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Abstract

Knowledge extraction is a fundamental notion, modeling knowledge possession in a computational
complexity sense. The notion provides a tool for cryptographic protocol design and analysis, enabling
one to argue about the internal state of protocol players. We define and investigate the relative power
of the notion of “concurrent knowledge-extraction” (CKE) in the concurrent zero-knowledge (CZK)
bare public-key (BPK) model, namely we investigate how to formally treat knowledge possessions for
parties interacting over the Internet (say). We further investigate the implementation of a generic
scheme for this new notion of CKE concurrent zero-knowledge (CZK-CKE) arguments for NP in
this model.

Concurrent knowledge-extraction in the public-key model essentially means that for any NP
statement whose validation is successfully conveyed by a possibly malicious prover to an honest
verifier (with registered public-key) employing concurrent interactions, the prover “must know” the
corresponding witness. It is shown that under any one-way function (OWF), concurrent knowledge-
extraction is strictly stronger than concurrent soundness in the BPK model (as is demonstrated by
concrete attacks). Then, in light of our concurrent interleaving and malleating attacks, we formalize
CKE in the public-key model.

We then present, both general scheme (round-optimal or minimal hardness assumption based for
NP) and practical scheme (based on the DDH assumption for specific number-theoretic language).
Both schemes are constant-round CZK-CKE arguments in the BPK model. We note that both the
ZK simulation and the knowledge extraction in our model and proofs are efficient (i.e., expected
polynomial-time).

Then, we discuss an extended notion of CKE, called joint CKE (JCKE), which essentially requires
that the malicious prover “knows” the corresponding joint witnesses to all statements successfully
convinced in its concurrent interactions. We show that our practical CZK-CKE scheme also satisfies
this seemingly stronger notion, and further show how to slightly modify the general scheme to satisfy
this extended notion as well.
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1 Introduction

Zero-knowledge (ZK) protocols allow a prover to validate theorems to a verifier without giving away any
other knowledge other than the theorems being true (i.e., existing witnesses). This notion was introduced
by Goldwasser, Micali and Rackoff [36] and its generality was demonstrated by Goldreich, Micali and
Wigderson [35]. Since its introduction ZK has found numerous and extremely useful applications, and
by now has been playing the central role in modern cryptography.

The concept of “proof of knowledge (POK)” was informally introduced in [36], and was formally
treated in [5, 32]. POK systems, especially zero-knowledge POK (ZKPOK) systems, play a fundamental
role in the designing of cryptographic schemes and protocols, and enable a formal complexity theoretic
treatment of what does it mean for a machine to “know” something. Very roughly, by “proof of
knowledge” we mean that a possibly malicious prover can convince that an NP statement is true if and
only if it, in fact, “knows” (i.e., possesses) a witness to the statement (rather than only convincing the
language membership of the statement, i.e., the fact that a corresponding witness exists).

Traditional notion of ZK considers the security in a stand-alone (or sequential) execution of the
protocol. Motivated by the use of such protocols in an asynchronous network like the Internet where
many protocols are run concurrently at the same time, studying security properties of ZK protocols in
such concurrent settings has attracted extensive research efforts in recent years, initiated by Dwork, Naor
and Sahai [26]. Informally, a ZK protocol is called concurrent zero-knowledge (CZK) if the ZK related
simulatability property holds in the concurrent settings, namely, when a malicious verifier concurrently
interacts with a polynomial number of honest prover instances and schedules message exchanges as it
wishes.

A major measure of efficiency for interactive protocols is the round-complexity. Unfortunately,
there are no constant-round CZK protocols in the standard model, at least for the black-box case, as
implied from the work of Canetti, Killian, Petrank and Rosen [11]. To get constant-round concurrent
ZK protocols, several setup models have been introduced: the timing model [26, 27], the preprocessing
model [21], the common reference string model [15], the certified public-key infrastructure [2] and the
bare public-key model [10], etc.

A protocol in the BPK model, introduced by Canetti, Goldreich, Goldwasser and Micali [10], simply
assumes that all verifiers have deposited a public key in a public file before (or while) the interaction
takes place among the users. Note that, no assumption is made on whether the public-keys deposited
are unique or valid (i.e., public keys can even be “nonsensical,” where no corresponding secret-keys exist
or are known) [10]. That is, no trusted third party is assumed, and preprocessing is reduced to users
non-interactively posting public-keys in a public file [23]. In many cryptographic settings, availability
of a public key infrastructure (PKI) is assumed or required and in these settings the BPK model is,
both, natural and attractive (note that the BPK model is, in fact, a weaker version of PKI where in
the later added key certification is assumed). It was pointed out by Micali and Reyzin [46] that BPK
is, in fact, applicable to interactive systems in general.

Soundness (i.e., verifier security) in the BPK model turned out to be much more complicated and
subtle than otherwise, as was shown by Micali and Reyzin [46]. They showed that under standard
intractability assumptions there are four distinct meaningful notions of soundness, i.e., from weaker
to stronger: one-time, sequential, concurrent and resettable soundness. In this work, we focus on
concurrent soundness, which roughly means that a malicious prover P ∗ cannot convince the honest
verifier V of a false statement even when P ∗ is allowed multiple interleaving interactions with V in
the public-key model. Micali and Reyzin also showed that any black-box ZK protocols with concurrent
soundness in the BPK model (for non-trivial languages outside BPP) must run at least four rounds
[46]. It is also shown in [3, 46] that black-box ZK arguments with resettable soundness only exist for
trivial (i.e, BPP) languages (whether in the BPK model or not).

Due to the above, it was implied that concurrent soundness might be the best verifier security one
can hope for black-box ZK arguments in the BPK model. In this work, we show that this intuition is
not entirely correct, at least not in the setting of proof of knowledge where provers are polynomial time.
Specifically, concurrent soundness only guarantees that concurrently interleaved interactions cannot help
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a malicious prover to convince the honest verifier of a false statement in the public-key model. But, it
does not prevent a malicious prover from convincing the honest verifier of a true statement but without
knowing any witness for the statement being proved. One reason that this potential vulnerability is not
merely a theoretical concern is that all concurrent ZK protocols in the BPK model involve a sub-protocol
in which the verifier proves to the prover the knowledge of the secret-key corresponding to its registered
public-key. Further, this type of proofs are also quite common in practical cryptographic protocols.
Thus, a malicious prover can potentially malleate the verifier’s interactions in one session into successful
interactions in another concurrent session on a true (e.g., verifier’s public-key related) statement but
without knowing any witness for the statement being proved. We show that such potential vulnerability
turns out to be a real security threat for existing cryptographic protocols concurrently run in the public-
key model. This motivates the need for careful definition and for achieving concurrent verifier security
for concurrent ZK protocols in the BPK model, so that provably the security vulnerability in proof of
knowledge is frustrated.

1.1 Our contributions

We start by investigating the subtleties of concurrent verifier security in the public-key model in the case
of proof of knowledge. Specifically, we show a concurrent interleaving and malleating attack against
the concurrent ZK protocol of [23]. This actual protocol is, both, concurrently sound and normal
(stand-alone) argument of knowledge in the BPK model. This shows that concurrent soundness and
normal arguments of knowledge do not guarantee concurrent verifier security. (It is also further clarified
recently [58] that the formulations of concurrent non-malleability (CNM) in the public-key model in
exiting works [50, 20] do not capture CKE in the public-key model, which further shows the subtleties
of correctly formulating CKE in the public-key model.)

Then, we formulate concurrent verifier security that frustrates the vulnerability demonstrated by
the attack which is of the man-in-the-middle type. The security notion defined is called concurrent

knowledge-extraction (CKE) in the public-key model, which essentially means that for any statement
that is successfully proved by a possibly malicious prover to an honest verifier (with registered public-
key) by concurrent interactions, the prover must “know” the corresponding witness.

We then design, both general (round-optimal or minimal hardness assumption optimal) construction
and a practical construction (based on the DDH assumption), which are constant-round CZK-CKE
arguments in the BPK model.

Finally, we discuss an extended notion of CKE, called joint CKE (JCKE), which essentially requires
that the malicious prover “knows” the corresponding joint witnesses to all statements successfully
convinced in its concurrent interactions. We show that a slight modification of the general construction
as well as the practical construction also satisfy this seemingly stronger notion.

1.2 Related Works

Let us review some recent results and developments; we have been involved in numerous recent works
which we review together with related works. While the list of related works and related issues is quite
lengthy, the bottom line is that the notion defined and achieved herein is unique and independent of
various related issues and works, and it captures knowledge extraction as a basic issue in concurrent
executions in public key models.

Concurrent ZK (actually, resettable ZK that is stronger than CZK) arguments for NP with a prov-
able CKE property in the BPK model was first achieved in our precursory unpublished work [56].
However, the CKE property of the protocol of [56] is achieved under sub-exponential hardness assump-
tions, and thus holds only for sub-exponentially hard languages. CKE for concurrent ZK arguments in
the BPK model under standard assumptions were left over there as an open problem, which we answer
here. The subtleties of concurrent knowledge-extraction were also previously considered in [24]. But,
the work of [24] did not realize the crucial issue of “knowledge-extraction independence” formulated in
this work (driven by concrete attacks on natural existing works). The CKE formulation formulated in
[24] could be viewed as a natural extension of the normal arguments of knowledge into the public-key
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model. Also, [24] did not note the relationship between CKE and concurrent soundness in the public-key
model, and achieving CKE for concurrent ZK in the BPK model was left over there as an open problem.

Two constructions for concurrent ZK arguments with sequential soundness in the BPK model under
standard assumptions were proposed in the incomplete work of [59] (the early version since January
2004). But, the security proof of concurrent soundness turned out to be flawed, as observed indepen-
dently in [23, 57]. One construction was fixed to be concurrently sound in [23] by introducing some
key techniques, and recently another construction was fixed to be concurrently sound in [19] following
the spirit of [23]. Given these works, the current work further shows that the concurrently sound CZK
arguments of [23, 19] do not capture CKE and are not concurrently knowledge-extractable when it
comes to proofs of knowledge.

Recently it is clarified in [58] that the formulations of concurrent non-malleability (CNM) in exiting
works [50, 20] do not capture CKE in the public-key model. For the sake of clear understanding of the
difference between these notions and the one in the current paper, the clarifications from [58] are re-
presented in Appendix A. We note that the preliminary version of this work appears in parts of [56] and
the incomplete work [59] (the versions since 19 July 2006) that are independent of [50, 20]. The works of
[50, 20] deal with concurrent man-in-the-middle (CMIM) adversaries in the authenticated BPK model
(which is stronger than the BPK model and is shown to be necessary for constant-round CNMZK in the
public-key model [20]). Again, concrete attacks are presented in [58] on the protocol of [20], showing that
it is not concurrently knowledge-extractable. In comparison with the work of [50], we remark that [50]
and this work are incomparable. The work of [50] deals with concurrent non-malleability, formulates and
achieves constant-round concurrently non-malleable witness-indistinguishability (CNMWI) arguments
in the plain model under any collision-resistant hash function, with CNMZK and the more general secure
multi-party computing in the (authenticated) BPK model as major applications. This is achieved in
[50] by critically using the recent breakthrough non-black-box techniques from [1, 52, 53]. Again, note
that the CNM formulation in [50] does not capture the CKE formulated in this work; in addition it
does not concentrate on protocols of optimal rounds or practical efficiency. More detailed comparison
can be found in Appendix A drawn from [58].

A reasonable amount of works investigated resettable ZK in the BPK model. Looking forward,
we note that the CZK-CKE arguments presented in this work might in principle be modified into rZK
arguments with non-black-box CKE in the BPK model under any collision-resistant hash function (using
non-black-box techniques from [1, 52, 53] similar to that of [19]), but at the price of losing efficiency
and hardness generality (even if it could be shown to be a correct direction in the future), and thus it
will be incomparable with the current work. This research line is outside the scope of the current work.

We do not deal with concurrent non-malleability nor resettable ZK in this work, but we remark
that CZK-CKE are themselves useful fundamental tools and can be used in other applications (they
are the concurrent version of the highly useful ZK arguments of knowledge in the BPK model). Also,
we suggest that the clarifications and formulation of CKE in the public-key model presented in this
work are of independent value and can serve as a basis for formulating and achieving more complex
interactive cryptographic protocols in the public-key model.

