. Specifically, given two Σ-protocols 〈Pb, Vb〉 for Rb, b ∈ {0, 1}, with random
challenges of, without loss of generality, the same length k, consider the following protocol 〈P, V 〉,
which we call ΣOR. The common input of 〈P, V 〉 is (x0, x1) and P has a private input w such that
(xb, w) ∈ Rb.

• P computes the first message ab in 〈Pb, Vb〉, using xb, w as private inputs. P chooses e1−b at ran-
dom, runs the SHVZK simulator of 〈P1−b, V1−b〉 on input (x1−b, e1−b), and lets (a1−b, e1−b, z1−b)
be the output. P finally sends a0, a1 to V .

• V chooses a random k-bit string s and sends it to P .

• P sets eb = s⊕ e1−b and computes the answer zb to challenge eb using (xb, ab, eb, w) as input.
He sends (e0, z0, e1, z1) to V .

• V checks that s = e0 ⊕ e1 and that conversations (a0, e0, zo), (a1, e1, z1) are accepting conver-
sations with respect to inputs x0, x1, respectively.
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Theorem 2.1 [15] The protocol ΣOR above is a Σ-protocol for ROR, where ROR = {((x0, x1), w)|(x0, w) ∈
R0 or (x1, w) ∈ R1}. Moreover, ΣOR-protocols are witness indistinguishable (WI) argument/proof
of knowledge systems.

The SHVZK simulator of ΣOR [15]. For a ΣOR-protocol of the above form, denote by
SOR the perfect SHVZK simulator of it and denote by Sb the perfect SHVZK simulator of the
protocol 〈Pb, Vb〉 for b ∈ {0, 1}. Then on common input (x0, x1) and a random string ê of length k,
SOR((x0, x1), ê) works as follows: It firstly chooses a random k-bit string ê0, computes ê1 = ê ⊕ ê0,
then SOR runs Sb(xb, êb) to get a simulated transcript (âb, êb, ẑb) for b ∈ {0, 1}, finally SOR outputs
((â0, â1), ê, (ê0, ẑ0, ê1, ẑ1)).

3 The BPK Model with Adaptive Language Selection

We present the definitions of concurrent soundness and concurrent zero-knowledge in the BPK model
(cf. [11, 59, 24, 63]). The key augmentation with the current formulation, in comparison with previous
definition of the BPK model, is to allow adaptive language selection based on public-keys.

3.1 Honest players in the BPK model

We say a class of languages L is admissible to a protocol 〈P, V 〉 if the protocol can work (or, be
instantiated) for any language L ∈ L. Typically, L could be the set of all NP-languages (via NP-
reduction in case 〈P, V 〉 can work for anNP-complete language) or the set of any languages admitting
Σ-protocols (in this case 〈P, V 〉 could be instantiated for any language in L efficiently without going
through general NP-reductions). Let RKEY be an NP-relation validating the public-key and secret-
key pair (PK, SK) generated by honest verifiers, i.e., RKEY (PK,SK) = 1 indicates that SK is a
valid secret-key of PK. Then, a protocol 〈P, V 〉 in the BPK model, w.r.t. some admissible language
set L and some key-validating relation RKEY , consists of the following:

• F , a public-key file that is a polynomial-size collection of records (id, PKid), where id is a string
identifying a verifier and PKid is its (alleged) public-key. When verifier’s IDs are implicitly
specified from the context, for presentation simplicity we also just take F as a collection of
public-keys in protocol specification and security analysis.

• M, a PPT language-selecting machine that on inputs (1n, F ) outputs the description of an
NP-relation RL for an NP-language L ∈ L. The output of M (i.e., the description of RL)
is then given to both the prover P and (proof-stage of) the verifier V . We require that given
the description of RL, the admissibility of L (i.e., the membership of L ∈ L) can be efficiently
decided.

• P (1n, RL, x, w, F, id, γ), an honest prover that is a polynomial-time interactive machine, where
1n is a security parameter, x is a poly(n)-bit string in L, w is an auxiliary input, F is a
public-file, id is a verifier identity, and γ is its random-tape.

• V , an honest verifier that is a polynomial-time interactive machine working in two stages.

1. Key generation stage. V , on a security parameter 1n and a random-tape r, outputs a
key pair (PK, SK) satisfying RKEY (PK, SK) = 1. V then registers PK in F as its
public-key while keeping the corresponding secret key SK in secret.

2. Proof stage. V , on inputs SK and RL, x ∈ {0, 1}poly(n) (which is supposed to be in L) and
a random tape ρ, performs an interactive protocol with a prover and outputs “accept”
indicating x ∈ L or “reject” indicating x 6∈ L.
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Note: On the one hand, augmenting the BPK model with adaptive language selection compli-
cates the formulation and may be more difficult to fulfill against adversaries with adaptive language
selection ability; but on the other hand, this is a far more realistic model for cryptographic protocols
running concurrently in the public-key model, where mixing the public-key structure as part of the
language is a natural adversarial strategy.

3.2 The malicious concurrent prover and concurrent soundness in the BPK
model

An s-concurrent malicious prover P ∗ in the BPK model, for a positive polynomial s, is a probabilistic
polynomial-time Turing machine that, on a security parameter 1n and an auxiliary string z ∈ {0, 1}∗,
performs an s-concurrent attack against V as follows in two stages:

Let (PK, SK) be the output of the key generation stage of V on a security parameter 1n and
a random string r. Then, in the first stage, on inputs (1n, PK, z) P ∗ first generates (RL, τ), where
RL determines an admissible NP-language L ∈ L and τ ∈ {0, 1}∗ is some auxiliary information to
be used in the second stage. We assume P ∗ always selects an admissible language L in the first
stage, otherwise the honest verifier will not start its proof stages as we assume the admissibility of
L can be efficiently verified. Then, in the second stage (i.e., proof stage) w.r.t. RL and PK, P ∗

can perform concurrently at most s(n) interactive protocols (sessions) with (the proof stage of) V
as follows: If P ∗ is already running i− 1 (1 ≤ i ≤ s(n)) sessions, it can select on the fly a common
input xi ∈ {0, 1}poly(n) (which may be equal to xj for 1 ≤ j < i) and initiate a new session with
the proof stage of V (1n, RL, xi, SK, ρi); P ∗ can output a message for any running protocol, and
always receive promptly the response from V (that is, P ∗ controls at its wish the schedule of the
messages being exchanged in all the concurrent sessions). We stress that in different sessions V uses
independent random-tapes in its proof stage (that is, ρ1, · · · , ρs(n) are independent random strings).
We denote by viewP ∗(1n, z) the random variable describing the view of P ∗ in this experiment, which
includes its random tape, the auxiliary string z, all messages it receives including the public-key
PK and all messages sent by V (1n, RL, xi, SK, ρi)’s in the s(n) proof-stages, 1 ≤ i ≤ s(n). For any
(PK, SK) ∈ RKEY , we denote by view

V (SK)
P ∗ (1n, z, PK) the random variable describing the view of

P ∗ specific to PK, which includes its random tape, the auxiliary string z, the (specific) PK, and all
messages it receives from V (1n, RL, xi, SK, ρi)’s in the s(n) proof-stages, 1 ≤ i ≤ s(n).

We then say a protocol 〈P, V 〉 is concurrently sound in the BPK model w.r.t. some admissible
language set L, if for any sufficiently large n, for any honest verifier V and all (except for a negligible
fraction of) (PK,SK) outputted by the key-generation stage of V , for all positive polynomials s and
all s-concurrent malicious prover P ∗ and any string z ∈ {0, 1}∗, for any admissible language L ∈ L
and any string x 6∈ L (of length of poly(n)), the probability that V outputs “accept x ∈ L” in the
s-concurrent attack against V (1n, RL, SK) (i.e., in one of the s(n) sessions) is negligible in n, where
the probability is taken over the randomness of P ∗, the randomness of V for key-generations and for
all the s(n) proof-stages.

Notes: The above concurrent soundness is defined w.r.t multiple proof-stages (sessions) with the
same public-key. In this case, we can imagine that the auxiliary information z encodes information
collected from protocol executions w.r.t. other public-keys that are generated independently of the
public-key PK at hand. Note that, as discussed in [59], extension to the general case, where P ∗

interacts with instances of multiple verifiers with multiple (independently generated) public-keys, is
direct. Also note that all proof-stages of V (i.e., all the s(n) sessions) are w.r.t. the same admissible
language L. Such treatment is only for presentation simplicity. Both the security model and security
proof of this work can be easily extended to the general case, where P ∗ can select admissible language
Li for each session i, 1 ≤ i ≤ s(n) (in this case, whenever P ∗ starts a new session it sends (xi, RLi)
to V indicating that the new session is on common input xi and for admissible language Li).
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3.3 The malicious concurrent verifier and concurrent ZK in the BPK model

An s-concurrent malicious verifier V ∗, where s is a positive polynomial, is a PPT Turing machine
that, on input 1n and an auxiliary string z, works in two stages:

Stage-1 (key-generation stage). On (1n, z) V ∗ outputs a relation RL determining an admissible
language L ∈ L, an arbitrary public-file F and a list of (without loss of generality) s(n)
identities id1, · · · , ids(n). Then, V ∗ is given a list of s(n) strings x̄ = {x1, · · · , xs(n)} ∈ Ls(n) of
length poly(n) each, where xi might be equal to xj , 1 ≤ i, j ≤ s(n).

Stage-2 (proof stage). Starting from the final configuration of Stage-1, V ∗ concurrently interacts
with s(n)2 instances of the honest prover P : P (1n, F,RL, xi, wi, idj , γ(i,j)), where 1 ≤ i, j ≤
s(n), (xi, wi) ∈ RL and γ(i,j)’s are independent random strings. In this stage, V ∗ controls at its
wish the schedule of the messages being exchanged in all the concurrent sessions. In particular,
V ∗ can output a message for any running session dynamically based on the transcript up to
now, and always receive promptly the response from P . For any auxiliary string z ∈ {0, 1}∗,
each public-key file F and RL outputted by V ∗ in Stage-1 and any x̄ = {x1, · · · , xs(n)} ∈ Ls(n),

we denote by view
{P (F,RL,xi,wi,idj ,γ(i,j))

′s}
V ∗(z) (1n, x̄) the random variable describing the view of V ∗

in its second stage of this experiment, which includes (z, F,RL, x̄), the randomness of V ∗ in its
second stage and all messages received from all the s(n)2 prover instances.

Definition 3.1 (concurrent zero-knowledge in the BPK model) A protocol 〈P, V 〉 is (black-
box) concurrent zero-knowledge in the BPK model w.r.t. some admissible language set L, if there
exists a PPT black-box simulator S such that for any sufficiently large n and every s-concurrent
malicious verifier V ∗ the following two distribution ensembles are indistinguishable:

{view
{P (1n,F,RL,xi,wi,idj ,γ(i,j))

′s}
V ∗(z) (1n, x̄)}x̄∈Ls(n),L∈L,F∈{0,1}∗,z∈{0,1}∗

{S(1n, F,RL, x̄, z)}x̄∈Ls(n),L∈L,F∈{0,1}∗,z∈{0,1}∗

Notes: For presentation simplicity, the CZK property in the BPK model with adaptive language
selection is formulated with respect to that all s(n)2 sessions (i.e., proof-stages) are for the same NP-
relation RL and that x̄ ∈ Ls(n) are predefined (i.e., not selected adaptively by V ∗). Both the security
model and security proof of this work can be easily extended to the general cases, where V ∗ can
select admissible language for each of the s(n)2 sessions and can select the common inputs xi’s
adaptively. We remark that for adaptive input selection, it is the responsibility of V ∗ to provide the
corresponding NP-witnesses wi’s to the honest prover instances.

