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Abstract

We demonstrate a family of propositional formulas in conjunctive normal form so that a

formula of size N requires size 2N
Ω(1)

to refute using the tree-like OBDD refutation system
of Atserias, Kolaitis and Vardi [3] with respect to all variable orderings. The lower bound
generalizes earlier lower bounds on OBDD-based proofs of unsatisfiability in that it applies for all
variable orderings, it applies when the clauses are processed according to an arbitrary schedule,
and it applies when variables are eliminated via quantification. Current symbolic quantifier
elimination algorithms for satisfiability generate tree-like proofs when run on unsatisfiable CNFs,
so this lower bound applies to the run-times of these algorithms.

1 Introduction

Ordered binary decision diagrams (OBDDs) are data structures for representing Boolean func-
tions [7, 8, 24] that are widely used when solving problems in circuit synthesis and model checking
(cf. [7, 8, 23, 11]). A large number of OBDD-based algorithms have been implemented for solving
the Boolean satisfiability problem [7, 32, 14, 9, 10, 1, 26, 25, 2, 12, 28, 16, 3, 18]. Several of these
algorithms efficiently generate proofs of unsatisfiability for CNFs known to require exponential
running times for resolution based methods (such as the n + 1 to n pigeonhole principle). More-
over, OBDD proof systems can p-simulate several proof systems, such as resolution, unary cutting
planes, and Gaussian refutations [3]. Given that they can do so much, what are the limitations of
OBDD-based satisfiability algorithms?

In this paper, we present unsatisfiable CNFs and prove exponential size lower bounds for tree-like
OBDD refutations of these CNFs. This implies run time lower bounds for satisfiability algorithms
based on explicit OBDD construction and symbolic quantifier elimination.

An OBDD is a read-once branching program in which the variables appear according to a fixed
order along every path (ie. the nodes are arranged in levels, all nodes at a level query the same
variable, and each variable corresponds to at most one level) [7, 8, 24]. The ordering restriction
enforces canonicity: For each fixed ordering, the OBDD computing a Boolean function is unique
up to a linear-time computable normal form (cf. [24]). Because of this canonicity property, the
equality test for two Boolean functions represented as OBDDs is simply a check that their OBDDs
are identical. However, the choice of variable ordering can affect the size of the OBDD by an
exponential factor and choosing a suitable variable ordering for a task is of utmost importance.
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The results of this paper apply to two classes of OBDD-based satisfiability algorithms, explicit
construction and symbolic quantifier elimination.

Explicit construction. In the literature, this is sometimes called the “OBDD apply” method.
In this method, a variable ordering is selected, the OBDD for the CNF with respect to that
ordering is constructed, and it is checked whether this OBDD is the constant false [7]. There are
two opportunities for cleverness - the variable ordering used to construct the OBDDs, and the
order in which the clauses are joined together, cf. [32, 1, 16]. Empirical studies [32, 12] and a
mathematical analysis of the implementation in which the clauses are conjoined in the same order
as the input presentation [15] have suggested that this method is incomparable with resolution.

Symbolic quantifier elimination. This method extends the explicit construction method by
strategically eliminating variables via the application of existential quantifiers [14, 1, 28, 16, 31].
To determine if a CNF

∧m
i=1 Ci(~x) is satisfiable, rather than build an OBDD for

∧m
i=1 Ci(~x), it

suffices to build one for ∃~x∧m
i=1Ci(~x). This is can be more efficient because it is often the case

that the OBDD for ∃~xF (~x, ~y) are significantly smaller than the OBDD for F (~x, ~y). One example
of this approach is to first heuristically partition the variables into sets X1, . . . Xk and the clauses
into sets A1, . . . Ak so that for each i = 1, . . . k, the variables of Xi do not appear in the clauses
belonging to sets Ai+1, . . . Ak, then construct the OBDD for the quantified Boolean formula:

∃Xk



. . .



∃X2



∃X1

∧

C∈A1

C(X1, . . . Xk)



 ∧
∧

C∈A2

C(X2, . . . Xk)



 . . .



 ∧
∧

C∈Ak

C(Xk)

It has been observed that symbolic quantifier elimination leads to significant speed-ups over explicit
OBDD construction on random 3-CNFs [14, 1], and that, on a certain mix of structured bench-
marks, symbolic quantifier elimination solves more instances before time-out than solvers based on
resolution or compressed resolution [16, 28].

