Electronic Colloquium on Computational Complexity, Report No. 4 (2007)

Time Hierarchies: A Survey*

Lance Fortnow Rahul Santhanam
University of Chicago Simon Fraser University
fortnow@cs.uchicago.edu rsanthan@cs.sfu.ca

January 11, 2007

Abstract

We survey time hierarchies, with an emphasis on recent work on
hierarchies for semantic classes.

1 Introduction

Hartmanis and Stearns [HS65], in their seminal paper on computational
complexity, showed that given more time one can compute more languages.
For example there exist languages computable in deterministic n® time not
computable in time O(n?).

Hartmanis and Stearns used a simulation and diagonalization style proof
similar to those used by Cantor [Canl5] and Turing [Tur36]. This method
has the machine with the larger time bound simulate machines with smaller
time bounds and then negate the answers. This technique works well with
deterministic time and space measures and, using the results of Immer-
man [Imm88] and Szelepcsényi [Sze88], nondeterministic space as well.

For nondeterministic time, we can still do a simulation but can no longer
negate the answer directly. Cook [Coo72] uses several layers of a translation
argument to reduce the problem to the deterministic time hierarchy, al-
beit with a weaker separation. Seiferas, Fischer and Meyer [SFM78] extend
Cook’s work to achieve near optimal bounds.

Now consider a measure like BPTIME where we do have complementa-
tion. The Hartmanis-Stearns approach still fails to work because we cannot

*A version of this survey appeared as SIGACT News Complexity Theory Column 52
[FS06], with an introduction by Lane Hemaspaandra

ISSN 1433-8092

directly simulate. BPTIME is an example of a semantic non-syntactic mea-
sure, where given a probabilistic polynomial-time machine we require that
the accepting probability is either high or low for every input. It is un-
decidable to determine whether a given machine fulfills this promise and
straightforward simulation will result in a machine that itself does not ful-
fill the promise. A true BPTIME hierarchy still remains a challenging open
problem.

In recent years a number of researchers have shown hierarchies for
BPTIME and other semantic measures if we allow the classes to have a
small amount of advice, i.e., additional information that depends only on
the length of the input. A series of papers by Boaz Barak, Lance Fortnow,
Rahul Santhanam, Luca Trevisan, Dieter van Melkebeek and Konstantin
Perveyshev [Bar02, FS04, FST05, vMPO06] lead to the result that every rea-
sonable semantic measure has a hierarchy where both machines have a single
bit of advice, for example

BPTIME(n*%)/1 € BPTIME(n314) /1.

This survey will review the work on time hierarchies with a focus on those
recent results on the semantic hierarchies, as well as some related work on
average-case hierarchies. We hope this survey serves not as a wrap-up of
final results in a field but a starting point to find some techniques to remove
that pesky last bit of advice.

2 Notation and Preliminaries

We assume the reader familiar with the basic notions in computational com-
plexity. We define a series of complexity measures on multitape Turing
machines.

e DTIME(t(n)) is the set of languages accepted by deterministic ma-
chines using time O(t(n)).

e NTIME(¢(n)) is the set of languages accepted by nondeterministic ma-
chines using time O(t(n)).

e RTIME(¢(n)) is the set of languages accepted by probabilistic machines
using time O(t(n)) where strings in the language are accepted with
probability at least one-half and strings outside the language are al-
ways rejected.

e BPTIME(t(n)) is the set of languages accepted by probabilistic ma-
chines using time O(t(n)) where strings in the language are accepted
with probability at least two-thirds and strings outside the language
are accepted with probability at most one-third.

For definitions of other complexity measures, refer to the Complexity
Zoo http://qwiki.caltech.edu/wiki/Complexity_Zoo.

We distinguish between semantic complexity measures and the special
case of syntactic complexity measures. Syntactic measures are semantic
measures for which there is an effective enumeration of machines defining
languages in the measure. More formally, we identify each semantic measure
with a recursive enumeration M of machines and a partial “answer” function
A:Mx{0,1}* — {0,1,?}. For a machine M € M and an input = € {0,1}*,
A(M,) is defined if M halts on . A(M,z) =1 is to be interpreted as “M
accepts 7, A(M,z) = 0 as “M rejects ” and A(M,x) = “?” as “M doesn’t
satisfy the promise on x”.

Syntactic measures are those for which any machine M € M which halts
on all inputs has either A(M,z) = 1 or A(M,z) = 0 for any . DTIME
and NTIME are syntactic measures because each halting DTIME or NTIME
machine always outputs an answer on an input - it either accepts or rejects.
On the other hand, BPTIME is a semantic non-syntactic measure because
there are probabilistic machines which accept with probability 1/2 and reject
with probability 1/2 - such machines do not give an unambiguous answer
on an input.

Sometimes, a non-syntactic class may coincide with a syntactic class.
For instance, by results of Lund, Fortnow, Karloff and Nisan [LFKN92],
and Shamir [Sha92|, IP = PSPACE, where IP is the class of languages with
polynomial-time interactive proofs, defined using the non-syntactic measure
IPTIME.

We need to define a notion of advice for semantic measures. L €
CTIME(t)/a(n) if there is an advice function s : N — {0,1}*™ and a
machine M € M such that for each n, for all = of length n, M is a CTIME(¢)-
machine on input < s(|z|),x >, and x € L iff M(< s(|z|),x >) = 1. Note
that in the above definition M is not required to be a CTIME(¢)-machine
on input < y,x > where y # s(|z|) which differs from the original definition
of advice of Karp and Lipton [KL82| for non-syntactic measures. Proving
a hierarchy theorem with advice in the Karp-Lipton model would imply a
hierarchy theorem without advice.