4 Motivation for Concurrent Knowledge-Extraction in the Public-
Key Model

We show a concurrent interleaving and malleating attack on the concurrent ZK protocol of [24]
that is both concurrently sound and normal argument of knowledge in the BPK model, in which by
concurrently interacting with the honest verifier in two sessions a malicious P ∗ can (with probability
1) malleate the verifier’s interactions in one session into successful interactions in another session
on a true (public-key related) statement but without knowing any witness to the statement being
proved. This shows that concurrent soundness and normal arguments of knowledge do not guarantee
concurrent verifier security in the public-key model. Actually, we show that, assuming any OWF,
CKE is strictly stronger than concurrent soundness in the public-key model. This serves a good
motivation for understanding “possession of knowledge on the Internet with registered public-keys”,
i.e., the subtleties of concurrent knowledge-extraction in the public-key model.
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4.1 The Protocol Structure of [24]

Key-generation. Let fV be a OWF that admits Σ-protocols. On a security parameter n, each
verifier V randomly selects two elements in the domain of fV , x0

V and x1
V of length n each,

computes y0
V = fV (x0

V ) and y1
V = fV (x1

V ). V publishes (y0
V , y1

V ) as its public-key while keeping
xb

V as its secret-key for a randomly chosen b from {0, 1}. (For OWF-based implementation, V
also publishes a random string rV of length 3n that serves the first-round message of Naor’s
OWF-based perfectly-binding commitment scheme [60].)

Common input. An element x ∈ L of length poly(n), where L is an NP-language that admits
Σ-protocols.

The main-body of the protocol. The main-body of the protocol consists of the following three
phases:

Phase-1. The verifier V proves to P that it knows the preimage of either y0
V or y1

V , by
executing the ΣOR-protocol on (y0

V , y1
V ) in which V plays the role of the knowledge prover.

It is additionally required that the first-round message of the ΣOR-protocol is generated
without using the preimage of either y0

V or y1
V (i.e., partial witness-independent). Denote

by aV , eV , zV , the first-round, the second-round and the third-round message of the ΣOR-
protocol of this phase respectively. Here eV is the random challenge sent by the prover to
the verifier. (For OWF-based implementation, P sends a random string rP of length 3n
on the top, which serves the first-round message of Naor’s OWF-based perfectly-binding
commitments and is used by V in generating aV .)
If V successfully finishes the ΣOR-protocol of this phase and P accepts, then goto Phase-2.
Otherwise, P aborts.

Phase-2. Let TC be a trapdoor bit commitment scheme with the preimage of either y0
V

or y1
V as the trapdoor. The prover randomly selects a string ê ∈ {0, 1}n, and sends

cê = {TCCom(ê1), TCCom(ê2), · · · , TCCom(ên)} to the verifier V , where êi is the i-th
bit of ê.

Phase-3. Phase-3 runs essentially the underlying Σ-protocol for L but with the random chal-
lenge set by a coin-tossing mechanism. Specifically, the prover computes and sends the
first-round message of the underlying Σ-protocol, denoted aP , to the verifier V (for OWF-
based implementation, aP is computed also using rV published by V in the key-generation
phase); Then V responds with a random challenge q; Finally, P reveals ê (committed in
Phase-2), sets eP = ê ⊕ q, and computes the third-round message of the underlying Σ-
protocol for L, denoted zP , with eP as the real random challenge.

Verifier’s decision. V accepts if and only if ê is decommitted correctly and eP = ê ⊕ q and
(aP , eP , zP ) is an accepting conversation for x ∈ L.

Remark: The above protocol structure is essentially that of the incomplete CZK protocol of
[76] (Figure-3, page 17), and can be implemented based on any OWF. The key difference in the
actual implementations of [76, 24] is that [24] uses a special trapdoor commitment scheme in Phase-
2, where the decommitment formation to 0 or 1 is in turn committed in two statistically-binding
commitments. This technique is critical for achieving concurrent soundness, the reader is referred
to [24] for more details. We remark that the differences in actual implementations do not invalidate
the attack presented below in Section 4.2, which is presented with respect to a more general protocol
structure.

4.2 The concurrent interleaving and malleating attack

With respect to the above protocol structure of the protocols of [24, 76], let L̂ be anyNP-language ad-
mitting a Σ-protocol that is denoted by ΣL̂ (in particular, L̂ can be an empty set). Then for an honest
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verifier V with its public-key PK = (y0
V , y1

V ), we define a new language L = {(x̂, y0
V , y1

V )|∃w s.t. (x̂, w) ∈
RL̂ OR yb

V = fV (w) for b ∈ {0, 1}}. Note that for any string x̂ (whether x̂ ∈ L̂ or not), the state-
ment “(x̂, y0

V , y1
V ) ∈ L” is always true as PK = (y0

V , y1
V ) is honestly generated. Also note that L is

a language that admits Σ-protocols (as ΣOR-protocol is itself a Σ-protocol). Now, we describe the
concurrent interleaving and malleating attack, in which P ∗ successfully convinces the honest verifier
of the statement “(x̂, y0

V , y1
V ) ∈ L” for any arbitrary poly(n)-bit string x̂ (even when x̂ 6∈ L̂) by

concurrently interacting with V in two sessions as follows.

1. P ∗ initiates the first session with V . (For OWF-based implementation, P just sends rP = rV as
its first message to V , where rV is the random string registered by V as a part of its public-key
for OWF-based implementation.) After receiving the first-round message, denoted by a′V , of
the ΣOR-protocol of Phase-1 of the first session on common input (y0

V , y1
V ) (i.e., V ’s public-key),

P ∗ suspends the first session.

2. P ∗ initiates a second session with V , and works just as the honest prover does in Phase-1 and
Phase-2 of the second session. We denote by cê the Phase-2 message of the second session (i.e.,
cê commits to a random string ê of length n). When P ∗ moves into Phase-3 of the second
session and needs to send V the first-round message, denoted by aP , of the Σ-protocol of
Phase-3 of the second session on common input (x̂, y0

V , y1
V ), P ∗ does the following:

• P ∗ first runs the SHVZK simulator of ΣL̂ (i.e., the Σ-protocol for L̂) on x̂ to get a simulated
conversation, denoted by (ax̂, ex̂, zx̂), for the (possibly false) statement “x̂ ∈ L̂”.

• P ∗ sets aP = (ax̂, a′V ) and sends aP to V as the first-round message of the Σ-protocol of
Phase-3 of the second session, where a′V is the one received by P ∗ in the first session.

• After receiving the second-round message of Phase-3 of the second session, denoted by q
(i.e., the random challenge from V ), P ∗ sets eP = ê ⊕ q and then suspends the second
session.

3. P ∗ continues the first session, and sends e′V = ê⊕q⊕ex̂ = eP ⊕ex̂ as the second-round message
of the ΣOR-protocol of Phase-1 of the first session.

4. After receiving the third-round message of the ΣOR-protocol of Phase-1 of the first session,
denoted by z′V , P ∗ suspends the first session again.

5. P ∗ continues the execution of the second session again, reveals ê committed in Phase-2 of the
second session, and sends to V zP = ((ex̂, zx̂), (e′V , z′V )) and the decommitment information of
ê as the last-round message of the second session.

Note that (ax̂, ex̂, zx̂) is an accepting conversation for the (possibly false) statement “x̂ ∈ L̂”,
(a′V , e′V , z′V ) is an accepting conversation for showing the knowledge of the preimage of either y0

V

or y1
V , and furthermore ex̂ ⊕ e′V = eP = ê ⊕ q. According to the description of ΣOR (presented in

Section 2), this means that, from the viewpoint of V , (aP , eP , zP ) is an accepting conversation of
Phase-3 of the second-session on common input (x̂, y0

V , y1
V ). That is, P ∗ successfully convinced V

of the statement “(x̂, (y0
V , y1

V )) ∈ L” (even for x̂ 6∈ L̂) in the second session but without knowing
any corresponding NP-witness! This demonstrates that the protocol of [24] fails to be a proof of
knowledge (fails knowledge extraction) in concurrent executions (note that it was not designed as
such, since this new issue is the notion we put forth here). We remark that mixing the public key
structure as part of the language is a natural attack strategy for the public-key model (a different
demonstration of this was given in [75]).
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5 Formulating Concurrent Knowledge-Extraction in the Public-
Key Model

Now, we proceed to formulate concurrent verifier security in light of the above concrete attack against
the protocol of [76, 24]. Note that the concrete attack is of man-in-the-middle (MIM) nature, and
is related to malleability of protocols. The security notion assuring that a malicious prover P ∗ does
“know” what it claims to know, when it is concurrently interacting with the honest verifier V , can
informally be formulated as: for any x, if P ∗ can convince V (with public-key PK) of “x ∈ L” (for
an NP-language L) by concurrent interactions, then there exists a PPT knowledge-extractor that
outputs a witness for x ∈ L. This is a natural extension of the normal arguments of knowledge
into the concurrent settings in the public-key model. However, such a definition does not work
in the public-key model. The reason is: the statements being proved may be related to PK, and
thus the extracted witness may be related to its corresponding secret-key SK (actually, for the
malicious prover strategy of the concrete attack on the protocol of [76, 24], the extracted witness
will just be the same secret-key used by the knowledge-extractor); But, in knowledge-extraction the
PPT extractor may have already possessed SK. To solve this subtlety, we require the extracted
witness, together with adversary’s view, to be independent of SK. But, the problem here is how
to formalize such independence, in particular, w.r.t. a concurrent MIM? We solve this in the spirit
of non-malleability formulation [26]. That is, we consider the message space (distribution) of SK,
and such independence is roughly formulated as follows: let SK be the secret-key and SK ′ is an
element randomly and independently distributed over the space of SK, then we require that, for any
polynomial-time computable relation R, the probability Pr[R(w̄, SK, view) = 1] is negligibly close
to Pr[R(w̄, SK ′, view) = 1], where w̄ is the set of witnesses extracted by the knowledge extractor for
successful concurrent sessions and view is the view of the adversary P ∗. This captures the intuition
that P ∗ does, in fact, “know” the witnesses to the statements whose validations are successfully
conveyed by concurrent interactions.

Definition 5.1 (concurrent knowledge-extraction (CKE) in the public-key model) We say
that a protocol 〈P, V 〉 is concurrently knowledge-extractable in the BPK model w.r.t. some admissi-
ble language set L and some key-validating relation RKEY , if for any positive polynomial s(·), any
s-concurrent malicious prover P ∗ defined in Section 2, there exist a pair of (expected) polynomial-
time algorithms S (the simulator) and E (the extractor) such that for any sufficiently large n, any
auxiliary input z ∈ {0, 1}∗, and any polynomial-time computable relation R (with components drawn
from {0, 1}∗ ∪ {⊥}), the following hold, in accordance with the experiment ExptCKE(1n, z) described
below (page 17):

• Simulatability. The following ensembles are identical (or indistinguishable):
{S1(1n, PK, SK, z)}(PK,SK)∈RKEY ,z∈{0,1}∗ and {view

V (SK)
P ∗ (1n, z, PK)}(PK,SK)∈RKEY ,z∈{0,1}∗ (de-

fined in Section 2). This in particular implies that str includes (PK, z), and the probability
ensembles {S1(1n, z)}z∈{0,1}∗ and {P ∗(1n, z)}z∈{0,1}∗ (defined in Section 2) are actually iden-
tical (or indistinguishable).