We remark that in [31] Garay and MacKenzie noted that when argument/proof of knowledge pro-
tocols are used as building block in a larger protocol in the plain model, concurrent nested rewinding
and interleaving may cause exponential blow-up of simulation time for proving the security of the larger
protocol in the concurrent setting (the same problem encountered in concurrent ZK [26]). This problem
was got around in [31] by working in the conditional simulatable input model and sequentially running
non-constant number of the underlying argument/proof of knowledge protocols. Concurrent straight-
line knowledge-extraction was also investigated in the timing model [42, 43, 41], and in the random
oracle model [51]. In general, the issue of concurrent composition of proof of knowledge (POK) could
be traced back to the seminal work of Dolev, Dwork and Naor [25].
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2 Preliminaries

We use standard notations and conventions below for writing probabilistic algorithms, experiments and
interactive protocols. If A is a probabilistic algorithm, then A(x1, x2, · · · ; r) is the result of running A on
inputs x1, x2, · · · and coins r. We let y ← A(x1, x2, · · · ) denote the experiment of picking r at random
and letting y be A(x1, x2, · · · ; r). If S is a finite set then x← S is the operation of picking an element
uniformly from S. If α is neither an algorithm nor a set then x← α is a simple assignment statement.
By [R1; · · · ;Rn : v] we denote the set of values of v that a random variable can assume, due to the
distribution determined by the sequence of random processes R1, R2, · · · , Rn. By Pr[R1; · · · ;Rn : E]
we denote the probability of event E, after the ordered execution of random processes R1, · · · , Rn.

Let 〈P, V 〉 be a probabilistic interactive protocol, then the notation (y1, y2) ← 〈P (x1), V (x2)〉(x)
denotes the random process of running interactive protocol 〈P, V 〉 on common input x, where P has
private input x1, V has private input x2, y1 is P ’s output and y2 is V ’s output. We assume w.l.o.g.
that the output of both parties P and V at the end of an execution of the protocol 〈P, V 〉 contains a
transcript of the communication exchanged between P and V during such execution.

2.1 Basic Definitions

Definition 2.1 ((public-coin) interactive argument/proof system) A pair of interactive machines,
〈P, V 〉, is called an interactive argument system for a language L if both are probabilistic polynomial-time
(PPT) machines and the following conditions hold:

• Completeness. For every x ∈ L, there exists a string w such that for every string z,
Pr[〈P (w), V (z)〉(x) = 1] = 1.

• Soundness. For every polynomial-time interactive machine P ∗, and for all sufficiently large n’s
and every x /∈ L of length n and every w and z, Pr[〈P ∗(w), V (z)〉(x) = 1] is negligible in n.

An interactive protocol is called a proof for L, if the soundness condition holds against any (even power-
unbounded) P ∗ (rather than only PPT P ∗). An interactive system is called a public-coin system if at
each round the prescribed verifier can only toss coins and send their outcome to the prover.

Definition 2.2 (statistically/perfectly binding bit commitment scheme) A pair of PPT inter-
active machines, 〈P, V 〉, is called a perfectly binding bit commitment scheme, if it satisfies the following:

Completeness. For any security parameter n, and any bit b ∈ {0, 1}, it holds that
Pr[(α, β)← 〈P (b), V 〉(1n); (t, (t, v)) ← 〈P (α), V (β)〉(1n) : v = b] = 1.

Computationally hiding. For all sufficiently large n’s, any PPT adversary V ∗, the following two
probability distributions are computationally indistinguishable: [(α, β) ← 〈P (0), V ∗〉(1n) : β] and
[(α′, β′)← 〈P (1), V ∗〉(1n) : β′].

Perfectly Binding. For all sufficiently large n’s, and any adversary P ∗, the following probability is
negligible (or equals 0 for perfectly-binding commitments): Pr[(α, β) ← 〈P ∗, V 〉(1n); (t, (t, v)) ←
〈P ∗(α), V (β)〉(1n); (t′, (t′, v′))← 〈P ∗(α), V (β)〉(1n) : v, v′ ∈ {0, 1}

∧
v 6= v′].

That is, no ( even computational power unbounded) adversary P ∗ can decommit the same tran-
script of the commitment stage both to 0 and 1.

Below, we recall some classic perfectly-binding commitment schemes.
One-round perfectly-binding (computationally-hiding) commitments can be based on any one-way

permutation OWP [7, 35]. Loosely speaking, given a OWP f with a hard-core predict b (cf. [32]), on a
security parameter n one commits a bit σ by uniformly selecting x ∈ {0, 1}n and sending (f(x), b(x)⊕σ)
as a commitment, while keeping x as the decommitment information.

For practical perfectly-binding commitment scheme, in this work we use the DDH-based ElGamal
(non-interactive) commitment scheme [28]. To commit to a value v ∈ Zq, the committer randomly
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selects u, r ∈ Zq, computes h = gu mod p and sends (h, ḡ = gr, h̄ = gvhr) as the commitment. The
decommitment information is (r, v). Upon receiving the commitment (h, ḡ, h̄), the receiver checks that
h, ḡ, h̄ are elements of order q in Z∗

p . It is easy to see that the commitment scheme is of perfectly-
binding. The computational hiding property is from the DDH assumption on the subgroup of order q
of Z∗

p (for more details, see [28]). We also note that in [45] Micciancio and Petrank presented another
implementation of DDH-based perfectly-binding commitment scheme with advanced security properties.

Statistically-binding commitments can be based on any one-way function (OWF) but run in two
rounds [47, 38]. On a security parameter n, let PRG : {0, 1}n −→ {0, 1}3n be a pseudorandom generator,
the Naor’s OWF-based two-round public-coin perfectly-binding commitment scheme works as follows:
In the first round, the commitment receiver sends a random string R ∈ {0, 1}3n to the committer. In
the second round, the committer uniformly selects a string s ∈ {0, 1}n at first; then to commit a bit 0
the committer sends PRG(s) as the commitment; to commit a bit 1 the committer sends PRG(s)⊕R
as the commitment. Note that the first-round message of Naor’s commitment scheme can be fixed once
and for all and, in particular, can be posted as a part of public-key in the public-key model.

Definition 2.3 (trapdoor bit commitment scheme) A trapdoor bit commitment scheme (TC) is
a quintuple of probabilistic polynomial-time (PPT) algorithms TCGen, TCCom, TCVer, TCKeyVer and
TCFake, such that

Completeness. For any security parameter n, and any bit b ∈ {0, 1}, it holds that:
Pr[(TCPK,TCSK)← TCGen(1n); (c, d)← TCCom(1n, TCPK, b) :
TCKeyVer(1n, TCPK) = TCVer(1n, TCPK, c, b, d) = 1] = 1.

Computationally Binding. For all sufficiently large n’s and for any PPT adversary A, the following
probability is negligible in n: Pr[(TCPK,TCSK)← TCGen(1n); (c, v1, v2, d1, d2)← A(1n, TCPK) :

TCVer(1n, TCPK, c, v1, d1) = TCVer(1n, TCPK, c, v2, d2) = 1
∧

v1, v2 ∈ {0, 1}
∧

v1 6= v2].

Perfectly (or computationally) Hiding. For all sufficiently large n’s and any TCPK such that
TCKeyVer(1n, TCPK) = 1, the following two probability distributions are identical (or computa-
tionally indistinguishable): [(c0, d0)← TCCom(1n, TCPK, 0) : c0] and
[(c1, d1)← TCCom(1n, TCPK, 1) : c1].

Perfect (or Computational) Trapdoorness. For all sufficiently large n’s and any (TCPK,TCSK) ∈
{TCGen(1n)}, ∃v1 ∈ {0, 1}, ∀v2 ∈ {0, 1} such that the following two probability distributions are
identical (or computationally indistinguishable):
[(c1, d1) ← TCCom(1n, TCPK, v1); d

′
2 ← TCFake(1n, TCPK,TCSK, c1, v1, d1, v2) : (c1, d

′
2)] and

[(c2, d2)← TCCom(1n, TCPK, v2) : (c2, d2)].

Feige-Shamir trapdoor commitments (FSTC) [30]. Based on Blum’s protocol for DHC, Feige
and Shamir developed a generic (computationally-hiding and computationally-binding) trapdoor com-
mitment scheme [30], under either any one-way permutation or any OWF (depending on the underlying
perfectly-binding commitment scheme used). The TCPK of the FSTC scheme is (y = f(x), G) (for
OWF-based solution, TCPK also includes a random string R serving as the first-round message of
Naor’s OWF-based perfectly-binding commitment scheme), where f is a OWF and G is a graph that is
reduced from y by the Cook-Levin NP-reduction. The corresponding trapdoor is x (or equivalently, a
Hamiltonian cycle in G). The following is the description of the Feige-Shamir trapdoor bit commitment
scheme, on a security parameter n.

Round-1. Let f be a OWF, the commitment receiver randomly selects an element x of length n in
the domain of f , computes y = f(x), reduces y (by Cook-Levin NP-reduction) to an instance
of DHC, a graph G = (V,E) with q = |V | nodes, such that finding a Hamiltonian cycle in G is
equivalent to finding the preimage of y. Finally, it sends (y,G) to the committer. We remark that
to get OWF-based trapdoor commitments, the commitment receiver also sends a random string
R of length 3n.
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Round-2. The committer first checks the NP-reduction from y to G and aborts if G is not reduced
from y. Otherwise, to commit to 0, the committer selects a random permutation, π, of the vertices
V , and commits (using the underlying perfectly-binding commitment scheme) the entries of the
adjacency matrix of the resultant permutated graph. That is, it sends an q-by-q matrix of commit-
ments so that the (π(i), π(j))th entry is a commitment to 1 if (i, j) ∈ E, and is a commitment to
0 otherwise; To commit to 1, the committer commits an adjacency matrix containing a randomly
labeled q-cycle only.

Decommitment stage. To decommit to 0, the committer sends π to the commitment receiver along
with the revealing of all commitments, and the receiver checks that the revealed graph is indeed
isomorphic to G via π; To decommit to 1, the committer only opens the entries of the adjacency
matrix that are corresponding to the randomly labeled cycle, and the receiver checks that all
revealed values are 1 and the corresponding entries form a simple q-cycle.

Definition 2.4 (witness indistinguishability WI) Let 〈P, V 〉 be an interactive system for a lan-
guage L ∈ NP, and let RL be the fixed NP witness relation for L. That is, x ∈ L if there exists

a w such that (x, w) ∈ RL. We denote by view
P (w)
V ∗(z)(x) a random variable describing the transcript

of all messages exchanged between a (possibly malicious) PPT verifier V ∗ and the honest prover P
in an execution of the protocol on common input x, when P has auxiliary input w and V ∗ has aux-
iliary input z. We say that 〈P, V 〉 is witness indistinguishable for RL if for every PPT interactive
machine V ∗, and every two sequences W 1 = {w1

x}x∈L and W 2 = {w2
x}x∈L for sufficiently long x,

so that (x, w1
x) ∈ RL and (x, w2

x) ∈ RL, the following two probability distributions are computation-

ally indistinguishable by any non-uniform polynomial-time algorithm: {x, view
P (w1

x)
V ∗(z) (x)}x∈L, z∈{0, 1}∗ and

{x, view
P (w2

x)
V ∗(z) (x)}x∈L, z∈{0, 1}∗ . Namely, for every non-uniform polynomial-time distinguishing algorithm

D, every polynomial p(·), all sufficiently long x ∈ L, and all z ∈ {0, 1}∗, it holds that

|Pr[D(x, z, view
P (w1

x)
V ∗(z) (x) = 1]− Pr[D(x, z, view

P (w2
x)

V ∗(z) (x) = 1]| <
1

p(|x|)

Definition 2.5 (system for argument/proof of knowledge [32, 6]) Let R be a binary relation
and κ : N → [0, 1]. We say that a probabilistic polynomial-time (PPT) interactive machine V is a
knowledge verifier for the relation R with knowledge error κ if the following two conditions hold:

• Non-triviality: There exists an interactive machine P such that for every (x,w) ∈ R all possible
interactions of V with P on common input x and auxiliary input w are accepting.

