
Structure Theorem and Strict Alternation
Hierarchy for FO2 on Words∗

Philipp Weis Neil Immerman

Department of Computer Science

University of Massachusetts, Amherst

140 Governors Drive

Amherst, MA 01003, USA

{pweis,immerman}@cs.umass.edu

http://www.cs.umass.edu/∼{pweis,immerman}

It is well-known that every first-order property on words is expressible using at
most three variables. The subclass of properties expressible with only two variables
is also quite interesting and well-studied. We prove precise structure theorems that
characterize the exact expressive power of first-order logic with two variables on
words. Our results apply to FO2[<] and FO2[<,Suc], the latter of which includes
the binary successor relation in addition to the linear ordering on string positions.

For both languages, our structure theorems show exactly what is expressible
using a given quantifier depth, n, and using m blocks of alternating quantifiers,
for any m ≤ n. Using these characterizations, we prove, among other results,
that there is a strict hierarchy of alternating quantifiers for both languages. The
question whether there was such a hierarchy had been completely open since it was
asked in [EVW97].

1 Introduction

It is well-known that every first-order property on words is expressible using at most three
variables [IK89, K68]. The subclass of properties expressible with only two variables is also
quite interesting and well-studied (Fact 1.1).

In this paper we prove precise structure theorems that characterize the exact expressive
power of first-order logic with two variables on words. Our results apply to FO2[<] and

∗Supported in part by NSF grant CCF-0514621.

Electronic Colloquium on Computational Complexity, Report No. 8 (2007)

ISSN 1433-8092

FO2[<,Suc], the latter of which includes the binary successor relation in addition to the linear
ordering on string positions.

For both languages, our structure theorems show exactly what is expressible using a given
quantifier depth, n, and using m blocks of alternating quantifiers, for any m ≤ n. Using these
characterizations, we prove that there is a strict hierarchy of alternating quantifiers for both
languages. The question whether there was such a hierarchy had been completely open since
it was asked in [EVW97].

Our motivation for studying FO2 on words comes from the desire to understand the trade-off
between formula size and number of variables. This is of great interest because, as is well-
known, this is equivalent to the trade-off between parallel time and number of processors [I99].
Adler and Immerman introduced a game that can be used to determine the minimum size
of first-order formulas with a given number of variables needed to express a given property.
These games, which are closely related to the communication complexity games of Karchmer
and Widgerson [KW90], were used to prove two optimal size bounds for temporal logics [AI03].
Later Grohe and Schweikardt used similar methods to study the size versus variable trade-
off for first-order logic on unary words [GS05]. They proved that all first-order expressible
properties of unary words are already expressible with two variables and that the variable-size
trade-off between two versus three variables is polynomial whereas the trade-off between three
versus four variables is exponential. They left open the trade-off between k and k+1 variables
for k ≥ 4. While we do not directly address that question here, our classification of FO2 on
words is a step towards the general understanding of the expressive power of FO needed for
progress on such trade-offs.

Our characterization of FO2[<] and FO2[<,Suc] on words is based on the very natural notion
of n-ranker (Definition 3.2). Informally, a ranker is the position of a certain combination of
letters in a word. For example, .a and /b are 1-rankers where .a(w) is the position of the first
a in w (from the left) and /b(w) is the position of the first b in w from the right. Similarly,
the 2-ranker r2 = .a.c denotes the position of the first c to the right of the first a, and the
3-ranker, r3 = .a .c /b denotes the position of the first b to the left of r2. If there is no
such letter then the ranker is undefined. For example, r3(cababcba) = 5 and r3(acbbca) is
undefined.

Our first structure theorem (Theorem 3.8) says that the properties expressible in FO2
n[<],

i.e., first-order logic with two variables and quantifier depth n, are exactly boolean combina-
tions of statements of the form, “r is defined”, and “r is to the left (right) of r′” for k-rankers,
r, and k′-rankers, r′, with k ≤ n and k′ < n. A non-quantitative version of this theorem was
previously known [STV01].1

Surprisingly, Theorem 3.8 can be generalized in almost exactly the same form to characterize
FO2

m,n[<] where there are at most m blocks of alternating quantifiers, m ≤ n. This second
structure theorem (Theorem 4.5) uses the notion of (m,n)-ranker where there are m blocks of
.’s or /’s, that is, changing direction in rankers corresponds exactly to alternation of quantifiers.
Using Theorem 4.5 we prove that there is a strict alternation hierarchy for FO2

n[<] (Theorem
4.10) but that exactly at most |Σ| + 1 alternations are useful, where |Σ| is the size of the

1See item 7 in Fact 1.1: a “turtle language” is a language of the form “r is defined”, for some ranker, r.

2

alphabet (Theorem 4.6).
The language FO2[<,Suc] is more expressive than FO2[<] because it allows us to talk about

consecutive strings of symbols2. For FO2[<,Suc], a straightforward generalization of n-ranker
to n-successor-ranker allows us to prove exact analogs of Theorems 3.8 and 4.5. We use the
latter to prove that there is also a strict alternation hierarchy for FO2

n[<,Suc] (Theorem 5.6).
Since in the presence of successor we can encode an arbitrary alphabet in binary, no analog of
Theorem 4.6 holds for FO2[<,Suc].

The expressive power of first-order logic with three or more variables on words has been well-
studied. The languages expressible are of course the star-free regular languages [MP71]. The
dot-depth hierarchy is the natural hierarchy of these languages. This hierarchy is strict [BK78]
and identical to the first-order quantifier alternation hierarchy [T82, T84].

Many beautiful results on FO2 on words were also already known. The main significant
outstanding question was whether there was an alternating hierarchy. The following is a
summary of the main previously known characterizations of FO2[<] on words.

Fact 1.1. [EVW97, EVW02, PW97, S76, TW98, STV01] Let R ⊆ Σ?. The following condi-
tions are equivalent:

1. R ∈ FO2[<]

2. R is expressible in unary temporal logic

3. R ∈ Σ2 ∩ Π2[<]

4. R is an unambiguous regular language

5. The syntactic semi-group of R is a member of DA

6. R is recognizable by a partially-ordered 2-way automaton

7. R is a boolean combination of “turtle languages”

The proofs of our structure theorems are self-contained applications of Ehrenfeucht-Fräıssé
games. All of the above characterizations follow from these results. Furthermore, we have now
exactly connected quantifier and alternation depth to the picture, thus adding tight bounds
and further insight to the above results.

For example, one can best understand item 4 above – that FO2[<] on words corresponds to
the unambiguous regular languages – via Theorem 3.12 which states that any FO2

n[<] formula
with one free variable that is always true of at most one position in any string, necessarily
denotes an n-ranker.

In the conclusion of [STV01], the authors define the subclasses of rankers with one and two
blocks of alternation. They write that, “. . . turtle languages might turn out to be a helpful tool
for futher studies in algebraic language theory.” We feel that the present paper fully justifies
that prediction. Turtle languages — aka rankers — do provide an exceptionally clear and
precise understanding of the expressive power of FO2 on words, with and without successor.

In summary, our structure theorems provide a complete classification of the expressive power
of FO2 on words in terms of both quantifier depth and alternation. They also tighten several
previous characterizations and lead to the alternation hierarchy results.

2With three variables we can express Suc(x, y) using the ordering: x < y ∧ ∀z(z ≤ x ∨ y ≤ z).

3

We begin the remainder of this extended abstract with a brief review of logical background
including Ehrenfeucht-Fräıssé games, our main tool. In section 3 we formally define rankers
and prove our structure theorem for FO2

n[<]. The structure theorem for FO2
m,n[<] is covered

in section 4, including our alternation hierarchy result that follows from it. Section 5 extends
our structure theorems and the alternation hierarchy result to FO2[<,Suc].

