
New Lower Bounds for General Locally Decodable Codes

David P. Woodruff
MIT

dpwood@mit.edu

Abstract

For any odd integer q > 1, we improve the lower bound for general q-query locally decodable

codes C : {0, 1}n → {0, 1}m from m = Ω (n/ logn)
q+1
q−1 to m = Ω

(

n
q+1
q−1

)

/ logn. For example,

for q = 3 we improve the previous bound from Ω(n2/ log2 n) to Ω(n2/ logn). For linear 3-query
locally decodable codes C : F

n → F
m, we improve the lower bound further to Ω(n2/ log log n),

and our bound holds for any (possibly infinite) field F. Previously, the best lower bound for this
case was Ω(n2/ log2 n), and held only for constant-sized F. We are not aware of any previous
non-trivial lower bounds for large F and q > 2 queries.

Our proofs use a random restriction of the message, hypergraph arguments, a new reduction
from a q-query code to a generalization of a 2-query code, and quantum arguments. For linear
codes our proofs are completely elementary. We work with random linear projections and use
additional structure in the hypercube. The idea of using a random restriction (or projection for
linear codes) is new in this context, and may be a powerful technique for future work.

1

Electronic Colloquium on Computational Complexity, Report No. 6 (2007)

ISSN 1433-8092

1 Introduction

Classical error-correcting codes allow one to encode an n-bit message x into a codeword C(x)
such that even if a constant fraction of the bits in C(x) are corrupted, x can still be recovered.
It is well-known how to construct codes C of length O(n) that can tolerate a constant fraction
of errors, even in such a way that allows decoding in linear time [14]. However, if one is only
interested in recovering a few bits of the message, then these codes have the disadvantage that
they require reading all (or most) of the codeword. This motivates the following definition.

A locally decodable code C : {0, 1}n → {0, 1}m is an encoding from n-bit strings to m-bit
strings such that each bit xi can be recovered with probability at least 1

2 + ε from C(x) by a
randomized algorithm that reads only q positions of C(x), even if up to δm positions in C(x)
are corrupted. In typical applications, ε, δ, and q are constant, and the goal is to understand
the tradeoff between q and m.

There is a large body of work on locally decodable codes [1, 2, 5, 7, 8, 11, 15, 16, 17]. For a
survey, see [15]. Katz and Trevisan [7] were the first to formally define locally decodable codes.
For 2 queries, Kerenidis and de Wolf [8] use tools from quantum information theory to show
that m = 2Ω(n), and the Hadamard code easily shows this is tight (see also [5, 11]). For q > 2

queries the best lower bound [8] is m = Ω (n/ logn)1+1/(d q
2−1e), also due to Kerenidis and de

Wolf. This is much smaller than that for 2 queries; however, there is also a much better upper

bound1 of m ≤ 2O(nc(q)), for a small positive constant c(q). This is obtained by combining a
generic recursion of Beimel et al [1] with a recent result of Yekhanin [18] for 3 queries. With
this state of affairs, it is hard to guess the optimal length of locally decodable codes.

It is quite difficult to prove lower bounds for general codes, and this has motivated researchers
to study lower bounds in restricted models [5, 6, 12]. One natural subclass of these codes is
the class of linear locally decodable codes, defined as follows. Let F be a field. A linear locally
decodable code C is a linear transformation from F

n to F
m such that each coordinate of each

x ∈ F
n can be recovered with probability at least 1

|F| + ε from C(x) by a randomized algorithm

that reads only q positions of C(x), even if up to δm positions of C(x) are corrupted. Here
1
|F| = 0 if F is infinite. All known constructions of locally decodable codes are linear, and all

known lower bounds for linear codes before this work match, up to the dependence on ε and δ,
those for general (not necessarily linear) codes.

Our Results: For any odd number of queries q, we improve the lower bound for general codes

from m = Ω (n/ logn)1+1/(d q
2−1e) to m = Ω (n)1+1/(d q

2−1e) / logn. Next, for 3-query linear codes
we improve our bound further from the previous m = Ω(n2/ log2 n) [8] to m = Ω(n2/ log log n),
and our bound holds for any field F, whereas the previous bound only holds for constant-sized F.

Techniques: Given a locally decodable code, we use the reduction of [7, 8] to create a smooth
code, that is, a code where for each i ∈ [n], the decoder more or less uniformly distributes its
queries over C(x). Our smooth code is only good on average, that is, for each i ∈ [n] and for
most x ∈ {0, 1}n the decoder correctly outputs xi. Next, we find a small set T of Θ(n) heavily
probed positions in the codeword that contain a lot of information about x. We restrict the
set of possible x by fixing the assignment of the codeword to the positions in T . We show how
to do this so as to still preserve a lot of entropy in x, while at the same time preserving the
correctness of the decoder (on average). This sometimes reduces the number of queries of the
decoder, since we can hardwire the values of positions in T into the decoder. We present a novel
reduction from a q-query code to a generalization of a 2-query code, exploiting the fact that the
decoder sometimes makes less than q queries. Finally, we generalize existing lower bounds for
2-query codes.

1Under a number-theoretic conjecture, this can be improved to 2O(n1/ log1−α log n) for any α > 0 [18].

2

In [15], Trevisan asked whether one could reprove the results of [8] without using quantum
information theory. Recently, Samorodnitsky [13] has shown how to do this for 2 queries. We
note, though, that his proof is heavily inspired from the earlier work of [8]. The key idea in
[13] is a new notion of entropy. This avoids the usage of a few very deep theorems in quantum
information theory. With a significant effort, we can adapt his technique to our setting, and
thus prove all of our results without quantum arguments. The only place we use his technique
is to lower bound our generalized 2-query codes. However, since [13] is not published yet, in this
version of the paper we give a proof of this step using quantum arguments. We believe this to
be simpler, if one is willing to accept a few deep theorems in quantum information theory, and
has the added benefit of showing how to extend the techniques of [8] to more general settings.

For 3-query linear codes, we use random projections and isoperimetric inequalities in the
hypercube. The proof is a rather complicated (though elementary) packing argument, but the
main idea is similar to that for general codes - we try to reduce a 3-query code to a 2 query-
code. The idea is to repeatedly project coordinates of the codeword to 0, while at the same time
preserving correctness. Another difficulty is that we need to handle adaptive decoders, which is
non-trivial when |F| is super-constant.

Outline: In Section 2, we provide background. In Section 3, we provide our lower bound
for general codes. In Section 4 we prove our lower bound for linear 3-query codes. For readabil-
ity, we defer some proofs to Appendices 5, 6, 7, 8, and 9.

Notation: For positive integers z, [z]
def
= {1, 2, . . . , z}. We omit ceilings and floors if not essential.

2 Background

Definition 1 ([7]) Let δ, ε ∈ (0, 1), q an integer. We say C : {0, 1}n → {0, 1}m is a (q, δ, ε)-
locally decodable code (LDC for short) if there is a probabilistic oracle machine A such that:

• In every invocation, A makes at most q queries.

• For every x ∈ {0, 1}n, for every y ∈ {0, 1}m with ∆(y, C(x)) ≤ δm, and for every i ∈ [n],

Pr[Ay(i) = xi] ≥
1

2
+ ε,

where the probability is taken over the internal coin tosses of A. An algorithm A satisfying
the above is called a (q, δ, ε)-local decoding algorithm for C (a decoder for short).

Since the code is binary2, by the results of Katz and Trevisan [7] we may assume that for
constant q, A queries non-adaptively. This only decreases ε by a constant factor. In all of the
reductions between various codes that we discuss, non-adaptivity of the decoder is preserved.

Intuitively, a local-decoding algorithm A cannot query any particular location of y too often,
as otherwise an adversary could ruin the success probability of A by corrupting only a few
positions. This motivates the definition of a smooth code.

Definition 2 ([7]) For fixed c, ε, and integer q we say that C : {0, 1}n → {0, 1}m is a (q, c, ε)-
smooth code if there exists a probabilistic oracle machine A such that for every x ∈ {0, 1}n,

• In every invocation A makes at most q queries.