A language L is in i.0.-CTIME (t) for a complexity measure CTIME if
there is a CTIME machine M which for infinitely many input lengths n, runs

in time t and decides L correctly on all inputs of length n.

A language L is in heury,-CTIME (t) for a complexity measure CTIME if
there is a CTIME machine M which for each input length n, for at least a
fraction p of inputs of length n, runs in time ¢ and decides L correctly on
those inputs.

In this survey, the time bounds t we consider are by default constructible,
which means that there is a deterministic Turing machine which given input
1™, outputs t(n) within ¢(n) steps.

3 Deterministic and Non-deterministic Hierar-
chies

In this section, we recapitulate the techniques used to prove hierarchies for
deterministic and non-deterministic classes.

3.1 Simulation and Diagonalization

The most basic approach to show hierarchies uses simulation and diagonal-
ization. Say we want to show a hierarchy for deterministic time. This means
that we need to prove, for time bounds ¢ and T', where T" does not grow too
much faster than ¢, that there is a language L in DTIME(T') \ DTIME(t).
Consider an effective enumeration of DTIME machines halting in time t.
Assign to each input z a machine M (z) in the enumeration in some easily
computable fashion so that each machine in the enumeration has some in-
put assigned to it. We define our language L using a machine M which,
given input x, simulates M (x) on x and “does the opposite”, i.e., it accepts
if M(x) rejects and rejects if M (x) accepts. The machine M can “do the
opposite” since DTIME is closed under complement.

L is not in DTIME(¢) - for any DTIME machine M’ operating in time
t, L differs from L(M') on the (non-empty) set of inputs assigned to M’.
Thus we have shown the required lower bound on the complexity of L. The
upper bound depends on the complexity of simulation of machines in the
enumeration. If DTIME(¢) machines can be simulated in time T, we obtain
the required upper bound on the complexity of L.

The above approach was used in the foundational papers [HS65, HS66]
to establish hierarchies for time-bounded deterministic computation.

Theorem 1. [HS65, HS66] For any functions t and T such that T is time-
constructible and tlog(t) = o(T), DTIME(t) C DTIME(T).

The tlog(t) term in the above result arises from the complexity of simu-
lation of deterministic machines - any k-tape deterministic Turing machine
running in time ¢ can be simulated by a 2-tape Turing machine running in
time ¢ log(t) [HS66].

The simulation and diagonalization approach works for any complex-
ity measure which is syntactic and is closed under complement. Thus, it
works also for deterministic and nondeterministic space [Imm88, Sze88], and
unbounded-error probabilistic time [Gil77]. However, it does not work for
non-deterministic time which is not known to be closed under complement.

3.2 Stronger Separations

From Theorem 1, we only get that there is some language L € DTIME(T)
such that for any DTIME(¢) machine M, there are infinitely many inputs on
which M outputs the wrong answer!'. Often, we would like any DTIME(¢)
machine M to fail on L in a stronger way, so that the set of inputs on which
mistakes are made is “non-sparse” in some sense. This question has been
extensively studied; some of the stronger notions of lower bounds that have
been considered are:

1. Almost-every-length lower bounds: For any DTIME(¢) machine M and
every large enough input length n, there is some input of length n on
which M fails to compute L.

2. Lower bounds against advice: For any DTIME(¢) machine M, M fails
to compute L even when it is given access to a small advice string.

3. Average-case lower bounds: For any DTIME(¢) machine M, there are
infinitely many input lengths n such that mistakes are made on at
least s(n) fraction of inputs, for some function 0 < s(n) < 1.

4. Almost-everywhere lower bounds: Any machine M that computes L
correctly takes time more than ¢ on all but finitely many inputs.

When the upper bound is of the same kind as the lower bound, we call
the corresponding result a hierarchy theorem; when the upper bound is of a
more restrictive kind than the lower bound, we call the result a separation
theorem. Thus for each of the above notions, a separation theorem implies
a hierarchy theorem, but the converse is not necessarily true.

'If there were only finitely many such inputs, we could construct a new machine M’
from M into which these inputs are hard-coded, contradicting Theorem 1.

The notions above are all independent, and we can sometimes prove
lower bounds in two or more of them simultaneously. A simple application of
the simulation-diagonalization paradigm already gives almost-every-length
separations against advice with the same parameters as before. We assign
“diagonalizable inputs” to machines in a careful way so that for any machine
M and any advice string w, for all but finitely many input lengths n, there
is an input of length n on which we diagonalize against M with advice string
w. Implementing this idea, we obtain the following folklore result:

Theorem 2. For any functions t and T such that tlog(t) = o(T) and T
is time-constructible, there is a language L € DTIME(T) such that L ¢
1.0.DTIME(t)/(n — log(n)).

Obtaining average-case and almost-everywhere separations takes con-
siderably more work. The first average-case separation was obtained by
Wilber [Wil83]. Goldreich and Wigderson [GWO00] obtained a separation
with a much better inapproximability factor. They state their result for
exponential-time classes but their technique can be seen to work for any
time-constructible bound.

Theorem 3. There is a universal constant k such that the following holds:
Let T be any time-constructible function, and R = min(T, 2"/2). Then
there is a language L in DTIME(T®) such that L ¢ i.0.heury /o1 1/r —
DTIME(T)/ log(R).

One shortcoming of Theorem 3 is that the gap between the lower bound
and the upper bound is larger than we might hope. This gap can be reduced
at the cost of a worse inapproximability factor.

An almost-everywhere separation for deterministic time was obtained by
Geske, Huynh and Seiferas [GHS91].

Theorem 4. [GHS91] For any constructible functions t and T such that
tlog(t) = o(T), there is a language L in DTIME(T) such that any determin-
istic machine accepting L takes time more than t on all but finitely many
mputs.