2 Background and Definitions

We briefly recall some notation concerning strings, first-order logic, and Ehrenfeucht-Fräıssé
games. See [I99] for further details, including the proof of Facts 2.1 and 2.2.

Σ will always denote a finite alphabet and ε the empty string. For w ∈ Σ` and i ∈ [1, `],
let wi be the i-th letter of w; and for [a, b] a subinterval of [1, `], let w[a,b] be the substring

wa . . . wb. We identify a word, w ∈ Σ` with the logical structure, w = ({1, . . . , `}, Qσ , σ ∈ Σ),
where (w, i/x) |= Qσ(x) iff wi = σ.

We use FO[<] to denote first-order logic with a binary linear order predicate <, and FO =
FO[<,Suc] for first-order logic with an additional binary successor predicate. FOk

n refers to
the restriction of first-order logic to use at most k distinct variables, and quantifier depth n.
FOk

m,n is the further restriction to formulas such that any path in their parse tree has at most

m blocks of alternating quantifiers, and FOk–ALT [m] =
⋃

n≥m FOk
m,n. We write u ≡2

n v to

mean that u and v agree on all formulas from FO2
n, and u ≡2

m,n to mean that they agree on

FO2
m,n.

We assume that the reader is familiar with our main tool: the Ehrenfeucht-Fräıssé game.
In each of the n moves of the game FO2

n(u, v), Samson places one of the two pebbles pairs, x
or y on a position in one of the two words and Delilah then answers by placing that pebble’s
mate on a position of the other word. Samson wins if after any move, the map from the chosen
points in u to those in v, i.e., x(u) 7→ x(v), y(u) 7→ y(v) is not an isomorphism of the induced
substructures; and Delilah wins otherwise. The fundamental theorem of Ehrenfeucht-Fräıssé
games is the following:

Fact 2.1. Let u, v ∈ Σ?, n ∈ N. Delilah has a winning strategy for the game FO2
n(u, v) iff

u ≡2
n v.

Thus, Ehrenfeucht-Fräıssé games are a perfect tool for determining what is expressible in
first-order logic with a given quantifier-depth and number of variables. The game FO2

m,n(u, v)

is the restriction of the game FO2
n(u, v) in which Samson may change which word he plays on

at most m− 1 times. For this game we have,

Fact 2.2. Let u, v ∈ Σ? and let m,n ∈ N with m ≤ n. Delilah has a winning strategy for the
game FO2

m,n(u, v) iff u ≡2
m,n v.

3 Structure Theorem for FO2[<]

We define boundary positions that point to the first or last occurrences of a letter in a word,
and define an n-ranker as a sequence of n boundary positions. In terms of [STV01], boundary

4

positions are turtle instructions and n-rankers are turtle programs of length n. The following
three lemmas show that basic properties about the definedness and position of these rankers
can be expressed in FO2[<], and we use these results to prove our structure theorem.

Definition 3.1. A boundary position denotes the first or last occurrence of a letter in a given
word. Boundary positions are of the form da where d ∈ {., /} and a ∈ Σ. The interpretation
of a boundary position da on a word w = w1 . . . w|w| ∈ Σ? is defined as follows.

da(w) =

{

min{i ∈ [1, |w|] | wi = a} if d = .

max{i ∈ [1, |w|] | wi = a} if d = /

Here we set min{} and max{} to be undefined, thus da(w) is undefined if a does not occur in
w. A boundary position can also be specified with respect to a position q ∈ [1, |w|].

da(w, q) =

{

min{i ∈ [q + 1, |w|] | wi = a} if d = .

max{i ∈ [1, q − 1] | wi = a} if d = /

Definition 3.2. Let n be a positive integer. An n-ranker r is a sequence of n boundary
positions. The interpretation of an n-ranker r = (p1, . . . , pn) on a word w is defined as follows.

r(w) :=











p1(w) if r = (p1)

undefined if (p1, . . . , pn−1)(w) is undefined

pn(w, (p1, . . . , pn−1)(w)) otherwise

Instead of writing n-rankers as a formal sequence (p1, . . . , pn), we often use the simpler
notation p1 . . . pn. We denote the set of all n-rankers by Rn, and the set of all n-rankers that
are defined over a word w by Rn(w). Furthermore, we set R?

n :=
⋃

i∈[1,n]Ri and R?
n(w) :=

⋃

i∈[1,n]Ri(w).

Definition 3.3. Let r be an n-ranker. As defined above, we have r = (p1, . . . , pn) for boundary
positions pi. The k-prefix ranker of r for k ∈ [1, n] is rk := (p1, . . . , pk).

Definition 3.4. Let i, j ∈ N. The order type of i and j is defined as

ord(i, j) =











< if i < j

= if i = j

> if i > j

Lemma 3.5 (distinguishing points on opposite sides of a ranker). Let n be a positive integer,
let u, v ∈ Σ? and let r ∈ Rn(u) ∩ Rn(v). Samson wins the game FO2

n(u, v) where initially
ord(x(u), r(u)) 6= ord(x(v), r(v)).

Proof. We only look at the case where x(u) ≥ r(u) and x(v) < r(v) since all other cases are
symmetric to this one. For n = 1 Samson has a winning strategy: If r is the first occurrence of
a letter, then Samson places y on r(u) and Delilah cannot reply. If r marks the last occurrence
of a letter in the whole word, then Samson places y on r(v). Again, Delilah cannot reply with
any position and thus loses.

5

u

v

rrn−1

x

x

S : y

D : y

Figure 1: The case rn−1(u) < r(u)

For n > 1, we look at the prefix ranker rn−1 of
r. One of the following two cases applies.

(1) rn−1(u) < r(u), see Figure 1. Samson places
y on r(u), and Delilah has to reply with a po-
sition left of x(v). She cannot choose any po-
sition in the interval (rn−1(v), r(v)), because
this section does not contain the letter ur(u).
Thus she has to choose a position left of or
equal to rn−1(v). By induction Samson wins
the remaining game.

(2)

u

v

r rn−1

x

x S : y

D : y

Figure 2: The case r(u) < rn−1(u)

r(u) < rn−1(u). This situation is illustrated
in Figure 2. Samson places y on r(v), and
Delilah has to reply with a position right of
x(u) and thus right of r(u). She cannot choose
any position in the interval (r(u), rn−1(u)) be-
cause this section does not contain the letter
vr(v), thus Delilah has to choose a position
right of or equal to rn−1(u). By induction
Samson wins the remaining game.

Lemma 3.6 (expressing the definedness of a ranker). Let n be a positive integer, and let r
be an n-ranker. There is a formula ϕr ∈ FO2

n[<] such that for all w ∈ Σ?, w |= ϕr ⇐⇒ r ∈
Rn(w).

Proof. Let u, v ∈ Σ? such that r ∈ Rn(u) and r /∈ Rn(v). We show that Samson wins the
game FO2

n(u, v). If r1, the shortest prefix ranker of r, is not defined over v, the letter referred
to by r1 occurs in u but does not occur in v. Thus Samson easily wins in one move.

u

v

ri ri−1

S : x

D : x

Figure 3: ri(v) is undefined

Otherwise let ri = (p1, . . . , pi) be the shortest prefix ranker
of r that is undefined over v. Thus ri−1 is defined over both
words. Without loss of generality we assume that pi = /a.
This situation is illustrated in Figure 3. Notice that v does
not contain any a’s to the left of ri−1(v), otherwise ri would
be defined over v. Samson places x in u on ri(u), and Delilah
has to reply with a position right of or equal to ri−1(v). Now
Lemma 3.5 applies and Samson wins in i− 1 more moves.