• Validity (with error κ): There exists a polynomial q(·) and a probabilistic oracle machine K such
that for every interactive machine P ∗, every x ∈ LR, and every w, r ∈ {0, 1}∗, machine K satisfies
the following condition:

Denote by p(x,w, r) the probability that the interactive machine V accepts, on input x, when
interacting with the prover specified by P ∗

x,w,r (where P ∗
x,w,r denotes the strategy of P ∗ on common

input x, auxiliary input w and random-tape r). If p(x,w, r) > κ(|x|), then, on input x and with
oracle access to P ∗

x,w,r, machine K outputs a solution w′ ∈ R(x) within an expected number of
steps bounded by

q(|x|)

p(x,w, r) − κ(|x|)

The oracle machine K is called a knowledge extractor.

An interactive argument/proof system 〈P, V 〉 such that V is a knowledge verifier for a relation R and
P is a machine satisfying the non-triviality condition (with respect to V and R) is called a system for
argument/proof of knowledge (AOK/POK) for the relation R.
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We mention that Blum’s protocol for directed Hamiltonian Cycle DHC [8] is just a 3-round public-
coin WIPOK for NP , which is recalled below.

Blum’s protocol for DHC [8]. The n-parallel repetitions of Blum’s basic protocol for proving the
knowledge of Hamiltonian cycle on a given directed graph G [8] is just a 3-round public-coin WIPOK for
NP (with knowledge error 2−n) under any one-way permutation (as the first round of it involves one-
round perfectly-binding commitments of a random permutation of G). But it can be easily modified into
a 4-round public-coin WIPOK for NP under any OWF by employing Naor’s two-round (public-coin)
perfectly-binding commitment scheme [47]. The following is the description of Blum’s basic protocol
for DHC:

Common input. A directed graph G = (V,E) with q = |V | nodes.

Prover’s private input. A directed Hamiltonian cycle CG in G.

Round-1. The prover selects a random permutation, π, of the vertices V , and commits (using a
perfectly-binding commitment scheme) the entries of the adjacency matrix of the resulting per-
mutated graph. That is, it sends a q-by-q matrix of commitments so that the (π(i), π(j))th entry
is a commitment to 1 if (i, j) ∈ E, and is a commitment to 0 otherwise.

Round-2. The verifier uniformly selects a bit b ∈ {0, 1} and sends it to the prover.

Round-3. If b = 0 then the prover sends π to the verifier along with the revealing of all commitments
(and the verifier checks that the revealed graph is indeed isomorphic to G via π); If b = 1, the
prover reveals to the verifier only the commitments to entries (π(i), π(j)) with (i, j) ∈ CG (and the
verifier checks that all revealed values are 1 and the corresponding entries form a simple q-cycle).

We remark that the WI property of Blum’s protocol for HC relies on the hiding property of the
underlying perfectly-binding commitment scheme used in its first-round.

2.2 Σ and ΣOR Protocols

Definition 2.6 (Σ-protocol [13]) A 3-round public-coin protocol 〈P, V 〉 is said to be a Σ-protocol for
an NP-language with relation RL if the following hold:

• Completeness. If P , V follow the protocol, the verifier always accepts.

• Special soundness. From any common input x of length poly(n) and any pair of accepting conver-
sations on input x, (a, e, z) and (a, e′, z′) where e 6= e′, one can efficiently compute w such that
(x,w) ∈ RL. Here a, e, z stand for the first, the second and the third message respectively and e is
assumed to be a string of length k (such that 1k is polynomially related to the security parameter
1n) selected uniformly at random in {0, 1}k.

• Special honest verifier zero-knowledge (SHVZK). There exists a probabilistic polynomial-time (PPT)
simulator S, which on input x (where there exists a w such that (x,w) ∈ RL) and a random
challenge string ê, outputs an accepting conversation of the form (â, ê, ẑ), with the probability dis-
tribution that is indistinguishable from that of the real conversation (a, e, z) between the honest
P (w) and V on input x.

A Σ-protocol is called partial witness-independent, if the generation of its first-round message is inde-
pendent of (i.e., without using) the witness for x ∈ L. We remark that most Σ-protocols in the literature
satisfy this property. In particular, Blum’s 3-round public-coin WIPOK for DHC [8] is just a partial
witness-independent Σ-protocol for NP. For a good survey of Σ-protocols and their applications, the
reader is referred to [17].

Σ-Protocol for DLP [54]. The following is a Σ-protocol 〈P, V 〉 proposed by Schnorr [54] for
proving the knowledge of discrete logarithm, w, for a common input of the form (p, q, g, h) such that
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h = gw mod p, where on a security parameter n, p is a uniformly selected n-bit prime such that
q = (p − 1)/2 is also a prime, g is an element in Z∗

p of order q. It is also actually the first efficient
Σ-protocol proposed in the literature.

• P chooses r at random in Zq and sends a = gr mod p to V .

• V chooses a challenge e at random in Z2k and sends it to P . Here, k is fixed such that 2k < q.

• P sends z = r + ew mod q to V , who checks that gz = ahe mod p, that p, q are prime and that
g, h have order q, and accepts iff this is the case.

The OR-proof of Σ-protocols [14]. One basic construction with Σ-protocols allows a prover
to show that given two inputs x0, x1, it knows a w such that either (x0, w) ∈ R0 or (x1, w) ∈ R1,
but without revealing which is the case. Specifically, given two Σ-protocols 〈Pb, Vb〉 for Rb, b ∈ {0, 1},
with random challenges of, without loss of generality, the same length k, consider the following protocol
〈P, V 〉, which we call ΣOR. The common input of 〈P, V 〉 is (x0, x1) and P has a private input w such
that (xb, w) ∈ Rb.

• P computes the first message ab in 〈Pb, Vb〉, using xb, w as private inputs. P chooses e1−b at
random, runs the SHVZK simulator of 〈P1−b, V1−b〉 on input (x1−b, e1−b), and lets (a1−b, e1−b, z1−b)
be the output. P finally sends a0, a1 to V .

• V chooses a random k-bit string s and sends it to P .

• P sets eb = s⊕ e1−b and computes the answer zb to challenge eb using (xb, ab, eb, w) as input. He
sends (e0, z0, e1, z1) to V .

• V checks that s = e0⊕e1 and that conversations (a0, e0, zo), (a1, e1, z1) are accepting conversations
with respect to inputs x0, x1, respectively.

Theorem 2.1 [14] The protocol ΣOR above is a Σ-protocol for ROR, where ROR = {((x0, x1), w)|(x0, w) ∈
R0 or (x1, w) ∈ R1}. Moreover, ΣOR-protocols are witness indistinguishable (WI) argument/proof of
knowledge systems.

The SHVZK simulator of ΣOR [14]. For a ΣOR-protocol of the above form, denote by SOR the
perfect SHVZK simulator of it and denote by Sb the perfect SHVZK simulator of the protocol 〈Pb, Vb〉
for b ∈ {0, 1}. Then on common input (x0, x1) and a random string ê of length k, SOR((x0, x1), ê) works
as follows: It firstly chooses a random k-bit string ê0, computes ê1 = ê ⊕ ê0, then SOR runs Sb(xb, êb)
to get a simulated transcript (âb, êb, ẑb) for b ∈ {0, 1}, finally SOR outputs ((â0, â1), ê, (ê0, ẑ0, ê1, ẑ1)).

2.3 Concurrent soundness and concurrent zero-knowledge in the BPK Model

We recall the definitions of concurrent soundness and concurrent zero-knowledge in the BPK model (cf.
[10, 46, 23, 50]).

Honest players in the BPK model. The BPK model consists of the following:

• F , a public-key file that is a polynomial-size collection of records (id, PKid), where id is a string
identifying a verifier and PKid is its (alleged) public-key.

• P (1n, x, w, F, id, γ), an honest prover that is a polynomial-time interactive machine, where 1n is
a security parameter, x is a poly(n)-bit string in L, w is an auxiliary input, F is a public-file, id
is a verifier identity, and γ is its random-tape.

• V , an honest verifier that is a polynomial-time interactive machine working in two stages.
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1. Key generation stage. V , on a security parameter 1n and a random-tape r, outputs a key
pair (PK,SK). V then registers PK in F as its public-key while keeping the corresponding
secret key SK in secret.

2. Proof stage. V , on inputs SK, x ∈ {0, 1}poly(n) and a random tape ρ, performs an interactive
protocol with a prover and outputs “accept x” or “reject x”.

The malicious concurrent prover and concurrent soundness in the BPK model. Let V
be an honest verifier with public-key PK and secret-key SK, where (PK,SK) is the output of the key
generation stage of V on a security parameter 1n and a random string r. An s-concurrent malicious
prover P ∗ in the BPK model, for a positive polynomial s, is a probabilistic polynomial-time Turing
machine that, on a security parameter 1n and an auxiliary string z ∈ {0, 1}∗ (e.g., information collected
from protocol executions w.r.t. other public-keys that are generated independently of the public-key
PK at hand), performs an s-concurrent attack against V as follows (in two stages):

In the first stage, on inputs (1n, PK, z) P ∗ first generates an auxiliary string τ ∈ {0, 1}∗ (that, in
particular, could include z and some side information about the secret-key SK). Then, in the second
stage (i.e., proof stage), with the auxiliary information τ , P ∗ can perform concurrently at most s(n)
interactive protocols (sessions) with (the proof stage of) V as follows: If P ∗ is already running i − 1
(1 ≤ i ≤ s(n)) sessions, it can select on the fly a common input xi ∈ {0, 1}

poly(n) (which may be equal
to xj for 1 ≤ j < i) and initiate a new session with the proof stage of V (SK, xi, ρi); P ∗ can output
a message for any running protocol, and always receive promptly the response from V (that is, P ∗

controls at its wish the schedule of the messages being exchanged in all the concurrent sessions). We
stress that in different sessions V uses independent random-tapes in its proof stage (that is, ρ1, · · · , ρs(n)

are independent random strings). Note that extension to the general case, where P ∗ interacts with
instances of multiple verifiers with multiple (independently generated) public-keys, is direct.

We then say a protocol 〈P, V 〉 is concurrently sound in the BPK model, if for any honest verifier
V , for any sufficiently large n and any x 6∈ L (of length poly(n)), for all positive polynomials s and all
s-concurrent malicious prover P ∗ and any string τ , the probability that V outputs “accept x” in the
s-concurrent attack (i.e., in one of the s(n) sessions) is negligible in n.

The malicious concurrent verifier and concurrent ZK in the BPK model. An s-concurrent
malicious verifier V ∗, where s is a positive polynomial, is a PPT Turing machine that, on input 1n and
an auxiliary string τ , works in two stages:

Stage-1 (key-generation stage). V ∗ receives s(n) strings x̄ = {x1, · · · , xs(n)} of length poly(n) each,
where xi might be equal to xj, 1 ≤ i, j ≤ s(n), and outputs an arbitrary public-file F and a list
of (without loss of generality) s(n) identities id1, · · · , ids(n).

Stage-2 (proof stage). Starting from the final configuration of Stage-1, V ∗ concurrently interacts
with s(n)2 instances of the honest prover P : P (xi, wi, idj , γ(i,j)), where 1 ≤ i, j ≤ s(n), (xi, wi) ∈
RL and γ(i,j)’s are independent random strings. In this stage, V ∗ controls at its wish the sched-
ule of the messages being exchanged in all the concurrent sessions. In particular, P ∗ can out-
put a message for any running session dynamically based on the transcript up to now, and al-
ways receive promptly the response from P . V ∗ finally outputs its “view” of the interactions,
i.e., its random tape and messages received from all the s(n)2 prover instances. We denote by

view
{P (xi,wi,idj ,γ(i,j))

′s}

V ∗(τ)
(x̄) the random variable describing the view of V ∗ in this experiment.

Definition 2.7 (concurrent zero-knowledge in the BPK model) A protocol 〈P, V 〉 is (black-box)
concurrent zero-knowledge for a language L ∈ NP in the BPK model, if there exists a PPT black-box
simulator S such that for any sufficiently large n and every s-concurrent malicious verifier V ∗ the fol-

lowing two distribution ensembles are indistinguishable: {view
{P (xi,wi,idj ,γ(i,j))

′s}

V ∗(τ) (x̄)}
x̄∈Ls(n),τ∈{0,1}∗ and

{S(x̄, τ)}
x̄∈Ls(n),τ∈{0,1}∗.
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3 Concurrent Knowledge-Extraction: Motivation and Formulation

In this section, we first present a concurrent interleaving and malleating attack on the concurrent ZK
protocol of [23] that is both concurrently sound and normal argument of knowledge in the BPK model,
showing that concurrent soundness and normal arguments of knowledge do not guarantee concurrent
verifier security in the public-key model. This attack serves a good motivation for understanding
“possession of knowledge on the Internet,” i.e., the subtleties of concurrent knowledge-extraction in
the public-key model. We then formulate concurrent knowledge-extraction, in light of the concurrent
interleaving and malleating attack and in the spirit of non-malleability formulation of [25], and show
that it is strictly stronger than concurrent soundness in the public-key model under any OWF.