Results analogous to Theorem 2, Theorem 3 and Theorem 4 hold for any
syntactic measure closed under complement.
3.3 Indirect Diagonalization

The simulation-diagonalization approach doesn’t apply directly to the case
of non-deterministic time. The problem is that non-deterministic time is

not known to be closed under complement, hence it is unclear how to define
a non-deterministic machine that “does the opposite”.

The problem can be circumvented through an “indirect diagonalization”.
We assume that a hierarchy theorem does not hold and then find a way to
“boost” this assumption until we derive a contradiction to some other hi-
erarchy proved using a direct diagonalization. Boosting can be done using
a translation method [RF65, Iba74]. Given a simulation of one resource-
bounded class in another, translation gives a corresponding simulation where
the two classes use proportionately more resources. The following lemma
holds for any complexity measures BTIME and CTIME closed under deter-
ministic transductions - this property is true of all the measures we are
interested in, such as NTIME and BPTIME.

Lemma 5. If BTIME(¢t;) € CTIME(t2) for some complexity measures

BTIME and CTIME and time bounds t1 and to, then for any time-
constructible function f(n) = n, BTIME(t1(f)) C CTIME(t2(f)).

The proof of Lemma 5 is simple. Suppose we want to show that a
language L € BTIME(t1(f)) can be solved in CTIME(t2(f)). Consider a
padded version L’ of L, where an input 2’ € L’ if and only if 2’ consists
of a string x € L followed by f(|z|) — |x| consecutive 1’s. Using time-
constructibility of f, L' € BTIME(t1), since a machine for L' can be defined
which simulates a machine for L on the portion of the input with the padding
removed. By assumption, L' € CTIME(t2). Now a CTIME(¢2(f)) machine
for L can be defined which pads the input x to L with f(|z|) — |z| 1’s (again
using time-constructibility of f) and then runs the CTIME(¢2) machine for
L’ on the padded input.

Without using translation at all, we can already prove that NTIME(n) C
NTIME(n"), as follows. If NTIME(n™) C NTIME(n), then DTIME(n™) C
NTIME(n") € NTIME(n) C DTIME(29(™), where we use the facts that de-
terminism is a special case of non-determinism, and that a non-deterministic
computation can be simulated deterministically with an exponential slow-
down. Thus we have DTIME(n") C DTIME(29(), which is a contradiction
to Theorem 1.

But the non-deterministic time bounds we separate in this manner are
very far apart; the translation method allows us to reduce this gap. Suppose
T is a constructible function such that 7®)(n) = w(n™) for some constant k.
If NTIME(T) € NTIME(n), then by k applications of Lemma 5, we have that
NTIME(T®)) C NTIME(n), which is a contradiction to the separation we
proved in the preceding paragraph. Thus we get a separation of NTIME(T)
and NTIME(n) even for certain time bounds T' which are sub-exponential

(just by choosing k large enough). However, the time bounds 7" for which we
derive separations in this way are not even close to polynomial in ¢, let alone
O(tpolylog(t)) as in Theorem 1. A polynomially bounded function composed
with itself a constant number of times remains polynomially bounded, rather
than reaching the exponential heights we covet.

Steve Cook [CooT72] was the first to derive a hierarchy theorem for non-
deterministic time where T was polynomial in ¢. He used the basic frame-
work sketched above. The key additional idea was that he could apply
Lemma 5 a non-constant number of times by using the fact that NTIME is
a syntactic measure. We do not go into the details of his proof, since later
methods achieved better parameters, and restrict ourselves to stating his
result:

Theorem 6. For any reals a and b such that 1 < a < b, NTIME(n®) C
NTIME(n?).

Seiferas, Fischer and Meyer [SFM78] and Zik [Z83] gave a non-
deterministic hierarchy theorem with better parameters by using a different
indirect diagonalization argument.

Theorem 7. For any time-constructible functions t and T such that t(n +
1) =0o(T'(n)), NTIME(t) C NTIME(T).

To compare with Theorem 6, note that when ¢ is a polynomial, Theorem
7 implies a separation of NTIME(¢) and NTIME(T) for any T such that
t = o(T). Thus not only does Theorem 7 beat Theorem 6, but it is also
gives a tighter separation than Theorem 1 does for deterministic time in the
polynomial time range! This tightness owes to the fact that 2-tape non-
deterministic Turing machines can simulate k-tape machines with only a
constant factor slowdown [BGW70].

We now give a sketch of the proof of Theorem 7, choosing Zak’s proof
for its relative simplicity.

Suppose we want to define a non-deterministic machine M that diag-
onalizes against a machine M; running in time ¢ on input z. Since M is
non-deterministic, it cannot directly “do the opposite”, and since we’d like
M to run in time only slightly more than M;, it cannot simulate M; de-
terministically and then “do the opposite”. However, for the purpose of
deriving a hierarchy, M does not need to differ from M; on the specific
input z, rather it suffices that there is some input on which the machines
differ. For any n <= j < m = n!™_ M on input 1V simulates M; on input
19+1) accepting if M; accepts and rejecting if M; rejects. The existence of

an effective enumeration for non-deterministic machines allows us to define
a machine performing such a simulation. When j = m, M on input 17 sim-
ulates M; on input = deterministically, accepting if M; rejects and rejecting
if M; accepts. Note that since m = n'(™, M has enough time to perform
the trivial exponential-time deterministic simulation of M; on input 1". Es-
sentially, what we are doing is deferring the diagonalization step by linking
M and M; together on larger and larger inputs until M has an input large
enough that it can actually “do the opposite” deterministically.

To see that this works, assume that M (17) = M;(17) for all n < j < m.
By definition of M, we also have that M (17) = M;(17*1) for all n < j < m.
Thus we have that M;(1") = M(1") = M;(1"™) = ... = M(1™ 1) =
M;(1™) = M(1™), but from the definition of M, M (1™) # M;(1"™), thus we
have a contradiction.