Lemma 3.7 (position of a ranker). Let n be a positive integer and let r ∈ Rn. There is a
formula ϕr ∈ FO2

n[<] such that for all w ∈ Σ? and for all i ∈ [1, |w|], (w, i/x) |= ϕr ⇐⇒ i =
r(w).

Proof. Let u, v ∈ Σ?. We show that Samson wins the game FO2
n(u, v) where initially x(u) =

r(u) and x(v) 6= r(v). If r(v) is defined over v, then we can apply Lemma 3.5 immediately to
get the desired strategy for Samson. Otherwise we use the strategy from Lemma 3.6.

6

Theorem 3.8 (structure of FO2
n[<]). Let u and v be finite words, and let n ∈ N. The following

two conditions are equivalent.

(i) (a) Rn(u) = Rn(v), and,

(b) for all r ∈ R?
n(u) and r′ ∈ R?

n−1(u), ord(r(u), r′(u)) = ord(r(v), r′(v))

(ii) u ≡2
n v

Notice that condition (i)(a) is equivalent to R?
n(u) = R?

n(v). Instead of proving Theorem 3.8
directly, we prove the following more general version on words with two interpreted variables.

Theorem 3.9. Let u and v be finite words, let i1, i2 ∈ [1, |u|], let j1, j2 ∈ [1, |v|], and let
n ∈ N. The following two conditions are equivalent.

(i) (a) Rn(u) = Rn(v), and,

(b) for all r ∈ R?
n(u) and r′ ∈ R?

n−1(u), ord(r(u), r′(u)) = ord(r(v), r′(v)), and,

(c) (u, i1/x, i2/y) ≡
2
0 (v, j1/x, j2/y), and,

(d) for all r ∈ R?
n(u), ord(i1, r(u)) = ord(j1, r(v)) and ord(i2, r(u)) = ord(j2, r(v))

(ii) (u, i1/x, i2/y) ≡
2
n (v, j1/x, j2/y)

Proof. For n = 0, (i)(a), (i)(b) and (i)(d) are vacuous, and (i)(c) is equivalent to (ii). For
n ≥ 1, we prove the two implications individually using induction on n.

We first show “¬(i) ⇒ ¬(ii)”. Assuming that (i) holds for n ∈ N but fails for n + 1, we
show that (u, i1/x, i2/y) 6≡

2
n (v, j1/x, j2/y) by giving a winning strategy for Samson in the FO2

n

game on the two structures. If (i)(c) does not hold, then Samson wins immediately. If (i)(d)
does not hold for n + 1, then Samson wins by Lemma 3.5. If (i)(a) or (i)(b) do not hold for
n+ 1, then one of the following three cases applies.

(1) There are two n-rankers that don’t agree on their ordering in u and v.

(2) There is an (n+ 1)-ranker that is defined over one word but not over the other.

(3) There is an (n+1)-ranker that does not appear in the same order on both structures with
respect to a k-ranker where k ≤ n.

u

v

r′n−1
r r′ r

S : x

D : xS : y

D : y

Figure 4: Two n-rankers appear in differ-
ent order and r′ ends with .

We first look at case (1) where there are r, r′ ∈
R?

n(u) such that ord(r(u), r′(u)) 6= ord(r(v), r′(v)).
Without loss of generality we assume that r(u) ≤
r′(u) and r(v) > r′(v), and present a winning
strategy for Samson in the FO2

n+1 game. In the
first move he places x on r(u) in u. Delilah has
to reply with r(v) in v, otherwise she would lose
the remaining n-move game as shown in Lemma
3.5. Let r′n−1 be the (n − 1)-prefix-ranker of r′.
We look at two different cases depending on the
ordering of r′n−1 and r′.

7

u

v

r′n−1
r r′ r

S : x

D : x

S : y

D : y

Figure 5: Two n-rankers appear in differ-
ent order and r′ ends with /

For r′n−1(u) < r′(u), the situation is illustrated
in Figure 4. In his second move, Samson places y
on r′(v). Delilah has to reply with a position to
the left of x(u), but she cannot choose anything
from the interval (r′n−1(u), r

′(u)) because this sec-
tion does not contain the letter vy(v). Thus she has
to reply with a position left of or equal to r′n−1(u),
and Samson wins the remaining FO2

n−1 game as
shown in Lemma 3.5.

For r′n−1(u) > r′(u), the situation is illustrated
in Figure 5. In his second move, Samson places
y on r′(u). Delilah has to reply with a position to the right of x(v), but she cannot choose
anything from the interval (r′(v), r′n−1(v)) because this section does not contain the letter
uy(u). Thus she has to reply with a position right of or equal to r′n−1(v), and Samson wins the

remaining FO2
n−1 game as shown in Lemma 3.5.

u

v

r r′

S : x

a

Figure 6: A letter a occurs between
n-rankers r, r′ in u but not in v

If (i) fails but all n-rankers agree on their ordering,
then there are two consecutive n-rankers r, r′ ∈ Rn(u)
with r(u) < r′(u) and a letter a ∈ Σ such that without
loss of generality a occurs in the segment u((r(u),r′(u)) but
not in the segment v(r(v),r′(v)). We describe a winning

strategy for Samson in the game FO2
n+1(u, v). He places

x on an a in the segment (r(u), r′(u)) of u, as shown
in Figure 6. Delilah cannot reply with anything in the
interval (r(v), r′(v)). If she replies with a position left
of or equal to r(v), then x is on different sides of the n-
ranker r in the two words. Thus Lemma 3.5 applies and Samson wins the remaining n-move
game. If Delilah replies with a position right of or equal to r′(v), then we can apply Lemma
3.5 to r′ and get a winning strategy for the remaining game as well. This concludes the proof
of “¬(i) ⇒ ¬(ii)”.

To show (i) ⇒ (ii), we assume (i) for n + 1, and present a winning strategy for Delilah in
the FO2

n+1 game on the two structures. In his first move Samson picks up one of the two
pebbles, and places it on a new position. Without loss of generality we assume that Samson
picks up x and places it on u in his first move. If x(u) = r(u) for any ranker r ∈ R?

n+1(u),
then Delilah replies with x(v) = r(v). This establishes (i)(c) and (i)(d) for n, and thus Delilah
has a winning strategy for the remaining FO2

n game by induction.
If Samson does not place x(u) on any ranker from R?

n+1(u), then we look at the closest
rankers from R?

n(u) to the left and right of x(u), denoted by r` and rr, respectively. Let
a := ux(u) and define the (n + 1)-ranker s = (r`, .a). On u we have r`(u) < s(u) < rr(u).
Because of (i)(a) s is defined on v as well, and because of (i)(b), we have r`(v) < s(v) < rr(v).
If y(u) is not contained in the interval (r`(u), rr(u)), then Delilah places x on s(v), which
establishes (i)(c) and (i)(d) for n. Thus by induction Delilah has a winning strategy for the
remaining FO2

n game.

8

u

v

r` s rr

y

y

S : x

Figure 7: x and y are in the same section

If both pebbles x(u) and y(u) are placed in the
interval (r`(u), rr(u)), then we have to be more
careful. Without loss of generality we assume
y(u) < x(u) as illustrated in Figure 7. Thus
Delilah has to place x somewhere in the segment
(y(v), rr(v)) and at a position with the letter a :=
ux(u). We define the n + 1-ranker s = (rr, /a).
From (i)(d) we know that s appears on the same
side of y in both structures, thus we have y(v) <
s(v) < rr(v). Delilah places her pebble x on s(v),
and thus establishes (i)(c) and (i)(d) for n. By induction, Delilah has a winning strategy for
the remaining FO2

n game.

A fundamental property of an n-ranker is that it uniquely describes a position in a given
word. Now we show that the converse of this holds as well: any unique position in a word can
be described by a ranker. Thus rankers completely characterize unique positions.