• Secret-key independent knowledge-extraction. E, on inputs (1n, str, sta), outputs wit-
nesses to all statements successfully proved in accepting sessions in str. Specifically, E outputs
a list of strings w = (w1, w2, · · · , ws(n)), satisfying the following:

– wi is set to be ⊥, if the i-th session in str is not accepting (due to abortion or verifier
verification failure), where 1 ≤ i ≤ s(n).

– Correct knowledge-extraction for (individual) statements: In any other cases (i.e., for suc-
cessful sessions), with overwhelming probability (xi, wi) ∈ RL, where xi is the common
input selected by P ∗ for the i-th session in str and RL is the admissible NP-relation for
L ∈ L set by P ∗ in str.
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ExptCKE(1n, z)

The simulator S = (SKEY , SPROOF ):
(PK,SK, SK ′) ←− SKEY (1n), where the distribution of (PK,SK) is identical with that of the
output of the key-generation stage of the honest verifier V , RKEY (PK, SK) = RKEY (PK, SK ′) = 1
and the distributions of SK and SK are identical and independent. In other words, SK and SK ′

are two random and independent secret-keys corresponding to PK.

(str, sta) ←− S
P∗(1n, PK, z)
PROOF (1n, PK, SK, z). That is, on inputs (1n, PK, SK, z) and with oracle

access to P ∗(1n, PK, z), the simulator S outputs a simulated transcript str, and some state
information sta to be transformed to the knowledge-extractor E.

We denote by S1(1n, z) the random variable str (in accordance with above processes of SKEY and
SPROOF ). For any (PK, SK) ∈ RKEY and any z ∈ {0, 1}∗, we denote by S1(1n, PK, SK, z) the
random variable describing the first output of S

P∗(1n, PK, z)
PROOF (1n, PK, SK, z) (i.e., str specific to

(PK,SK)).

The knowledge-extractor E:
w ←− E(1n, sta, str). On (sta, str), E outputs a list of witnesses to statements whose validations
are successfully conveyed in str.

– (Joint) knowledge extraction independence (KEI): Pr[R(SK, w, str) = 1] is negligibly close
to Pr[R(SK ′, w, str) = 1].

The probabilities are taken over the randomness of S in the key-generation stage (i.e., the
randomness for generating (PK, SK, SK ′)) and in all proof stages, the randomness of E, and
the randomness of P ∗. If the KEI property holds for any (not necessarily polynomial-time
computable) relation R, we say the protocol 〈P, V 〉 satisfies statistical CKE and statistical
KEI.

5.1 Discussion and justification of the CKE formulation

We first note that the above CKE formulation follows the simulation-extraction approach of [67]
(which is also used in [4]). Here, the key augmentation, besides some other adaptations in the public-
key model, is the property of knowledge-extraction independence (KEI) explicitly required. Though
the CKE and KEI notions are formulated in the framework of public-key model, they are actually
applicable to protocols in the plain model, in general, in order to capture knowledge extractability
against concurrent adversaries interacting with honest players of secret values.

Simulated public-keys vs. real public-keys. In our CKE formulation, the simulation-
extraction is w.r.t. simulated public-keys. In this case, explicitly requiring the KEI property is crucial
for correctly formulating CKE, as the simulator/extractor possesses the secret-keys corresponding
to the simulated public-keys. A natural and intuitive strengthening of the CKE formulation might
be: the simulator/extractor uses the same public-keys of the honest verifiers. Specifically, for any
concurrent malicious P ∗ there exists a PPT simulator/extractor that, on the same public-key of
the honest verifier, outputs a simulated transcript (that is indistinguishable from the real view
of P ∗) together with all witnesses to accepting sessions. In this case, as the simulator/extractor
does not possesses the secret-key (of the honest verifier), the KEI property can be waived. But,
the key observation here is: constant-round CKE (whether ZK or not) with real public-keys are
impossible. Specifically, constant-round CKE with real public-keys implies constant-round CZK
(actually, potentially concurrently non-malleable ZK proof of knowledge) in the plain model by
viewing verifier’s public-keys as a part of common inputs, which is however impossible at least in the
black-box sense [12].
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On the non-triviality of KEI even with independent languages. With the above CKE
formulation, we are actually formulating the independence of the witnesses, used (“known”) by
concurrent MIM adversary, on the secret-key (witness) used by verifier (who may in turn play the
role of prover in some sub-protocols). A naive solution for KEI, which appears to make sense in
certain scenarios, may be to require the language and statements being proved are independent of
verifier’s public-keys. But, this way does not work in general. Firstly note that, if the protocol is
for NP-Complete, the statements being proved, selected adaptively by the adversary, can be always
related to verifier’s public-key (e.g., via NP-reductions); Moreover, for protocols in the BPK model,
verifier’s keys are used in essential ways, particularly in order to achieve round efficiency. This is the
case, especially when the protocol in the public-key model runs concurrently over Internet (note that
most concurrently secure cryptographic tasks cannot be implemented round-efficiently in the plain
model). Typically, a constant-round cryptographic protocol in the BPK model consists of several
sub-protocols, such that the common statement and verifier’s public-keys are mixed into the inputs
to some sub-protocols. In this case, even if the language (and even if the witness being used by
the honest prover) is independent of verifier’s public-keys, the inputs to the sub-protocols, selected
and decided by the concurrent adversary based on its view of concurrent interleaving attacks, can be
always related to (dependent on) verifier’s keys (a typical illustration is the Feige-Shamir-ZK-like
protocols in the public-key model [30]). The various concurrent interleaving and malleating attacks
presented in this work (in particular, the attack against the protocol variant of the efficient CZK-CKE
without csk in Section 7.3.2) just demonstrate such cases.

CKE vs. concurrent soundness. We show that, assuming any OWF, CKE is a strictly
stronger notion for concurrent verifier security than concurrent soundness in the public-key model.

Proposition 5.1 Assuming any OWF, CKE is strictly stronger than concurrent soundness in the
public-key model.

Proof. (of Proposition 5.1) It’s easy to see that CKE implies concurrent soundness in the public-
key model. Specifically, suppose that for some (PK, SK) ∈ RKEY , some admissible language L and
some string x 6∈ L P ∗ can convince V (RL, SK) of the false statement “x ∈ L” with non-negligible
probability in real execution, then with almost the same probability (up to a negligible gap) P ∗

can convince the simulator S(RL, SK) of x ∈ L in ExptCKE(1n, z) by the property of simulatability,
which however contradicts the secret-key independent knowledge-extraction property.

Then the proposition is direct from the attack demonstrated in Section 4.2 on the CZK protocol
of [24] that is both concurrently sound and normal argument of knowledge and can be implemented
based on any OWF. Specifically, for the specific strategy of P ∗ of the concurrent interleaving and
malleating attack, suppose x̂ 6∈ L̂ or just L̂ is empty, the witness extracted by any polynomial-
time knowledge-extraction algorithm E (with SK = xb

V as its input) must be the preimage of
either y0

V or y1
V . But, according to the one-wayness of fV used in the key-generation stage, with

overwhelming probability the extracted witness will be the preimage of yb
V conditioned on E outputs

a witness. (Specifically, consider the simulator/extractor emulates the key-generation of the honest
verifier, except that the value y1−b

V is received externally as its input.) Define the relation R as:
R(w, SK, ·) = 1 if fV (w) = fV (SK). Then, conditioned on E outputs a witness, the extracted
witness (i.e., the preimage of yb

V ) is always related to SK = xb
V , but can be related to a random

and independent SK ′ with negligible probability. Thus, the CZK protocol of [24] is not concurrently
knowledge-extractable in the public-key model. ¤

6 Generic CZK-CKE in the BPK Model

In this section, we present the generic constant-round CZK-CKE arguments for NP in the BPK
model under standard hardness assumptions. The starting point is the basic and famous Feige-Shamir
ZK (FSZK) structure [30]. The FSZK structure is conceptually simple, which simply composes two
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WIPOK sub-protocols. In more details, let f be a OWF, in the first WIPOK sub-protocol with
the verifier V serving as the knowledge-prover, V computes (y0 = f(s0), y1 = f(s1)) for randomly
chosen s0 and s1; then V proves to the prover P the knowledge of the preimage of either y0 or y1.
In the second WIPOK sub-protocol with P serving as the knowledge-prover, on common input x,
P proves to V the knowledge of either a valid NP-witness w for x ∈ L or the preimage of either y0

or y1. FSZK is also argument of knowledge, and can be high practically instantiated (without going
through general NP-reductions) by the ΣOR technique [15].

Let (y0, y1) serve as the public-key of V and sb (for a random bit b) as the secret-key, the public-
key version of FSZK is CZK in the BPK model. But, we shew that the public-key version of FSZK
is not concurrently sound [75], needless to say concurrent knowledge-extractability (indeed, FSZK
was not designed for the public-key model). We hope to add the CKE property to FSZK in the BPK
model (and thus get concurrent security both for the prover and for the verifier simultaneously),
while remaining its conceptual simple structure as well as the ability of practical instantiations.

The subtle point here is: we are actually facing (dealing with) a concurrent MIM (CMIM), who
manages to malleate, in a malicious and unpredictable way, the public-keys and knowledge-proof
interactions of the verifier in one session into the statements and knowledge-proof interactions in
another concurrent session. To add CKE security to FSZK in the BPK model, some non-malleable
(maybe inefficient) building tools seem to be intrinsically required. In this work, we show how to do
so without employing any non-malleable building tools.

The idea is to strengthen the first sub-protocol to be statistical WIPOK, and require the prover
to first commit, before starting the second WI sub-protocol, the supposed witness to cw by running
a statistically-binding commitment scheme C. This guarantees that if the witness committed to cw

is dependent on the secret-key used by V , there are indeed some differences between the interaction
distribution when V uses SK = s0 and that when V uses SK = s1, and we can use such distribution
differences to violate the statistical WI of the first sub-protocol. But, this solution loses CZK
in general, as the second WI sub-protocol is run w.r.t. commitments to different values in real
interactions and in the simulation. This problem can be got passed by using a stronger second sub-
protocol, i.e., the strong WI (SWI) [34]. Note that the composition of commitment and SWI is itself
regular WI, and thus CZK property is salvaged.

The generic construction is depicted in Figure 1, page 20 (as the generic construction is for NP
via NP-reduction, we do not explicitly describe the language-selecting machine M in the protocol
specification).

6.1 Security analysis

Notes on the underlying hardness assumptions and round-complexity. If the OWF f used
in key-generation admits perfect/statistical Σ-protocols (and thus we can use ΣOR in Stage-1), and
we use Feige-Shamir ZK (FSZK) of [31] (with WI is replaced by ΣOR) to replace SWI of Stage-3, the
protocol depicted in Figure 1 can be based on any OWF admitting perfect/statistical Σ-protocols,
and be of optimal (i.e., 4-round) round-complexity by round combinations; If we use in Stage-1 the
modified Blum’s protocol for DHC with constant-round statistically/perfectly hiding commitments,
the protocol depicted in Figure 1 can be based on any collision-resistant hash function or any claw-free
collection with efficiently recognizable index set.