There are a few details that remain to be worked out. We have shown
how to diagonalize against a single machine M; but in fact we have to
diagonalize against all such machines. Also, we haven’t specified how to
choose the sequence of inputs. Both problems can be solved by diagonalizing
against M; on sequences of inputs starting with input of the form z¢ = 1?0170
for any r > 0, with the jth input in the sequence being z; = 1017019, M
behaves arbitrarily on inputs not of this form?. As far as the time taken by
M is concerned, if we are diagonalizing against time ¢ machines, then M
can be made to run in time 7T for any constructible 7" such that t(n + 1) =
o(T(n)). This is because M needs to simulate a time ¢ non-deterministic
machine on an input of length one larger than its own input length, for
inputs z; in a sequence where j < m. When j = m, M needs to perform
the deterministic simulation of M; on an exponentially smaller input, and
this can be done in linear time.

The only property of non-deterministic time we used in the proof of
Theorem 7 is that it has an effective enumeration. Thus Theorem 7 also
works for other syntactic complexity measures not known to be closed under
complement, such as ¥y — TIME for any positive k.

Theorem 7 does not have very good parameters when ¢ is large. For in-
stance, it does not show that NTIME(22""" /1log(n)) € NTIME(22"), though
the corresponding result for deterministic time follows easily from The-
orem 1. Rackoff and Seiferas [RS81] showed that this deficiency holds
for any relativizing method, by giving an oracle with respect to which
NTIME(22""" /log(n)) = NTIME(2%"). Every hicrarchy theorem proved to

2With a more careful coding, the diagonalizing language L(M) can in fact be made
unary.

date has a relativizing proof, so a novel technique would be required to get
better parameters.

Another weakness of the technique of Theorem 7 is that it does not
yield most of the stronger kinds of lower bounds we considered in Subsec-
tion 3.2. The best almost-everywhere, almost-every-length and average-case
separations known for non-deterministic time (when the upper bound is
worst-case) are weak ones that can be proved by using padding to boost a
presumed inclusion a constant number of times and then using direct diago-
nalization to derive a contradiction. Allender, Beigel, Hertrampf and Homer
[ABHH93] showed that for the case of almost-everywhere separations, this
is the best result that can be obtained using relativizing methods. For sep-
arations against advice, the situation is a little better. Fortnow, Santhanam
and Trevisan [FSTO05] give a separation against a small amount of advice by
using a variant of Zak’s technique.

Theorem 8. For any real number a > 1, there exists a real b > a such that
NTIME(n®) Z NTIME(n®)/log(n)'/?.

4 Hierarchies for Randomized Classes

4.1 Hierarchies via Optimal Algorithms

BPTIME and RTIME are natural complexity measures for which one would
like to prove hierarchies. Such results would have particular significance
because efficient solvability in probabilistic time is often identified with fea-
sibility, and hence the existence of hierarchies implies that there are degrees
of feasibility when solving computational problems.

The indirect diagonalization technique used to prove Theorem 7 doesn’t
work for these measures. The technique makes essential use of the existence
of an efficient measure, while BPTIME and RTIME are non-syntactic.

The method of boosting a presumed collapse using translation to yield a
contradiction to direct diagonalization, outlined at the beginning of Section
3.3, does work, since the assumption of an efficient enumeration is not used
there. This method gives the best hierarchy known thus far for completely
uniform probabilistic classes [KV87].

Theorem 9. Lett and T be time-constructible functions such that there ex-
ists a constant k for which T*(t) = 2*(). Then BPTIME(t) € BPTIME(T).

The absence of an efficient enumeration is a fundamental obstacle to
proving tight hierarchies, since known diagonalization results with good pa-
rameters such as Theorem 1 and Theorem 7 use simulation in an essential

10

way. In a breakthrough, Barak [Bar02] showed that this obstacle can be
overcome to show hierarchies with advice (as opposed to hierarchies for
completely uniform classes) for probabilistic time with two-sided error.

Theorem 10. For any reals 1 < a, there is a real b such that
BPTIME(n®)/log(log(n)) € BPTIME(n®)/log(n).

The same result holds with the complexity measure BQTIME correspond-
ing to time complexity of quantum Turing machines.

Barak introduced a new paradigm for proving hierarchy theorems, based
on optimal algorithms. An optimal algorithm for a language L is an algo-
rithm that is at worst polynomially slower than any algorithm for L. Let
k be a universal constant such that if there is an algorithm for L running
in time ¢, then the optimal algorithm runs in time less than t*. If T is the
time taken by the optimal algorithm, then we get that L is solvable in time
T but not in time Tk,

Modulo the existence of an optimal algorithm, this already gives us a hi-
erarchy of a sort, albeit for a mysterious time function T'. To get hierarchies
for polynomial time bounds, we could hope to use translation to “scale” the
separation downward, as long as 7' is super-polynomial. The obstacle here
is that there is no reason to believe that T is constructible, and Lemma 5
requires constructibility of 7. Barak gets around this obstacle by using a
small amount of advice to encode a good approximation to 7" - this is why
he only gets a hierarchy with advice and not a fully uniform hierarchy. He
shows how to encode any T that is at most exponential in n with at most
log(log(n)) bits of advice. Since the upper bound uses advice, we must take
care that the lower bound is against classes with at least as much advice,
since otherwise a separation can be shown by a simple counting argument.