Definition 3.10 (unique position formula). A formula ϕ ∈ FO2[<] with x as a free variable
is a unique position formula if for all w ∈ Σ? there is at most one i ∈ [1, |w|] such that
(w, i/x) |= ϕ.

Lemma 3.11. Let n be a positive integer and let ϕ ∈ FO2
n[<] be a unique position formula.

Let u ∈ Σ? and let i ∈ [1, |u|] such that (u, i/x) |= ϕ. Then i = r(u) for some ranker r ∈ R?
n.

Proof. Suppose for the sake of a contradiction that there is no ranker r ∈ R?
n such that

(u, i/x) |= ϕr. Because the first and last positions in u are described by 1-rankers, we
know that i /∈ {1, |u|}. Let r`, rr ∈ R?

n(u) be the closest rankers to the left and right
of i, respectively. We construct a new word v by doubling the symbol at position i in u,
v = u1 . . . ui−1uiuiui+1 . . . u|u|. Because no ranker points to ui, the two words u and v agree
on the definedness of all n-rankers and on their ordering. Furthermore, position i in u and
positions i and i + 1 in v all appear in the same order with respect to all n-rankers. By
Theorem 3.9, we thus have (u, i/x) ≡2

n (v, i/x) ≡2
n (v, i+ 1/x), which contradicts the fact that

ϕ is a unique position formula.

Theorem 3.12. Let n be a positive integer and let ϕ ∈ FO2
n[<] be a unique position formula.

There is a k ∈ N, and there are mutually exclusive formulas αi ∈ FO2
n[<] and rankers ri ∈ R?

n

such that
ϕ ≡

∨

i∈[1,k]

(αi ∧ ϕri
)

where ϕri
∈ FO2

n[<] is the formula from Lemma 3.7 that uniquely describes the ranker ri.

Proof. Let T be the set of all FO2
n[<] types of words over Σ with one interpreted variable.

Because there are only finitely many inequivalent formulas in FO2
n[<], T is finite. Let T ′ ⊆ T

be the set of all types that satisfy ϕ. We set T ′ = {T1, . . . , Tk} and let αi ∈ FO2
n[<] be a

description of type Ti. Thus ϕ ≡
∨

i∈[1,k] αi.

9

Now suppose that (u, j/x) |= ϕ. Thus (u, j/x) |= αi for some i. By Lemma 3.11 (u, j/x) |=
ϕri

for some ri ∈ R
?
n. Thus αi → ϕri

since ϕri
∈ FO2

n and αi is a complete FO2
n formula. Thus

αi ≡ αi ∧ ϕri
so ϕ is in the desired form.

4 Alternation hierarchy for FO2[<]

We define alternation rankers and prove our structure theorem (Theorem 4.5) for FO2
m,n[<].

Surprisingly the number of alternating blocks of / and . in the rankers corresponds exactly to
the number of alternating quantifier blocks. The main ideas from our proof of Theorem 3.8
still apply here, but keeping track of the number of alternations does add complications.

Definition 4.1 (m-alternation n-ranker). Let m,n ∈ N with m ≤ n. An m-alternation n-
ranker, or (m,n)-ranker, is an n-ranker with exactly m blocks of boundary positions that
alternate between . and /.

We use the following notation for alternation rankers.

Rm,n(w) := {r | r is an m-alternation n-rankers that is defined over the word w}

Rm.,n(w) := {r ∈ Rm,n(w) | r ends with .}

R?
m,n(w) :=

⋃

i∈[1,m],j∈[1,n]

Ri,j(w)

R?
m.,n(w) := R?

m−1,n(w) ∪
⋃

i∈[1,n]

Rm.,i(w)

Lemma 4.2. Let m and n be positive integers with m ≤ n, let u, v ∈ Σ?, and let r ∈ Rm,n(u)∩
Rm,n(v). Samson wins the game FO2

m,n(u, v) where initially ord(r(u), x(u)) 6= ord(r(v), x(v)).
Furthermore, Samson can start the game with a move on u if r ends with ., r(u) ≤ x(u)

and r(v) ≥ x(v), or if r ends with /, r(u) ≥ x(u) and r(v) ≤ x(v). He can start the game with
a move on v if r ends with ., r(u) ≥ x(u) and r(v) ≤ x(v), or if r ends with /, r(u) ≤ x(u)
and r(v) ≥ x(v).

Proof. If m = n = 1, then we can immediately apply the base case from the proof of Lemma
3.5. Samson wins in one move, placing his pebble on u or v as specified.

For the remaining cases, we assume without loss of generality that r ends with . and that
x(u) ≥ r(u) and x(v) ≤ r(v). Let rn−1 be the (n − 1)-prefix ranker of r. This situation is
illustrated in Figure 1 of Lemma 3.5. Samson places y on r(u), and creates a situation where
y(u) > rn−1(u) and y(v) ≤ rn−1(v). If rn−1 ends with /, then by induction Samson wins the
remaining FO2

m−1,n−1 game and thus he has a winning strategy for the FO2
m,n game. If rn−1

ends with ., then by induction Samson wins the remaining FO2
m,n−1 game starting with a

move on u, and thus he has a winning strategy for the FO2
m,n game.

Lemma 4.3. Let m and n be positive integers with m ≤ n and let r ∈ Rm,n. There is a
formula ϕr ∈ FO2

m,n[<] such that for all w ∈ Σ?, w |= ϕr ⇐⇒ r ∈ Rm,n(w).

10

Proof. Let u, v ∈ Σ? such that r ∈ Rm,n(u) and r /∈ Rm,n(v). Let ri = (p1, . . . , pi) be the
shortest prefix ranker of r that is undefined over v, and we assume without loss of generality
that this ranker ends with the boundary position pi = /a for some a ∈ Σ. This situation
is illustrated in Figure 3 for Lemma 3.7. In his first move Samson places x on ri(u) and
thus forces a situation where x(u) < ri−1(u) and x(v) ≥ ri−1(v). If ri−1 ends with /, then
according to Lemma 4.2, Samson wins the remaining FO2

m,n−1 game starting with a move on

u. Otherwise ri−1 ends with ., and thus by Lemma 4.2 Samson wins the remaining FO2
m−1,n−1

game starting with a move on v.

Lemma 4.4. Letm and n be positive integers withm ≤ n and let r ∈ Rm,n. There is a formula
ϕr ∈ FO2

m,n[<] such that for all w ∈ Σ? and for all i ∈ [1, |w|], (w, i/x) |= ϕr ⇐⇒ i = r(w).

Proof. Let u, v ∈ Σ?. We show that Samson wins the game FO2
m,n(u, v) where initially x(u) =

r(u) and x(v) 6= r(v). Depending on whether r is defined over v, we use the strategies from
Lemma 4.2 or Lemma 4.3.

Theorem 4.5 (structure of FO2
m,n[<]). Let u and v be finite words, and let m,n ∈ N with

m ≤ n. The following two conditions are equivalent.

(i) (a) Rm,n(u) = Rm,n(v), and,

(b) for all r ∈ R?
m,n(u) and r′ ∈ R?

m−1,n−1(u), ord(r(u), r′(u)) = ord(r(v), r′(v)), and,

(c) for all r ∈ R?
m,n(u) and r′ ∈ R?

m,n−1(u) such that r and r′ end with different direc-
tions, ord(r(u), r′(u)) = ord(r(v), r′(v))

(ii) u ≡2
m,n v

Proof. As in the proof of Theorem 3.8, we first show “¬ (i) ⇒ ¬ (ii)”. For m = n the statement
of this theorem is equivalent to Theorem 3.8. For n > m we use induction on n.

Suppose that (i) holds for (m,n), but fails for (m,n + 1). Thus one of the following cases
applies.