• For every i ∈ [n] and j ∈ [m], Pr[AC(x)(i) reads index j] ≤ c
m .

• For every i ∈ [n], Pr[AC(x)(i) = xi] ≥ 1
2 + ε.

2For general codes, the binary setting is most often considered, and so we only consider non-binary codes when
discussing linear codes, which we discuss later.

3

The probabilities are taken over the coin tosses of A. An algorithm A satisfying the above is
called a (q, c, ε)-smooth decoding algorithm for C (a decoder for short).

Note that unlike a local-decoding algorithm, a smooth decoding algorithm is required to work
only when given access to a valid codeword, rather than a possibly corrupt one. The following
reduction from LDCs to smooth codes was observed by Katz and Trevisan.

Theorem 3 ([7]) Let C : {0, 1}n → {0, 1}m be a (q, δ, ε)-LDC. Then C is also a (q, q/δ, ε)-
smooth code.

We use the following weaker notion of a smooth code that is only good on average.

Definition 4 A (q, c, ε)-smooth code that is good on average satisfies the first two conditions of
a (q, c, ε)-smooth code, but the third condition is relaxed to the following: for every i ∈ [n],

1

2n

∑

x∈{0,1}n

Pr[AC(x)(i) = xi] ≥
1

2
+ ε.

We use a graph-theoretic interpretation of smooth codes given in [5, 7]. Although not stated
explicitly there, their results also hold for smooth codes that are good on average. Let C :
{0, 1}n → {0, 1}m be a (q, c, ε)-smooth code that is good on average, and let algorithm A be
a (q, c, ε)-smooth decoding algorithm for C. We say that a given invocation of A reads a set
s ⊆ [m] if the set of indices that A reads in that invocation equals s. Since A is restricted to
read at most q entries, |s| ≤ q.

We say that s is good for i if Pr[AC(x)(i) = xi | A reads s] ≥ 1
2 + ε

2 , where the probability
is over x uniformly drawn from {0, 1}n and the internal coin tosses of A.

Definition 5 ([7]) Fixing a code C : {0, 1}n → {0, 1}m and a q-query recovery algorithm A,
the recovery hypergraphs for i ∈ [n], denoted Gi, consist of the vertex set [m] and the hyperedge
set Ci = {s ⊆ [m] | s is good for i}.

Lemma 6 ([7]) Let C be a (q, c, ε)-smooth code that is good on average, and let {Gi}ni=1 be the
set of recovery hypergraphs. Then, for every i, the hypergraph Gi = ([m], Ci) has a matching
Mi of sets of size q with |Mi| ≥ εm

cq .

For positive constants c1, c2, . . ., Θc1,c2,...(f(n)) denotes the class g(c1, c2, . . .)Θ(f(n)) of func-
tions, where g is an arbitrary positive function. Similarly defineOc1,c2,...(f(n)) and Ωc1,c2,...(f(n)).

Lemma 7 ([8], implicit) For constant q, if C : {0, 1}n → {0, 1}m is a (q, c, ε)-smooth code, then
there is a (q,Oq,c,ε(1),Ωq,c,ε(1))-smooth code C′ : {0, 1}n → {0, 1}Θ(m) that is good on average,
and further, for each i ∈ [n], the decoder A′ of C′ just picks a random q-set {j1, . . . , jq} ∈ Mi

and either outputs C(x)j1 ⊕ C(x)j2 ⊕ · · · ⊕ C(x)jq or C(x)j1 ⊕ C(x)j2 ⊕ · · · ⊕ C(x)jq ⊕ 1. The
decision of which to output is based solely on {j1, . . . , jq} (this follows from non-adaptivity).

The intuitive justification for Lemma 7 is as follows. Using Fourier analysis, one can show that
if from q Boolean functions one can recover xi with probability greater than 1/2 + ε, then from
some sum of the functions one can recover xi with probability greater than 1/2 + ε/2q. Now,
if the decoder often takes the sum of less than q functions, we can increase the length of the
code by a constant fraction by adding many zero functions to the code, and now the decoder,
by adding zero functions, can be assumed to always take the sum of q positions.

The following lemma will simplify notation. We defer its simple proof to Appendix 5.

Lemma 8 If C is a (q, c, ε)-smooth code that is good on average for which for each i ∈ [n], the
decoder A picks a random q-set {j1, . . . , jq} ∈Mi and either outputs C(x)j1⊕C(x)j2⊕· · ·⊕C(x)jq

or C(x)j1 ⊕ C(x)j2 ⊕ · · · ⊕ C(x)jq ⊕ 1, then there is a (q, 2c, ε)-smooth code C′ that is good on
average for which for each i ∈ [n] there is a bit bi ∈ {0, 1} for which the decoder A′ picks a
random q-set {j1, . . . , jq} ∈Mi and outputs C(x)j1 ⊕ C(x)j2 ⊕ · · · ⊕ C(x)jq ⊕ bi.

4

In the remainder of the paper, we assume we have a code C : {0, 1}n → {0, 1}m that is a
(q, c, ε)-smooth code that is good on average. Thus, for each i, there is a matching Mi of q-
sets with |Mi| ≥ β(ε, c, q)m, for some function β of q, c, and ε, in the corresponding recovery
hypergraphs Gi. We can also assume on input i that the decoder A just picks a random q-set
{j1, . . . , jq} ∈Mi and outputs C(x)j1 ⊕ C(x)j2 ⊕ · · · ⊕ C(x)jq ⊕ bi.

Via these reductions, the lower bounds on m we obtain for C give lower bounds for (q, δ, ε)-
locally decodable codes with the same asymptotic dependence on n (for q, δ, and ε constant).

3 The lower bound for general codes

Suppose we are given a (q, c, ε)-smooth code C : {0, 1}n → {0, 1}m that is good on average
(as defined in Section 2), and suppose that q is odd. We may identify the coordinates of the
encoding with m functions f1, . . . , fm : {0, 1}n → {0, 1}. By the results in the previous section,

there is a positive constant β
def
= β(q, c, ε) such that for all i ∈ [n], there is a collection Mi of at

least βm disjoint sets in [m] of size q, and a bit bi, such that for all e ∈Mi,

Pr
x∈{0,1}n

bi ⊕
⊕

j∈e

fj(x) = xi

 ≥ 1

2
+ ε.

Our goal is to construct a related 2-query code which is easier to analyze.

3.1 A small set incident to many edges in the recovery hypergraphs

Consider the multi-hypergraph G with vertex set [m] and hyperedge set]n
i=1Mi, that is, a

hyperedge e occurs in G once for each Mi that it occurs in. For readability, we use the term
hypergraph to refer to a multi-hypergraph, that is, a hypergraph which may have repeated
hyperedges (which we sometimes just refer to as edges). We first claim that we can find a non-
empty induced sub-hypergraphG′ of G with minimum degree βn. Our proof is a straightforward
generalization of Proposition 1.2.2 in [3] to hypergraphs, and thus, we defer it to Appendix 6.

Lemma 9 There exists a non-empty hypergraph G′ ⊆ G with minimum degree at least βn.

Let v ∈ G′ be an arbitrary vertex, and let N(v) denote v’s neighbors in G′. Consider the set
T = {v} ∪N(v). We would like to argue that T contains many vertices. To do this, we use the
following generalization of Theorem 2 in [7].

Theorem 10 Let F : {0, 1}n → R be a function. Assume there is an algorithm B such that
for some set J ⊆ [n] of indices, for any j ∈ J ,

Pr[B(F (x), j) = xj] ≥
1

2
+ ε,

where the probability is over both x uniformly drawn from {0, 1}n and the coin tosses of B. Then
log |R| ≥ (1−H(1

2 + ε))|J |, where H is the binary entropy function.