Theorem 6.1 The protocol depicted in Figure 1 is a constant-round concurrently knowledge-extractable
concurrent ZK (CZK-CKE) argument for NP in the BPK model.

Proof. The completeness of the protocol 〈P, V 〉 can be easily checked.
Concurrent zero-knowledge.
We first consider a mental simulator M that takes as input all secret-keys corresponding to all

public-keys registered in the public-key file, in case the corresponding secret-keys exist.
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Key Generation. Let f : {0, 1}n → {0, 1}n be any OWF, where 1n is the system security parameter.
Each verifier V selects random strings s0, s1 from {0, 1}n, randomly selects a bit b ← {0, 1}, computes
yb = f(sb) and sets y1−b = f(s1−b). V registers PK = (y0, y1) in a public file F as its public-key, and
keeps SK = sb as its secret-key. Define RKEY = {((y0, y1), s)|y0 = f(s) ∨ y1 = f(s)}
Common input. An element x ∈ L ∩ {0, 1}poly(n), where L is an NP-Complete language with the

corresponding NP-relation RL.

P private input. An NP-witness w ∈ {0, 1}poly(n) for x ∈ L. Here, we assume w.l.o.g. that the witness
for any x ∈ L ∩ {0, 1}poly(n) is of the same length poly(n).

Stage-1. V proves to P that it knows a preimage to one of y0, y1, by running a statistical WIA/POK
protocol for NP, in which V plays the role of knowledge prover. The witness used by V in this stage
is sb.

Stage-2. If V successfully finishes Stage-1, P does the following: it computes and sends cw = C(w, rw),
where C is a statistically-binding commitment scheme and rw is the randomness used for commit-
ments.

Stage-3. Define a new NP-language L′ = {(x, y0, y1, cw)|(∃(w, rw) s.t. cw = C(w, rw) ∧ ((x,w) ∈ RL) ∨
y0 = f(w) ∨ y1 = f(w))}. Then, P proves to V that it knows a witness for (x, y0, y1, cw) ∈ L′, by
running a strong WI argument/proof of knowledge (WIA/POK) protocol for NP.

Figure 1: The generic CZK-CKE argument 〈P, V 〉 for NP in the BPK model

For any s(n)-concurrent malicious verifier V ∗ (defined in Section 3) and any NP-language L, M
runs V ∗ as a subroutine on inputs x̄ = {x1, · · · , xs(n)} ∈ Ls(n) (where xi might equal xj , 1 ≤ i, j ≤
s(n) and i 6= j), the public file F = {PK1, · · · , PKs(n)} and all assumed existing secret-keys. M
works just as the honest prover does in Stage-1 of any session. In Stage-2 of any session on a common
input xi and with respect to a public-key PKj (i.e., the i-th session w.r.t PKj , 1 ≤ i, j ≤ s(n)),
M computes c

(i)
w = C(SKj , r

(i)
w ), where SKj is the secret-key corresponding to PKj for which we

assume it exists and M knows. Then, on input (xi, PKj , c
(i)
w ) M runs the strong WI argumnet/proof

of knowledge for NP in Stage-3 of the session with (SKj , r
(i)
w ) as its witness.

Then, by a simple hybrid argument, the indistinguishability between the output of M and the
view of V ∗ in real concurrent interactions is direct from the regular WI of commit-then-SWI. Note
that, as mentioned in Section 2, regular WI preserves under concurrent composition in this case.

Finally, to build a PPT simulator S from scratch, where S does not know any secret-keys corre-
sponding to public-keys in the public file, we resort to the technique developed in [11]. Specifically,
S works in s(n) + 1 phases. In each phase, S either successfully finishes the simulation, or “covers”
a new public-key for which it has not known the corresponding secret-key up to now in case V ∗

successfully finishes the Stage-1 interactions w.r.t. that public-key. Key coverage is guaranteed by
the POK property of Stage-1 interactions. For more details, see [11, 53].

(Statistical) concurrent knowledge-extraction.
According to the CKE formulation, for any s-concurrent malicious prover P ∗ (defined in Section

2) we need to build two algorithms (S, E). The simulator S, on inputs (1n, z), works as follows: It
first perfectly emulates the key-generation stage of the honest verifier, getting PK = (y0, y1) and
SK = sb and SK ′ = s1−b for a random bit b. Then, S runs P ∗ on (1n, PK, z) to get (RL, τ),
where RL indicates an NP-language for which the proof-stages will work and τ is some auxiliary
information to be used by P ∗ in proof-stages. In the proof stages, S perfectly emulates the honest
verifier with the secret-key SK. Finally, whenever P ∗ stops, S outputs the simulated transcript str,
together with the state information sta set to be (PK, SK, SK ′, z) and the random coins used by S.
Note that the simulated transcript str is identical to the view of P ∗ in real execution.

The knowledge-extraction process is similar to that of [67]. Note that we need to extract witnesses
to all accepting sessions in str. Given (str, sta), the knowledge-extractor E iteratively extracts
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witness for each accepting session. Specifically, for any i, 1 ≤ i ≤ s(n), we denote by Ei the
experiment for the knowledge-extractor on the i-th session. Ei emulates S with the fixed random
coins included in sta, with the exception that the random coins to be used by the simulator (emulating
the honest verifier) for Stage-3 (i.e., SWIA/POK) of the i-th session are no longer emulated internally,
but received externally. The experiment Ei amounts to the execution of the SWIA/POK between a
stand-alone (deterministic) prover and an honest verifier on common input (xi, PK, c

(i)
w ), where c

(i)
w

is the Stage-2 message sent by P ∗ in the i-th session. Suppose the i-th session w.r.t. common input
xi is accepting (note that otherwise we do not need to extract a witness and the witness is set to
be “⊥”), by applying the stand-alone knowledge-extractor (for SWIA/POK) on Ei, we can extract
(wi, ri) in expected polynomial-time.

Here, A subtle point needs to be further clarified. Denote by p the probability that Ei successfully
finishes the SWIA/POK on input (xi, c

(i)
w ), by applying the (stand-alone) knowledge-extractor on

Ei, we get that the expected running-time is: T (n) = p · q(n)
p−κ(n) , where q(n)

p−κ(n) is the running-time
of the knowledge-extractor and κ(·) is the knowledge error function (see Definition 2.7). But, when
p is negligible, as clarified in [53], T (n) is not necessarily to be polynomial in n. The technique to
deal with this issue is to apply the technique originally introduced in [36] (which is also deliberated
in [53]). More details about the technique of dealing with this subtlety are referred to [36, 53].

Now, we consider the value committed to c
(i)
w that is also efficiently extracted. There are three

possibilities:
Case-1. c

(i)
w = C(wi, ri) and y1−b = f(wi). Recall that PK = (y0, y1) and SK = sb.

Case-2. c
(i)
w = C(wi, ri) and yb = f(wi).

Case-3. c
(i)
w = C(wi, ri) and (xi, wi) ∈ RL.

Case-1 can occur only with negligible probability, due to the one-wayness of f . Specifically,
consider that y1−b is given to the simulator as input, rather than being emulated internally.

Case-2 can occur also with negligible probability, due to the statistical WI of Stage-1. Suppose
Case-2 occurs with non-negligible probability (and we know Case-1 occurs with negligible probabil-
ity), we can simply open c

(i)
w ’s by brute-force to violate the statistical WI of Stage-1.

By removing Case-1 and Case-2, we conclude now that for any i, 1 ≤ i ≤ s(n), if the i-th session
in str is accepting w.r.t. common input xi selected by P ∗, then E will output a witness wi for
xi ∈ L. To finish the proof, we need to further show that knowledge-extraction is independent of
the secret-key used by the simulator/extractor (i.e., the joint KEI property). Specifically, we need
to show that Pr[R(SK, w̄, str) = 1] is negligibly close to Pr[R(SK ′, w̄, str) = 1] for any polynomial-
time computable relation R, where w̄ is the list of extracted witnesses (when the simulator/extractor
uses SK as the witness in Stage-1 interactions in str) and SK ′ is the element (outputted by S
in accordance with ExptCKE(1n, z)) randomly and independently distributed over the space of SK.
The joint KEI property is direct from the statistical WI of Stage-1. Specifically, as the extracted
witnesses are well-defined by the statistically-binding c

(i)
w ’s, if the joint KEI property does not hold,

we directly extract by brute-force all witnesses wi’s from c
(i)
w ’s from successful sessions, and then

apply the assumed existing distinguishable relation R to violate the statistical WI of Stage-1.
In more details, for any pair (s0, s1) in key-generation stage and for any auxiliary informa-

tion z, Pr[R(SK, w̄, str) = 1] = 1
2 Pr[R(s0, w̄, str) = 1|S/E uses s0 in Stage-1 interactions in str] +

1
2 Pr[R(s1, w̄,
str) = 1|S/E uses s1 in Stage-1 interactions in str], and Pr[R(SK ′, w̄, str) = 1] = 1

2 Pr[R(s0, w̄, str) =
1|S/E uses s1 in Stage-1 interactions in str]+1

2 Pr[R(s1, w̄, str) = 1|S/E uses s0 in Stage-1 interactions].
Suppose the KEI property does not hold, it implies that there exists a bit α ∈ {0, 1} such that the dif-
ference between Pr[R(sα, w̄, str) = 1|S/E uses s0 in Stage-1 interactions in str] and Pr[R(sα, w̄, str) =
1|S/E uses s1 in Stage-1 interactions in str] is non-negligible. Now, we can incorporate the (sα, R)
into a brute-force algorithm in order to break the statistical WI of Stage-1. Further details are
omitted here. Note that the KEI property holds against any (not necessarily polynomial-time com-
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putable) relation R. That is, the protocol depicted in Figure 1 is of statistical CKE. ¤

6.2 On the essential role of Strong WI

We remark that, with respect to the above generic CZK-CKE implementation depicted in Figure 1,
the SWI at Stage-3 plays an essential role for achieving CZK and CKE properties simultaneously.
In particular, we note that regular WI is insufficient here. On the one hand, we do not know how to
prove the CZK property in general, when SWI is replaced by a regular WI; On the other hand, as
ZK is itself SWI, one may consider to use a special ZK (e.g., the FSZK which composes two regular
WI sub-protocols) to replace SWI of Stage-3 such that the special ZK can share the regular WI of
Stage-1 in the public-key model, and thus we only use regular WIPOK at Stage-3. This in particular
implies a round-optimal (i.e., four-round) implementation by according round combinations. But,
such solution loses the CKE property and even concurrent soundness in general in the public-key
model (see the concrete attack to FSZK in the public-key model [75]). That is, in the security
analysis of the SWI-based generic CZK-CKE implementation, we will rely on the argument/proof
of knowledge of SWI in the plain model that is not affected by concurrent composition in the plain
model. If we replace the SWI by a ZK protocol in the BPK model, then we may require the ZK
protocol has already been CKE-secure, which however is our goal here.

Still, in next section, we consider more efficient CZK-CKE implementations based on regular WI.
But the situation with such solutions turns out to be much subtler.