When formalized as proof systems, these algorithms can be viewed as treelike versions of the
OBDD propositional proof system described by Atserias, Kolaitis and Vardi [3]. This proof sys-
tem is highly non-trivial: OBDDs are circuits not formulas, so this proof system is a kind of
weak extended-Frege system1. Because it is not believed possible to convert OBDDs into formulas
without an exponential blow-up, the OBDD proof system is not expected to be p-simulatable by
Frege systems. The tree-like OBDD system possesses polynomial-size refutations of the n + 1 to
n pigeonhole principle, and it can p-simulate several interesting proof systems, such as tree-like
resolution, Gaussian refutations over a finite field, and tree-like cutting planes refutations with
unary coefficients [3].

The result and comparisons with earlier work. The main result of this paper is that for
infinitely many values of N , there is an unsatisfiable CNF Φ of size N so that every tree-like OBDD

refutation of Φ has size at least 2Ω( 7
√

N/ log N) (Theorem 12). This lower bound generalizes earlier
work on proving size lower bounds for OBDD-based proofs of unsatisfiability in three ways: The
proofs can use variable elimination via existential quantifiers, the clauses of the input CNF can
be processed in any order (so long as they are recombined according to a tree-structure), and the
variable ordering of the OBDDs can be arbitrary. The two previously published results regarding
size lower bounds for OBDD-proofs of unsatisfiability either make use of a restriction on the order
in which the clauses are processed, or hold only for a fixed ordering on the variables.

1Informally, Frege systems are the standard axiom-and-inference-rule style systems of propositional logic ma-
nipulating Boolean formulas whereas extended Frege systems manipulate Boolean circuits. From a computational
complexity perspective, Frege systems can be thought of as working with concepts definable in NC

1 and extended
Frege systems can be thought of as working with concepts definable in P . Cf. [13, 20].
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In [15], Groote and Zantema prove a size lower bound for refutations in the OBDD-apply system
that conjoins the clauses of the CNF in the order of the input listing (ie. to process C1 ∧ (C2 ∧C3),
an OBDD for C2 ∧C3 is built and then one for C1 ∧ (C2 ∧C3) is built). In fact, in that paper they
give a size lower bound for refutations of a formula of the form ¬x ∧ (x ∧ ψ), which is trivial to
refute if the formula is processed as (¬x∧x)∧ψ. Qualitatively, Theorem 12 generalizes their bound
by allowing the clauses to be processed in an arbitrary order, and also by applying to systems that
eliminate variables by quantification. However, their bound is quantitatively stronger: Where N is

the size of the difficult CNF, their bound on refutation size is 2Ω(
√

N) whereas ours is 2Ω( 7
√

N/ log N).
In [3], Atserias, Kolaitis, and Vardi formalized the OBDD-based propositional proof system

incorporating symbolic quantifier elimination, and proved that for each fixed variable ordering,
there is a CNF of size N that requires size 2NΩ(1)

to refute in the OBDD proof system using that
particular variable ordering. The bounds of [3] and Theorem 12 are incomparable: The bound
of [3] applies to the DAG like system as well the tree-like system whereas Theorem 12 only applies
to the tree-like system, on the other hand, the lower bound of Theorem 12 holds for all variable
orderings. The problem of proving a lower bound that holds for all variable orderings was stated
as an open problem in [3], and Theorem 12 is a solution to this problem for the tree-like case.

All implementations of OBDD-based satisfiability algorithms known to the author [14, 1, 28, 16,
31] generate proofs of unsatisfiability in the tree-like OBDD system. Moreover, the results of [15]
do not apply to these algorithms as typically there is a preprocessing analysis that chooses the
order in which clauses are combined, and many of the algorithms incorporate symbolic quantifier
elimination. The results of [3] do not apply to these algorithms because the variable ordering is
typically selected by some static analysis of the input CNF.

The technique and its comparison with earlier work. The proof is a reduction: We
produce a CNF so that if there is a small refutation of the CNF in the tree-like OBDD proof system,
then there is a low-communication randomized two-player protocol for the set-disjointness function.
The set-disjointness function has linear communication complexity [19, 30], so all refutations of
this CNF must be large. The reduction is obtained by the interpolation by a communication game
technique that has been well-used in the propositional proof complexity community for some time
now [17, 5, 3]. However, accounting for all possible variable orderings for the OBDDs corresponds
to proving communication lower bounds that hold for the best-case partition model.