Barak’s main technical contribution was to construct probabilistic opti-
mal algorithms with two-sided error for non-trivial languages®. Specifically,
he showed how to construct an optimal algorithm for any EXP-complete lan-
guage L. The construction relies on the existence of instance checkers for
EXP-complete languages, which follows from the famous results on proba-
bilistically checkable proofs [BFLI1, AS98|. Informally, an instance checker
is a procedure that given an input x and oracle access to a machine M,
distinguishes with high confidence between the case that M decides L cor-
rectly on all inputs and the case that M decides L incorrectly on input x.
The optimal algorithm, given input x, cycles among all probabilistic ma-
chines of small size, searching for one that decides L correctly. It uses the

8 Any language in BPP trivially has such an optimal algorithm.

11

instance checker to weed out those machines that decide L incorrectly on .
Of course, the optimal algorithm doesn’t know a priori how long it should
run each machine, so it just tries different running times 1,2,4,8... in suc-
cession. If there is some machine M; running in time T deciding L, the
optimal algorithm will only spend time polynomial in T" before trying M;
for 2M108(1)1 steps, at which point it will halt with high probability with the
right answer. Also, by the property of the instance checker, there is only a
very small probability that the optimal algorithm outputs the wrong answer
before this stage. These two facts together establish the correctness of the
optimal algorithm.

To complete the proof of a hierarchy, there are two possibilities to con-
sider. If the optimal algorithm runs in polynomial time, then L € BPP
and hence EXP = BPP, using the fact that L is EXP-complete. In this
case, a hierarchy with advice follows from the corresponding hierarchy for
deterministic exponential time. In the other case, the time function 7' of
the optimal algorithm is super-polynomial and we can use translation as
described earlier to obtain a hierarchy with small advice.

To make progress towards a uniform hierarchy, we would like to reduce
the amount of advice in the upper bound as much as possible. If the upper
bound used no advice at all, then we would have a separation against advice,
and in particular a hierarchy. Fortnow and Santhanam [FS04] showed how
to reduce the advice to 1 bit. Their proof followed the same basic framework
as Barak’s, with the difference being in the translation step. They showed
how to accomplish the translation using just 1 bit of advice to indicate
whether the amount of padding is large enough that the optimal algorithm
runs in time polynomial in the length of the padded input. Goldreich, Sudan
and Trevisan [GST04] abstracted out their idea to show that any separation
of a time-bounded class with less than logarithmic advice against a class
using slightly more advice can be translated to a separation of the first class
(using slightly less time) with 1 bit of advice against the second class (using
slightly less time) with slightly more advice. Thus we obtain the following
separation result which improves on Theorem 10.

Theorem 11. For any real a > 1, there is a real b such that
BPTIME(n®)/1 € BPTIME(n?)/ log(n).

We get a tighter hierarchy using translation if we just want a hierarchy
with 1 bit of advice and not a separation against log(n) bits of advice.

Corollary 12. For any reals 1 < a < b, BPTIME(n®)/1 C BPTIME(n®)/1.

12

Barak’s paradigm does have the disadvantage that it does not give good
parameters if we are interested in super-polynomial time bounds. We discuss
later how other more generic methods do not suffer from this flaw.

4.2 An Average-Case Hierarchy

In the proof of Theorem 10, the need for advice in the upper bound arises
because we do not know how to efficiently compute the time T taken by the
optimal algorithm. Perhaps by choosing a language L with more structure,
an optimal algorithm for L can be defined for which the time function can
be computed efficiently? Fortnow and Santhanam [FS04] explored this path,
and though they did not succeed in getting a fully uniform hierarchy, they
did prove an average-case hierarchy for BPTIME in the range of polynomial
time bounds.

The basic obstacle towards computing the time function is that it rep-
resents the maximum of the time taken over all possible inputs of a certain
length, and it is unclear how to compute such a maximum efficiently. We
have no a priori reason to believe that there isn’t a wide variation between
running times on different inputs, and it seems hard to tell which input is
the “worst-case” one. The main idea of Fortnow and Santhanam is that for
certain languages, the maximum can be estimated well by the average run-
ning time. They observe that such an estimation works for languages that
are random self-reducible. Random self-reducible languages are those for
which the answer on any given input x can be computed efficiently from the
answers on inputs fi(x), fa(z)... fr(x) generated randomly form z, where
each f;j(z),i = 1...k is distributed uniformly over inputs of length |z|. In-
tuitively, this property guarantees that the time for the worst-case input is
not worse by more than a polynomial factor than the time for a random
input.

It is known that there are EXP-complete and PSPACE-complete lan-
guages that are randomly self-reducible. Fortnow and Santhanam choose
a specific PSPACE-complete language L which is random self-reducible,
and define an optimal algorithm for L which incorporates the random self-
reduction on top of the instance checker. They then show how to estimate
the time function of this optimal algorithm to within a polynomial factor
by running the optimal algorithm on randomly chosen inputs and then us-
ing the random self-reducibility property to argue that the time taken on
these inputs provides a good estimate of the worst-case time. With such
an estimate in hand,a modified translation lemma can be used to prove the
average-case hierarchy. An average-case hierarchy is obtained rather than a

13

worst-case one because only an estimate of the time function of the optimal
algorithm is computed; if the time function could be computed exactly, then
we would indeed have a fully uniform hierarchy.

Theorem 13. For any real 1 < a, there is a real b > a and constants ¢ > d
such that there is a language L for which L € heury_y/pe — BPTIME(n®) but
L & heury_yjpa — BPTIME(n®).

4.3 Hierarchy for RTIME with 1 Bit of Advice

Barak’s proof only works for complexity measures that are closed under
probabilistic Turing reductions with two-sided error, such as BPTIME or
BQTIME. However, the general paradigm of hierarchies via optimal algo-
rithms is potentially applicable to other classes. Fortnow, Santhanam and
Trevisan [FSTO05] used this paradigm to give hierarchies with advice for
probabilistic time with one-sided error.