Proof: Let I(x;F (x)) = H(F (x)) −H(F (x) | x) = H(x) −H(x | F (x)) denote the mutual
information between x and F (x). Then, I(x;F (x)) ≤ H(F (x)) ≤ log |R|. On the other hand,
using the chain rule and subadditivity of entropy, as well as Fano’s inequality (p. 536 of [10]),

I(x;F (x)) = H(x)−H(x | F (x)) ≥ H(x)−
n

∑

i=1

H(xi | F (x))

≥ H(x)− (n− |J |)−
∑

j∈J

H(xj | F (x)) ≥ |J | − |J |H(
1

2
+ ε),

5

and combining the two inequalities establishes the lemma.

Claim 11 |T | ≥ β · (1−H(1/2 + ε))n.

Proof: Observe that T contains an edge e in Mi for at least βn different i. This follows from
the fact that v has degree at least βn, and for each i ∈ [n], there is at most one edge e ∈ Mi

containing v since the Mi are matchings.
Let J denote the set of these i. It follows by the definition of an edge that the encoding of

x by the functions in T has a decoding algorithm that recovers xj , j ∈ J , with probability at
least 1

2 + ε. By the previous theorem, |T | ≥ |J |(1 −H(1/2 + ε)) ≥ β · (1−H(1/2 + ε))n.

Let 0 < α� β · (1−H(1/2+ ε)) be a constant to be determined, and remove all but αn vertices
from T . For each i ∈ [n], let M ′

i ⊆ Mi be the set of all edges in Mi incident to at least one
vertex in T . Since each of the αn vertices in T has degree at least βn, and since each edge e in
any Mi can be incident to at most q vertices of T , we have

∑n
i=1 |M ′

i | ≥ αβn2/q = αΘq,c,ε(n
2).

Here the constant in the Θq,c,ε(·) may depend on q, c, and ε, but does not depend on α.

3.2 Randomly restricting Θ(n) coordinates

Let T ⊆ [m] be the set of size exactly αn chosen in the previous section. Consider the multiset
FT of αn functions fj, where j ∈ T . For each x ∈ {0, 1}n, the tuple (fj(x) | j ∈ T) is a string
in {0, 1}αn. Thus, we may partition {0, 1}n into 2αn equivalence classes (some of which may be
empty) Lb, where b ∈ {0, 1}αn. Here Lb denotes all x ∈ {0, 1}n for which (fj(x) | j ∈ T) = b.

Say an equivalence class Lb is bad if |Lb| ≤ 2n−2αn. If Lb is not bad, then it is good. Say
an x ∈ {0, 1}n is bad if x ∈ Lb for a bad Lb. If x is not bad, then it is good. As there are 2αn

different Lb, the total number of bad x is at most 2αn2n−2αn = 2n−αn. Let X ⊆ {0, 1}n be the
set of all good x ∈ {0, 1}n. Then |X | ≥ 2n − 2n−αn.

Consider any i ∈ [n], and let e ∈M ′
i . By a union bound, we have,

Pr
x∈X

bi ⊕
⊕

j∈e

fj(x) = xi

 ≥ 1

2
+ ε− 2n−αn

2n
≥ 1

2
+
ε

2
,

for any α > 0 and n sufficiently large. This holds for every i and every e ∈M ′
i . As our goal will

be to fix the values of functions in FT , we now try to find a good class with special properties.

Lemma 12 There exists a good equivalence class L and an index set I ⊂ [n] with |I| = Θq,c,ε(n),
for which for all i ∈ I, there are at least αΘq,c,ε(n) different e ∈M ′

i for which

Pr
x∈L

bi ⊕
⊕

j∈e

fj(x) = xi

 ≥ 1

2
+
ε

4
.

Proof: Consider the probability distribution P on good equivalence classes Lb defined by:

Pr[P = Lb] = |Lb|
|X| . For each i ∈ [n] and each e ∈M ′

i , define the random variable

Yi,e = Pr
x∈P

bi ⊕
⊕

j∈e

fj(x) 6= xi

 .

Then

E[Yi,e] =
∑

Lb

Lb

|X | Pr
x∈Lb

bi ⊕
⊕

j∈e

fj(x) 6= xi

 ≤ 1

2
− ε

2
.

6

It follows by the Markov bound that

Pr

[

Yi,e ≥
1

2
− ε

4

]

≤
(

1

2
− ε

2

)

/

(

1

2
− ε

4

)

= γ < 1.

It follows that with probability at least 1−γ, Yi,e is at most 1
2 − ε

4 . Define the indicator random
variable Ji,e which is 1 iff Yi,e ≤ 1

2 − ε
4 . Then E[Ji,e] ≥ 1 − γ. Since

∑n
i=1 |M ′

i | ≥ αΘq,c,ε(n
2),

by linearity of expectations,

E

∑

i,e

Ji,e

 ≥ (1− γ)αΘq,c,ε(n
2) = αΘq,c,ε(n

2).

So there exists a good equivalence class L for which αΘq,c,ε(n
2) edges e in]n

i=1M
′
i satisfy

Prx∈L

[

bi ⊕
⊕

j∈e fj(x) = xi

]

≥ 1
2 + ε

4 . Say such an e is good. For each i, |M ′
i | ≤ αn. Moreover,

the average number a of good e in M ′
i is αΘq,c,ε(n). Let r denote the number of different

i ∈ [n] for which the number of good e in M ′
i is at most a/2. Then r is subject to the following

constraint: a
2 · r + αn(n− r) ≥ an. Solving,

n− r ≥ an− ar
2

αn
=
a

α
− ar

2αn
≥ a

α
− a

2α
=

a

2α
= Θq,c,ε(n).

Thus, for a set I ⊆ [n] of size Θq,c,ε(n), for each i ∈ I the number of good e in M ′
i is at least

αΘq,c,ε(n).

3.3 Reducing the number of queries to 2

Fix a set of indices I ⊆ [n] guaranteed by Lemma 12. By relabeling indices if necessary, we
may assume I = [Θq,c,ε(n)]. We construct a new code C′. Let η be a positive constant to be
determined. Also, define the function h(q) = 2/(q − 1).

Consider all m′ =
(

m
η m

nh(q)

)

functions gB : {0, 1}n → {0, 1} formed as follows: choose any set

B ⊆ [m] of size exactly η m
nh(q) , and let gB =

⊕

j∈B fj. Let C′ be the code which takes an x ∈ L,
and applies each of these m′ functions to x. The code has length m′.

Lemma 13 There exists a constant η > 0 such that for each i ∈ I, [m′] contains a matching
Wi of disjoint pairs (indexed by sets) {B,B′} and a bit bi,B,B′ ∈ {0, 1}, such that

Pr
x∈L

[gB(x)⊕ gB′(x) ⊕ bi,B,B′ = xi] ≥
1

2
+
ε

4
.

Moreover, |Wi| ≥ m′

4 for all i ∈ I.

Proof: Fix an i ∈ I. M ′
i has at least αΘq,c,ε(n) different e for which Prx∈L

[

bi ⊕
⊕

j∈e fj(x) = xi

]

≥
1
2 + ε

4 . As before, call such an e a good edge. For each good edge e ∈M ′
i , e is incident to at least

one vertex in T . Arbitrarily choose one such vertex, and denote it by ve. Next, of the remaining
q− 1 vertices in e, arbitrarily partition them into two sets Ae and Be. So e = ve ∪Ae ∪Be. We
need the following lemma due to Katz and Trevisan [7]:

Lemma 14 ([7]) Let H be a hypergraph on m vertices whose hyperedges all contain c or fewer
vertices. Let H have a matching M of size γm for any 0 < γ < 1/c. Then there exists a

t = Θ(γ−
1
cm

c−1
c) such that for a collection B of t randomly selected vertices of H,

Pr
B

[B contains an edge of M] > 3/4.

7

Consider the hypergraph H on vertex set [m] whose hyperedges have size (q − 1)/2 and are
the sets Ae and Be for each good edge e ∈ M ′

i . Then the hyperedges form a matching M of
H of size 2|M ′

i | ≥ αΘq,c,ε(n). Choose a subset B ⊆ [m] of size η m
nh(q) uniformly at random.

By setting γ = αΘq,c,ε(n)/m and c = (q − 1)/2 = 1/h(q) in Lemma 14, for a sufficiently large
constant η (that may depend on α), Pr[B contains an Ae or Be] > 3/4.