The reductions of [29, 17, 3] construct a search problem in variables ~U and ~V , Search(~U, ~V ), and
a randomized one-sided-error reduction from set-disjointness (in variables ~X and ~Y ) to Search(~U, ~V )
in which player I creates an assignment to ~U using ~X and player II creates an assignment to ~V
using ~Y . These reductions make heavy use of the structure in the fixed partition of the variables
into ~U and ~V . In the best-case partition scenario that our reduction handles, we provide a search
problem Search( ~W ) and show that no matter how the variables of ~W are partitioned into two
equal-sized sets ~U and ~V , there is a reduction from set-disjointness to the search problem in which
player I to creates an assignment to ~U using ~X and player II to creates an assignment to ~V using
~Y .

The technical heart of the analysis is a problem of the following form: Let n and m with m = cn
for some constant c be given, and let E1, . . . Em be subsets of sets of edges over vertex set [n] and let
V1, . . . Vm be subsets of [n] so that

∑m
i=1

∑m
j=1 |Ei[Vj ]| = αm2

(

n
2

)

for some constant α > 0. Let T
be the set of all 3t-tuples (i1, . . . it, j1, . . . jt,X1, . . . Xt) where each Xk is a copy of K1,2 in Eik [Vjk

],
the ik’s are distinct, the jk’s are distinct, and distinct Xk’s share no vertices. How can we construct
a distribution µ on T so that:

1. For all (~ı,~, ~X) and (~k,~l, ~Y ) in the support of µ that differ in O(1) many positions, µ(~ı,~, ~X) =
(1 ±O(1))µ(~k,~l, ~Y ).
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2. For every k, l ∈ [t], the probability over µ that the vertices of V (Xk) ∪ V (Xl) induce a copy
of K2,4 in Eik [Vjk

] ∩Eil [Vil ] is at least Θ(1).

The desired range for the parameter t is t = γn, where γ is constant we can solve for based on c,α
and large enough n.

A natural first try is to take µ to be the uniform distribution on T and thereby get Property 1
for free. If the marginal distribution on (ik, il, jk, jl) were close to uniform, so that |Eik [Vjk

] ∩
Eil [Vjl

]| has constant density with constant probability, and if conditioned on that event, the
marginal distribution on Xk and Xl were close to uniform, we could appeal to convexity. However,
the dependencies are legion, and it seems quite difficult to show that Property 2 holds for the
uniform distribution on T (if it holds at all). Moreover, the gadgets used in the reduction are
more complicated than this example and encounter even more dependencies. So we resort to an
alternative distribution with enough local independence to guarantee Property 2, but not so much
as to lose Property 1. In Section 10 we set up some simple and general sufficient conditions for
distributions to satisfy properties like Properties 1 and 2. We then show in Section 11 that the
randomized reduction (defined in Section 9) satisfies the sufficient conditions.

Future work. There are some natural “next step” questions to ask: Establishing lower bounds
for random 3-CNFs, and separating the DAG-like system from the tree-like system. As to whether
or not the unrestricted (DAG-like) OBDD system is polynomially bounded, shortly after this paper
was released on the proof complexity mailing list, Jan Kraj́ıček released an independently produced
proof of a 2NΩ(1)

size lower bound for DAG-like OBDD refutations of a different family of unsatis-
fiable CNFs [21]. The techniques of Theorem 12 do not apply to the CNFs studied in his paper,
nor do his techniques apply to the CNFs of Theorem 12.

Empirically, symbolic quantifier algorithms seem to be incomparable with resolution based sat
solvers such as zChaff [28, 16]. Theoretically, however OBDD refutations can p-simulate resolu-
tion [3]. It seems that a significant factor in this gap may be that the symbolic quantifier elimination
algorithms are building tree-like proofs whereas clause learning algorithms like zChaff build DAG-
like resolution proofs (cf. [4]). It would be interesting both to implement an effective SAT solver
that constructs DAG-like OBDD refutations, and also to prove that tree-like OBDD refutations
cannot p-simulate DAG-like resolution.

Other possible extensions would be to extend the analysis to cover OBDD-based algorithms that
incorporate a dynamic variable reordering package2, and to provide an analysis for the so-called
compressed methods [9, 10, 25, 26, 27] that perform a basic DLL or Davis-Putnam search and
represent the clause database as an OBDD. These systems build OBDDs in different variables than
those of the input CNF, and therefore Theorem 12 cannot be directly applied to these systems.