3.1 The concurrent interleaving and malleating attack

Let us first recall the protocol structure of the CZK protocol of [23].

Key-generation. Let fV be a OWF that admits Σ-protocols. On a security parameter n, each verifier
V randomly selects two elements in the domain of fV , x0

V and x1
V of length n each, computes

y0
V = fV (x0

V ) and y1
V = fV (x1

V ). V publishes (y0
V , y1

V ) as its public-key while keeping xb
V as

its secret-key for a randomly chosen b from {0, 1}. (For OWF-based implementation, V also
publishes a random string rV of length 3n that serves the first-round message of Naor’s OWF-
based perfectly-binding commitment scheme [47].)

Common input. An element x ∈ L of length poly(n), where L is an NP-language that admits Σ-
protocols.

The main-body of the protocol. The main-body of the protocol consists of the following three
phases:

Phase-1. The verifier V proves to P that it knows the preimage of either y0
V or y1

V , by executing
the ΣOR-protocol on (y0

V , y1
V ) in which V plays the role of knowledge prover. It is additionally

required that the first-round message of the ΣOR-protocol is generated without using the
preimage of either y0

V or y1
V (i.e., partial witness-independent). Denote by aV , eV , zV , the

first-round, the second-round and the third-round message of the ΣOR-protocol of this phase
respectively. Here eV is the random challenge sent by the prover to the verifier. (For OWF-
based implementation, P sends a random string rP of length 3n on the top, which serves the
first-round message of Naor’s OWF-based perfectly-binding commitments and is used by V
in generating aV .)

If V successfully finishes the ΣOR-protocol of this phase and P accepts, then goto Phase-2.
Otherwise, P aborts.

Phase-2. Let TC be a trapdoor bit commitment scheme with the preimage of either y0
V or

y1
V as the trapdoor. The prover randomly selects a string ê ∈ {0, 1}n, and sends cê =
{TCCom(ê1), TCCom(ê2), · · · , TCCom(ên)} to the verifier V , where êi is the i-th bit of ê.

Phase-3. Phase-3 runs essentially the underlying Σ-protocol for L but with the random challenge
set by a coin-tossing mechanism. Specifically, the prover computes and sends the first-
round message of the underlying Σ-protocol, denoted aP , to the verifier V (for OWF-based
implementation, aP is computed also using rV published by V in the key-generation phase);
Then V responds with a random challenge q; Finally, P reveals ê (committed in Phase-2),
sets eP = ê ⊕ q, and computes the third-round message of the underlying Σ-protocol for L,
denoted zP , with eP as the real random challenge.

Verifier’s decision. V accepts if and only if ê is decommitted correctly and eP = ê ⊕ q and
(aP , eP , zP ) is an accepting conversation for x ∈ L.
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Remark: The above protocol structure is essentially that of the incomplete CZK protocol of [59]
(Figure-3, page 17), and can be implemented based on any OWF. The key difference in the actual
implementations of [59, 23] is that [23] uses a special trapdoor commitment scheme in Phase-2, where
the decommitment formation to 0 or 1 is in turn committed in two statistically-binding commitments.
This technique is critical for achieving concurrent soundness, the reader is referred to [23] for more
details. We remark that the differences in actual implementations do not invalidate the following
attack, which is presented w.r.t. a more general protocol structure.

We next show the concurrent interleaving and malleating attack that enables P ∗ to malleate the
interactions of Phase-1 of one session into a successful conversation of another concurrent session for dif-
ferent (but verifier’s public-key related) statements without knowing any corresponding NP-witnesses.
This demonstrates that the above protocol fails to be a proof of knowledge (fails knowledge extraction)
in concurrent executions (note that it was not designed as such, since this new issue is the notion we
put forth here).

Let L̂ be any NP-language admitting a Σ-protocol that is denoted by Σ
L̂

(in particular, L̂ can be
an empty set). For an honest verifier V with its public-key PK = (y0

V , y1
V ), we define a new language

L = {(x̂, y0
V , y1

V )|∃w s.t. (x̂, w) ∈ R
L̂

OR yb
V = fV (w) for b ∈ {0, 1}}. Note that for any string x̂

(whether x̂ ∈ L̂ or not), the statement “(x̂, y0
V , y1

V ) ∈ L” is always true as PK = (y0
V , y1

V ) is honestly
generated. Also note that L is a language that admits Σ-protocols (as ΣOR-protocol is itself a Σ-
protocol). Now, we describe the concurrent interleaving and malleating attack, in which P ∗ successfully
convinces the honest verifier of the statement “(x̂, y0

V , y1
V ) ∈ L” for any arbitrary poly(n)-bit string x̂

(even when x̂ 6∈ L̂) by concurrently interacting with V in two sessions as follows.

1. P ∗ initiates the first session with V . (For OWF-based implementation, P just sends rP = rV as
its first message to V , where rV is the random string registered by V as a part of its public-key
for OWF-based implementation.) After receiving the first-round message, denoted by a′V , of the
ΣOR-protocol of Phase-1 of the first session on common input (y0

V , y1
V ) (i.e., V ’s public-key), P ∗

suspends the first session.

2. P ∗ initiates a second session with V , and works just as the honest prover does in Phase-1 and
Phase-2 of the second session. We denote by cê the Phase-2 message of the second session (i.e.,
cê commits to a random string ê of length n). When P ∗ moves into Phase-3 of the second session
and needs to send V the first-round message, denoted by aP , of the Σ-protocol of Phase-3 of the
second session on common input (x̂, y0

V , y1
V ), P ∗ does the following:

• P ∗ first runs the SHVZK simulator of Σ
L̂

(i.e., the Σ-protocol for L̂) on x̂ to get a simulated

conversation, denoted by (ax̂, ex̂, zx̂), for the (possibly false) statement “x̂ ∈ L̂”.

• P ∗ sets aP = (ax̂, a′V ) and sends aP to V as the first-round message of the Σ-protocol of
Phase-3 of the second session, where a′V is the one received by P ∗ in the first session.

• After receiving the second-round message of Phase-3 of the second session, denoted by q (i.e.,
the random challenge from V ), P ∗ sets eP = ê⊕ q and then suspends the second session.

3. P ∗ continues the first session, and sends e′V = ê⊕ q ⊕ ex̂ = eP ⊕ ex̂ as the second-round message
of the ΣOR-protocol of Phase-1 of the first session.

4. After receiving the third-round message of the ΣOR-protocol of Phase-1 of the first session, denoted
by z′V , P ∗ suspends the first session again.

5. P ∗ continues the execution of the second session again, reveals ê committed in Phase-2 of the
second session, and sends to V zP = ((ex̂, zx̂), (e′V , z′V )) and the decommitment information of ê
as the last-round message of the second session.

Note that (ax̂, ex̂, zx̂) is an accepting conversation for the (possibly false) statement “x̂ ∈ L̂”,
(a′V , e′V , z′V ) is an accepting conversation for showing the knowledge of the preimage of either y0

V or
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y1
V , and furthermore ex̂ ⊕ e′V = eP = ê⊕ q. According to the description of ΣOR (presented in Section

2), this means that, from the viewpoint of V , (aP , eP , zP ) is an accepting conversation of Phase-3 of
the second-session on common input (x̂, y0

V , y1
V ). That is, P ∗ successfully convinced V of the statement

“(x̂, (y0
V , y1

V )) ∈ L” (even for x̂ 6∈ L̂) in the second session but without knowing any corresponding NP-
witness! We remark that mixing the public key structure as part of the language is a natural attack
strategy for the public-key model (a different demonstration of this was given in [57]).

3.2 Formulating concurrent knowledge-extraction in the public-key model

Now, we proceed to formulate concurrent verifier security in light of the above attack. Note that the
above attack is of man-in-the-middle nature, and is related to malleability of protocols. The informal
intuition for concurrent verifier security is: for any x if P ∗ can convince V (with public-key PK) of
“x ∈ L” by concurrent interleaving interactions, then it must “know” a witness for the statement. More
formally, for any x if P ∗ can convince V (with public-key PK) of “x ∈ L” by concurrent interactions,
then there exists a PPT knowledge-extractor that outputs a witness for x ∈ L. This is a natural
extension of the normal arguments of knowledge into the concurrent settings in the public-key model.
But, such a definition does not work in the public-key model. For example, the language may be
related to PK, and thus the extracted witness may be related to SK (actually, for the malicious
prover strategy of the above attack, the extracted witness will just be the same secret-key used by
the knowledge-extractor). But, in knowledge-extraction the PPT extractor may have already possessed
SK. To solve this subtlety, we require that the extracted witness is independent of SK. But, the
problem here is how to formalize such independence? We solve this in the spirit of non-malleability
formulation [25]. That is, we consider the message space (distribution) of SK, and such independence
is informally formulated as follows: for any polynomial-time computable relation R and any auxiliary
information τ used by P ∗ in its main proof stages, let SK be the real secret-key and SK ′ is an element
randomly and independently distributed over the space of SK, then we require that the probability
Pr[R(w,SK, τ) = 1] is negligibly close to Pr[R(w,SK ′, τ) = 1], where w is the witness extracted by the
knowledge extractor. This captures the fact that P ∗ does, in fact, “know” a “witness” for x ∈ L.

Definition 3.1 [concurrent knowledge-extraction (CKE) in the public-key model] We say that a protocol
〈P, V 〉 for an NP-language L (with NP-relation RL) is concurrently knowledge-extractable in the public-
key model, if for any positive polynomial s(·), any s-concurrent malicious prover P ∗ defined in Section 2,
there exists a pair of (expected) polynomial-time algorithms S (the simulator) and E (the extractor) such
that for any sufficiently large n, any auxiliary input z ∈ {0, 1}∗, and any polynomial-time computable
relation R (with components drawn from {0, 1}∗ ∪ {⊥}), the following hold:

Simulatability. S, on inputs 1n and z, outputs a pair (str, sta), where str is a simulated transcript that
is computationally indistinguishable from the real view of P ∗, and sta is some state information to
be transferred to E. We denote by (PK,SK) the simulated key-pair generated by S (that emulates
the key-generation of the honest verifier), and by τ the output of P ∗(1n, PK, z) in its first stage,
where τ is the auxiliary information to be transferred to the proof stages of P ∗ that could, in
particular, include z and some side information about SK.

Secret-key independent knowledge-extraction. E, on inputs (1n, str, sta), outputs witnesses to
all statements proved in accepting sessions in str. Specifically, E outputs a list of strings w =
(w1, w2, · · · , ws(n)), satisfying the following:

• wi is set to be ⊥, if the i-th session in str is not accepting (due to abortion or verifier
verification failure), where 1 ≤ i ≤ s(n).

• In any other cases, with overwhelming probability (xi, wi) ∈ RL, where xi is the common
input selected by P ∗ for the i-th session in str.

• knowledge-extraction independence (KEI): For any i, 1 ≤ i ≤ s(n), and any auxiliary in-
formation τ (used by P ∗ in the proof stages), Pr[R(wi, SK, τ) = 1] is negligibly close to
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Pr[R(wi, SK ′, τ) = 1], where SK ′ is an element randomly and independently distributed over
the space of SK.

The probability is taken over the randomness of S in the key-generation stage (i.e., the randomness
for generating (PK,SK)) and in all proof stages, the randomness of E, the choice of SK ′ and
the randomness of P ∗.

Some comments about the CKE definition are in place.
We first note that the above CKE formulation follows the simulation-extraction approach of [53]

(which is also used in [4]). Here, the key augmentation and difference is that in the public-key model the
property of knowledge-extraction independence (KEI) is explicitly required. Note that this requirement
does not apply to protocols in the plain model, as the simulator/extractor and honest verifiers do not
possess secret values there.