For any good edge e′ in M ′
i , the probability that e′ satisfies |e′ ∩B| > (q − 1)/2 is at most

∑

j>(q−1)/2

(

q

j

)

(

m−j
η m

nh(q)
−j

)

(

m
η m

nh(q)

) ≤ 2q
(η

nh(q)

)(q+1)/2

= Θq,c,ε

(

n− q+1
q−1

)

.

By a union bound, the probability there exists a good edge in M ′
i contained in B is at most

|M ′
i | ·Θq,c,ε

(

n− q+1
q−1

)

= o(1). By another union bound, for at least half of the functions gB,

1. B contains either Ae or Be for at least one good edge e ∈M ′
i , and

2. For any good edge e′ ∈M ′
i , |e′ ∩B| ≤ (q − 1)/2.

Arbitrarily impose a total order on the good edges e ∈ M ′
i . Fix any B satisfying the two

properties above. Consider the multiset B′ defined as follows: let e be the smallest good edge
for which either Ae ⊆ B or Be ⊆ B. Note that for any given e, at most one of Ae, Be can occur in
B by the second property above. If Ae ⊆ B, define B′ = Be∪B\Ae, else define B′ = Ae∪B\Be.
Note that in either case B′ is a set (rather than a multiset), since |e ∩B| = (q − 1)/2. Then

gB(x) ⊕ gB′(x) =
⊕

j∈Ae

fj(x) ⊕
⊕

k∈Be

fk(x) = fve(x)⊕
⊕

j∈e

fj(x).

Now for x ∈ L, fve(x) is constant. Define bi,B,B′ = bi ⊕ fve . Then, since e is good,

Pr
x∈L

[gB(x)⊕ gB′(x) ⊕ bi,B,B′ = xi] ≥
1

2
+
ε

4
.

Let ψ denote our map on sets satisfying the two properties above, so ψ(B) = B′. First, we
claim B′ satisfies the two properties above. Both properties follow from the fact that the good
edges are disjoint, and thus B′ ∩ e′ = B ∩ e′ for all e′ 6= e, while |B′ ∩ e| = |B ∩ e| = (q − 1)/2.

We claim that ψ is invertible on sets B which satisfy the two properties above. To see this,
let e′ be the smallest good edge for which either Ae′ ⊆ B′ or Be′ ⊆ B′. It follows from the way
we constructed B′ that either Ae′ ⊆ B or Be′ ⊆ B. Then e′ cannot be smaller than e in the
total order since e is the smallest edge in B for which either Ae ⊆ B or Be ⊆ B. Since Ae ⊆ B′

or Be ⊆ B′, we must then have e′ = e. So, ψ(B′) = B.
Thus, B uniquely determines B′ and vice versa, and so we may group at least 1/2 of the

elements of [m′] into disjoint pairs, giving a matching Wi of size at least m′/4.

3.4 The quantum tools

At this point we have a set I ⊆ [n] with |I| = Θq,c,ε(n) and m′ =
(

m
η m

nh(q)

)

functions gB with

the following property: for each i ∈ I, [m′] contains a matching Wi of disjoint pairs (indexed by
sets) {B,B′} and a bit bi,B,B′ ∈ {0, 1}, such that

Pr
x∈L

[gB(x)⊕ gB′(x) ⊕ bi,B,B′ = xi] ≥
1

2
+
ε

4
.

Moreover, |Wi| ≥ m′

4 for all i ∈ I. Unfortunately, we cannot apply the 2-query lower bound
of Kerenidis and de Wolf [8] directly since I may not equal [n] and L may not equal {0, 1}n.
We need to generalize Nayak’s [9] lower bound for quantum random access codes to apply it to
our setting. For readability, we defer this to Appendix 7. There we show that these constraints
imply m = Ωq,c,ε(n

1+h(q)/ logn). Thus,

8

Theorem 15 For odd q, any (q, c, ε)-smooth code C : {0, 1}n → {0, 1}m that is good on average
satisfies

m = Ωq,c,ε

(

n1+2/(q−1)

logn

)

.

Using the reductions in Section 2, we obtain,

Theorem 16 For δ, ε ∈ (0, 1) and for any odd integer q > 1, if C : {0, 1}n → {0, 1}m is a
(q, δ, ε)-locally decodable code, then

m = Ωq,δ,ε

(

n1+2/(q−1)

logn

)

.

So, for instance, if q = 3, the bound is Ωq,c,ε(n
2/ logn), improving the previous bound [8] of

Ωq,c,ε(n
2/ log2 n). If q = 5, the bound is Ωq,c,ε(n

3/2/ logn), improving the previous best bound

[8] of Ωq,c,ε(n
3/2/ log3/2 n).

4 Linear 3-query lower bounds

4.1 The random projection

Assume we have a linear (3, δ, ε)-LDC C : F
n → F

m for an arbitrary (possibly infinite) field F.
Recall the model is that for every x ∈ F

n, for every y ∈ F
m with3 ∆(C(x), y) ≤ δm, and for

every i ∈ [n], the decoder A satisfies Pr[Ay(i) = xi] ≥ 1
|F| + ε, where the probability is over the

coin tosses of A. A queries at most 3 coordinates of y. In Appendix 8, we prove the following.

Theorem 17 Let C : F
n → F

m be a linear (3, δ, ε)-LDC. Then C is also a linear (3, δ/9, 2/3−
1/|F|)-LDC with a non-adaptive decoder.

This greatly improves known reductions to non-adaptive codes (since it holds for any F), but
it only holds for linear codes. Thus, we may assume that we have a non-adaptive decoder by
changing δ and ε by constant factors. Then, by similar reductions to those given in Section 2
for non-adaptive decoders (extended straightforwardly to arbitrary fields), C is also a (3, 3/δ, ε)-
smooth code.

Since C is linear, we may identify its coordinates j with vectors fj in F
n computing the

function 〈fj , x〉. By the reductions in Section 2, for every i ∈ [n], the recovery hypergraph Gi

has a matching Mi of [m] of size Θq,c,ε(m) such that, if e ∈ Mi, then ui ∈ span(fj | j ∈ e),
where ui denotes the unit vector in direction i. This follows from the observation that if
ui /∈ span(fj | j ∈ e), then e contains no information about xi, and so any algorithm, when
reading e, can output xi with probability at most 1/2.

We may assume, by increasing m by at most a factor of 3, that every hyperedge in Mi

has size exactly 3, and moreover, for every such edge e = {j1, j2, j3} ∈ Mi, we have ui =
γ1fj1 + γ2fj2 + γ3fj3 , where γ1, γ2, γ3 are non-zero elements of F. Indeed, we may append 2m
constant functions which always output 0 to the end of C. Then, if e = {j1, j2, j3} ∈Mi either
has size less than 3 or satisfies ui = γ1fj1 + γ2fj2 + γ3fj3 for some γk = 0, we can replace the
γk with 1 and replace jk with an index corresponding to one of the zero functions.

Consider the non-empty hypergraph G′ ⊆ G with minimum degree βn given in Section 3.1.
In Section 3.1, we found a set T which contained an edge e in Mi for at least βn different i. It
follows that the rank of the vectors in T is at least βn, so we can remove vectors from T so that
we are left with a set T of exactly αn linearly independent vectors.

3Here ∆(C(x), y) refers to the number of positions in C(x) and y that differ.

9

Let v1, . . . , vT denote the vectors in T . Extend {v1, . . . , vT } to a basis of F
n by adding a set

of n− αn unit vectors U . Define a linear projection L as follows:

L(v) = 0 for all v ∈ T
L(v) = v for all v ∈ U

Since L is specified on a basis, it is specified on all of F
n by linearity.

Recall that M ′
i denotes the collection of edges in Mi that are incident to some vertex in T .