7 Efficient CZK-CKE in the BPK Model

In this section, we present the efficient constant-round CZK-CKE arguments for NP in the BPK
model, and the practical instantiations. The efficient CZK-CKE protocols rely on some minor com-
plexity leveraging, in a novel way, to frustrate potential concurrent MIM. Along the way, we discuss
and clarify the various subtleties.

Recall that for the generic CZK-CKE implementation presented in Section 6, the strong WI at
Stage-3 plays an essential role for the provable security. But, employing strong WI complicates the
protocol structure, and incurs protocol inefficiency. It would be desirable to still use regular WI
at Stage-3, for conceptual simple protocol structure as well as for protocol efficiency. To bypass
the subtleties of SWI for the CZK proof, we employ a double-commitments technique. Specifically,
we require the prover to produce a double of statistically-binding commitments, cw and csk, before
starting the second WI sub-protocol, where cw is supposed to commit to a valid NP-witness for
x ∈ L and csk is supposed to commit to the preimage of either y0 or y1. Double commitments can
bypass, by hybrid arguments, the subtleties of SWI for the CZK proof. But, the provable CKE
property with double commitments turns out to be much subtler, and we have to employ (some
minimal) complexity leveraging, in a novel way, to frustrate potential CMIM adversarial strategies.
This renders us an efficient, as well as conceptually simple, CZK-CKE solution, which can be further
high practically instantiated for some number-theoretic languages.

The generic construction is depicted in Figure 2, page 23 (as the construction is for NP via
NP-reduction, we do not explicitly describe the language-selecting machine M in the protocol
specification).

Note on efficiency. Though we employ double commitments at Stage-2, the strong WIA/POK
of Stage-3 in the generic construction is replaced by any regular WIA/POK here, from which we can
gain much better efficiency advantage. In particular, as we shall see, the efficient construction can
be high practically instantiated. It’s also easy to see that the implementation can be round-optimal
by round combinations.

Notes on the complexity leveraging. We remark that complexity leveraging via the sub-
exponential hardness assumption on verifier’s public-key is only for provable security analysis to
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Key Generation. Let f : {0, 1}n → {0, 1}n be any OWF secure against 2nc

-time adversaries for some
constant c, 0 < c < 1, where 1n is the system security parameter. Each verifier V selects random strings
s0, s1 from {0, 1}n, randomly selects a bit b ← {0, 1}, computes yb = f(sb) and sets y1−b = f(s1−b). V
registers PK = (y0, y1) in a public file F as its public-key, and keeps SK = sb as its secret-key. Define
RKEY = {((y0, y1), s)|y0 = f(s) ∨ y1 = f(s)}
Common input. An element x ∈ L ∩ {0, 1}poly(n). Denote by RL the corresponding NP-relation for L.

P private input. An NP-witness w ∈ {0, 1}poly(n) for x ∈ L. Here, we assume w.l.o.g. that the witness
for any x ∈ L ∩ {0, 1}poly(n) is of the same length poly(n).

Complexity leveraging. The system parameter is n, but the statistically-binding commitment csk is
generated on a relatively smaller security parameter nsk. Specifically, suppose the one-wayness of verifier’s
public-key holds against 2nc

-time adversaries for some constant c, 0 < c < 1. Let λ be any constant such
that λ > 1

c , then we set n = nλ
sk. Note that n and nsk are still polynomially related. That is, any quantity

that is a polynomial of n is also another polynomial of nsk. This complexity leveraging guarantees that
although a poly(n) · 2nsk -time adversary can break the hiding property of csk on a security parameter nsk,
it is still infeasible to break the one-wayness of f (because poly(n) · 2nsk ¿ 2nc

).

Stage-1. V proves to P that it knows a preimage to one of y0, y1, by running a statistical WIA/POK
protocol, in which V plays the role of knowledge prover. The witness used by V in this stage is sb.

Stage-2. If V successfully finishes Stage-1, P does the following: it computes and sends cw = C(w, rw)
and csk = C(0n, rsk), where C is a statistically-binding commitment scheme and rw and rsk are the
randomness used for commitments. csk is generated on the smaller security parameter nsk specified
above.

Stage-3. Define a new NP-language L′ = {(x, y0, y1, cw, csk)|(∃(w, rw) s.t. cw = C(w, rw) ∧ (x,w) ∈
RL) ∨ (∃(w, rsk, b) s.t. csk = C(w, rsk) ∧ yb = f(w) ∧ b ∈ {0, 1})}. Then, P proves to V that it
knows a witness for (x, y0, y1, cw, csk) ∈ L′, by running a (3-round) WI argument/proof of knowledge
(WIA/POK) protocol for NP (e.g., the n-parallel repetition of Blum’s protocol for DHC).

Figure 2: The efficient CZK-CKE argument 〈P, V 〉 for NP in the BPK model

frustrate concurrent MIM. Both CZK simulation and CKE knowledge-extraction are still polynomial-
time. We note that the use of complexity leveraging for frustrating concurrent MIM could be a novel
paradigm, different from the uses of complexity leveraging in existing works for protocols in the BPK
model (e.g., [11]). Such paradigm can also be applied to other scenarios to frustrate potential concur-
rent MIM, while still providing polynomial-time simulation and/or knowledge-extraction. Note also
that the complexity leveraging is minimal: it only applies to csk and all other components of the pro-
tocol work on the general system parameter n; also, all components except for verifier’s public-keys
can be standard polynomially secure. Furthermore, as we shall see, the complexity leveraging can
be waived as long as only concurrent soundness is concerned. We remark that though non-standard,
sub-exponential hardness assumption may still be viewed to be reasonable, which is also used in a
large body of works for fulfilling various cryptographic tasks. Detailed discussions and clarifications
of the use of complexity leveraging for frustrating concurrent MIM can be found in Section 7.2.

On the necessity of double commitments cw and csk. We stress that in the context of
the above protocol structure of efficient CZK-CKE, mandating double commitments cw and csk of
Stage-2 plays a very crucial role for simultaneously achieving CZK and CKE in the public-key model.
On the one hand, for protocol variants without either cw or csk, concrete attacks exist, showing that
they are not concurrently knowledge-extractable. Details are presented in Section 7.3; On the other
hand, double commitments enable us to bypass the need of strong WI of Stage-3 for correct CZK
simulation. Specifically, by employing double commitments the CZK simulation is not based on
the strong WI property of Stage-3, and it is shown that regular WI is sufficient for correct CZK
simulation by hybrid arguments.
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7.1 Security analysis

Notes on the underlying hardness assumptions and round-complexity. First note that
except for subexponential hardness assumption on the OWF f used in key generation, all other
components in our solution can be standard polynomially secure. We note that if the OWF f admits
perfect/statistical Σ-protocols (and thus we can use ΣOR in Stage-1), the protocol depicted in Figure
2 can be based on any sub-exponentially strong OWF admitting perfect/statistical Σ-protocols, and
be of optimal (i.e., 4-round) round-complexity by round combinations; If we use in Stage-1 the
modified Blum’s protocol for DHC with constant-round statistically/perfectly hiding commitments,
the protocol depicted in Figure 2 can be based on any collision-resistant hash function and any
sub-exponentially strong OWF with optimal round-complexity, or based on any sub-exponentially
strong claw-free collection (with efficiently recognizable index set) but with 5 rounds. In the later
case (with modified Blum’s protocol for DHC), we can use any sub-exponentially strong OWF for
key generation.

Theorem 7.1 The protocol depicted in Figure 2 is concurrently knowledge-extractable concurrent
ZK argument for NP in the BPK model.

Proof (sketch). The completeness of the protocol 〈P, V 〉 can be easily checked.
Concurrent zero-knowledge.
We first consider a mental simulator M that takes as input all secret-keys corresponding to all

public-keys registered in the public-key file, in case the corresponding secret-keys exist.
For any s(n)-concurrent malicious verifier V ∗ (defined in Section 3) and any NP-language L, M

runs V ∗ as a subroutine on inputs x̄ = {x1, · · · , xs(n)} ∈ Ls(n) (where xi might equal xj , 1 ≤ i, j ≤
s(n) and i 6= j), the public file F = {PK1, · · · , PKs(n)} and all assumed existing secret-keys. M
works just as the honest prover does in Stage-1 of any session. In Stage-2 of any session on a common
input xi and with respect to a public-key PKj (i.e., the i-th session w.r.t PKj , 1 ≤ i, j ≤ s(n)), M

computes c
(i)
w = C(0poly(n), r

(i)
w ) and c

(i)
sk = C(SKj , r

(i)
sk ), where SKj is the secret-key corresponding

to PKj for which we assume it exists and M knows. Then, M runs the WIA/POK protocol with
V ∗ in Stage-3 of the session with (SKj , r

(i)
sk ) as its witness.

To show the output of M is indistinguishable from the view of V ∗ in real concurrent interactions,
we consider another mental simulator M ′. M ′ takes both the witnesses for x̄ = {x1, · · · , xs(n)} and
all the secret-keys corresponding to public-keys registered in F (in case the corresponding secret-keys
exist). M ′ works just as M does, but with the following exception: for any i, j, 1 ≤ i, j ≤ s(n), in
Stage-2 of the i-th session on common input xi w.r.t PKj , M ′ computes c

(i)
w = C(wi, r

(i)
w ), where wi

is the witness for the common input xi. Note that the witness used by M ′ in Stage-3 is still SKj , just
as M does. That the output of M ′ is indistinguishable from that of M is from the computational
hiding property of the statistically-binding commitment scheme C used in Stage-2. Otherwise, by a
simple hybrid argument, we can violate the hiding property of the underlying commitment scheme
C.

We now consider another mental simulator M ′′ that mimics M ′ with the following exception: for
any i, j, 1 ≤ i, j ≤ s(n), in Stage-3 of the i-th session on common input xi w.r.t PKj , the witness
used by M ′′ is wi, rather than SKj as used by M ′. By hybrid arguments, the output of M ′′ is
indistinguishable from that of M ′ by the WI property of Stage-3. Also, by hybrid arguments, the
output of M ′′ is also indistinguishable from the view of V ∗ in real concurrent interactions by the
computational hiding property of the underlying commitment scheme C used in Stage-2.

This establishes that the output of M is indistinguishable from the view of V ∗ in real concurrent
interactions. To build a PPT simulator S from scratch, where S does not know any secret-keys
corresponding to public-keys in the public file, we again resort to the technique developed in [11].
Specifically, S works in s(n)+1 phases. In each phase, S either successfully finishes the simulation, or
“covers” a new public-key for which it has not known the corresponding secret-key up to now in case
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V ∗ successfully finishes the Stage-1 interactions w.r.t. that public-key. Key covering is guaranteed
by the POK property of Stage-1 interactions. For more details, see [11].

(Statistical) concurrent knowledge-extraction.
According to the CKE formulation, for any s-concurrent malicious prover P ∗ (defined in Section

2) we need to build two algorithms (S, E). The simulator S, on inputs (1n, z), works as follows: It
first perfectly emulates the key-generation stage of the honest verifier, getting PK = (y0, y1) and
SK = sb and SK ′ = s1−b for a random bit b. Then, S runs P ∗ on (1n, PK, z) to get (RL, τ),
where RL indicates an NP-language for which the proof-stages will work and τ is some auxiliary
information to be used by P ∗ in proof-stages. In the proof stages, S perfectly emulates the honest
verifier with the secret-key SK. Finally, whenever P ∗ stops, S outputs the simulated transcript str,
together with the state information sta set to be (PK, SK, SK ′, z) and the random coins used by S.
Note that the simulated transcript str is identical to the view of P ∗ in real execution.