Thanks. To Albert Atserias and Moshe Vardi for interesting conversations at the at the Work-
shop on New Directions in Proof Complexity held at the Isaac Newton Institute for Mathematics.
To Jan Kraj́ıček, for securing the author’s attendance to said workshop. To Jan Friso Groote for
answering some questions about [15]. To Paul Beame for useful comments on an early draft of this
paper. To Cindy Brown and Barton Massey of Portland State University for generous hospitality.

2In principle, dynamic reordering of OBDD variables should improve running times. However, current work with
symbolic quantifier elimination algorithms for satisfiability has suggested that static variable orderings lead to better
performance than dynamic variable orderings [1, 16]. Regardless, Theorem 12 does not apply to systems using
dynamic variable reordering.
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2 Notation and background

Definition 2.1 The real numbers are denoted by R and [0, 1] denotes the closed unit interval. Let
n be an integer. The set of integers {1, . . . n} is denoted by [n]. For a set S and a non-negative
integer k, the set of all k-tuples over S is denoted by Sk and the of all size k subsets of S is
denoted by

(

S
k

)

. For a set S we let χS denote the indicator function for S with χS(a) = 1 if a ∈ S,
χS(a) = 0 is a 6∈ S. The domain of χS will always clear from context. For a Cartesian product
∏

i∈I Xi where I is a finite set, we say that the product is “|I| dimensional” even though is no ector
space structure defined on

∏

i∈I Xi. We write XI as an abbreviation for the product
∏

i∈I Xi. Let
∏

i∈I Xi and
∏

j∈J Xj be a Cartesian product with I ∩ J = ∅. For ~x ∈ ∏

i∈I Xi and ~y ∈ ∏

i∈J Xi

we write ~x~y to denote the concatenation of ~x and ~y (an element of
∏

i∈I∪J Xi). We use the same

indices for elements in tuples as we do for the factors of the product, ie. for ~u ∈ ∏t
i=j Xi, we

write ~u = (uj , . . . ut), we do not write ~u = (u1, . . . ut−j+1). Let f be a function whose domain

is a Cartesian product
∏t

i=1Xi. For each j ∈ [t], for each ~x ∈ ∏j
i=1Xi, we write f~x to denote

the Curried function with domain
∏t

i=j+1Xi and f~x(~y) = f(~x~y). Similarly, for A ⊆ ∏t
i=1Xi,

A~x = {~y | ~x~y ∈ A}. Let f :
∏

i∈I Xi → R. We say that f depends on a coordinate i, with i ∈ I, if
there exists ~x, ~y ∈ ∏

i∈I Xi with xj = yj for all j ∈ I \ {i}, xi 6= yi, and f(~x) 6= f(~y). If f depends
on the coordinate i, we say that i affects f .

Definition 2.2 We use the word “graph” to mean a simple, loopless undirected graph. We use ⊆
to denote the (not necessarily induced) subgraph relation, ie. G ⊆ H if G = (V,E) and H = (W,F )
with V ⊆ W and E ⊆ F (as sets). For any two disjoint nonempty sets A and B, we write
K(A,B) to denote the complete bipartite graph with partition {A,B}. Let G = (V,E) be a graph.
Let V0 ⊆ V and let E0 ⊆ E. The set of edges E0 restricted to V0, written E0 [V0], is defined as
E0 [V0] = {e ∈ E0 | e ⊆ V0}.

Definition 2.3 Let E be a set of unordered pairs over X, and define K1,2(E) := {(u, v,w) ∈ X3 |
v 6= w, {u, v} ∈ E, {u,w} ∈ E}. Let X be a set. For U ⊆ X define pmX(U) : {(u, v) ∈ X2 |
{u, v} ∩ U 6= ∅} and tmX(U) := {(u, v,w) ∈ X3 | {u, v,w} ∩ U 6= ∅}. (The mnemonic for this
notation is “pairs over X that meet U” and “triples over X that meet U”.)

2.1 Probability notation

Definition 2.4 Let η be a probability distribution over a set X and let f : X → R. We write
Eη[f ] to denote the expectation of f with respect to η. At times, the uniform distribution over a set
will be written as U . Other times, we will write with E ⊆ S, we will write Prx∈S [E] to denote the
probability that x ∈ E holds when x is selected uniformly from S.