Theorem 14. For any real 1 < a, there is a real b > a such that
RTIME(n?)/1 € RTIME(n®)/ log(n)'/?¢.

As in Corollary 12, a tight hierarchy with one bit of advice can be derived
from this separation result using a translation lemma.

The proof of Theorem 14 proceeds by defining a probabilistic optimal
algorithm with one-sided error for the NP-complete problem SAT. Given the
existence of such an algorithm, there are two cases to consider. If the optimal
algorithm for SAT runs in polynomial time, then since SAT is NP-complete,
we have that NP = RP. In this case, using Theorem 8, we get a hierarchy
with 1 bit of advice. If the optimal algorithm takes super-polynomial time
then an advice-efficient translation lemma [FS04, GST04] can be used to
derive a hierarchy with 1 bit of advice for the polynomial time range.

It remains to define the optimal algorithm. The optimal algorithm is
a one-sided probabilistic version of Levin’s deterministic optimal algorithm
for SAT [Lev73]. Given a formula ¢ as input, we cycle over probabilistic
machines of small size, searching for one that decides ¢ correctly. Again,
we don’t know a priori how long to run a machine, hence we try running
times 1,2,4.... If a machine M; run for ¢ steps accepts on ¢, we use M;
restricted to t steps to search for a satisfying assignment through downward
self-reducibility. Thus the optimal algorithm only accepts on ¢ when it
can find a proof that ¢ is satisfiable. If there is a probabilistic machine
M; for SAT with exponentially small error running in T steps, then the
optimal algorithm only uses time polynomial in 7" before running M; for

14

2Mog(M)] steps and searching for a satisfying assignment if M; accepts. In
this case, the optimal algorithm accepts with high probability within poly(T)
steps. On the other hand, if ¢ is not satisfiable, the optimal algorithm never
accepts.

5 Hierarchies for General Semantic Classes

5.1 Hierarchies with Small Advice

There are several interesting complexity measures, e.g., NTIME N coNTIME
and ZPTIME, for which the results in Section 3 and Section 4 do not establish
hierarchies. The techniques of Section 3 do not apply to these measures
because they are not syntactic. On the other hand, there don’t seem to
be natural examples of languages which have optimal algorithms according
to these measures, so as to enable us to apply the techniques of Section 4.
The paradigm of hierarchies via optimal algorithms has the disadvantage
that it applies to very specific kinds of measures. Just as the simulation-
diagonalization paradigm and the indirect diagonalization paradigm apply to
broad classes of measures, i.e., syntactic measures closed under complement
and general syntactic measures respectively, it would be convenient to have a
general technique for establishing hierarchies for general semantic measures.

Fortnow, Santhanam and Trevisan [FSTO05] addressed this question
and showed hierarchies with small advice for a general class of “rea-
sonable” semantic measures. Here, a reasonable measure CTIME is
any measure such that DTIME(t) C CTIME(t) € DTIME(2°®) for
constructible ¢, and CTIME is closed under deterministic transduc-
tions. In particular, commonly encountered semantic measures such as
BPTIME, RTIME, ZPTIME, BQTIME, NTIMENcoNTIME, UTIME, etc. satisfy

these properties.

Theorem 15. Let CTIME be any reasonable semantic measure. For any
real a > 1, there is a real b > a and a function h(n) = O(log(n)loglog(n))
such that CTIME(n®)/h(n) € CTIME(n®)/h(n).

By using the generic advice reduction technique of Goldreich, Sudan
and Trevisan [GST04], a hierarchy with 1 bit of advice can be derived for
quasi-polynomial time.

Theorem 16. Let CTIME be any reasonable semantic measure. For any
reals 1 < a < b, CTIME(QIOg(n)“) c CT|ME(210g(n)b)‘

15

We provide here only a brief sketch of the proof of Theorem 15. The
main idea is to use a non-uniform version of Barak’s paradigm. To derive
a hierarchy theorem with advice, it suffices to define a non-uniform optimal
algorithm for a non-trivial language, i.e., different algorithm can be used for
different input lengths. Such algorithms exist for any reasonable semantic
measure. Given a reasonable semantic measure CTIME, we take a language
L that is known to require deterministic exponential time (existence of such
a language is shown by direct diagonalization), and try to speed up CTIME
decidability of L quadratically by using a small additional amount of advice.
If we don’t succeed, then there is a time bound ¢ such that L is decidable
in CTIME(t) but not in CTIME(y/#) on inputs of length n. In this case,
an advice-efficient translation lemma can be used to get a hierarchy with
advice. If we do succeed in speeding up the decidability, then we try to
speed it up even further using some more advice. The speedups cannot
continually succeed because that would imply that the language L we are
trying to decide isn’t hard. Thus, at some point, we will find ourself in the
first case and can apply the translation lemma. Much of the work in the
proof goes towards reducing the advice required.

The proof of Theorem 15 has the positive feature that it can be used
to show hierarchies for non-polynomial time bounds too, unlike the proof of
Theorem 10.

Theorem 17. Let CTIME be any reasonable semantic measure. For any
constructible time bound t such that n <t < 2", there is a constant € > 0
and an advice bound h(n) = O(log(t) loglog(t)) such that CTIME(t)/h(n) C
CTIME(t)/h(n).

The same techniques work for syntactic measures such as DTIME and
NTIME, since a syntactic measure is just a special case of a semantic mea-
sure. However, as shown in Section 3, stronger results can be proved for
these measures using direct or indirect diagonalization.

5.2 Hierarchies with 1 Bit of Advice

Van Melkebeek and Pervyshev [vMP06] simultaneously improved Theorems
15 and 16 to show that any reasonable semantic measure has a hierarchy in
the polynomial-time range with 1 bit of advice.