The CKE formulation, i.e., Definition 3.1, captures the following natural intuition for concurrent
verifier security in the public-key model: for any x suppose the s-concurrent malicious prover P ∗ can
convince the honest verifier (in real execution w.r.t. real public-key) of the statement “x ∈ L” in one
of the s(n) concurrent sessions with non-negligible probability px, then it must “know” a witness to
x ∈ L. The reasoning is as follows: for any x, suppose P ∗ can convince the honest verifier (in real
execution w.r.t. real public-key) of the statement “x ∈ L” with non-negligible probability px, then it
must also convince the simulator/extractor (in simulation/extraction w.r.t. a simulated public-key) of
the same statement with probability negligibly close to px, otherwise the simulatability of Definition 3.1
is violated. Then, the secret-key independent knowledge-extraction property says that, with probability
negligibly close to px, a witness to x ∈ L will be extracted that is independent of the secret-key used
by the simulator/extractor.

Note that in the KEI formulation, we do not require SK ′ to be independent of PK. Such a require-
ment will trivially make the definition meaningless. The reason is that the language and statements
being proved by malicious prover may be public-key specific, e.g., a function of the public-key, and thus
may be always related to SK (but can be related to an independent and random SK ′ with negligi-
ble probability). This, in particular, implies that verifier’s public-key cannot be unique, which is the
underlying reason that our solution intrinsically employs the key-pair trick (that is reminiscent of the
key-pair encryption [49] and was used for CZK in the BPK model in the incomplete work of [59]).

Extensions and deeper discussions on the CKE formulation are presented in Section 6.

Proposition 3.1 Assuming any OWF, CKE is strictly stronger than concurrent soundness in the
public-key model.

Proof. (of Proposition 3.1) It’s easy to see that CKE implies concurrent soundness in the public-
key model. Then the proposition is direct from the attack demonstrated in Section 3.1 on the CZK
protocol of [23] that is both concurrently sound and normal argument of knowledge and can be imple-
mented based on any OWF. Specifically, for the specific strategy of P ∗ of the concurrent interleaving
and malleating attack, suppose x̂ 6∈ L̂ or just L̂ is empty, the witness extracted by any polynomial-time
knowledge-extraction algorithm E (with SK = xb

V as its input) must be the preimage of either y0
V

or y1
V . But, according to the one-wayness of fV used in the key-generation stage, with overwhelm-

ing probability the extracted witness will be the preimage of yb
V conditioned on E outputs a witness.

(Specifically, consider the simulator/extractor emulates the key-generation of the honest verifier, except
that the value y1−b

V is received externally as its input.) Define the relation R as: R(w,SK, ·) = 1 if
fV (w) = fV (SK). Then, conditioned on E outputs a witness, the extracted witness (i.e., the preimage
of yb

V ) is always related to SK = xb
V , but can be related to a random and independent SK ′ with

negligible probability. Thus, the CZK protocol of [23] is not concurrently knowledge-extractable in the
public-key model. �
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The general protocol 〈P, V 〉

Key Generation. Let f : {0, 1}n → {0, 1}n be any OWF, where 1n is the security parameter. Each verifier
V selects random strings s0, s1 from {0, 1}n, randomly selects a bit b ← {0, 1}, computes yb = f(sb) and
sets y1−b = f(s1−b). V registers PK = (y0, y1) in a public file F as its public-key, and keeps SK = sb as
its secret-key.
Common input. An element x ∈ L ∩ {0, 1}poly(n). Denote by RL the corresponding NP-relation for L.

P private input. An NP-witness w ∈ {0, 1}poly(n) for x ∈ L. Here, we assume w.l.o.g. that the witness
for any x ∈ L ∩ {0, 1}poly(n) is of the same length poly(n) (in particular, consider the NP-complete
language DHC).

Stage-1. V proves to P that it knows a preimage to one of y0, y1, by running a partial witness independent
3-round public-coin WI proof of knowledge (WIPOK) protocol for NP in which V plays the role of
knowledge prover. The witness used by V in this stage is sb.

Stage-2. If V successfully finishes Stage-1, P does the following: it computes and sends cw = C(w, rw)
and csk = C(0n, rsk), where C is a statistically-binding commitment scheme and rw and rsk are the
randomness used for commitments.

Stage-3. Define a new NP-language L′ = {(x, y0, y1, cw, csk)|(∃(w, rw) s.t. cw = C(w, rw) ∧ (x, w) ∈
RL)∨ (∃(w, rsk , b) s.t. csk = C(w, rsk)∧yb = f(w)∧ b ∈ {0, 1})}. Then, P proves to V that it knows
a witness for (x, y0, y1, cw, csk) ∈ L′, by running a 3-round public-coin WIPOK protocol for NP .
The witness used by P is (w, rw).

Figure-1. The general CZK-CKE argument for NP in the BPK model.

4 General CZK-CKE for NP in the BPK Model

In this section, we present the general construction for CZK-CKE arguments for NP in the BPK model.
The underlying principles behind our solution are the following: First, for any statement to be proved

by the prover, we require that it first commits to a witness for that statement, and then proves to the
verifier that the committed value is indeed a witness for the statement being proved (this paradigm
was also previously considered, e.g., in [12, 44]). Secondly, this proof is not done directly. Rather, the
proof of witness is combined with a tool reminiscent of the key-pair encryption of [49] (that was also
used in [59] for concurrent ZK in the BPK model), where the verifier pair of keys are considered. The
prover gives a compound OR-proof to a modified language based on the witness commitments and the
verifier’s public keys. The jointly generated statement for the compound proof allows both the efficient
simulation (for zero-knowledge) and correct and efficient concurrent witness extraction (for proving
soundness) in the BPK model.

The general construction is depicted in Figure 1 (page 14).

If we use the OWP-based perfectly-binding commitments [32], the protocol depicted in Figure-1 can
be based on any OWP and can be combined into 4 rounds (i.e., round-optimal [46]). The protocol also
can be based on any OWF by using Naor’s OWF-based statistically-binding commitments [47] (in this
case Stage-1 is actually of 4 rounds). In the later case, the combined protocol runs in 5 rounds, and
V could also publish a random string as a part of its public-key, serving as the first-round message of
Naor’s commitment scheme.

On the intuitive necessity of cw and csk. We note that the rough structure of the protocol
depicted in Figure-1 is similar to that of the (sequentially-sound) CZK argument proposed in [59] (that
is in fact is a variant of the Feige-Shamir ZK arguments [30], actually the version presented in [29], in
the public-key model). The Feige-Shamir ZK in the public-key model amounts to the variant protocol
without both cw and csk. We stress that in the context of the above structure, mandating commitments
cw and csk of Stage-2 plays a very crucial role for achieving concurrent knowledge-extraction in the
public-key model. Specifically, for protocol variants without either cw or csk, concrete attacks exist,
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showing that they are not concurrently knowledge-extractable. In particular, it shows that the protocol
of [19], which is the fixed protocol of [59] amounting to variant protocol without cw, is not concurrently
knowledge-extractable. Details are presented in Appendix B.

For presentation simplicity, we provide security analysis w.r.t. the OWP-based construction. The
extension to the OWF-based case is direct.

Theorem 4.1 Under any OWP, there is a round-optimal concurrently knowledge-extractable concur-
rent ZK argument for NP in the BPK model.

Proof (sketch). The completeness of the protocol 〈P, V 〉 can be easily checked.
Concurrent zero-knowledge.
We first consider a mental simulator M that takes as input all secret-keys corresponding to all

public-keys registered in the public-key file, in case the corresponding secret-keys exist.
For any s(n)-concurrent malicious verifier V ∗, M runs V ∗ as a subroutine on input x̄ = {x1, · · · , xs(n)}

(where xi might equal xj, 1 ≤ i, j ≤ s(n) and i 6= j), the public file F = {PK1, · · · , PKs(n)} and all
assumed existing secret-keys. M works just as the honest prover does in Stage-1 of any session. In
Stage-2 of any session on a common input xi and with respect to a public-key PKj (i.e, the i-th session

w.r.t PKj, 1 ≤ i, j ≤ s(n)), M computes c
(i)
w = C(0poly(n), r

(i)
w ) and c

(i)
sk = C(SKj, r

(i)
sk ), where SKj is

the secret-key corresponding to PKj for which we assume it exists and M knows. Then, M runs the

WIPOK protocol with V ∗ in Stage-3 of the session with (SKj , r
(i)
sk ) as its witness.

To show the output of M is indistinguishable from the view of V ∗ in real concurrent interactions, we
consider another mental simulator M ′. M ′ takes both the witnesses for x̄ = {x1, · · · , xs(n)} and all the
secret-keys corresponding to public-keys registered in F (in case the corresponding secret-keys exist).
M ′ works just as M does, but with the following exception: for any i, j, 1 ≤ i, j ≤ s(n), in Stage-2 of

the i-th session on common input xi w.r.t PKj , M ′ computes cw = C(wi, r
(i)
w ), where wi is the witness

for the common input xi. Note that the witness used by M ′ in Stage-3 is still SKj, just as M does.
That the output of M ′ is indistinguishable from that of M is from the computational hiding property of
the perfectly-binding commitment scheme C used in Stage-2. Otherwise, by a simple hybrid argument,
we can violate the hiding property of the underlying commitment scheme C.

We now consider another mental simulator M ′′ that mimics M ′ with the following exception: for any
i, j, 1 ≤ i, j ≤ s(n), in Stage-3 of the i-th session on common input xi w.r.t PKj, the witness used by M ′′

is wi, rather than SKj as used by M ′. By hybrid arguments, the output of M ′′ is indistinguishable from
that of M ′ by the WI property of underlying WIPOK protocol of Stage-3. Also, by hybrid arguments,
the output of M ′′ is also indistinguishable from the view of V ∗ in real concurrent interactions by
the computational hiding property of the underlying perfectly-binding commitment scheme C used in
Stage-2.

This establishes that the output of M is indistinguishable from the view of V ∗ in real concurrent
interactions. To build a PPT simulator S from scratch, where S does not know any secret-keys corre-
sponding to public-keys in the public file, we resort to the technique developed in [10]. Specifically, S
works in s(n)+ 1 phases. In each phase, S either successfully finishes the simulation, or “covers” a new
public-key for which it has not known the corresponding secret-key up to now in case V ∗ successfully
finishes the Stage-1 interactions w.r.t. that public-key. Key covering is guaranteed by the POK property
of Stage-1 interactions. For more details, see [10].

Concurrent knowledge-extraction.
According to the CKE formulation, we need to build two algorithms (S,E). The simulator S,

on inputs (1n, z), works as follows: It first perfectly emulates the key-generation stage of the honest
verifier, getting PK = (y0, y1) and SK = sb and SK ′ = s1−b for a random bit b. Then, S runs P ∗ on
(1n, PK, z) to get the side information τ to be used by P ∗ in the proof stages. In the proof stages, S
perfectly emulates the honest verifier with the secret-key SK. Finally, whenever P ∗ stops, S outputs
the simulated transcript str, together with the state information sta set to be (PK,SK,SK ′, τ) and the
random coins used by S. Note that the simulated transcript is identical to that of P ∗ in real execution.
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The knowledge-extraction process is similar to that of [53]. Note that we need to extract witnesses
to all accepting sessions in str. Given (str, sta), the knowledge-extractor E iteratively extracts witness
for each accepting session. Specifically, for any i, 1 ≤ i ≤ s(n), we denote by Ei the experiment for
the knowledge-extractor on the i-th session. Ei emulates S with the fixed random coins included in
sta, with the exception that the random challenge (i.e., the second-round message) of the WIPOK of
Phase-3 in the i-th session is no longer emulated internally, but received externally. Note that the views
of P ∗ in the experiments S and Ei are still identical. Furthermore, the experiment Ei amounts to the
execution of the WIPOK of Phase-3 between a stand-alone prover and an honest verifier. Suppose
the i-th session w.r.t. common input xi is accepting (note that otherwise we do not need to extract a
witness and the witness is set to be “⊥”), by applying the stand-alone knowledge-extractor on Ei, we can
extract a witness wi satisfying one of the following (note that wi is determined by the perfectly-binding
commitments of Stage-2):

Case-1. σ = 1 − b and yσ = f(wi), where b is the random bit chosen by the honest verifier in the
key-generation stage.

Case-2. σ = b and yσ = f(wi).

Case-3. (xi, wi) ∈ RL.

Case-1 can occur only with negligible probability, due to the one-wayness of f . Specifically, consider
that y1−b is given to the simulator as input, rather than being emulated internally.