(1) There are rankers r ∈ Rm,n(u) and r′ ∈ Rm−1,n(u) such that ord(r(u), r′(u)) 6= ord(r(v), r′(v)).

(2) There are rankers r, r′ ∈ Rm,n(u) that end on different directions and ord(r(u), r′(u)) 6=
ord(r(v), r′(v)).

(3) There is a ranker r ∈ Rm,n+1 that is defined over one structure but not over the other.

(4) There is a ranker r ∈ Rm,n+1(u) that does not appear in the same order on both structures
with respect to a ranker r′ ∈ Rm−1,n(u) or with respect to a ranker r′ ∈ Rm,n(u) that ends
on a different direction than r.

11

u

v

r r′ r

Figure 8: r and r′ appear in
different order

For all of the above cases we present a winning strategy for
Samson in the game FO2

m,n+1(u, v), and thereby show that
u 6≡2

m,n+1 v. We look at case (1) first, and we assume that
r(u) ≤ r′(u), as illustrated in Figure 8. The situation for
r(u) ≥ r′(u) is completely symmetric. Depending on the last
boundary position of r, one of the following two subcases ap-
plies.

• r ends with .. Samson places x on r(u) in his first move.
If Delilah replies with a position to the left of r(v), then we can apply Lemma 4.2 to get
a winning strategy for Samson in the remaining FO2

m,n game that starts with a move on
u. If Delilah replies with a position to the right of r′, Samson has a winning strategy
for the remaining FO2

m−1,n game. Thus we have a winning strategy for Samson in the

FO2
m,n+1 game.

• r ends with /. This is similar to the previous case, but now Samson places x on r(v) in
his first move. If Delilah replies with a position to the right of r(u), then as above we
get a winning strategy for Samson in the remaining FO2

m,n game that starts with a move
on v. Otherwise we get a winning strategy for Samson with only m− 1 alternations for
the remaining game. Thus again he has a winning strategy for the FO2

m,n+1 game.

For case (2), Samson’s winning strategy is very similar to the previous case. If r(u) ≤ r′(u)
and r ends with ., then Samson places x on r(u) in his first move. If Delilah replies with a
position to the right of r(u), then Samson’s winning strategy is as above. Otherwise x is on
different sides of r′ and Samson has a winning strategy for the remaining FO2

m,n game that

starts with a move on u. All together, he has a winning strategy for the FO2
m,n+1 game. The

remaining three cases work in the same way.
Similar to what we did in the proof of Theorem 3.8, we can reduce cases (3) and (4) to an

easier situation where a certain segment contains a certain letter in one structure, but not in
the other structure.

In case (3), we assume without loss of generality that the (m,n+1)-ranker r is defined over
u but not over v. Let a := ur(u) be the letter in u at position r(u). We define the following
sets of rankers.

R` := {s ∈ R?
m.,n(u) | s(u) < r(u)}

Rr := {s ∈ R?
m/,n(u) | s(u) > r(u)}

Notice that all rankers from R` appear to the left of all rankers from Rr in u. By our inductive
hypothesis, we know that this is also true in v. However, the rankers from R` and Rr by
themselves do not necessarily appear in the same order in both structures. We look at the
ordering of these rankers in v, and let r` be the rightmost ranker from R` and rr be the leftmost
ranker from Rr according to this ordering. By construction, we have r`(u) < r(u) < rr(u), so
the segment (r`, rr) in u contains the letter a. Let rn be the n-prefix-ranker of r, and observe
that rn is defined on both structures and that rn is contained in either R` or Rr. Because r is

12

not defined on v, the letter a does not occur in v either to the right of rn ∈ R` or to the left
of rn ∈ Rr. Thus the segment (r`, rr) does not contain the letter a in v.

u

v

r r′ rrn

Figure 9: Ranker positions in case (4)

In case (4), we look at the same sets of rankers, R`

and Rr, and at rn, the n-prefix-ranker of r. We assume
that r(u) ≤ r′(u) and that r ends with ., all other three
cases are completely symmetric. Notice that rn is ei-
ther an (m−1, n)-ranker or an (m,n)-ranker that ends
with .. Thus both structures agree on the ordering of
rn and r′. The relative positions of all these rankers are
illustrated in Figure 9. As above, let r` be the right-
most ranker from R` and let rr be the leftmost ranker from Rr, with respect to the ordering
of these rankers on v. Again we know that r`(u) < r(u) < rr(u) and therefore the segment
(r`, rr) of u contains an a. Notice that rn ∈ R` and r′ ∈ Rr, thus rn(v) ≤ r`(v) < rr(v) ≤ r′(v).
Thus the segment (r`, rr) does not contain the letter a in v.

u

v

r` rr

S : x

a

Figure 10: A letter occurs between
rankers r, r′ in u but not in v

Now we know that a occurs in the segment (r`, rr) in u
but not in v, and thus we have established the situation
illustrated in Figure 10. Samson places his first pebble
on an a within this section of u, and Delilah has to reply
with a position outside of this section. No matter at what
side of the segment she chooses, with Lemma 4.2 Samson
has a winning strategy for the remaining game and thus
wins the FO2

m,n+1 game.
To prove “(i) ⇒ (ii)”, we present a winning strategy for

Delilah in the game FO2
m,n(u, v), very similar to the one

presented in the proof of Theorem 3.8. Delilah maintains the following invariant after each
move k ∈ [1, n], where j is the number of alternations between the two structures in Samson’s
moves so far. Thus we have k = 1 and j = 0 after the first move.

Invariant: For each of the two pebbles x̂ ∈ {x, y},

(a) for all r ∈ R?
m−j−1,n−k(u), ord(r(u), x̂(u)) = ord(r(v), x̂(v))

(b) for all r ∈ R?
m−j,n−k(u),

(b1) if Samson played on u, r ends on ., and r(u) = x̂(u), then r(v) ≤ x̂(v)

(b2) if Samson played on u, r ends on ., and r(u) < x̂(u), then r(v) < x̂(v)

(b3) if Samson played on u, r ends on /, and r(u) = x̂(u), then r(v) ≥ x̂(v)

(b4) if Samson played on u, r ends on /, and r(u) > x̂(u), then r(v) > x̂(v)

(b5) if Samson played on v, r ends on ., and r(v) = x̂(v), then r(u) ≤ x̂(u)

(b6) if Samson played on v, r ends on ., and r(v) < x̂(v), then r(u) < x̂(u)

(b7) if Samson played on v, r ends on /, and r(v) = x̂(v), then r(u) ≥ x̂(u)

(b8) if Samson played on v, r ends on /, and r(v) > x̂(v), then r(u) > x̂(u)

13

First we argue that Delilah can establish this invariant in the first move. We assume without
loss of generality that Samson places pebble x on u. Delilah’s move depends on where exactly
Samson places his pebble. If x(u) = r(u) for any ranker r ∈ R?

m−1,n−1(u), then Delilah replies
with x(v) = r(v) and thus establishes the invariant immediately. Otherwise we look at the
following two sets of rankers.

R` := {r ∈ R?
m.,n−1(u) | r(u) < x(u)}

Rr := {r ∈ R?
m/,n−1(u) | r(u) > x(u)}

Let a := ux(u) be the letter Samson places his pebble on. Delilah needs to find a position in
v that is labeled with a, and that is to the right of all rankers from R` and to the left of all
rankers from Rr. Additionally, if Samson placed his pebble on a ranker from R?

m,n−1(u), then
we need to make sure that Delilah satisfied the relevant equality conditions from the invariant.
We define

R′
` := {r.a | r ∈ R`} ∪ {r ∈ R?

m.,n−1(u) | r(u) = x(u)}

R′
r := {r/a | r ∈ Rr} ∪ {r ∈ R?

m/,n−1(u) | r(u) = x(u)}

Delilah places her pebble on the rightmost ranker from R′
` in v, and thus establishes (b1) and

(b2). Because of (i)(c) this position is to the left of or equal to any ranker from R′
r, and

thus (b3) and (b4) hold as well. Similarly (a) follows directly from (i)(b). Therefore Delilah
establishes the invariant in her first move.