Theorem 18. Let CTIME be any reasonable semantic measure. For any
reals 1 < a < b, CTIME(n%)/1 € CTIME(n®)/1.

16

The technique used to prove Theorems 15 and 16 seems to inherently
require > log(n) bits of advice, and the advice reduction lemma [GST04]
only allows us to reduce log(n) bits to 1 bit of advice. Hence a new technique
is required. Van Melkebeek and Pervyshev observe that the technique of
Fortnow, Santhanam and Trevisan can be viewed as an adaptation of Cook’s
proof of Theorem 6 to the context of semantic measures. They then show
that an analogous adaptation of Zak’s proof of Theorem 7 to the context of
semantic measures yields Theorem 18.

We summarize the ideas of their proof. We use the RTIME measure in
our summary since this is a natural example of a measure which is neither
syntactic nor closed under complement, as in the general case. Suppose
we want to diagonalize against a probabilistic machine M; which uses 1
bit of advice on inputs of length n. Two issues arise when we try to do
a direct diagonalization. First, there is the problem that RTIME is not
closed under complement, so we can’t “do the opposite”. Second, even if
we were dealing with a complexity measure closed under complement, our
diagonalizing machine should always satisfy the promise when given the
correct advice, even if there is an advice bit on which M; doesn’t satisfy
the promise. Of course, if M; doesn’t satisfy the promise on an advice bit
b, we don’t need to diagonalize against M; with advice bit b, however we
don’t know a priori on which advice bit(s) M; satisfies the promise for all
inputs of length n and on which it doesn’t. To represent all the possibilities,
2 bits of advice are required, which is more than we can afford in our upper
bound. In general, if we are diagonalizing against ¢ bits of advice for M;,
we require 2¢ bits to represent whether M; satisfies the promise on different
advice strings or not, which is exponentially more than we can afford.

Van Melkebeek and Pervyshev tackle both issues by encoding informa-
tion in the input length. Given a starting input length n and an advice bit b,
they define a polynomially smaller input length n; such that n and b can be
uniquely recovered from ny (such a recovery isn’t possible for all n, but we
can choose to deal only with n of a special form). On an input z of length
n1, the diagonalizing machine M simulates M; on input 1™~ ™ with advice
b, accepting if M; accepts and rejecting if M; rejects. However, M only does
the simulation if its advice bit is set to 1, indicating that M; satisfies the
promise on all inputs of length n. If the advice bit is set to 0, M just rejects
all inputs of length n;. We think of M as “copying” the behavior of M; on
length n to length ny. By “spreading” this copying using a different input
length for each advice bit of M;, we avoid the need for M to have a larger
advice string than M;.

M does the copying repeatedly. It copies the behavior of M; on length n

17

to a polynomially smaller length no from which nq and the advice bit b; for
M; on inputs of length n; can be uniquely recovered. In general, a sequence
ng =n,ni,Ne...ny is created such that the behavior of M; on input length
n; is copied on to input length n;1q, for ¢ = 0... k. The copying bottoms
out at a length ny for which n is exponentially larger than ny. At this point,
diagonalization replaces copying, just as in Zak’s argument. The proof that
this works is analogous to Z&k’s; the main additional work is to show that
the copying can be done repeatedly while still preserving the recoverability
of n; and b; from n;yq.

Van Melkebeek and Pervyshev actually show how to diagonalize against
a bits of advice using just 1 bit of advice, for any constant a. However,
though Theorem 18 subsumes previous work on hierarchies with one bit
of advice for specific semantic measures, Theorem 10 and Theorem 14 still
achieve the best known separations for BPTIME and RTIME respectively.
Van Melkebeek and Pervyshev give alternate proofs of these results, using
a hybrid of their ideas and previous techniques.

Grigoriev, Hirsch and Pervyshev [GHPO05] use related techniques to de-
rive hierarchies for cryptographic function inversion with 1 bit of advice.

6 Conclusions and Future Work

We have reviewed how a series of results lead to a near tight hierarchy for
essentially every reasonable time measure. The big open question remains
to show a separation without advice, for example that BPTIME(n?) is not
contained in BPTIME(n?) but the current methods do not immediately lead
to such results. We don’t have a separation for any natural measure not
known to be polynomially related to a syntactic measure.

For a given resource bound CTIME and a < b what is the largest amount
of advice f(n) where we can prove a separation

CTIME(n®)/1 € CTIME(n®)/f(n)?

We don’t know how to provably increase f(n) beyond constant for gen-
eral semantic classes. This question remains interesting even for syntac-
tic measures like NTIME and DTIME. Showing that P is not contained in
DTIME(n*)/n* will separate BPP from EXP. For NTIME we don’t know
how to increase f(n) beyond O(logn).

BPTIME and BQTIME are the only non-syntactic measures for which
an average-case hierarchy is known. Do average-case hierarchies hold for
general semantic measures? Very recently, Pervyshev [Per06] simplified the

18

proof of the average-case hierarchy for BPP, and also proved average-case
hierarchies for classes NP, AM and MA. However, it remains unknown if
average-case hierarchies hold for general semantic polynomial-time classes.

References

[ABHH93] Eric Allender, Richard Beigel, Ulrich Hertrampf, and Steven

[AS98]

[Bar(2]

[BFL91]

[BGWT0]

[Canl5]

[CooT2]

[FS04]

[FS06]

Homer. Almost-everywhere complexity hierarchies for nonde-
terministic time. Theoretical Computer Science, 115(2):225-241,
19 July 1993.

Sanjeev Arora and Shmuel Safra. Probabilistic checking of
proofs: A new characterization of np. Journal of the ACM,
45(1):70-122, 1998.

Boaz Barak. A probabilistic-time hierarchy theorem for “Slightly
Non-uniform” algorithms. Lecture Notes in Computer Science,
2483:194-208, 2002.