The knowledge-extraction process is similar to that of [67]. Note that we need to extract witnesses
to all accepting sessions in str. Given (str, sta), the knowledge-extractor E iteratively extracts
witness for each accepting session. Specifically, for any i, 1 ≤ i ≤ s(n), we denote by Ei the
experiment for the knowledge-extractor on the i-th session. Ei emulates S with the fixed random
coins included in sta, with the exception that the random challenge (i.e., the second-round message) of
the WIA/POK protocol of Stage-3 in the i-th session is no longer emulated internally, but received
externally. The experiment Ei amounts to the execution of the WIA/POK protocol of Stage-3
between a stand-alone (deterministic) prover and an honest verifier on common input xi. Suppose
the i-th session w.r.t. common input xi is accepting (note that otherwise we do not need to extract a
witness and the witness is set to be “⊥”), by applying the stand-alone knowledge-extractor (for the
underlying WIA/POK) on Ei, according to the POK property of the underlying WIA/POK protocol
(say, the n-parallel repetition of Blum’s protocol for DHC) except for the probability 2−n we can
extract (wi, ri) in expected polynomial-time, satisfying one of the following:

Case-1. c
(i)
sk = C(wi, ri) and y1−b = f(wi), where c

(i)
sk and c

(i)
w are the double statistically-binding

commitments sent at the Stage-2 of the i-th session, and SK = sb.
Case-2. c

(i)
sk = C(wi, ri) and yb = f(wi).

Case-3. c
(i)
w = C(wi, ri) and (xi, wi) ∈ RL.

Case-1 can occur only with negligible probability, due to the one-wayness of f . Specifically,
consider that y1−b is given to the simulator as input, rather than being emulated internally.

The subtle point here is: by applying the stand-alone knowledge-extractor on Ei, the Stage-1
interactions given by the simulator/extractor would also be rewound, which could reveal the secret-
key SK. In particular, recall the adversarial strategies presented in Section 4. Here, it is the critical
combination of complexity leveraging on the statistically-binding commitment csk and the statistical
WI of Stage-1 that provably rules out such concurrent interleaving and malleating attacks.

Proposition 7.1 Case-2 occurs with negligible probability.

Proof (of Proposition 7.1). Suppose Case-2 occurs with non-negligible probability, this means
that for some (s0, s1, b), where s0, s1 ∈ {0, 1}n and b ∈ {0, 1}, such that when the simulator S uses
sb as the witness for simulating Stage-1 interactions, with non-negligible probability p(n), the c

(i)
sk in

the simulated transcript str outputted by S is a commitment of sb. Otherwise, Case-2 will trivially
occur with negligible probability. But, due to the statistical WI of Stage-1, with the same probability
p(n) the c

(i)
sk in the simulated transcript str outputted by S, when it uses s1−b as the witness for

simulating Stage-1 interactions, is still a commitment of sb. Note that the value committed in c
(i)
sk

can be brute-force extracted in time poly(n) · 2nsk ¿ 2nc
. Now, suppose yb = f(sb) is given to the

simulator as input externally, and y1−b and Stage-1 interactions are simulated by the simulator (with
s1−b as the witness), this implies that there exists an algorithm that can break the one-wayness of
yb in poly(n) · 2nsk ¿ 2nc

-time, which violates the sub-exponential hardness of yb.
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On the subtleties without the complexity leveraging. We remark that the uses of the
complexity leveraging on csk, along with statistical WI of Stage-1, not only provably rules out Case-2,
but also greatly simplifies the proof of Proposition 7.1. In particular, we do not know how to provably
prove Proposition 7.1 without the complexity leveraging. Detailed clarifications of the subtleties are
presented in Section 7.2, which in particular implies that the efficient CZK-CKE protocol depicted
in Figure 2 is concurrently sound under standard polynomial-time hardness assumptions. ¤

By removing Case-1 and Case-2, we conclude now that for any i, 1 ≤ i ≤ s(n), if the i-th session
in str is accepting w.r.t. common input xi selected by P ∗, then E will output a witness wi for
xi ∈ L. To finish the proof, we need to further show that knowledge-extraction is independent of
the secret-key used by the simulator/extractor (i.e., the joint KEI property). Specifically, we need
to show that Pr[R(SK, w̄, str) = 1] is negligibly close to Pr[R(SK ′, w̄, str) = 1] for any polynomial-
time computable relation R, where w̄ is the list of extracted witnesses (when the simulator/extractor
uses SK as the witness in Stage-1 interactions in str) and SK ′ is the element (outputted by S
in accordance with ExptCKE(1n, z)) randomly and independently distributed over the space of SK.
The joint KEI property is direct from the statistical WI of Stage-1. Specifically, as the extracted
witnesses are well-defined by the statistically-binding c

(i)
w ’s, if the joint KEI property does not hold,

we directly extract by brute-force all witnesses wi’s from c
(i)
w ’s of successful sessions, and then apply

the assumed existing distinguishable relation R to violate the statistical WI of Stage-1.
In more details, for any pair (s0, s1) in key-generation stage and for any auxiliary informa-

tion z, Pr[R(SK, w̄, str) = 1] = 1
2 Pr[R(s0, w̄, str) = 1|S/E uses s0 in Stage-1 interactions in str] +

1
2 Pr[R(s1, w̄,
str) = 1|S/E uses s1 in Stage-1 interactions in str], and Pr[R(SK ′, w̄, str) = 1] = 1

2 Pr[R(s0, w̄, str) =
1|S/E uses s1 in Stage-1 interactions in str]+1

2 Pr[R(s1, w̄, str) = 1|S/E uses s0 in Stage-1 interactions].
Suppose the KEI property does not hold, it implies that there exists a bit α ∈ {0, 1} such that the dif-
ference between Pr[R(sα, w̄, str) = 1|S/E uses s0 in Stage-1 interactions in str] and Pr[R(sα, w̄, str) =
1|S/E uses s1 in Stage-1 interactions in str] is non-negligible. Now, we can incorporate the (sα, R)
into a brute-force algorithm in order to break the statistical WI of Stage-1. Further details are
omitted here. Note that the KEI property holds against any (not necessarily polynomial-time com-
putable) relation R, that is, the protocol depicted in Figure 2 is of statistical CKE. ¤

7.2 On the subtleties without the complexity leveraging

In this section, we clarify the subtleties and justify the necessity of the (minimal) complexity leverag-
ing on csk with the efficient CZK-CKE. We first give high-level discussions on the use of complexity
leveraging against (concurrent) men-in-the-middle; Then, we make in-depth clarifications by attempt-
ing to provide a proof of Proposition 7.1 without the complexity leveraging on csk, which identifies
the subtleties or difficulties that seemingly cannot be overcome without exploiting the complexity
leveraging on csk (and also the statistical WI of Stage-1).

7.2.1 On the use of complexity leveraging against man-in-the-middle

Recall that, for the generic CZK-CKE (depicted in Figure 1), to successfully finish the i-th session
with commit-then-SWI mechanism, for any i, 1 ≤ i ≤ s(n), an s-concurrent adversary P ∗ has to
use the value committed to (determined by) the unique Stage-2 commitment c

(i)
w as the witness in

Stage-3 SWI. But, for the efficient CZK-CKE, P ∗ however has double choices: it can use either the
value committed to c

(i)
sk or the value committed to c

(i)
w , as the witness in Stage-3 regular WI. We

consider two potential adversarial strategies:

Adversarial-Strategy-1. P ∗ commits a valid witness w (for xi ∈ L) to c
(i)
w , and commits a secret-

key, say s0, to c
(i)
sk in Stage-2 of the i-th session (possibly by malleating verifier’s public-keys into

xi and c
(i)
sk ), where xi is the common input adaptively selected by P ∗ for the i-th session; Then,
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possibly by malleating the Stage-1 concurrent interactions, P ∗ always uses the valid witness w
in Stage-3 of the i-th session in case the honest verifier V uses s1 as the witness in Stage-1
interactions (note that w could be maliciously related to s1 as well, as the common input xi is
selected by P ∗), but uses s0 as the witness in Stage-3 with non-negligible probability in case V
uses s0 as the witness in Stage-1 interactions.

Adversarial-Strategy-2. With non-negligible probability p, P ∗ commits s0 (resp., s1) to c
(i)
sk in

Stage-2 of the i-th session (again, possibly by malleating verifier’s public-keys into c
(i)
sk ); Then,

possibly by malleating the Stage-1 concurrent interactions, P ∗ successfully finishes Stage-3 of
the session with s0 (resp., s1) as the witness, in case V uses s0 (resp., s1) as the witness in
Stage-1 interactions; However, with the same probability p, P ∗ commits both a valid witness
w to c

(i)
w and s0 (resp. s1) to c

(i)
sk in Stage-2 of the session, and successfully finishes Stage-3

with w as the witness in case V uses s1 (resp., s0) as the witness in Stage-1 interactions.

Note that the concurrent malicious prover P ∗ actually amounts to a concurrent MIM who man-
ages, by concurrent interleaving interactions, to malleate verifier’s public-keys and Stage-1 inter-
actions (in which it plays the role of the verifier) into successful Stage-2 and Stage-3 interactions
(in which P ∗ plays the role of the prover), but without knowing any witness for the Stage-2 and
Stage-3 interactions. Note that both the above two cases indicate the failure of knowledge-extraction
correctness: that is, with non-negligible probability, the value extracted (when using SK = sb for a
random bit b) is the preimage of y0 or y1 committed to c

(i)
sk . But, no contradiction can be reached

without resorting to the complexity leveraging. In particular, they do not violate the statistical WI
of Stage-1: in the first case, the value committed to c

(i)
sk is fixed; and in the second case, with prob-

ability 2p, the value committed to c
(i)
sk is sb for both b ∈ {0, 1}, no matter which secret-key (whether

s0 or s1) is used in Stage-1 interactions. As we do not employ any non-malleable building tools and
we are actually facing a concurrent MIM P ∗, the above MIM adversarial strategies could indeed be
potential. At least, we do not know how to provably rule out such seemingly impossible adversarial
activities, without resorting to the complexity leveraging.

We note that the use of complexity leveraging for frustrating concurrent MIM could be a novel
paradigm, different from the uses of complexity leveraging in existing works (e.g., [11, 74]). Such
paradigm may be possibly of independent interest, and can be applied in other scenarios to frus-
trate potential concurrent MIM, while still providing polynomial-time simulation and/or knowledge-
extraction as well as remaining the protocol efficiency and conceptual simple protocol structure. Note
also that the complexity leveraging is minimal: it only applies to csk, and all components except for
verifier’s public-keys can be standard polynomially secure.

7.2.2 Analysis attempt without complexity leveraging

In this section, by attempting to provide a proof of Proposition 7.1 without the complexity leveraging
on csk, we clarify the subtleties or difficulties that seemingly cannot be overcome without exploiting
the complexity leveraging on csk (and also the statistical WI of Stage-1). The analysis in particular
implies that the efficient CZK-CKE protocol depicted in Figure 2 is concurrently sound under stan-
dard polynomial-time hardness assumptions and that partial witness independent WI (employed in
the works of [24, 20, 21]) seems to be insufficient even for correct knowledge-extraction for individual
statements. In the following security analysis, we assume no complexity leveraging on csk, i.e., veri-
fier’s public-keys are standard polynomially secure and csk is formed on the same system parameter
n.