Now suppose that the invariant holds after move k, and suppose that Samson has used j
alternations between the two structures so far. We also assume that Samson places y in move
k + 1 on u, and that y(u) ≤ x(u), as the other cases are symmetric.

If y(u) = x(u), then of course Delilah replies with y(v) = x(v) and establishes the invariant
immediately. Otherwise we need to look at where Samson placed a pebble in the previous
move. We first look at the case where Samson played on u in the previous move. If he places y
on a ranker r ∈ R?

m−j−1,n−k−1, then Delilah replies by placing y on the same ranker on v and
establishes the invariant immediately. Otherwise we look at the following two sets of rankers,
very similar to what we did for Delilah’s first move.

R` := {r ∈ R?
m−j.,n−k−1(u) | r(u) < y(u)}

Rr := {r ∈ R?
m−j/,n−k−1(u) | r(u) > y(u)}

Let a := uy(u) be the letter Samson places his pebble on. Delilah needs to find a position
in v that is labeled with a, that is to the left of x(u), and that is to the right of all rankers
from R` and to the left of all rankers from Rr. Additionally, if Samson placed his pebble on a
ranker from R?

m,n−1(u), then we need to make sure that Delilah satisfied the relevant equality
conditions from the invariant. We define

R′
` := {r.a | r ∈ R`} ∪ {r ∈ R?

m.,n−1(u) | r(u) = y(u)}

R′
r := {r/a | r ∈ Rr} ∪ {r ∈ R?

m/,n−1(u) | r(u) = y(u)}

14

Delilah places her pebble on the rightmost ranker from R′
` in v. All rankers from R′

` appear
left of or at y(u) in u and thus also to the left of x(u) in u. From (b2) we know that all these
rankers also appear to the left of x(v) in v, so we have in fact y(v) < x(v). It is also clear
that (b1) and (b2) hold for y. Because of (i)(c), y(v) appears to the left of or equal to any
ranker from R′

r, and thus (b3) and (b4) hold as well. Similarly (a) follows directly from (i)(b).
Therefore Delilah establishes the invariant again.

If Samson played on v in the previous move, we proceed in a similar way, but now the number
of alternations increases as well. If Samson places y on a ranker r ∈ R?

m−j−2,n−k−1, then
Delilah replies by placing y on the same ranker on v and establishes the invariant immediately.
Otherwise we look at R` and Rr again, defined almost as above.

R` := {r ∈ R?
m−j−1.,n−k−1(u) | r(u) < y(u)}

Rr := {r ∈ R?
m−j−1/,n−k−1(u) | r(u) > y(u)}

R′
` and R′

r are defined exactly as above, using our new definitions of R` and Rr. Delilah places
her pebble on the rightmost ranker from R′

` in v. Notice that R′
` ⊆ R?

m−j−1,n−k. Thus part
(a) of the old invariant applies to all rankers from R′

` and thus all these rankers appear to the
left of or at the position of y on v. Therefore parts (b1) and (b2) of the invariant now hold.
And because of (i)(b), y(v) appears to the left of or at the position of any ranker from R′

r, so
(b3) and (b4) hold as well. Part (a) of the invariant follows directly from (i)(b). Thus Delilah
establishes the invariant again.

At the end of the game Delilah has managed to maintain the invariant without losing at
any move, thus she wins the game.

Using Theorem 4.5, we show that for any fixed alphabet Σ, at most |Σ| + 1 alternations
are useful. Intuitively, each boundary position in a ranker says that a certain letter does not
occur in some part of a word. Alternations are only useful if they visit one of these previous
parts again. Once we visited one part of a word |Σ| times, this part cannot contain any letters
anymore and thus has to be empty.

Theorem 4.6. Let Σ be a finite alphabet, let u, v ∈ Σ? and let n ∈ N. If u ≡2
|Σ|+1,n

v, then

u ≡2
n v.

Proof. Suppose for the sake of a contradiction that u ≡2
|Σ|+1,n

v and u 6≡2
n v. By Theorem

4.5, there is at least one m-alternation ranker such that m > |Σ| and u and v disagree on the
definedness of this ranker, or they disagree on the ordering of this ranker with respect to some
other ranker. Let r be the shortest such ranker.

We write the ranker r in blocks of alternating directions,

r = D1
a1
. . . D1

ak1
D2

ak1+1
. . . D2

ak2
. . . Dm

akm−1+1
. . . Dm

akm

where 0 < k1, ki−1 < ki, D
i ∈ {/, .}, Di 6= Di−1, and Di = Di−2. We look at the prefix

rankers of r at the end of each alternating block, rk1
, . . . , rkm

, and the intervals defined by

15

these rankers. We set I0(u) := [1, |u|], r0(u) = 0 if D1 = . and r0(u) = |u| + 1 if D1 = /. For
all i ∈ [1,m] let,

Ii(u) :=

{

[rki−1(u) + 1, rki
(u) − 1] if Di = .

[rki
(u) + 1, rki−1(u) − 1] if Di = /

Notice that by definition the letter aki
does not occur in the interval Ii.

Suppose that for all i ∈ [1,m] we have rki
(u) ∈ Ii−1(u). Then the letter aki

has to occur in
the interval Ii−1(u) of u, but the interval I|Σ|(u) of u cannot contain any of the |Σ| distinct
letters. Therefore rk|Σ|+1

/∈ I|Σ| and we have a contradiction.
Otherwise there is an i ∈ [1,m] such that rki

(u) /∈ Ii−1(u). We will construct a ranker r′

that is shorter than r, does not have more alternations than r and occurs at exactly the same
position as r in both u and v. By our assumption, u and v disagree on some property of the
ranker r, and thus on some property of the shorter ranker r′. This contradicts our assumption
that r was the shortest such ranker.

Now we show how to construct a shorter ranker r′ that occurs at the same position at r.
Recall that the prefix ranker

rki
= D1

a1
. . . D1

ak1
D2

ak1+1
. . . D2

ak2
. . . Dki−1

aki−2+1
. . . Dki−1

aki−1
Dki

aki−1+1
. . . Dki

aki

does not occur in the interval Ii−1(u) in the word u. We assume without loss of generality
that Dki = /, and look at the relative positions of the rankers rki−1+1, . . . , rki

with respect to
the ranker rki−1−1. We know that rki

(u) ≤ rki−1−1(u). Let j ∈ [ki−1 + 1, ki] be the index of
the right-most of these rankers that is still to the left of rki−1−1. Thus we have

rki
(u) < . . . < rj(u) ≤ rki−1−1(u) < rj−1(u) < . . . < rki−1+1(u) < rki−1

(u)

We know that u ≡2
|Σ|+1,n

v, thus by Theorem 4.5, these rankers occur in exactly the same
order in v. Now we set

s := rki−1−1 Dki
akj

. . . Dki
aki

Because u and v agree on the ordering of the relevant rankers, we have s(u) = rki
(u) and

s(v) = rki
(v). Therefore we have reduced the size of a prefix of r without increasing the

number of alternations, and thus have a shorter ranker r′ that occurs at the same position as
r in both structures.