Let e = {j1, j2, j3} be an edge in some M ′
i . Then there are non-zero γ1, γ2, γ3 ∈ F for which

γ1fj1 + γ2fj2 + γ3fj3 = ui. By linearity,

L(ui) = L(γ1fj1 + γ2fj2 + γ3fj3) = γ1L(fj1) + γ2L(fj2) + γ3L(fj3).

By definition of M ′
i , |{j1, j2, j3} ∩ T | > 0, so one of the following must be true:

L(ui) ∈ span(L(fj1), L(fj2)), L(ui) ∈ span(L(fj1), L(fj3)), or L(ui) ∈ span(L(fj2), L(fj3)).

Thus, for each such edge e ∈ {j1, j2, j3}, by removing exactly one element j` ∈ {j1, j2, j3}
for which L(fj`

) = 0, we may define matchings Wi of disjoint pairs {j, k} of [m] such that if
{j, k} ∈ Wi, then L(ui) ∈ span(L(fj), L(fk)). Moreover,

∑n
i=1 |Wi| =

∑n
i=1 |M ′

i | ≥ αΘc,ε(n
2).

Say an index i ∈ [n] survives if L(ui) = ui, and say an edge e survives if e ∈M ′
i for an i that

survives. If i survives, then ui ∈ U , as otherwise we would have ui =
∑

v∈T γvv+
∑

u∈U γuu for
some coefficients γv, γu ∈ F. Applying L to both sides we would obtain ui =

∑

u∈U γuu, which
is impossible unless ui ∈ U .

Recall that each of the αn vertices v in T has degree at least βn in G′. For any such v ∈ T ,
there are at least βn−αn edges e ∈]iM

′
i containing v that survive. Thus, since each edge that

survives can be incident to at most q elements of T , and since α� β,
∑

i that survive

|Wi| ≥ αn(β − α)n/q = αΩc,ε(n
2).

For i that do not survive, we set Wi = ∅. We need a theorem due to Dvir and Shpilka [4].

Theorem 18 ([4]) Let F be any field, and let a1, . . . , am ∈ F
n. For every i ∈ [n], let Mi be a

set of disjoint pairs of indices {j1, j2} such that ui ∈ span(aj1 , aj2). Then,

n
∑

i=1

|Mi| ≤ m logm+m.

Applying Theorem 18 to our setting, we have m vectors L(fj) ∈ F
n and matchings Wi with

∑

i |Wi| = αΩc,ε(n
2). We conclude that,

Theorem 19 For δ, ε ∈ (0, 1), if C : F
n → F

m is a linear (3, δ, ε)-locally decodable code, then

m = Ωδ,ε(n
2/ logn),

which is independent of the field F.

4.2 The additional optimizations

We improve the bound to m = Ωδ,ε(n
2/ log logn). Let N(T) denote all vertices u ∈ G′ that are

incident to a vertex v ∈ T , that is, N(T) denotes the neighbors of the set T in the hypergraph
G′. Let U ′ be a random subset of U size exactly αn. We define a linear projection L′ as follows:

L′(v) = 0 for all v ∈ T ∪ U ′

L′(v) = v for all v ∈ U \ U ′

10

Let e be a 3-edge that survives. In Section 4.1, we showed that if we apply L to each vertex
(identified with a vector) in G′, there are at least αΩc,ε(n

2) 3-edges e that survive. We say that
e is zeroed out if e ∈M ′

i and ui ∈ U ′.

Claim 20 There exists an L′ for which α2Ωc,ε(n
2) 3-edges survive and are zeroed out.

Proof: Fix a 3-edge that survives. Since U ′ is a random subset of U of αn unit vectors, e is
zeroed out with probability at least α/(1−α) > α. By linearity of expectations, there exists an
L′ for which at least α2Ωc,ε(n

2) edges that survive are zeroed out.

Fix such an L′. Define a multigraph H on vertex set N(T) as follows. For distinct u, v, there is
an edge {u, v} for each 3-edge e containing u, v that survives and is zeroed out. Then, by the
previous claim, for large enough n the number of edges in H is at least α2λn2 for a positive
constant λ, which depends on c and ε. Let P1, . . . , Pr be the connected components in H . Let
pj be the number of vertices in Pj .

Lemma 21 The number of edges in Pj , for any j, is at most pj log pj + pj.

Proof: Let {u, v} be an edge in Pj . Then there is a 3-edge e = {w, u, v} ∈ M ′
i , w ∈ T , for

some i ∈ [n] for which u, v ∈ e, e survives, and e is zeroed out. Then γ1w + γ2u + γ3v = ui

for non-zero γ1, γ2, γ3 in F. Since e survives, L(ui) = ui. Since w ∈ T , L(w) = 0. By linearity,
γ2L(u) + γ3L(v) = ui. Moreover, for each i ∈ [n], each vertex u ∈ Pj can occur in at most
one edge e ∈M ′

i , so we obtain matchings W ′
i , where an edge {u, v} in Pj is in W ′

i iff there is a
3-edge e ∈M ′

i for which u, v ∈ e and e survives and is zeroed out. By Theorem 18,
∑

i

|W ′
i | ≤ pj log pj + pj .

Since the number of edges in Pj is just
∑

i |W ′
i |, this completes the proof.

We assume that |N(T)| ≤ α2λn2/(3 log logn), as otherwise since m ≥ |N(T)|, we immediately
have the desired bound. Thus, we have the following conditions on the pj :

1. α2λn2 ≤∑

j pj log pj + pj

2.
∑

j pj ≤ α2λn2/(3 log logn)

We can use the second condition to simplify the first condition to α2λn2/2 ≤∑

j pj log pj, which
holds for sufficiently large n. In Appendix 9 we show these conditions imply:

Lemma 22 There exists a set S of α2n indices j for which
∑

j∈S pj ≥ α2n logn.

Fix such a set S guaranteed by this lemma. Form the set V (S) from S by including exactly one
element of each Pj for j ∈ S. Let I be a maximum-sized subset of linearly independent vectors
of V (S) ∪ T ∪ U ′. Then |I| ≤ |V (S)|+ |T |+ |U ′| ≤ α2n+ αn+ αn ≤ 3αn. Extend I to a basis
by adding a set of unit vectors J . Define the linear projection:

L′′(v) = 0 for all v ∈ I
L′′(v) = v for all v ∈ J

Claim 23 Let P be a connected component of H. If a vertex a ∈ P (identified with a vector)
is such that L′′(a) = 0n, then all vertices b in P satisfy L′′(b) = 0n.

Proof: Consider any vertex b in P , and let a = a0, a1, a2, . . . , ak = b be a path from a
to b in P . Since {a0, a1} is an edge in H , there is a 3-edge e = {w, a0, a1} in some M ′

i for
which w ∈ T and e is zeroed out. This means that L′′(w) = 0 and L′′(ui) = 0. But, for
some non-zero γ1, γ2, γ3 ∈ F, γ1w + γ2a0 + γ3a1 = ui. By linearity, these conditions imply
that γ2L

′′(a0) + γ3L
′′(a1) = 0n. Thus, if a = a0 satisfies L′′(a) = 0n, then L′′(a1) = 0n. By

induction, this means that L′′(b) = 0n.

11

Corollary 24 For any v ∈ ∪j∈SPj, L
′′(v) = 0.

Proof: This follows from Claim 23 and the fact that L′′ vanishes on V (S).

Define P = ∪j∈SPj , so that |P | ≥ α2n logn. Let N(P) be the vertices neighboring P in G′.
Each vertex in P has degree at least βn, so it is incident to at least βn− 3αn = Ωc,ε(n) 3-edges
in ∪i∈JMi, provided α is a small enough constant. Thus, since any 3-edge is incident to at most
3 elements of P , P is collectively incident to at least α2n logn(β − 3α)n/3 = α2Ωc,ε(n

2 logn)
3-edges in ∪i∈JMi. Since L′′ vanishes on P but preserves unit vectors in J , this gives rise to
matchings Wi on the multiset of vectors L′′(N(P)). Here, N(P) is identified with a multiset
of vectors, and L′′(N(P)) is the multiset formed by applying L′′ to each element of N(P).
Moreover,

∑

i |Wi| ≥ α2Ωc,ε(n
2 logn). By Theorem 18, |N(P)| ≥ α2Ωc,ε(n

2 logn/ logn).
Thus, m ≥ |N(P)| ≥ α2Ωc,ε(n

2). Recall that this is under the assumption that |N(T)| ≤
α2λn2/(3 log logn). But, m ≥ |N(T)|. We conclude,

Theorem 25 For δ, ε ∈ (0, 1), if C : F
n → F

m is a linear (3, δ, ε)-locally decodable code, then

m = Ωδ,ε(n
2/ log logn),

which is independent of the field F.