We consider two experiments: E0 and E1. For each µ ∈ {0, 1}, Eµ mimics the experiment Ei

(specified in the security analysis in Section 7.1), with the following exceptions: Eµ uses sµ as its
witness in Stage-1 interactions (note that (s0, s1) is included in sta); and the coins used by Eµ

for internal emulation of the proof stages are randomly and independently chosen (i.e., they are
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independent of the coins included in sta); The coins for the first-stages of V and P ∗ are still those
fixed in sta, with respect to which we suppose Case-2 will occur with non-negligible probability.
Suppose Case-2 occurs with non-negligible probability, then there must exist a bit µ such that
applying the (stand-alone) knowledge-extractor on Eµ will output the preimage of yµ with non-
negligible probability. Otherwise, Case-2 will trivially occur with negligible probability. Without
loss of generality, we assume µ = 0. That is, the knowledge-extractor on E0 outputs the preimage
of y0 with non-negligible probability (and outputs the preimage of y1 with negligible probability
due to the one-wayness of f). Now we consider the output of the knowledge-extractor on E1: first,
it outputs the preimage of y0 also with negligible probability; thus, with non-negligible probability
(as we assume Case-2 occurs with non-negligible probability and Stage-1 interactions are WI), the
knowledge-extractor on E1 outputs either the preimage of y1 or the witness for some x ∈ L where x
is the common input of the i-th session in E1. Note that x is not necessarily the same xi in Ei as the
coins used by Eµ are not the same as those of Ei.

Note. Here, we cannot directly conclude that the knowledge-extractor on E1 will certainly
output the preimage of y1 with non-negligible probability, as we cannot rely on the assumption that
x 6∈ L. This point complicates the security analysis, and is one underlying reason for requiring the
complexity leveraging.

Now, we want to contradict the statistical WI property of Stage-1. We define a series of hybrid
mental experiments H1, · · · ,Hs(n) as follows: for any k, 1 ≤ k ≤ s(n), Hk mimics the behavior of E0

but with the following exceptions: In Stage-1 of the first k sessions Hk uses s1 as its witness; and in
Stage-1 of the rest s(n)−k sessions it uses s0 as the witness. Note that H0 equals the experiment E0,
and Hs(n) equals the experiment E1. As we assume that the (stand-alone) knowledge-extractor on
H0(= E0) will output the preimage of y0 with non-negligible probability (but output the preimage
of y1 with negligible probability), and that the knowledge-extractor on Hs(n)(= E1) will output
either a preimage of y1 or a witness for some x ∈ L with non-negligible probability (but output the
preimage of y0 only with negligible probability). By hybrid arguments, we conclude that there must
exist a k, 1 ≤ k ≤ s(n), such that the knowledge-extractor on Hk−1 outputs the preimage of y0

with non-negligible probability and the knowledge-extractor on Hk outputs the preimage of y0 with
negligible probability (and outputs the preimage of y1 or a witness for some x ∈ L with non-negligible
probability). Recall that, in all the experiments, the (stand-alone) knowledge-extractor is to extract
the knowledge for the statement whose validity was successfully conveyed in the i-th session. Then
we attempt to break the statistical WI property or Stage-1, by considering another experiment B.

B mimics Hk with the following exceptions: The Stage-1 interactions of the k-th session are no
longer emulated internally, but interacting externally with an external knowledge-prover P̂k who uses
sδ as the witness for a random bit δ. Note that, if P̂k uses s1 as its witness then the experiment B is
identical to Hk, and if P̂k uses s0 as its witness then B is identical to Hk−1. Now, we consider two
cases:

Case-2.1. The external interactions with P̂k have finished before the sending of the random challenge
(i.e., the second-round message) of Stage-3 of the i-th session.

Case-2.2. The external interactions with P̂k have not finished on the sending of the random challenge
of Stage-3 of the i-th session. Note that the concurrent interleaving and malleating attack
described in Section 4.2 is just a demonstration of this case.

If Case-2.1 occurs, we break the WI property of Stage-1 as follows: Note that in this case,
applying the stand-alone knowledge-extractor on (the i-th session in) B does not incur rewinding
the interactions with P̂k. We can combine the stand-alone knowledge-extractor and the internal
emulation of B into a stand-alone (expected polynomial-time) knowledge-verifier interacting with
P̂k. If the knowledge-extractor outputs the preimage of y0, then we also output 0; in any other case,
we output a random bit. According to the above hybrid arguments, if P̂k uses s0 as its witness, then
we will output 0 with probability that is non-negligibly bigger than 1/2; on the other hand, if P̂k
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uses s1 as its witness, then we will output 0 with probability negligibly close to 1/2. Furthermore,
using Markov’s inequality, standard technique (as is done in [65, 73]) shows that: if the WI property
holds w.r.t. any strict polynomial-time algorithm it also holds with any expected polynomial-time
algorithm. This contradicts the WI property of the underlying protocol. Note that computational
WI of Stage-1 is sufficient for ruling out Case-2.1.

If Case-2.2 occurs, we further distinguish two cases according to the output of the knowledge-
extractor on Hk. Recall that we have assumed that the output of the knowledge-extractor on Hk

is the preimage of y0 only with negligible probability, and the output of the stand-alone knowledge-
extractor on Hk−1 is the preimage of y0 with non-negligible probability.

Case-2.2.1. With negligible probability the output of the (stand-alone) knowledge-extractor on Hk

is s1 (i.e., the output is always a witness for some x ∈ L of the i-th session in Hk). This case
can be partially illustrated by the Adversarial-Strategy-1 demonstrated in Section 7.2.1.

Note. It is easy to see that, suppose the common input x of the i-th session in Hk is false, i.e.,
x 6∈ L, then Case-2.2.1 can appear at most with negligible probability. We note that partial
witness independent WI (employed in the works of [24, 20, 21]) seems to be insufficient even
for correct knowledge-extraction for individual statements (recall that our CKE formulation is
w.r.t. joint knowledge-extraction for all statements whose validity was successfully conveyed
in the concurrent sessions). This point was not addressed in existing works. In particular,
with respect to the Adversarial-Strategy-1, in this case the knowledge-extractor will extract a
secret-key s0 with non-negligible probability when it simulates Stage-1 interactions with s0 as
the witness, which indicates the failure of correct knowledge-extraction even for any individual
statement.

Case-2.2.2. With non-negligible probability the output of the stand-alone knowledge-extractor on
Hk is the preimage of y1. This case can be partially illustrated by Adversarial-Strategy-2
demonstrated in Section 7.2.1.

Note. Again, suppose the common input x of the i-th session in Hk is false, i.e., x 6∈ L, then
Case-2.2.2 can appear at most with negligible probability. Otherwise, the value committed in
c
(i)
sk indicates the secret-key used in Stage-1 interactions. Recall that we have assumed that the

output of the knowledge-extractor on Hk is the preimage of y0 only with negligible probability,
and the output of the stand-alone knowledge-extractor on Hk−1 is the preimage of y0 with
non-negligible probability. Specifically, suppose the witness used for Stage-1 interactions is sb,
then the successful i-th session with c

(i)
sk committing to s1−b occurs with negligible probability

(conditioned on x 6∈ L). This violates the statistical WI of Stage-1.

Remark. Although it intuitively seems that Case-2.2 (in particular, the exemplifying adversarial
strategies) could not occur with non-negligible probability, it (and particularly the exemplifying
adversarial strategies presented in Section 7.2.1) could indeed be potential, as we do not employ any
non-malleable building tools and we are actually facing a concurrent MIM. We do not know how to
provably rule out such possibilities, without resorting to the complexity leveraging on csk.

7.3 On the necessity of double commitments

To show the necessity of the double commitments cw and csk used in Stage-2 of the efficient CZK-
CKE protocol depicted in Figure 2, we demonstrate concrete attacks against variants of the protocol
without either cw or csk, where WIA/POK protocols are implemented by ΣOR-protocols.

7.3.1 The attack against variant protocol without cw

The variant protocol without cw, which amounts to the CZK protocols of [76, 20], is re-depicted in
Figure 3 (page 30).
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ΣOR-based protocol variant without cw 〈P, V 〉
Key Generation. Let f : {0, 1}n → {0, 1}n be any OWF where n is the security parameter. Each verifier
V selects random strings s0, s1 from {0, 1}n, randomly selects a bit b ← {0, 1}, computes yb = f(sb) and
sets y1−b = f(s1−b). V registers PK = (y0, y1) in a public file F as its public-key, and keeps SK = sb as
its secret-key.
Common input. An element x ∈ L∩{0, 1}poly(n). Denote by RL the corresponding NP-relation

for L.

P private input. An NP-witness w ∈ {0, 1}poly(n) for x ∈ L.

Stage-1. V proves to P that it knows the preimage of either y0 or y1, by running a ΣOR-protocol
on the input (y0, y1) in which V plays the role of the knowledge prover. The witness used
by V in this stage is sb. Denote by aV , eV , zV , the first-round, the second-round and the
third-round message of the ΣOR-protocol, respectively.

Stage-2. If V successfully finishes Stage-1, P does the following: it computes csk = C(0n, rsk),
where C is a perfectly-binding commitment scheme and rsk is the randomness used for
commitments.

Stage-3. Define a new NP-language L′ = {(x, y0, y1, csk)|(∃w s.t. (x,w) ∈ RL) ∨
(∃(w, rsk, b) s.t. csk = C(w, rsk) ∧ yb = f(w) ∧ b ∈ {0, 1})}. Then, P proves to V that
it knows a witness for (x, y0, y1, csk) ∈ L′, by running a ΣOR-protocol (i.e., the OR-proofs of
Σ-protocols). The witness used by P is w such that (x,w) ∈ RL. We denote by aP , eP , zP ,
the first-round, the second-round, and the third-round message of the ΣOR-protocol of this
stage, respectively.

Figure 3: ΣOR-based protocol variant without cw

On the implementations of ΣOR. For the ΣOR-based protocol variant depicted in Figure 3,
to get statistical WI of Stage-1 there are two ways: In particular, we can require the underlying
OWF f used in the key-generation stage admits perfect/statistical Σ-protocols, and thus the ΣOR

of Stage-1 is perfect/statistical WI; In general, the variant of (the n-parallel repetition of) Blum’s
protocol for DHC, where the statistically-binding commitments used in the first round are replaced
by the one-round statistically-hiding commitments based on collision-resistant hash functions, is a
statistical Σ-protocol (as well as statistical WI argument) for NP, and thus can be applied to any
NP language under the assumption of collision-resistant hash functions.

Let L̂ be any NP-language admitting a Σ-protocol that is denoted by ΣL̂ (in particular, L̂ can
be an empty set). For an honest verifier V with its public-key PK = (y0, y1), we define a new
language L = {(x̂, y0, y1)|∃w s.t. (x̂, w) ∈ RL̂ ∨ ∃(w, b) s.t. yb = f(w) ∧ b ∈ {0, 1}}. Note that for
any string x̂ (whether x̂ ∈ L̂ or not), the statement “(x̂, y0, y1) ∈ L” is always true as PK = (y0, y1)
is honestly generated. Also note that L is a language that admits Σ-protocols (as ΣOR-protocol is
itself a Σ-protocol). Now, we describe the concurrent interleaving and malleating attack, in which
P ∗ successfully convinces the honest verifier of the statement “(x̂, y0, y1) ∈ L” for any arbitrary
poly(n)-bit string x̂ (even when x̂ 6∈ L̂) by concurrently interacting with V in two sessions as follows.