In order to prove that the alternation hierarchy for FO2 is strict, we define example languages
that can be separated by a formula of a given alternation depth m, but that cannot be
separated by any formula of lower alternation depth. As Theorem 4.6 shows, we need to
increase the size of the alphabet with increasing alternation depth. We inductively define the
example words um,n and vm,n and the example languages Km and Lm over finite alphabets
Σm = {a0, . . . , am−1}. Here i, m and n are positive integers.

u1,n := a0 v1,n := ε

u2,n := a0(a1a0)
2n v2,n := (a1a0)

2n

u2i+1,n := (a0 . . . a2i)
n u2i,n v2i+1,n := (a0 . . . a2i)

n v2i,n

u2i+2,n := u2i+1,n (a2i+1 . . . a0)
n v2i+2,n := v2i+1,n (a2i+1 . . . a0)

n

16

Notice that um,n and vm,n are almost identical — if we delete the a0 in the center of um,n, we
get vm,n. Finally, we set Km :=

⋃

n≥1{um,n} and Lm :=
⋃

n≥1{vm,n}.

Definition 4.7. A formula ϕ separates two languages K,L ⊆ Σ? if for all w ∈ K we have
w |= ϕ and for all w ∈ L we have w 6|= ϕ or vice versa.

Lemma 4.8. For all m ∈ N, there is a formula ϕm ∈ FO2[<]–ALT [m] that separates Km and
Lm.

Proof. For m = 1, we can easily separate K1 = {a0} and L1 = {ε} with the formula ∃x(x = x).
For m = 2, we have K2 = {a0(a1a0)

2n | n ≥ 1} and L2 = {(a1a0)
2n | n ≥ 1}, and we define

the ranker r2 := .a1
/a0

. On any word from K2, r2 evaluates to the first position in this word,
but r2 is not defined over any word from L2, since all these words start with a1. Thus we can
separate K2 and L2 with an FO2

2,2[<] formula by Lemma 4.4.
For m ≥ 3, we show that the two languages Km and Lm differ on the ordering of two (m−1)-

alternation rankers. Then by Theorem 4.5 there is an FO2
m,m[<] formula that separates Km

and Lm. We inductively define the rankers

r3 := /a2
.a0

s3 := /a2
.a1

r2i := .a2i−1
r2i−1 s2i := .a2i−1

r′2i−1

r2i+1 := /a2i
r2i s2i+1 := /a2i

r′2i

For m ≥ 3, all words from Km contain the substring a0a1a2 a0 a1a0 in the middle, whereas
all words from Lm have the substring a0a1a2 a1a0 in the middle. For both the words from Km

and those from Lm, sm evaluates to the position of a1 at the end of this section. For the words
from Km, r evaluates to the position of the a0 in the middle, whereas for the words from Lm

r evaluates to the position of the next a0. Thus we have rm(u) < sm(u) for all u ∈ Km and
rm(v) > sm(v) for all v ∈ Lm. Therefore condition (i)(b) of Theorem 4.5 fails for any pair of
words, and there is a formula in FO2

m,m[<] that separates Km and Lm.

Lemma 4.9. For all positive integers m and for all n ∈ N, we have um,n ≡2
m−1,n vm,n.

Proof. Because we do not have constants, there are no quantifier-free sentences. Thus FO2
0,n[<]

does not contain any formulas and the statement holds trivially for m = 1.
For m ≥ 2 and any n ≥ m, we claim that exactly the same (m − 1, n)-rankers occur in

um,n and vm,n, and that all (m − 1, n)-rankers appear in the same order with respect to all
(m−2, n−1)-rankers and all (m−1, n−1)-rankers that end on a different direction. Once we
established this claim, the lemma follows immediately with Theorem 4.5. We already observed
that um,n and vm,n are almost identical. The only difference between the two words is that
um,n contains the letter a0 in the middle whereas vm,n does not. Thus we only have to consider
rankers that are affected by this middle a0.

We claim that any ranker that points to the middle a0 of um,n requires at least m − 1
alternations. Furthermore, we claim that any such ranker needs to start with . for even m
and with / for odd m. We prove this by induction on m.

17

For m = 2 we have u2,n = a0(a1a0)
n. Any n-ranker that starts with / cannot reach the first

a0, thus we need a ranker that starts with ..
For odd m > 2 we have um,n = (a0 . . . am−1)

num−1,n. Any n-ranker that starts with .
cannot leave the first block of n ·m symbols of this word and thus not reach the middle a0.
Therefore we need to start with /, and in fact use /am−1

at some point, because we would
not be able to leave the last section of um−1,n otherwise. But with /am−1

we move past all
of um−1,n, and we need one alternation to turn around again. By induction, we need at least
m− 2 alternations within um−1,n, and thus m− 1 alternations total.

The argument for even m is completely symmetric. Thus we showed that we need at least
m − 1 alternation blocks to point to the middle a0. Furthermore, we showed that if we have
exactly m − 1 alternation blocks, then the last of these blocks uses .. Therefore we only
need to consider (m − 1)-alternation rankers that end on . and pass through the middle a0.
It is easy to see that all of these rankers agree on their ordering with respect to all other
(m− 2)-alternation rankers, and with respect to all (m− 1)-alternation rankers that end on /.

To summarize, we showed that um,n and vm,n satisfy condition (i) from Theorem 4.5 for
m− 1 alternations. Thus the two words agree on all formulas from FO2

m−1,n[<].

Theorem 4.10 (alternation hierarchy for FO2[<]). For any positive integer m, there is a
ϕm ∈ FO2[<]–ALT [m] and there are two languages Km, Lm ⊆ Σ? such that ϕm separates Km

and Lm, but no ψ ∈ FO2[<]–ALT [m− 1] separates Km and Lm.

Proof. The theorem immediately follows from lemmas 4.8 and 4.9.

Theorem 4.10 resolves an open question from [EVW97, EVW02].

5 Structure Theorem and Alternation Hierarchy for FO2[<, Suc]

We extend our definitions of boundary positions and rankers from section 3 to include the
substrings of a given length that occur immediately before and after the position of the ranker.

Definition 5.1. A (k, `)-neighborhood boundary position denotes the first or last occurrence
of a substring in a given word. More precisely, a (k, `)-neighborhood boundary position is
of the form d(s,a,t) with d ∈ {., /}, s ∈ Σk, a ∈ Σ and t ∈ Σ`. The interpretation of a
(k, `)-neighborhood boundary position p = d(s,a,t) on a word w = w1 . . . w|w| is defined as
follows.

p(w) =

{

min{i ∈ [k + 1, |w| − `] | wi−k . . . wi+` = sat} if d = .

max{i ∈ [k + 1, |w| − `] | wi−k . . . wi+` = sat} if d = /

Notice that p(w) is undefined if the sequence sat does not occur in w. A (k, `)-neighborhood
boundary position can also be specified with respect to a position q ∈ [1, |w|].

p(w, q) =

{

min{i ∈ [max{q + 1, k + 1}, |w| − `] | wi−k . . . wi+` = sat} if d = .

max{i ∈ [k + 1,min{q − 1, |w| − `}] | wi−k . . . wi+` = sat} if d = /

18

Observe that (0, 0)-neighborhood boundary positions coincide with the boundary positions
from Definition 3.1. As before in the case without successor, we build rankers out of these
boundary positions.

Definition 5.2. An n-successor-ranker r is an n-sequence of neighborhood boundary po-
sitions, r = (p1, . . . , pn), where pi is a (ki, `i)-neighborhood boundary position and ki, `i ∈
[0, (i − 1)]. The interpretation of an n-successor-ranker r on a word w is defined as follows.

r(w) :=











p1(w) if r = (p1)

undefined if (p1, . . . , pn−1)(w) is undefined

pn(w, (p1, . . . , pn−1)(w)) otherwise

We denote the set of all n-successor-rankers that are defined over a word w by SRn(w), and
set SR?

n(w) :=
⋃

i∈[1,n] SRi(w).