The subtle point here is: by applying the stand-alone knowledge-extractor on Ei, the Phase-1
interactions given by the simulator/extractor would also be rewound, which could reveal the secret-key
SK. By hybrid arguments and a deepened investigation (similar to that of [23]), we can get:

Lemma 4.1 Case-2 occurs with negligible probability.

Proof (of Lemma 4.1). We consider two experiments: E0 and E1. For each µ ∈ {0, 1}, Eµ mimics
the experiment Ei, with the exception that Eµ uses fresh random coins and uses sµ as its witness
in Phase-1 interactions for internal emulation of the proof stages (note that (s0, s1) is included in
sta). Suppose Case-2 occurs with non-negligible probability, then there must exist a bit µ such that
applying the (stand-alone) knowledge-extractor on Eµ will output the preimage of yµ with non-negligible
probability. Otherwise, Case-2 will trivially occur with negligible probability. Without loss of generality,
we assume µ = 0. That is, the knowledge-extractor on E0 outputs the preimage of y0 with non-negligible
probability (and outputs the preimage of y1 with negligible probability due to the one-wayness of f).
Now we consider the output of the knowledge-extractor on E1: first, it outputs the preimage of y0 also
with negligible probability; thus, with non-negligible probability the knowledge-extractor on E1 outputs
either the preimage of y1 or the witness for x ∈ L. Note that here we cannot directly conclude that the
knowledge-extractor on E1 will certainly output the preimage of y1 with non-negligible probability, as
we cannot rely on the assumption that x 6∈ L (as is done in [23]). Then, we show how to contradict the
WI or partial witness independence properties of the POK protocol of Stage-1.

We define a series of hybrid mental experiments H1, · · · ,Hs(n) as follows: for any k, 1 ≤ k ≤ s(n),
Hk mimics the behavior of E0 but with the following exceptions: In Stage-1 of the first k sessions Hk

uses s1 as its witness; and in Stage-1 of the rest s(n)− k sessions it uses s0 as the witness. Note that
H0 equals the experiment E0, and Hs(n) equals the experiment E1. As we assume that the (stand-
alone) knowledge-extractor on H0(= E0) will output the preimage of y0 with non-negligible probability
(but output the preimage of y1 with negligible probability), and that Hs(n)(= E1) will output either a
preimage of y1 or a witness for x ∈ L with non-negligible probability (but output the preimage of y0 only
with negligible probability). By hybrid arguments, we conclude that there must exist a k, 1 ≤ k ≤ s(n),
such that the knowledge-extractor on Hk−1 outputs the preimage of y0 with non-negligible probability
and the knowledge-extractor on Hk outputs the preimage of y0 with negligible probability. Then we
show how to break the WI property or the partial witness-independent property of the POK protocol
of Stage-1, by considering another experiment B.
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B mimics Hk with the following exceptions: The Stage-1 interactions of the k-th session are no
longer emulated internally, but interacting externally with an external knowledge-prover P̂k who uses
sδ as the witness for a random bit δ. Note that, if P̂k uses s1 as its witness, then the experiment B
is identical to Hk, and if P̂k uses s0 as its witness, then B is identical to Hk−1. Now, we consider two
cases:

Case-2.1. The external interactions with P̂k have finished before the sending of the random challenge
(i.e., the second-round message) of Stage-3 of the i-th session.

Case-2.2. The external interactions with P̂k have not finished on the sending of the random challenge
of Stage-3 of the i-th session. This means that P̂k sends at most the first-round message (it may be
the case that P̂k is initiated after the point). Note that the concurrent interleaving and malleating
attack described in Section 3.1 is just a demonstration of this case.

If Case-2.1 occurs, then we break the WI property of the WIPOK protocol of Stage-1 as follows:
Note that in this case, applying the stand-alone knowledge-extractor on B does not incur rewinding the
interactions with P̂k. We can combine the stand-alone knowledge-extractor and the internal emulation
of B into a stand-alone (expected polynomial-time) knowledge-verifier interacting with P̂k. If the
knowledge-extractor outputs the preimage of y0, then we also output 0; in any other case, we output a
random bit. According to the above hybrid arguments, if P̂k uses s0 as its witness, then we will output
0 with probability that is non-negligibly bigger than 1/2; on the other hand, if P̂k uses s1 as its witness,
then we will output 0 with probability negligibly close to 1/2. Furthermore, using Markov’s inequality
standard technique shows that (as is done in [51, 56]), if the WI property holds w.r.t. any strict
polynomial-time algorithm it also holds with any expected polynomial-time algorithm. This contradicts
the WI property of the underlying protocol.

If Case-2.2 occurs, note that B sees at most the first-round message of the underlying partial witness-
independent WIPOK protocol of Stage-1 of the k-th session at the point of sending the random challenge
of Stage-3 in the i-th session. As the first-round message is generated independently of the witness used
by P̂k, and the witness used by P̂k is sδ for a random bit δ ∈ {0, 1}, this means that at the point
of sending the random challenge of Stage-3 in the i-th session for the first time (here we do not need
to consider rewinding), even a computational power unbounded algorithm can guess the random bit δ
with probability just 1/2. Now, we break this assumption as follows. When B is required to send the
second-round message of Stage-3 in the i-th session for the first time, we stop the experiment, and do

the following: we open the perfectly-binding commitment c
(i)
sk (sent by P ∗ in Stage-2 of the i-th session)

by brute force in exponential-time. If we get f−1(y0) then we output 0, and in any other case output a
random bit. Again, by the assumption on Hk−1 and Hk, we can guess the random bit δ with probability
non-negligibly greater than 1/2. This finishes the proof of Lemma 4.1. �

By removing Case-1 and Case-2, we conclude now that for any i, 1 ≤ i ≤ s(n), if the i-th session in
str is accepting w.r.t. common input xi selected by P ∗, then the knowledge-extractor E will output a

witness for xi ∈ L (that is uniquely determined by c
(i)
w ). To finish the proof, we need to further show that

knowledge-extraction is independent of the secret-key used by E (or, S). As SK ′ = s1−b is randomly
and independently distributed over the space of SK = Sb, it is enough to establish the following lemma.

Lemma 4.2 For any auxiliary information τ used by P ∗ in proof stages, for any polynomial-time
computable relation R and any i, 1 ≤ i ≤ s(n), it holds that Pr[R(wi, SK, τ) = 1] is negligibly close to
Pr[R(wi, SK ′, τ) = 1].

Proof (of Lemma 4.2). The proof of Lemma 4.2 is similar to that of Lemma 4.1.
For any i, 1 ≤ i ≤ s(n), we consider the two experiments E0 and E1 presented at the beginning

of the proof of Lemma 4.1. Denote by eµ the output of the stand-alone knowledge-extractor on Eµ,
µ ∈ {0, 1}. Note that Pr[R(eb, sb, τ) = 1] = Pr[R(wi, SK, τ) = 1], as the probabilities are taken over
identical distributions. Similarly, Pr[R(eb, s1−b, τ) = 1] = Pr[R(wi, SK ′, τ) = 1].
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We first show that Pr[R(e0, s1, τ)) = 1] is negligibly close to Pr[R(e1, s1, τ) = 1], where SK = sb

and SK ′ = s1−b. Otherwise, by using similar hybrid arguments and proof procedure as in the proof
of Lemma 4.1, we can break either the WI property or the partial witness independence property of
the underlying protocol of Stage-1. We stress that the perfectly-binding commitment cw of Stage-2
(that uniquely determines the witness for x ∈ L) plays a crucial role in the proof, specifically, for
contradicting the partial witness independence property of Stage-1 protocol. Actually, as shown in
Appendix B, protocol variant without cw is not concurrently knowledge-extractable in the public-key
model (specifically, concrete attacks exist).

Similarly, we get that Pr[R(e0, s0, τ)) = 1] is negligibly close to Pr[R(e1, s0, τ) = 1]. Thus, we
conclude that Pr[R(eb, sb, τ) = 1] = Pr[R(wi, SK, τ) = 1] is negligibly close to Pr[R(e1−b, sb, τ) = 1].
By defining υ = 1 − b, we get Pr[R(e1−b, sb, τ) = 1] = Pr[R(eυ , s1−υ, τ) = 1] = Pr[R(eb, s1−b, τ) = 1]
that is just identical to Pr[R(wi, SK ′, τ) = 1], where both b and υ are random bits. �

�

5 Practical Implementation

In the practical implementation of CZK-CKE arguments, the verifier uses the DLP OWF in key-
generation stage: fp,q,g(x) = gx mod p, where p and q are primes, p = 2q + 1 and |p| = n, and g is an
element of Z∗

p of order q. We also assume the DDH assumption holds on the cyclic group indexed by
(p, q, g) (i.e., the sub-group of order q of Z∗

p). The common input is x ∈ Z∗
p of order q. We remark that,

as noted in [22, 23], the parameter (p, g, g), specifying the fp,q,g and the common inputs, is set outside
the system.

The partial witness independent WIPOK of Stage-1 is replaced by the ΣOR of Schnorr’s basic
protocol for DLP [54]. The perfectly-binding commitment scheme of Stage-2 is replaced by the DDH-
based ElGamal (non-interactive) commitment scheme [28] (recalled in Appendix 2.1). To commit to a
value v ∈ Zq, the committer randomly selects u, r ∈ Zq, computes h = gu mod p and sends (h, ḡ =
gr, h̄ = gvhr) as the commitment.

For the practical Σ-protocol of Stage-3, by the ΣOR-technique we need the following two practical
Σ-protocols:

• A practical Σ-protocol that, given x, cw = (h, ḡ, h̄), proves the knowledge of (w, r) such that
x = gw mod p and ḡ = gr mod p and h̄ = gwhr mod p.

• A practical Σ-protocol that, given y0, y1, csk = (h, ḡsk, h̄sk), proves the knowledge (w, r) such that
either y0 = gw mod p and ḡsk = gr mod p and h̄sk = gwhr mod p or y1 = gw mod p and
ḡsk = gr mod p and h̄sk = gwhr mod p.

Again, by the ΣOR-technique, if we have a practical Σ-protocol of the first type, then we can also
have a practical Σ-protocol of the second type. Thus, to get the practical CZK-CKE implementation,
all we need now is to develop a practical Σ-protocol of the first type. Based on the Σ-protocol for DLP
[54], such Σ-protocol is described below.

Common input: (p, q, g, x, h, ḡ, h̄), where x, h, ḡ, h̄ are all elements of order q in Z∗
p .

Prover’s private input: w, r ∈ Zq such that x = gw mod p and ḡ = gr mod p and h̄ = gwhr

mod p.

Round-1: The prover P randomly selects t ∈ Zq, computes a0 = gt mod p and a1 = ht mod p, sends
(a0, a1) to the verifier V .

Round-2: V responds back a random challenge e taken randomly from Zq.

Round-3: P computes z0 = t + we mod q and z1 = t + re mod q, and sends back (z0, z1) to V .
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Verifier’s decision: V accepts if and only if: gz0 = a0x
e mod p and gz1 = a0ḡ

e mod p and hz1 =
a1(h̄/x)e mod p.

We give a brief analysis of the above Σ-protocol:
Special soundness: From two accepting conversations w.r.t. the same Round-1 messages,

{(a0, a1), e, (z0, z1)} and {(a0, a1), e
′, (z′0, z

′
1)}, we can compute w =

z0−z′0
e−e′

, and r =
z1−z′1
e−e′

.
Special HVZK: The SHVZK simulator S works as follows: on a given random challenge e ∈ Zq,

it randomly selects z0, z1 from Zq, then it sets a0 = gz0x−e and a1 = gz1 ḡ−e = hz1(h̄/x)−e.
We remark that, although the above practical implementation is for specific number-theoretic lan-

guage and is based on the DDH assumption, it is indeed very useful in practical scenarios. Practical
CZK arguments in the BPK model were also developed in [59, 55, 20] (with sequential or concurrent
soundness), but not for the CKE model.

6 Extensions and Discussions

A natural extended notion of CKE is to require that the KEI property formulated in Definition 3.1 not
only holds w.r.t. the individual distribution of each extracted witness wi but also holds w.r.t. the joint
distribution of w. Specifically, the KEI property is reformulated as: Pr[R(w,SK, τ) = 1] is negligibly
close to Pr[R(w,SK ′, τ) = 1], where w = (w1, · · · , ws(n)) is the output of E. We call such property as
joint KEI (JKEI), and CKE with JKEI as JCKE.