1. P ∗ initiates the first session with V . After receiving the first-round message, denoted by a′V , of
the ΣOR-protocol of Stage-1 of the first session on common input (y0, y1) (i.e., V ’s public-key),
P ∗ suspends the first session.

2. P ∗ initiates a second session with V , and works just as the honest prover does in Stage-1 and
Stage-2. We denote by csk the Stage-2 message of the second session (i.e., csk commits to
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0n). When P ∗ moves into Stage-3 of the second session and needs to send V the first-round
message, denoted by aP , of the ΣOR-protocol of Stage-3 of the second session on common input
(x̂, y0, y1, csk), P ∗ does the following:

• P ∗ first runs the SHVZK simulator of ΣL̂ (i.e., the Σ-protocol for L̂) on x̂ to get a
simulated conversation, denoted by (ax̂, ex̂, zx̂), for the (possibly false) statement “x̂ ∈
L̂”. Then, P ∗ runs the SHVZK simulator of the underlying Σ-protocol for NP on
(y0, y1, csk) to get a simulated conversation, denoted by (ask, esk, zsk), for the (false) state-
ment “∃(w, rsk, b) s.t. csk = C(w, rsk) ∧ yb = f(w) ∧ b ∈ {0, 1}”.

• P ∗ sets aP = (ax̂, a′V , ask) and sends aP to V as the first-round message of the ΣOR-
protocol of Stage-3 of the second session, where a′V is the one received by P ∗ in the first
session.

• After receiving the second-round message of Stage-3 of the second session, denoted by eP

(i.e., the random challenge from V ), P ∗ sets e′V = eP ⊕ ex̂ ⊕ esk and then suspends the
second session.

3. P continues the first session, and sends e′V = eP ⊕ ex̂⊕ esk as the second-round message of the
ΣOR-protocol of Stage-1 of the first session.

4. After receiving the third-round message of the ΣOR-protocol of Stage-1 of the first session,
denoted by z′V , P ∗ suspends the first session again.

5. P ∗ continues the execution of the second session again, and sends zP = ((ex̂, zx̂), (e′V , z′V ), (esk, zsk))
to V as the last-round message of the second session.

Note that (ax̂, ex̂, zx̂) is an accepting conversation for the (possibly false) statement “x̂ ∈ L̂”,
(a′V , e′V , z′V ) is an accepting conversation for showing the knowledge of the preimage of either y0 or
y1, (ask, esk, zsk) is an accepting conversation for the statement “∃(w, rsk, b) s.t. csk = C(w, rsk)∧yb =
f(w)∧b ∈ {0, 1}”, and furthermore ex̂⊕e′V ⊕esk = eP . According to the description of ΣOR (presented
in Section 2), this means that, from the viewpoint of V , (aP , eP , zP ) is an accepting conversation
of Stage-3 of the second-session on common input (x̂, y0, y1). That is, P ∗ successfully convinced V
of the statement “(x̂, y0, y1) ∈ L” (even for x̂ 6∈ L̂) in the second session but without knowing any
corresponding NP-witness.

7.3.2 The attack against variant protocol without csk

The variant protocol without csk is re-depicted in Figure 4 (page 32).

Now, we describe the concurrent interleaving and malleating attack, in which P ∗ successfully
convinces the honest verifier of the statement “x ∈ L”, for any n-bit string x and for any NP-
language L, without knowing any NP-witness by concurrently interacting with V in two sessions as
follows.

1. P ∗ initiates the first session with V . After receiving the first-round message, denoted by a′V , of
the ΣOR-protocol of Stage-1 of the first session on common input (y0, y1) (i.e., V ’s public-key),
P ∗ suspends the first session.

2. P ∗ initiates a second session with V , and works just as the honest prover does in Stage-1.
In Stage-2 of the second session, P ∗ sends cw = C(0n) (rather than C(w) as honest prover
does). When P ∗ moves into Stage-3 of the second session and needs to send V the first-round
message, denoted by aP , of the ΣOR-protocol of Stage-3 of the second session on common input
(x, y0, y1, cw), P ∗ does the following:
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ΣOR-based protocol variant without csk 〈P, V 〉
Key Generation. Let f : {0, 1}n → {0, 1}n be any OWF, where n is the security parameter. Each verifier
V selects random strings s0, s1 from {0, 1}n, randomly selects a bit b ← {0, 1}, computes yb = f(sb) and
sets y1−b = f(s1−b). V registers PK = (y0, y1) in a public file F as its public-key, and keeps SK = sb as
its secret-key.
Common input. An element x ∈ L∩{0, 1}n. Denote by RL the corresponding NP-relation for

L.

P private input. An NP-witness w ∈ {0, 1}n for x ∈ L. Here, we assume w.l.o.g. that the
witness for any x ∈ L ∩ {0, 1}n is of the same length n.

Stage-1. V proves to P that it knows the preimage of either y0 or y1, by running a ΣOR-protocol
on the input (y0, y1) in which V plays the role of the knowledge prover. The witness used
by V in this stage is sb. Denote by aV , eV , zV , the first-round, the second-round and the
third-round message of the ΣOR-protocol, respectively.

Stage-2. If V successfully finishes Stage-1, P does the following: it computes cw = C(w, rw),
where C is a perfectly-binding commitment scheme and rw is the randomness used for
commitments.

Stage-3. Define a new NP-language L′ = {(x, y0, y1, cw)|(∃(w, rw) s.t. cw = C(w, rw) ∧ (x,w) ∈
RL) ∨ (∃(w, b) s.t. yb = f(w) ∧ b ∈ {0, 1})}. Then, P proves to V that it knows a witness
for (x, y0, y1, cw) ∈ L′, by running a ΣOR-protocol. The witness used by P is (w, rw). We
denote by aP , eP , zP , the first-round, the second-round, and the third-round message of the
ΣOR-protocol of this stage, respectively.

Figure 4: ΣOR-based protocol variant without csk

• P ∗ first runs the SHVZK simulator of the underlying Σ-protocol for NP on common input
(x, cw) to get a simulated conversation, denoted by (ax, ex, zx), for the (false) statement
“∃(w, rw) s.t. cw = C(w, rw) ∧ (x,w) ∈ RL)”.

• P ∗ sets aP = (ax, a′V ) and sends aP to V as the first-round message of the ΣOR-protocol
of Stage-3 of the second session, where a′V is the one received by P ∗ in the first session.

• After receiving the second-round message of Stage-3 of the second session, denoted by eP

(i.e., the random challenge from V ), P ∗ sets e′V = eP ⊕ ex and then suspends the second
session.

3. P continues the first session, and sends e′V = eP ⊕ ex as the second-round message of the
ΣOR-protocol of Stage-1 of the first session.

4. After receiving the third-round message of the ΣOR-protocol of Stage-1 of the first session,
denoted by z′V , P ∗ suspends the first session again.

5. P ∗ continues the execution of the second session again, and sends zP = ((ex, zx), (e′V , z′V )) to
V as the last-round message of the second session.

Note that (ax, ex, zx) is an accepting conversation for the (false) statement “∃(w, rw) s.t. cw =
C(w, rw) ∧ (x,w) ∈ RL)”, (a′V , e′V , z′V ) is an accepting conversation for showing the knowledge of
the preimage of either y0 or y1, and furthermore ex ⊕ e′V = eP . According to the description of
ΣOR (presented in Section 2), this means that, from the viewpoint of V , (aP , eP , zP ) is an accepting
conversation of Stage-3 of the second-session on common input x. That is, P ∗ successfully convinced
V of the statement “x ∈ L” but without knowing any corresponding NP-witness.
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7.4 Practical instantiations

In the (round-optimal) practical instantiations of the efficient CZK-CKE protocol, the verifier uses
the sub-exponentially secure DLP OWF in key-generation stage: fp,q,g(x) = gx mod p, where p and
q are primes, p = 2q + 1 and |p| = n, and g is an element of Z∗p of order q. We also assume the
(standard polynomial-time) DDH assumption holds on the cyclic group indexed by (p, q, g) (i.e., the
sub-group of order q of Z∗p). The admissible common input is x ∈ Z∗p of order q and the corresponding
witness is w ∈ Zq such that gw = x mod p. We remark that the parameters (p, g, g), specifying the
fp,q,g and the admissible common inputs, are set outside the system.

The statistical WIPOK of Stage-1 is replaced by the ΣOR of Schnorr’s basic protocol for DLP
[68]. The perfectly-binding commitment scheme of Stage-2 is replaced by the DDH-based ElGamal
(non-interactive) commitment scheme [29] (recalled in Section 2). To commit to a value v ∈ Zq, the
committer randomly selects u, r ∈ Zq, computes h = gu mod p and sends (h, ḡ = gr, h̄ = gvhr) as
the commitment.

For the practical Σ-protocol of Stage-3, by the ΣOR-technique we need the following two practical
Σ-protocols:

• A practical Σ-protocol that, given x, cw = (h, ḡ, h̄), proves the knowledge of (w, r) such that
x = gw mod p and ḡ = gr mod p and h̄ = gwhr mod p.

• A practical Σ-protocol that, given y0, y1, csk = (h, ḡsk, h̄sk), proves the knowledge (w, r) such
that either y0 = gw mod p and ḡsk = gr mod p and h̄sk = gwhr mod p or y1 = gw mod p
and ḡsk = gr mod p and h̄sk = gwhr mod p.

Again, by the ΣOR-technique, if we have a practical Σ-protocol of the first type, then we can also
have a practical Σ-protocol of the second type. Thus, to get the practical CZK-CKE implementation,
all we need now is to develop a practical Σ-protocol of the first type. Based on the Σ-protocol for
DLP [68], such Σ-protocol is described below.

Common input: (p, q, g, x, h, ḡ, h̄), where x, h, ḡ, h̄ are all elements of order q in Z∗p .

Prover’s private input: w, r ∈ Zq such that x = gw mod p and ḡ = gr mod p and h̄ = gwhr

mod p.

Round-1: The prover P randomly selects t ∈ Zq, computes a0 = gt mod p and a1 = ht mod p,
sends (a0, a1) to the verifier V .

Round-2: V responds back a random challenge e taken randomly from Zq.

Round-3: P computes z0 = t + we mod q and z1 = t + re mod q, and sends back (z0, z1) to V .

Verifier’s decision: V accepts if and only if: gz0 = a0x
e mod p and gz1 = a0ḡ

e mod p and
hz1 = a1(h̄/x)e mod p.

We give a brief analysis of the above Σ-protocol:
Special soundness: From two accepting conversations w.r.t. the same Round-1 message,

{(a0, a1), e, (z0, z1)} and {(a0, a1), e′, (z′0, z
′
1)}, we can compute w = z0−z′0

e−e′ , and r = z1−z′1
e−e′ .

Special HVZK: The SHVZK simulator S works as follows: on a given random challenge e ∈ Zq,
it randomly selects z0, z1 from Zq, then it sets a0 = gz0x−e and a1 = gz1 ḡ−e = hz1(h̄/x)−e.

We remark that, although the above practical implementation is for specific number-theoretic
language, it is indeed very useful in practical scenarios.
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