Acknowledgment: The author thanks Piotr Indyk, Swastik Kopparty, and Sergey Yekhanin
for helpful comments.

References

[1] Amos Beimel, Yuval Ishai, Eyal Kushilevitz, and Jean-Franois Raymond. Breaking the

O(n
1

2k−1) barrier for information-theoretic private information retrieval. In FOCS, 2002.

[2] Amit Deshpande, Rahul Jain, T. Kavitha, Jaikumar Radhakrishnan, and Satyanarayana V.
Lokam. Better lower bounds for locally decodable codes. In IEEE Conference on Compu-
tational Complexity, pages 184–193, 2002.

[3] Reinhard Diestel. Graph theory. Springer-Verlag Graduate Texts in Mathematics, 2005.

[4] Zeev Dvir and Amir Shpilka. Locally decodable codes with 2 queries and polynomial
identity testing for depth 3 circuits. In STOC, 2005.

[5] Oded Goldreich, Howard J. Karloff, Leonard J. Schulman, and Luca Trevisan. Lower
bounds for linear locally decodable codes and private information retrieval. In CCC, 2002.

[6] T. Itoh. On lower bounds for the communication complexity of private information retrieval.
IEICE Trans. Fund. of Electronics, Commun. and Comp. Sci, E84-A(1):157–164, 2001.

[7] Jonathan Katz and Luca Trevisan. On the efficiency of local decoding procedures for
error-correcting codes. In STOC, 2000.

[8] I. Kerenidis and R. de Wolf. Exponential lower bound for 2-query locally decodable codes.
In STOC, 2003.

[9] Ashwin Nayak. Optimal lower bounds for for quantum automata and random access codes.
In FOCS, 1999.

[10] M. A. Nielsen and I. Chuang. Quantum computation and quantum information. Cambridge
University Press, 2000.

[11] K. Obata. Optimal lower bounds for 2-query locally decodable linear codes. In RANDOM,
2483: 39-50, 2002.

[12] A. Razborov and S. Yekhanin. An ω(n1/3) lower bound for bilinear group based private
information retrieval. In FOCS, 2006.

12

[13] A. Samorodnitsky. Manuscript, presented at the ipam workshop on locally decodable codes.
2006.

[14] M. Sipser and D. A. Spielman. Expander codes. IEEE Trans. Inform. Theory, 42:1710-
1722, 1996.

[15] L. Trevisan. Some applications of coding theory in computational complexity. Quaderni di
Matematica 13:347-424, 2004.

[16] S. Wehner and R. de Wolf. Improved lower bounds for locally decodable codes and private
information retrieval. In ICALP, 3580: 1424-1436, 2005.

[17] D. Woodruff and S. Yekhanin. A geometric approach to information theoretic private
information retrieval. In CCC, pp. 275-284, 2005.

[18] S. Yekhanin. New locally decodable codes and private information retrieval schemes. ECCC
TR06-127, 2006.

5 Appendix: A simplification

Lemma 26 If C is a (q, c, ε)-smooth code that is good on average for which for each i ∈ [n], the
decoder A picks a random q-set {j1, . . . , jq} ∈Mi and either outputs C(x)j1⊕C(x)j2⊕· · ·⊕C(x)jq

or C(x)j1 ⊕ C(x)j2 ⊕ · · · ⊕ C(x)jq ⊕ 1, then there is a (q, 2c, ε)-smooth code C′ that is good on
average for which for each i ∈ [n] there is a bit bi ∈ {0, 1} for which the decoder A′ picks a
random q-set {j1, . . . , jq} ∈Mi and outputs C(x)j1 ⊕ C(x)j2 ⊕ · · · ⊕ C(x)jq ⊕ bi.

Proof: For each i ∈ [n], for at least half of the q-sets in Mi, either A outputs C(x)j1 ⊕
C(x)j2 ⊕ · · · ⊕C(x)jq or A outputs C(x)j1 ⊕C(x)j2 ⊕ · · · ⊕C(x)jq ⊕ 1. In the first case, we set
bi = 0 and in the second bi = 1. We remove all q-sets from Mi for which A does not output
C(x)j1 ⊕C(x)j2 ⊕ · · · ⊕C(x)jq ⊕ bi. On input i, the new decoder A′ of C′ picks a random q-set
from the remaining ones in Mi, and outputs C(x)j1 ⊕ C(x)j2 ⊕ · · · ⊕ C(x)jq ⊕ bi. Then C′ is a
(q, 2c, ε)-smooth code that is good on average satisfying the condition of the lemma.

6 Appendix: Finding a small set incident to many edges

in the recovery graphs

For the hypergraph G of Section 3.1 on m vertices with at least βmn hyperedges, we let e(G)
denote the number of its hyperedges and v(G) the number of its vertices. Consider the following
algorithm:

Min-Degree(G):

1. G(0)← G.

2. x(0)← e(G(0))
v(G(0)) .

3. i← 0.

4. While there is a vertex vi ∈ G(i) with deg(vi) < x(i),

• i← i+ 1.

• G(i)← G(i− 1) \ {vi−1}.
• x(i)← e(G(i))

v(G(i)) .

5. Output G′ = G(i).

13

Lemma 27 Min-Degree outputs a non-empty G′ ⊆ G with minimum degree at least βn.

Proof: It is clear that Min-Degree terminates since step 4 can be iterated at most m times.
Suppose then that G′ = G(i′). Evidently,

G = G(0) ⊇ G(1) ⊇ G(2) ⊇ · · · ⊇ G(i′) = G′.

When we delete vi−1 from G(i− 1) to form G(i), we remove deg(vi−1) < x(i− 1) edges and one
vertex. It follows that

x(i) =
e(G(i))

v(G(i))
≥ e(G(i− 1))

v(G(i− 1))
= x(i− 1),

and thus x(i′) ≥ e(G)
v(G) . Note that G′ is non-empty since x(0) > 0 and x(i′) ≥ x(0). Thus,

since G′ has no vertex that can be deleted, it follows that its minimum degree is at least

x(0) ≥ e(G)
v(G) ≥

βmn
m = βn.

7 Appendix: The quantum arguments

7.1 Quantum background

We borrow notation from [8]. For more background on quantum information theory, see [10].
A density matrix is a positive semi-definite (PSD) complex-valued matrix with trace 1. A

quantum measurement on a density matrix ρ is a collection of PSD matrices {Mj} satisfying
∑

j M
†
jMj = I, where I is the identity matrix (A† denotes the conjugate-transpose of A). The

set {Mj} defines a probability distribution X on indices j given by Pr[X = j] =tr(M †
jMjρ).

We use the notation AB to denote a bipartite quantum system, given by some density
matrix ρAB, and A and B to denote its subsystems. More formally, the density matrix of ρA is
trB(ρAB), where trB is a map known as the partial trace over system B. For given vectors |a1〉
and |a2〉 in the vector space of A, and |b1〉 and |b2〉 in the vector space of B,

trB(|a1〉〈a2| ⊗ |b1〉〈b2|) def
= |a1〉〈a2|tr(|b1〉〈b2|),

and trB(ρAB) is then well-defined by requiring trB to be a linear map.

S(A) is the Von Neumann entropy of A, which is defined to be
∑d

i=1 λi log2
1
λi

, where the
λi are the eigenvalues of A. S(A | B) = S(AB)− S(B) is the conditional entropy of A given B,
and S(A;B) = S(A) + S(B)− S(AB) = S(A)− S(A | B) is the mutual information between A
and B.