Because we now have the additional atomic relation Suc, we need to extend our definition
of order type as well.

Definition 5.3. Let i, j ∈ N. The successor order type of i and j is defined as

ordS(i, j) =































� if i < j − 1

−1 if i = j − 1

= if i = j

+1 if i = j + 1

� if i > j + 1

With this new definition of n-successor-rankers, our proofs for Lemmas 3.5, 3.6, 3.7 and
Theorem 3.8 go through with only minor modifications. Instead of working through all the
details again, we simply point out the differences.

First we notice that 1-successor-rankers are simply 1-rankers, so the base case of all induc-
tions remains unchanged. In the proofs of Lemmas 3.5, 3.6 and 3.7, and in the proof of (ii) ⇒
(i) from Theorem 3.8, we argued that Delilah cannot reply with a position in a given section
because it does not contain a certain ranker and therefore it does not contain the symbol used
to define this ranker. Now we need to know more – we need to show that Delilah cannot
reply with a certain letter in a given section that is surrounded by a specified neighborhood,
given that this section does not contain the corresponding successor-ranker. Whenever Sam-
son’s winning strategy depends on the fact that an n-successor-ranker does not occur in a
given section, he has n− 1 additional moves left. So if Delilah does not reply with a position
with the same letter and the same neighborhood, Samson can point out a difference in the
neighborhood with at most (n− 1) additional moves.

For the other direction of Theorem 3.8, we need to make sure that Delilah can reply with a
position that is contained in the correct interval, has the same symbol and is surrounded by
the same neighborhood. Where we previously defined the n-ranker s := (r`, .a) or s := (rr, /a),
we now include the (n− 1)-neighborhood of the respective positions chosen by Samson. Thus

19

we make sure that Samson cannot point out a difference in the two words, and Delilah still
has a winning strategy. Thus we have the following three theorems for FO2[<,Suc].

Theorem 5.4 (structure of FO2
n[<,Suc]). Let u and v be finite words, and let n ∈ N. The

following two conditions are equivalent.

(i) (a) SRn(u) = SRn(v), and,

(b) for all r ∈ SR?
n(u) and r′ ∈ SR?

n−1(u), ordS(r(u), r′(u)) = ordS(r(v), r
′(v))

(ii) u ≡2
n v

Theorem 5.5 (structure of FO2
m,n[<,Suc]). Let u and v be finite words, and let m,n ∈ N

with m ≤ n. The following two conditions are equivalent.

(i) (a) SRm,n(u) = SRm,n(v), and,

(b) for all r ∈ SR?
m,n(u) and r′ ∈ SR?

m−1,n−1(u), ordS(r(u), r
′(u)) = ordS(r(v), r′(v)),

and,

(c) for all r ∈ SR?
m,n(u) and r′ ∈ SR?

m,n−1(u) such that r and r′ end with different
directions, ordS(r(u), r′(u)) = ordS(r(v), r

′(v))

(ii) u ≡2
m,n v

Theorem 5.6 (alternation hierarchy for FO2[<,Suc]). Let m be a positive integer. There is a
ϕm ∈ FO2[<,Suc]–ALT [m] and there are two languages Km, Lm ⊆ Σ? such that ϕm separates
Km and Lm, but no ψ ∈ FO2[<,Suc]–ALT [m− 1] separates Km and Lm.

Proof. We use the same ideas as before in Theorem 4.10. We define example languages that
now include an extra letter b to ensure that the successor predicate is of no use. As before, we
inductively construct the words um,n and vm,n and use them to define the languages Km and
Lm.

u1,n := b2na0b
2n v1,n := b2n

u2,n := u1,n (a1b
2na0b

2n)2n v2,n := v1,n (a1b
2na0b

2n)2n

u2i+1,n := (b2na0b
2n . . . b2na2i)

n u2i,n v2i+1,n := (b2na0b
2n . . . b2na2i)

n v2i,n

u2i+2,n := u2i+1,n (a2i+1b
2n . . . b2na0b

2n)n v2i+2,n := v2i+1,n (a2i+1b
2n . . . b2na0b

2n)n

Finally we set Km :=
⋃

n≥1{um,n} and Lm :=
⋃

n≥1{vm,n}. Notice that the b’s are not
necessary to distinguish between the two languages Km and Lm, and thus the proof of Lemma
4.8 goes through unchanged and we have a formula ϕm ∈ FO2[<,Suc]–ALT [m] that separates
Km and Lm. To see that no FO2[<,Suc]–ALT [m− 1] formula can separate Km and Lm, we
observe that any (n − 1)-neighborhood in the words um,n and vm,n contains all b’s except for
at most one letter ai for some i ∈ [0,m − 1]. Thus the proof of Lemma 4.9 goes through here
as well.

20

6 Conclusion

We proved precise structure theorems for FO2, with and without the successor predicate,
that completely characterize the expressive power of the respective logics, including exact
bounds on the quantifier depth and on the alternation depth. Using our structure theorems,
we show that the quantifier alternation hierarchy for FO2 is strict, settling an open question
from [EVW97, EVW02]. Both our structure theorems and the alternation hierarchy results
add further insight to and simplify previous characterizations of FO2. We also hope that the
insights gained in our study of FO2 on words will be useful in future investigations of the
trade-off between formula size and number of variables.

References

[AI03] Adler, M., and Immerman, N. An n! lower bound on formula size. ACM Transac-

tions on Computational Logic 4, 3 (2003), 296–314.

[BK78] Brzozowski, J., and Knast, R. The dot-depth hierarchy of star-free languages is
infinite. Journal of Computer and System Science 16 (1978), 37–55.

[EVW97] Etessami, K., Vardi, M. Y., and Wilke, T. First-order logic with two variables
and unary temporal logic. In IEEE Symposium on Logic in Computer Science (1997).

[EVW02] Etessami, K., Vardi, M. Y., and Wilke, T. First-order logic with two variables
and unary temporal logic. Information and Computation 179, 2 (2002), 279–295.

[GS05] Grohe, M., and Schweikardt, N. The succinctness of first-order logic on linear
orders. Logical Methods in Computer Science 1, 1:6 (2005), 1–25.

[I99] Immerman, N. Descriptive complexity. Springer, 1999.

[IK89] Immerman, N., and Kozen, D. Definability with bounded number of bound vari-
ables. Information and Computation 83, 2 (1989), 121–139.

[K68] Kamp, J. A. Tense logic and the theory of linear order. PhD thesis, University of
California, Los Angeles, 1968.

[KW90] Karchmer, M., and Wigderson, A. Monotone circuits for connectivity require
super-logarithmic depth. SIAM Journal of Discrete Mathematics 3, 2 (1990), 255–265.

[MP71] McNaughton, R., and Papert, S. A. Counter-free automata. MIT Press, Cam-
bridge, MA, 1971.

[PW97] Pin, J.-E., and Weil, P. Polynomial closure and unambiguous product. Theory of

Computing Systems 30 (1997), 1–39.

[S76] Schützenberger, M. P. Sur le produit de concatenation non ambigu. Semigroup

Forum 13 (1976), 47–75.

21

[STV01] Schwentick, T., Thérien, D., and Vollmer, H. Partially-ordered two-way
automata: a new characterization of DA. In Developments in Language Theory (2001).

[TW98] Therien, D., and Wilke, T. Over words, two variables are as powerful as one
quantifier alternation. In ACM Symposium on Theory of Computing (1998).

[T82] Thomas, W. Classifying regular events in symbolic logic. Journal of Computer and

System Science 25 (1982), 360–376.

[T84] Thomas, W. An application of the Ehrenfeucht-Fräıssé game in formal language theory.
Mémoires de la S.M.F. 16 (1984), 11–21.

22

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