The extended JCKE notion essentially says that: the concurrent malicious prover P ∗ not only
knows witness to each individual accepting session, but it also knows the joint witnesses to all accepting
sessions. Clearly, JCKE implies the normal CKE. But, we do not know whether JCKE is strictly
stronger than CKE under proper assumptions, and suggest it as an interesting open problem for future
investigation.

We show that the generic CZK-CKE construction depicted in Figure-1 in Section 4 can be slightly
modified to satisfy the extended JCKE notion. The modification is to replace the partial witness-
independent WI protocol of Stage-1 by any (constant-round) statistical/perfect WI argument/proof
of knowledge system. By requiring the statistical WI property, we can waive the partial witness-
independence property.

For provable JCKE property of the modified protocol, we first note that Lemma 4.1 still holds but
actually with a simplified security analysis. Specifically, by exploiting the statistical WI property of
Stage-1 interaction, in the security analysis we do not need to distinguish whether the k-th session is
finished or not before the point of sending the random challenge of Stage-3 in the i-th session: Whenever

we reach this point, we just open c
(i)
sk by brute force to violate the statistical WI property of Stage-1 of

the k-th session.
This establishes that the output of E, i.e., w, is well determined by str outputted by S (specifically,

the perfectly-binding commitments c
(i)
w ’s) and can be got by brute force in exponential-time from the

str. Now, suppose the JCKE property does not hold for the modified protocol, then we can modify P ∗

into an exponential-time adversary A that breaks the statistical WI property of Stage-1 as follows: A
externally and concurrently runs the statistical WI protocol of Stage-1 on common input PK, playing
the role of knowledge-verifier by running P ∗ as a subroutine and internally emulating Stage-2 and Stage-
3 interactions with P ∗. Whenever P ∗ stops, A extracts the well-determined w from the transcript by
brute force, and applies the assumed distinguishing relation R to guess which secret-key is used by the
external knowledge-prover instances. Details are given in the full version.

Finally, we briefly note two simple ways for achieving statistical WI argument/proof of knowledge
systems. The first approach is to use in key-generation stage any OWF that admits Σ-protocols with
statistical/perfect SHVZK property. Note that in this case, ΣOR is statistical/perfect WI. We remark
that the set of OWFs admitting Σ-protocols of perfect SHVZK property is very large, which includes
in particular the popular DLP and RSA, etc. This shows that the practical CZK-CKE argument
developed in Section 5 satisfies the extended JCKE property. The second approach is to use constant-
round statistical WI argument of knowledge forNP in Stage-1 (in this case, we still can use any OWF for
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key generation). Such protocol can be got by replacing the perfectly/statistically binding commitments
used in Blum’s protocol for DHC by any constant-round statistically-hiding commitment scheme, e.g.,
the one-round schemes of [18, 40] that are based on any collision-resistant hash function or the constant-
round scheme of [32] that are based on claw-free collections (statistically-hiding commitments can also
be based on general assumptions [48, 39], but are of non-constant rounds).

Comments: We remark that although CKE is seemingly weaker than JCKE, it is still very useful
and captures, as clarified in Section 3.2, some nature intuition of concurrent verifier security in the
public-key model. In particular, CKE allows the possibilities of minimal hardness assumption (i.e., any
OWF) or optimal rounds (based on any OWP) for more general cryptographic systems. For example,
when CZK-CKE protocols are used as a building block in larger systems in the public-key model, for
provable security of the larger systems, by hybrid arguments the security of the larger systems could
often be reduced to the inability of the adversary in question to convince of an (individual) statement
in the underlying CZK-CKE system without knowing the corresponding witness. This is one major
reason for separately treating CKE and JCKE in this work.

Another natural extension is to consider concurrent knowledge-extraction for concurrent man-in-
the-middle adversaries who concurrently interact with both prover and verifier instances. This research
line is outside the scope of the current work. We do not deal with concurrent non-malleability in this
work, but we suggest that the clarifications and formulation of CKE in the public-key model presented
in this work are of independent value and can serve as a basis for formulating and achieving more
complex interactive cryptographic protocols in the public-key model. Also, we remark that CZK-CKE
arguments are themselves useful tools and can be used in other applications (they are the concurrent
version of the highly useful ZK arguments of knowledge in the public-key model).
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A Existing CNM Formulations Do Not Capture CKE in the Public-
Key Model

This section is taken from [58] for a clear reference.
Recently, we noted some seemingly related but different works [50, 20]. The works of [50, 20]

consider concurrent non-malleability (CNM) for ZK arguments in the (slightly stronger) authenticated
BPK model. But, a careful investigation shows that the CNM formulations in [50, 20] do not capture
concurrent knowledge-extraction in the public-key model.

A.1 Observations on the work of [20]

We first observe that the CNM formulation of [20] does not capture concurrent knowledge-extraction
in the public-key model. Specifically, although it explicitly requires knowledge-extraction, it does not
require the knowledge-extraction independence (KEI) property as formulated here, which is however
crucial for concurrent knowledge-extraction in the public-key model. In particular, concrete attacks
exist against the protocol of [20], showing that it fails in achieving concurrent knowledge-extraction in
the public-key model (actually, more subtleties regarding [20] are observed in [58]).

A.1.1 The attack on the protocol of [20]

Let us first recall the protocol structure of the CZK protocol of [20].

Key-generation. Let (KG0, Sig0, V er0) and (KE1, Sig1, V er1) be two signature schemes that secure
against adaptive chosen message attacks. On a security parameter 1n, each verifier V randomly
generates two pair (verk0, sigk0) and (verk1, sigk1), where verk is the signature verification key
and sigk is the signing key. V publishes (verk0, verk1) as its public-key while keeping sigkb as its
secret-key for a randomly chosen b from {0, 1} (V discards sigk1−b).

Common input. An element x ∈ L of length poly(n), where L is an NP-language that admits Σ-
protocols.

The main-body of the protocol. The main-body of the protocol consists of the following three
phases:

Phase-1. The verifier V proves to P that it knows either sigk0 or sigk1, by executing the (partial
witness-independent) ΣOR-protocol on (verk0, verk1) in which V plays the role of knowledge
prover. Denote by aV , eV , zV , the first-round, the second-round and the third-round message
of the ΣOR-protocol of this phase respectively. Here eV is the random challenge sent by the
prover to the verifier.

If V successfully finishes the ΣOR-protocol of this phase and P accepts, then goto Phase-2.
Otherwise, P aborts.

Phase-2. P generates a key pair (sk, vk) for a one-time strong signature scheme. Let COM be
a commitment scheme. The prover randomly selects random strings s, r ∈ {0, 1}poly(n), and
computes C = COM(s, r) (that is, P commits to s using randomness r). Finally, P sends
(C, vk) to the verifier V .

Phase-3. By running a ΣOR-protocol, P proves to V that it knows either a witness w for x ∈ L
OR the value committed in C is a signature on the message of vk under either verk0 or verk1.
Denote by aP , eP , zP , the first-round, the second-round and the third-round message of the
ΣOR of Phase-3. Finally, P computes a one-time strong signature δ on the whole transcript
with the signing key sk generated in Phase-2.

Verifier’s decision. V accepts if and only if the ΣOR-protocol of Phase-3 is accepting, and δ is
a valid signature on the whole transcript under vk.
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Note: The actual implementation of the DDL protocol combines rounds of the above protocol. But,
it is easy to see that round-combination does not invalidate the following attacks.

The attack.

The following CMIM attack enables A to malleate the interactions of Phase-1 of one session into
a successful conversation of another concurrent session for different (but verifier’s public-key related)
statements without knowing any corresponding NP-witnesses, showing clearly that the protocol of [20]
is not concurrently knowledge-extractable in the public-key model.

Let L̂ be any NP-language admitting a Σ-protocol that is denoted by Σ
L̂

(in particular, L̂ can be an
empty set). For an honest verifier V with its public-key PK = (verk0, verk1), we define a new language
L = {(x̂, verk0, verk1)|∃w s.t. (x̂, w) ∈ R

L̂
OR w = sigkb for b ∈ {0, 1}}. Note that for any string x̂

(whether x̂ ∈ L̂ or not), the statement “(x̂, verk0, verk1) ∈ L” is always true as PK = (verk0, verk1) is
honestly generated. Also note that L is a language that admits Σ-protocols (as ΣOR-protocol is itself a
Σ-protocol). Now, we describe the concurrent interleaving and malleating attack, in which A successfully
convinces the honest verifier of the statement “(x̂, verk0, verk1) ∈ L” for any arbitrary poly(n)-bit string
x̂ (even when x̂ 6∈ L̂) by concurrently interacting with V (with public-key (verk0, verk1)) in two sessions
as follows.

1. A initiates the first session with V . After receiving the first-round message, denoted by a′V , of the
ΣOR-protocol of Phase-1 of the first session on common input (verk0, verk1) (i.e., V ’s public-key),
A suspends the first session.

2. A initiates a second session with V , and works just as the honest prover does in Phase-1 and
Phase-2 of the second session. We denote by C, vk the Phase-2 message of the second session,
where C is the commitment to a random string and vk is the verification key of the one-time
strong signature scheme generated by A (note that A knows the corresponding signing key sk as
(vk, sk) is generated by itself ). When A moves into Phase-3 of the second session and needs to
send V the first-round message, denoted by aP , of the ΣOR-protocol of Phase-3 of the second
session on common input (x̂, verk0, verk1), A does the following:

• A first runs the SHVZK simulator of Σ
L̂

(i.e., the Σ-protocol for L̂) on x̂ to get a simulated

conversation, denoted by (ax̂, ex̂, zx̂), for the (possibly false) statement “x̂ ∈ L̂”.

• A runs the SHVZK simulator of the Σ-protocol for showing that the value committed in C
is a signature on vk under one of (verk0, verk1) to get a simulated conversation, denoted by
(aC , eC , zC).

• A sets aP = (ax̂, a′V , aC) and sends aP to V as the first-round message of the ΣOR-protocol
of Phase-3 of the second session, where a′V is the one received by A in the first session.

• After receiving the second-round message of Phase-3 of the second session, i.e., the random
challenge eP from V . A suspends the second session.

3. A continues the first session, and sends e′V = eP ⊕ ex̂ ⊕ eC as the second-round message of the
ΣOR-protocol of Phase-1 of the first session.

4. After receiving the third-round message of the ΣOR-protocol of Phase-1 of the first session, denoted
by z′V , A suspends the first session again.

5. A continues the execution of the second session again, sends to zP = ((ex̂, zx̂), (e′V , z′V ), (eC , zC))
to V as the third-round message of the ΣOR-protocol of the second session.

6. Finally, A applies sk on the whole transcript of the second session to get a (one-time strong)
signature δ, and sends δ to V
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Note that (ax̂, ex̂, zx̂) is an accepting conversation for the (possibly false) statement “x̂ ∈ L̂”,
(a′V , e′V , z′V ) is an accepting conversation for showing the knowledge of either sigk0 or sigk1, (aC , eC , zC)
is an accepting conversation for showing that the value committed in C is a signature on vk under one
of (verk0, verk1). Furthermore, ex̂ ⊕ e′V ⊕ eC = eP , and δ is a valid (one-time strong) signature on the
transcript of the second session.This means that, from the viewpoint of V , A successfully convinced V
of the statement “(x̂, verk0, verk1) ∈ L” in the second session but without knowing any corresponding
NP-witness!

A.2 Observations on the CNM formulation of [50]

We note that the CNM formulation in the work [50] uses a different indistinguishability-based approach,
following that of [52, 53]. Specifically, in the CNM formulation of [50], two experiments are defined (page
19 of [50]): a real experiment w.r.t. a real public-key of an honest verifier (here, denoted PKV ), in
which a CMIM adversary mounts CMIM attacks; a simulated experiment run by a simulator/extractor
S w.r.t. a simulated public-key (here, denoted PKS), in which S accesses A and takes a simulated
secret-key SKS . The CNM is then formulated as follows: the distribution of all witnesses used by A in
right sessions in the real experiment is indistinguishable from the distribution of the witnesses used by
A in right sessions in the simulated experiment. Note that [50] does not require the simulator/extractor
to output a simulated indistinguishable transcript.