7.2 Our argument

For x ∈ L, let C′(x) be its encoding. Replace the jth entry of C′(x) with (−1)C′(x)j . We can
represent C′(x) as a vector in a state space of logm′ qubits |j〉, where j ∈ [m′]. That is, the
vector space it lies in has dimension m′, and its standard basis consists of all vectors |b〉, where
b ∈ {0, 1}log m′

(we can assume m′ is a power of 2). Define

ρx =
1

m′C
′(x)†C′(x).

It is easy to verify that ρx is a density matrix. Next, we adapt the argument given on p.24 of
[8]. Consider the following n+ logm′ qubit quantum system XM :

1

|L|
∑

x∈L

|x〉〈x| ⊗ ρx.

14

We use X to denote the first system, Xi for its individual qubits, and M for the second subsys-
tem. By Theorem 11.8.4 of [10],

S(XM) = S(X) +
1

|L|
∑

x∈L

S(ρx) ≥ S(X) = log2 |L|.

Since M has logm′ qubits, S(M) ≤ logm′, hence

S(X : M) = S(X) + S(M)− S(XM) ≤ S(M) ≤ logm′.

Using a chain rule for relative entropy and a highly non-trivial inequality known as the strong
subadditivity of the Von Neumann entropy (for proofs of these facts, see Chapter 11 of [10]),
we get

S(X |M) =

n
∑

i=1

S(Xi | X1, . . . , Xi−1M) ≤
n

∑

i=1

S(Xi |M).

In Theorem 34 below, we show that if i /∈ I, then S(Xi | M) ≤ 1, and if i ∈ I, then S(Xi |
M) ≤ H(1

2 + ε
8). Putting everything together,

log2 |L| − |I|H(
1

2
+
ε

8
)− (n− |I|) ≤ S(X)−

n
∑

i=1

S(Xi |M)

≤ S(X)− S(X |M) = S(X : M)

≤ logm′ = log

(

m

η m
nh(q)

)

= Oq,c,ε

(m

nh(q)
logn

)

.

To complete the argument, we would like to show that for a small enough constant α,

log2 |L| − |I|H(
1

2
+
ε

8
)− (n− |I|) = Ωq,c,ε(n). (1)

Recall that |I| = Θq,c,ε(n) and |L| ≥ 2n−2αn. Thus, equation 1 holds if n− 2αn− |I|H(1
2 + ε

8)−
n+ |I| = |I|(1−H(1

2 + ε
8))− 2αn = Ωq,c,ε(n). This in turn holds for α sufficiently small. Thus,

Ωq,c,ε(n) = Oq,c,ε

(

m
nh(q) logn

)

, so m = Ωq,c,ε(n
1+h(q)/ logn). We conclude,

Theorem 28 For odd q, any (q, c, ε)-smooth code C : {0, 1}n → {0, 1}m that is good on average
satisfies

m = Ωq,c,ε

(

n1+2/(q−1)

logn

)

.

7.3 The missing piece

To complete the proof, it remains to bound S(Xi | M). We use Theorem 4.2 of [9], which is a
theorem due to Holevo.

Theorem 29 [9] Let x→ σx be any quantum encoding of bit strings, let X be a random variable
with a distribution given by Pr[X = x] = px, and let σ =

∑

x pxσx be the state corresponding to
the encoding of the random variable X. If Y is any random variable obtained by performing a
measurement on σx, then

I(X ;Y) ≤ S(σ)−
∑

x

pxS(σx),

where I(X ;Y) = H(X)−H(X | Y) is the classical mutual information between X and Y .

15

Let qi be the fraction of different x ∈ L for which xi = 0.

Lemma 30 Let Y be any random variable obtained by performing a measurement on the en-
coding M . Then,

S(Xi |M) ≤ H(qi)− I(Xi;Y).

Proof: By definition, S(Xi |M) = S(XiM)− S(M). Consider the following two matrices:

A =
∑

x∈L|xi=0

ρx, B =
∑

x∈L|xi=1

ρx.

By Theorem 11.8.4 of [10],

S(XiM) = H(qi) + qiS(A) + (1− qi)S(B).

By Theorem 29,
I(Xi;Y) ≤ S(M)− qiS(A)− (1− qi)S(B).

Thus,

S(XiM)− S(M) ≤ H(qi) + qiS(A) + (1 − qi)S(B) − I(Xi;Y)− qiS(A)− (1 − qi)S(B)

= H(qi)− I(Xi;Y),

which completes the proof.

Corollary 31 Suppose i /∈ I. Then S(Xi |M) ≤ 1.

Now suppose that i ∈ I. We choose a quantum measurement {Ej} as follows. Initialize {Ej} ←
∅. For each of the m′/4 disjoint pairs {B,B′} ∈Wi, add the two projections to {Ej}:

1√
2
(|B〉 − |B′〉)(〈B| − 〈B′|), 1√

2
(|B〉+ |B′〉)(〈B| + 〈B′|).

For the remaining m′/2 coordinates B, use the projections |B〉〈B|. Observe that {Ej} is in fact

a quantum measurement, since in an appropriate basis
∑

j E
†
jEj = I. We may identify the first

m′/2 coordinates of [m′] with those sets B occurring in Wi.

Lemma 32 For i ∈ I, there is an algorithm A that, when measuring ρx with quantum mea-
surement {Ej}, outputs xi with probability at least 1

2 + ε
8 . Here, the probability is over x ∈ L,

the randomness of A, and the distribution defined by {Ej}.

Proof: When measuring with {Ej}, with probability

∑

j>m′/2

tr(E†
jEjρx) =

1

2
,

the outcome is in {m′/2 + 1,m′/2 + 2, . . . ,m′}. In this case, A just outputs a random coin toss.
Now we compute the probability the outcome is j for some j ∈ [m′/2]. We use the notation

j = (B,B′,−) to refer to the projection 1√
2
(|B〉−|B′〉)(〈B|−〈B′|) and j = (B,B′,+) to refer to

the projection 1√
2
(|B〉 + |B′〉)(〈B| + 〈B′|). Recall that ρx = 1

m′

∑

B,B′ C′(x)B · C′(x)B′ |B〉〈B′|
(recall that for all j, we have replaced the jth entry of C′(x) with (−1)C′(x)j). By definition,
the probability the outcome is j = (B,B′,−) is

tr

(

1√
2
(|B〉 − |B′〉)(〈B| − 〈B′|) 1√

2
(|B〉 − |B′〉)(〈B| − 〈B′|)ρx

)

=
1

2
tr((|B〉 − |B′〉)(〈B| − 〈B′|)ρx),

=
1

m′ −
1

m′C
′(x)B · C′(x)B′

16

This probability is 0 if C′(x)B = C′(x)B′ , and is 2
m′

otherwise. Similarly, the probability the
outcome is j = (B,B′,+) is 0 if C′(x)B 6= C′(x)B′ , and is 2

m′
otherwise.

It follows that if j ∈ [m′/2], A can output gB ⊕ gB′ ⊕ bi,B,B′ for some {B,B′} ∈Wi. In this
case, it is correct with probability at least 1

2 + ε
4 , by definition of Wi. It follows that A, when

measuring ρx for random x ∈ L, outputs xi with probability at least

1

2
· 1
2

+
1

2
·
(

1

2
+
ε

4

)

=
1

2
+
ε

8
,

which completes the proof.

Corollary 33 Suppose i ∈ I. Then S(Xi |M) ≤ H(1
2 + ε

8).

Proof: Let Y be the output of algorithm A in Lemma 32. By Lemma 30,

S(Xi |M) ≤ H(qi)− I(Xi;Y)

= H(qi)− (H(Xi)−H(Xi | Y))

= H(qi)−H(qi) +H(Xi | Y)

= H(Xi | Y).

Now, by Fano’s inequality (see p. 536 of [10]), since Pr[Xi = Y] ≥ 1
2 + ε

8 ,

H(Xi | Y) ≤ H(
1

2
+
ε

8
).

Thus, S(Xi |M) ≤ H(1
2 + ε

8).