Lészl6 Babai, Lance Fortnow, and Carsten Lund. Non-
deterministic exponential time has two-prover interactive pro-
tocols. Computational Complexity, 1:3—40, 1991.

Ronald V. Book, Sheila A. Greibach, and Ben Wegbreit. Time-
and tape-bounded Turing acceptors and AFLs. Journal of Com-
puter and System Sciences, 4(6):606-621, December 1970.

Georg Cantor. Contributions to the Founding of the Theory of
Transfinite Numbers. The Open Court, Chicago, 1915. Trans-
lated by P. E. B. Jourdain; a Dover edition (1952) is available.

Stephen Cook. A hierarchy for nondeterministic time complexity.
In Conference Record, Fourth Annual ACM Symposium on The-
ory of Computing, pages 187-192, Denver, Colorado, 1-3 May
1972.

Lance Fortnow and Rahul Santhanam. Hierarchy theorems for
probabilistic polynomial time. In Proceedings of the 45th IEEE
Symposium on Foundations of Computer Science, pages 316-324,
2004.

Lance Fortnow and Rahul Santhanam. Recent work on hierar-
chies for semantic classes. SIGACT News, 37(3):36-54, 2006.

19

[FSTO5]

[GHPO5]

[GHS91]

[Gil77]

[GSTO4]

[GW00]

[HS65]

[HS66]

[Iba74]

[Imm88]

[KL82]

[KV87]

Lance Fortnow, Rahul Santhanam, and Luca Trevisan. Hierar-
chies for semantic classes. In Proceedings of the Thirty-Seventh
Annual ACM Symposium on Theory of Computing, 2005.

Dima Grigoriev, Edward Hirsch, and Konstantin Pervyshev.
Time hierarchies for cryptographic function inversion with ad-
vice. FElectronic Colloquium on Computational Complexity,
12(76), 2005.

John Geske, Dung Huynh, and Joel Seiferas. A note on almost-
everywhere-complex sets and separating deterministic-time-
complexity classes. Information and Computation, 92(1):97-104,
1991.

John Gill. Computational complexity of probabilistic turing ma-
chines. SIAM Journal on Computing, 6(4):675-695, 1977.

Oded Goldreich, Madhu Sudan, and Luca Trevisan. From log-
arithmic advice to single-bit advice. FElectronic Colloguium on
Computational Complexity, TR04-093, 2004.

Oded Goldreich and Avi Wigderson. On pseudorandomness with
respect to deterministic observers. In Flectronic Colloquium on
Computational Complezity, technical reports, 2000.

Juris Hartmanis and Richard Stearns. On the computational
complexity of algorithms. Trans. Amer. Math. Soc. (AMS),
117:285-306, 1965.

Frederick Hennie and Richard Stearns. Two-tape simulation of
multitape Turing machines. Journal of the ACM, 13(4):533-546,
October 1966.

Oscar Ibarra. A hierarchy theorem for polynomial space recog-
nition. SIAM Journal on Computing, 3(3):184-187, 1974.

N. Immerman. Nondeterministic space is closed under comple-
ment. SIAM Journal on Computing, 17:935-938, 1988.

Richard Karp and Richard Lipton. Turing machines that take
advice. L’Enseignement Mathématique, 28(2):191-209, 1982.

Marek Karpinski and Rutger Verbeek. On the monte carlo space
constructible functions and separation results for probabilistic
complexity classes. Information and Computation, 75, 1987.

20

[Lev73]

[LFKN92|

[Per06]

[RF65]

[RSS1]

[SFM7S]

[Sha92]

[Sze88]

[Tur36]

[VMPO6]

[Wil83]

Leonid Levin. Universal search problems(in russian). Problemy
Peredachi Informatsii, 9(3):265-266, 1973.

Carsten Lund, Lance Fortnow, Howard Karloff, and Noam
Nisan. Algebraic methods for interactive proof systems. Jour-
nal of the Association for Computing Machinery, 39(4):859-868,
1992.

Konstantin Pervyshev. On heuristic time hierarchies. Electronic
Collogquium on Computational Complexity, TR06-131, 2006.

S. S. Ruby and P. C. Fischer. Translational methods and com-
putational complexity. In Proceedings of the Sizth Annual Sym-

posium on Switching Circuit Theory and Logical Design, pages
173-178. IEEE, 1965.

Charles Rackoff and Joel Seiferas. Limitations on separating non-
deterministic complexity classes. SIAM Journal on Computing,
10(4):742-745, 1981.

Joel Seiferas, Michael Fischer, and Albert Meyer. Separating
nondeterministic time complexity classes. Journal of the ACM,
25(1):146-167, January 1978.

Adi Shamir. IP = PSPACE. Journal of the Association for
Computing Machinery, 39(4):869-877, 1992.

Roébert Szelepcsényi. The method of forced enumeration for
nondeterministic automata. Acta Informatica, 26(3):279-284,
November 1988.

A. Turing. On computable numbers, with an application to the
Etscheidungs problem. Proceedings of the London Mathematical
Society, 42:230-265, 1936.

Dieter van Melkebeek and Konstantin Pervyshev. A generic time
hierarchy for semantic models with one bit of advice. In Pro-
ceedings of the 21st Annual IEEE Conference on Computational
Complezity, page To appear, 2006.

Robert Wilber. Randomness and the density of hard problems.
In 2/th Annual Symposium on Foundations of Computer Sci-
ence, pages 335342, 1983.

21

[Z83] Stanislav Zak. A Turing machine time hierarchy. Theoretical
Computer Science, 26(3):327-333, October 1983.

22

ECCC ISSN 1433-8092

http://eccc.hpi-web.de/