It appears that the CNM formulation of [50] has already dealt with the issue of knowledge-extraction
independence. But, a careful investigation shows that it does not. The reason is as follows:

Firstly, in the real experiment the statements selected by the CMIM adversary A for both left
and right sessions can be maliciously related to PKV (e.g., some function of PKV ), and thus the
witnesses extracted for right sessions of the real experiment could be potentially dependent on the
secret-key SKV used by honest players. Note that, as witnessed by the concurrent interleaving and
malleating attacks developed in this work, when extracted witnesses are maliciously dependent on SKV

knowledge-extraction does not necessarily capture the intuition that V does know the witnesses to
accepting sessions. Similarly, as in the simulated experiment S uses SKS in simulation/extraction, the
witness extracted to right sessions in the simulated experiment could also be maliciously dependent
on SKS . That is, both the witnesses extracted in real experiment and in the simulated experiment
may be maliciously dependent on SKV and SKS respectively, but the distributions of them still can be
indistinguishable as the distributions of SKV and SKS are identical!.

We note that the above observation only shows that the CNM formulation of [50] does not capture
CKE in the public-key model as formulated in this work. Actually, the protocol of [50] seems to be
intuitively CKE secure in the public-key model. The key point here is that a protocol proved secure
according to the CNM formulation of [50] is not necessarily “concurrently knowledge-extractable” in
the public-key model. In summary, we suggest that the clarifications and formulation of CKE in the
public-key model presented in this work are of independent value, and has the potential to serve as
a basis for achieving more complex interactive cryptographic protocols in the public-key model where
arguments about internal states and possession of secrets are crucial.

B Discussion: On the Necessity of cw and csk

To show the necessity of the commitments cw and csk used in Stage-2 of the protocol depicted in
Figure-1, we demonstrate concrete attacks against variants of the protocol without either cw or csk,
where (partial witness-independent) WIPOK protocols are implemented by ΣOR-protocols.

B.1 The attack against variant protocol without cw

The variant protocol without cw, which amounts to the CZK protocol of [19] that is the fixed protocol
of [59], is re-depicted in Figure-2 (page 27).
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ΣOR-based protocol variant without cw 〈P, V 〉

Key Generation. Let f : {0, 1}n → {0, 1}n be any OWP, where n is the security parameter. Each verifier
V selects random strings s0, s1 from {0, 1}n, randomly selects a bit b ← {0, 1}, computes yb = f(sb) and
sets y1−b = s1−b. V registers PK = (y0, y1) in a public file F as its public-key, and keeps SK = sb as its
secret-key.
Common input. An element x ∈ L ∩ {0, 1}poly(n). Denote by RL the corresponding NP-relation for L.

P private input. An NP-witness w ∈ {0, 1}poly(n) for x ∈ L.

Stage-1. V proves to P that it knows a preimage to one of y0, y1, by running a partial witness independent
ΣOR-protocol for NP , e.g., the OR-proof of Blum’s protocol for DHC, in which V plays the role of
knowledge prover. The witness used by V in this stage is sb. Denote by aV , eV , zV , the first-round,
the second-round and the third-round message of the ΣOR-protocol, respectively.

Stage-2. If V successfully finishes Stage-1, P does the following: it computes csk = C(0n, rsk), where C
is a perfectly-binding commitment scheme and rsk is the randomness used for commitments.

Stage-3. Define a new NP-language L′ = {(x, y0, y1, csk)|(∃w s.t. (x, w) ∈ RL) ∨ (∃(w, rsk , b) s.t. csk =
C(w, rsk)∧yb = f(w)∧b ∈ {0, 1})}. Then, P proves to V that it knows a witness for (x, y0, y1, csk) ∈
L′, by running a ΣOR-protocol forNP . The witness used by P is w such that (x, w) ∈ RL. We denote
by aP , eP , zP , the first-round, the second-round, and the third-round message of the ΣOR-protocol
of this stage, respectively.

Figure-2. ΣOR-based protocol variant without cw.

Let L̂ be any NP-language admitting a Σ-protocol that is denoted by Σ
L̂

(in particular, L̂ can be
an empty set). For an honest verifier V with its public-key PK = (y0, y1), we define a new language
L = {(x̂, y0, y1)|∃w s.t. (x̂, w) ∈ R

L̂
∨ ∃(w, b) s.t. yb = f(w) ∧ b ∈ {0, 1}}. Note that for any string

x̂ (whether x̂ ∈ L̂ or not), the statement “(x̂, y0, y1) ∈ L” is always true as PK = (y0, y1) is honestly
generated. Also note that L is a language that admits Σ-protocols (as ΣOR-protocol is itself a Σ-
protocol). Now, we describe the concurrent interleaving and malleating attack, in which P ∗ successfully
convinces the honest verifier of the statement “(x̂, y0, y1) ∈ L” for any arbitrary poly(n)-bit string x̂
(even when x̂ 6∈ L̂) by concurrently interacting with V in two sessions as follows.

1. P ∗ initiates the first session with V . After receiving the first-round message, denoted by a′V , of
the ΣOR-protocol of Stage-1 of the first session on common input (y0, y1) (i.e., V ’s public-key),
P ∗ suspends the first session.

2. P ∗ initiates a second session with V , and works just as the honest prover does in Stage-1 and Stage-
2. We denote by csk the Stage-2 message of the second session (i.e., csk commits to 0n). When P ∗

moves into Stage-3 of the second session and needs to send V the first-round message, denoted
by aP , of the ΣOR-protocol of Stage-3 of the second session on common input (x̂, y0, y1, csk), P ∗

does the following:

• P ∗ first runs the SHVZK simulator of Σ
L̂

(i.e., the Σ-protocol for L̂) on x̂ to get a simulated

conversation, denoted by (ax̂, ex̂, zx̂), for the (possibly false) statement “x̂ ∈ L̂”. Then, P ∗

runs the SHVZK simulator of the underlying Σ-protocol for NP on (y0, y1, csk) to get a simu-
lated conversation, denoted by (ask, esk, zsk), for the (false) statement “∃(w, rsk, b) s.t. csk =
C(w, rsk) ∧ yb = f(w) ∧ b ∈ {0, 1}”.

• P ∗ sets aP = (ax̂, a′V , ask) and sends aP to V as the first-round message of the ΣOR-protocol
of Stage-3 of the second session, where a′V is the one received by P ∗ in the first session.

• After receiving the second-round message of Stage-3 of the second session, denoted by eP

(i.e., the random challenge from V ), P ∗ sets e′V = eP ⊕ex̂⊕esk and then suspends the second
session.
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ΣOR-based protocol variant without csk 〈P, V 〉

Key Generation. Let f : {0, 1}n → {0, 1}n be any OWP, where n is the security parameter. Each verifier
V selects random strings s0, s1 from {0, 1}n, randomly selects a bit b ← {0, 1}, computes yb = f(sb) and
sets y1−b = s1−b. V registers PK = (y0, y1) in a public file F as its public-key, and keeps SK = sb as its
secret-key.
Common input. An element x ∈ L ∩ {0, 1}n. Denote by RL the corresponding NP-relation for L.

P private input. An NP-witness w ∈ {0, 1}n for x ∈ L. Here, we assume w.l.o.g. that the witness for
any x ∈ L∩{0, 1}n is of the same length n (in particular, consider the NP-complete language DHC).

Stage-1. V proves to P that it knows a preimage to one of y0, y1, by running a partial witness independent
ΣOR-protocol for NP , e.g., the OR-proof of Blum’s protocol for DHC, in which V plays the role of
knowledge prover. The witness used by V in this stage is sb. Denote by aV , eV , zV , the first-round,
the second-round and the third-round message of the ΣOR-protocol, respectively.

Stage-2. If V successfully finishes Stage-1, P does the following: it computes cw = C(w, rw), where C is
a perfectly-binding commitment scheme and rw is the randomness used for commitments.

Stage-3. Define a new NP-language L′ = {(x, y0, y1, cw)|(∃(w, rw) s.t. cw = C(w, rw) ∧ (x, w) ∈ RL) ∨
(∃(w, b) s.t. yb = f(w)∧b ∈ {0, 1})}. Then, P proves to V that it knows a witness for (x, y0, y1, cw) ∈
L′, by running a ΣOR-protocol for NP . The witness used by P is (w, rw). We denote by aP , eP , zP ,
the first-round, the second-round, and the third-round message of the ΣOR-protocol of this stage,
respectively.

Figure-3. ΣOR-based protocol variant without csk.

3. P continues the first session, and sends e′V = eP ⊕ ex̂ ⊕ esk as the second-round message of the
ΣOR-protocol of Stage-1 of the first session.

4. After receiving the third-round message of the ΣOR-protocol of Stage-1 of the first session, denoted
by z′V , P ∗ suspends the first session again.

5. P ∗ continues the execution of the second session again, and sends zP = ((ex̂, zx̂), (e′V , z′V ), (esk, zsk))
to V as the last-round message of the second session.

Note that (ax̂, ex̂, zx̂) is an accepting conversation for the (possibly false) statement “x̂ ∈ L̂”,
(a′V , e′V , z′V ) is an accepting conversation for showing the knowledge of the preimage of either y0 or
y1, (ask, esk, zsk) is an accepting conversation for the statement “∃(w, rsk, b) s.t. csk = C(w, rsk) ∧ yb =
f(w)∧ b ∈ {0, 1}”, and furthermore ex̂⊕ e′V ⊕ esk = eP . According to the description of ΣOR (presented
in Section 2), this means that, from the viewpoint of V , (aP , eP , zP ) is an accepting conversation of
Stage-3 of the second-session on common input (x̂, y0, y1). That is, P ∗ successfully convinced V of the
statement “(x̂, y0, y1) ∈ L” (even for x̂ 6∈ L̂) in the second session but without knowing any corresponding
NP-witness.

B.2 The attack against variant protocol without csk

The variant protocol without csk is re-depicted in Figure-3 (page 28).

Now, we describe the concurrent interleaving and malleating attack, in which P ∗ successfully con-
vinces the honest verifier of the statement “x ∈ L” for any n-bit string x without knowing any NP-
witness by concurrently interacting with V in two sessions as follows.

1. P ∗ initiates the first session with V . After receiving the first-round message, denoted by a′V , of
the ΣOR-protocol of Stage-1 of the first session on common input (y0, y1) (i.e., V ’s public-key),
P ∗ suspends the first session.
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2. P ∗ initiates a second session with V , and works just as the honest prover does in Stage-1. In Stage-
2 of the second session, P ∗ sends cw = C(0n) (rather than C(w) as honest prover does). When
P ∗ moves into Stage-3 of the second session and needs to send V the first-round message, denoted
by aP , of the ΣOR-protocol of Stage-3 of the second session on common input (x, y0, y1, cw), P ∗

does the following:

• P ∗ first runs the SHVZK simulator of the underlying Σ-protocol for NP on common input
(x, cw) to get a simulated conversation, denoted by (ax, ex, zx), for the (false) statement
“∃(w, rw) s.t. cw = C(w, rw) ∧ (x,w) ∈ RL)”.

• P ∗ sets aP = (ax, a′V ) and sends aP to V as the first-round message of the ΣOR-protocol of
Stage-3 of the second session, where a′V is the one received by P ∗ in the first session.

• After receiving the second-round message of Stage-3 of the second session, denoted by eP

(i.e., the random challenge from V ), P ∗ sets e′V = eP ⊕ ex and then suspends the second
session.

3. P continues the first session, and sends e′V = eP ⊕ ex as the second-round message of the ΣOR-
protocol of Stage-1 of the first session.

4. After receiving the third-round message of the ΣOR-protocol of Stage-1 of the first session, denoted
by z′V , P ∗ suspends the first session again.

5. P ∗ continues the execution of the second session again, and sends zP = ((ex, zx), (e′V , z′V )) to V
as the last-round message of the second session.

Note that (ax, ex, zx) is an accepting conversation for the (false) statement “∃(w, rw) s.t. cw =
C(w, rw) ∧ (x,w) ∈ RL)”, (a′V , e′V , z′V ) is an accepting conversation for showing the knowledge of the
preimage of either y0 or y1, and furthermore ex ⊕ e′V = eP . According to the description of ΣOR

(presented in Section 2), this means that, from the viewpoint of V , (aP , eP , zP ) is an accepting conver-
sation of Stage-3 of the second-session on common input x. That is, P ∗ successfully convinced V of the
statement “x ∈ L” but without knowing any corresponding NP-witness.
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