By combining Corollary 33 and Corollary 31, we have shown the needed missing theorem.

Theorem 34 If i /∈ I, then S(Xi |M) ≤ 1. If i ∈ I, then S(Xi |M) ≤ H(1
2 + ε

8).

8 Appendix: From adaptive decoders to non-adaptive de-

coders

Theorem 35 Let C : F
n → F

m be a linear (3, δ, ε)-LDC. Then C is also a linear (3, δ/9, 2/3−
1/|F|)-LDC with a non-adaptive decoder.

Proof: Since C is a linear code, each of its coordinates can be identified with a vector
fj ∈ F

n, with the function for that coordinate computing 〈fj , x〉, where the inner product is
over F. Define the ordered list of vectors B = f1, . . . , fm.

Fix some i ∈ [n], and let Ci be the collection of all sets S ⊆ [m], with |S| ≤ 3, for which
ui ∈ span(fj | j ∈ S), where ui denotes the unit vector in direction i. Let Di ⊆ [m] be a smallest
dominating set of Ci, that is, a set for which for all S ∈ Ci, |S ∩Di| > 0.

Claim 36 |Di| > δm.

Proof: Suppose not. Consider the following adversarial strategy: given a codeword C(x),
replace all coordinates C(x)j for j ∈ Di, with 0. Denote the new string C̃(x). The coordinates

of C̃(x) compute the functions 〈f̃j, x〉, where f̃j = fj if j /∈ Di, and f̃j = 0 otherwise. Let B̃ be

the ordered list of vectors f̃1, . . . , f̃m.
Define 3-span(B̃) to be the (possibly infinite) list of all vectors in the span of each subset

of B̃ of size at most 3. We claim that ui /∈ 3-span(B̃). Indeed, if not, then let S ⊆ [m] be a
smallest set for which ui ∈ span(f̃j | j ∈ S). Then |S| ≤ 3. If S is empty, this is impossible.

17

Otherwise, ui ∈ span(fj | j ∈ S), and so S ∩Di 6= ∅, so there is some ` ∈ S ∩Di. Since f̃` = 0,

it follows that ui ∈ span(f̃j | j ∈ (S \ {`})). But |S \ {`}| < |S|, which contradicts that S was
smallest.

Let A be the decoder of C, where A computes Ay(i, r) on input index i ∈ [n] and random
string r. Here, for any x ∈ F

n, we let the string y = y(x) be defined by the adversarial strategy
given above. For any x ∈ F

n, Ay(i, r) first probes coordinate j1 of y, learning the value 〈f̃j1 , x〉.
Next, depending on the answer it receives, it probes coordinate j2, learning the value 〈f̃j2x〉.
Finally, depending on the answer it receives, it probes coordinate j3, learning the value 〈f̃j3x〉.
Consider the affine subspace V of dimension d ≥ n−3 of all x ∈ F

n which cause Ay(i, r) to read
positions j1, j2, and j3. Let V0 be the affine subspace of V of all x for which Ay(i, r) outputs
xi. Since the output of Ay(i, r) is fixed given that it reads positions j1, j2, and j3, and since
ui /∈ span(f̃j1 , f̃j2 , f̃j3), it follows that the dimension of V0 is at most d− 1.

Suppose first that F is a finite field. Then for any fixed r, the above implies Ay(i, r) is correct

on at most a 1
|F| fraction of x ∈ F

n since |V0|
|V | ≤ 1

|F| for any set of three indices j1, j2, and j3 that

A can read. Thus, by averaging, there exists an x ∈ F
n for which

Pr[Ay(i) = xi] ≤
1

|F| ,

where the probability is over the random coins r of A. This contradicts the correctness of A.
Now suppose that F is an infinite field. We will show that there exists an x ∈ F

n for which

Pr[Ay(i) = xi] = 0,

contradicting the correctness of the decoder.
For each random string r, there is a finite non-empty set Gr of linear constraints over F

that any x ∈ F
n must satisfy in order for Ay(i, r) = xi. Consider the union ∪rGr of all such

linear constraints. Since the number of different r is finite, this union contains a finite number
of linear constraints.

Since F is infinite, we claim that we can find an x ∈ F
n which violates all constraints

in ∪rGr. We prove this by induction on n. If n = 1, then the constraints have the form
x1 = c1, x1 = c2, . . . , x1 = cs for some finite s. Thus, by choosing x1 /∈ {c1, c2, . . . , cs}, we are
done. Suppose, inductively, that our claim is true for n − 1. Now consider F

n. Consider all
constraints in ∪rGr that have the form x1 = c for some c ∈ F. There are a finite number of
such constraints, and we can just choose x1 not to equal any of these values c, since F is infinite.
Now, substituting this value of x1 into the remaining constraints, we obtain constraints (each
depending on at least one variable) on n− 1 variables x2, . . . , xn. By induction, we can choose
the values to these n−1 variables so that all constraints are violated. Since we haven’t changed
x1, the constraints of the form x1 = c are still violated. This completes the proof.

It follows that since |Di| > δm and Di is a smallest dominating set of Ci, we can greedily con-
struct a matching Mi of δm/3 disjoint triples {j1, j2, j3} of [m] for which ui ∈ span(fj1 , fj2 , fj3).

Consider the new behavior of the decoder: on input i ∈ [n], choose a random triple
{j1, j2, j3} ∈ Mi, and compute ui as γ1〈fj1 , x〉 + γ2〈fj2 , x〉 + γ3〈fj3 , x〉, where ui = γ1fj1 +
γ2fj2 + γ3fj3 . Since the adversary can now corrupt at most δm/9 positions, it follows that with
probability at least 2/3, the positions queried by the decoder are not corrupt and it outputs xi.
Note that the new decoder also makes at most 3 queries.

9 Appendix: A structural lemma

We have the following conditions on the pj:

1. α2λn2/2 ≤∑

j pj log pj

18

2.
∑

j pj ≤ α2λn2/(3 log logn).

Lemma 37 There exists a set S of α2n indices j for which
∑

j∈S pj ≥ α2n logn.

Proof: Put s = α2n. We may assume, by relabeling if necessary, that p1 ≥ p2 ≥ · · · ≥ pr.
Consider the following program:

min

s
∑

j=1

pj

s.t. α2λn2/2 ≤
∑

j

pj log pj

∑

j

pj ≤ α2λn2/(3 log logn)

∀j, pj ≥ 0

We have relaxed the integrality requirements on the pj , and allowed pj = 0, whereas previously
pj ≥ 1. This cannot increase the optimum. If pj = 0, we define pj log pj = 0 (note that
limpj→0 pj log pj = 0, and pj log pj is continuous for pj > 0). Consider an optimal solution
p = (p1, . . . , pr) to this program with cost OPT . If OPT ≥ α2n logn, the lemma follows, so
assume OPT < α2n logn.

We claim there is another optimal solution of the form

p′ = (OPT − (s− 1)ps, ps, ps, . . . , ps, q, 0, 0, . . . , 0),

where 0 ≤ q ≤ ps and
∑

j p
′
j =

∑

j pj ≤ α2λn2/(3 log logn). This follows from the convexity
of the x log x function for x ≥ 0 (where 0 log 0 is defined to be 0), so that we again have
α2λn2/2 ≤∑

j p
′
j log p′j . Note that the objective function evaluated at p′ is again OPT .

Let t be the number of positions in p′ whose value is at least ps. Since OPT < α2n logn,
we also have OPT − (s− 1)ps < α2n logn, and thus, for sufficiently large n we must have,

α2λn2/3 ≤ tps log ps,

and also
tps ≤ α2λn2/(3 log logn).

Putting these inequalities together, this implies

α2λn2/3 ≤ α2λn2 log ps/(3 log logn),

or
log logn ≤ log ps.

On the other hand, since OPT < α2n logn, we have sps < α2n logn, and since s = α2n, this
means ps < logn. But then log logn ≤ log ps < log logn, a contradiction.

Thus, OPT ≥ α2n logn, and the proof is complete.

19

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