Definition 2.5 Let η be a probability distribution on a Cartesian product
∏t

i=1Xi. For each I ⊆ [t],

let ηI be the marginal distribution of η on
∏

i∈I Xi. For each j ∈ [t] and each ~x ∈ ∏j
i=1Xi, let η~x

be the probability distribution on
∏t

i=j Xi given by the formula η~x(~y) = η(~x~y)
η[j](~x) if η[j](~x) 6= 0 and 0

otherwise.

Notice that η~x is the marginal distribution of η to the coordinates [t] \ [j] conditioned on the
event that the first j coordinates take the value ~y. An immediate consequence of the definitions:

Lemma 1 Let f :
∏t

i=1Xi → R, let I = {1, . . . i0}: Eη[f ] =
∑

~u∈XI
ηI(~u)Eη~u [f~u]
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Unsurprisingly for a technique based on finding structure in a dense family of sets, we beat the
stuffing out Jensen’s Inequality and any averaging arguments that we find in the neighborhood.

Proposition:(Jensen’s Inequality) Let f : D → R, let g : R → R be a convex function, and let η
be a probability distribution on D. Eη[g ◦ f ] ≥ g (Eη[f ]).

Lemma 2 (Proof in Appendix Section A.) Let X be a finite set, and let Y1, . . . Yn be a family of
subsets of X. Set α = 1

n

∑n
i=1 |Yi|/|X|, and let k be a non-negative integer: 1

nk

∑

~ı∈[n]k |
⋂k

l=1 Yil | ≥
αk|X|.

Lemma 3 (Proof in Appendix Section A.) There exists a constant c > 0 so that for every undi-
rected graph G = (V,E) with |V | = N and |E| ≥ α

(N
2

)

. We have that:

Pr~u∈V 3 [K({u1}, {u2, u3}) ⊆ G] ≥ α2 − (5/N)
Pr~u∈V 6 [K ({u1, u2}, {u3, u4, u5, u6}) ⊆ G] ≥ α8 − (23/N)

Proposition: Let η be a probability measure on a space X, and let f : X → [0, 1] be measurable.
For all ε ∈ [0, 1] and all c > 0 η({x | f(x) ≥ 1

c Eη[f ]}) ≥ (1 − 1/c)Eη [f ].

Lemma 4 Let X be a probability space with probability µ and let f : X → [0, 1]. Let ε, γ ∈ [0, 1] be
given. If µ(f−1((γ, 1])) < ε then Eµ[f ] < ε+ γ.

3 OBDDs, proofs and communication protocols

Definition 3.1 (cf. [8, 24]) A binary decision diagram (also known as a branching program) is a
rooted, directed acyclic graph in which every nonterminal node u labeled by a variable xu and has
two out-arcs, one two a node tu and the other to a node fu. Sinks are labeled by Boolean values.
The function represented by a branching program is calculated by starting at the root and following a
path to the sink as follows: If the current node u is labeled by the variable xu, and xu is assigned the
value true, then follow the arc tu, otherwise follow the arc labeled fu. The value that the function
takes is the value labeled on the sink. The size of a binary decision diagram is its number of nodes
as a DAG. An ordered binary decision diagram (OBDD) is a binary decision diagram in which:
Along every path from the source to a sink, every variable is queried at most once, and, there is
fixed ordering so that along all paths from the source to a sink, the variables are queried consistently
with that order.

Definition 3.2 Let C be a set of clauses in variables from a set V . A OBDD derivation from C
with respect to a variable ordering � on V is a sequence of OBDDs F1, . . . , Fm so that each
OBDD is built from the variables of V with respect to the order �, and each Fi either is a clause
in C, or follows from the preceding F1, . . . Fi−1 by an application of one of the following inference
rules: (A, A0, and B are OBDDs in the variables V with ordering �, where A ⇒ A0 as Boolean
functions, and ~x, ~y, ~z are tuples of variables from V ):

Subsumption:
A

A0
Conjunction:

A(~x, ~y) B(~y, ~z)

A(~x, ~y) ∧B(~y, ~z)
Projection:

A(x, ~y)

∃xA(x, ~y)

For a set of clauses C, an OBDD refutation of C is a derivation from C whose final line is the
OBDD “false”. The size of an OBDD refutation is the sum of the sizes of its OBDDs. An OBDD
derivation F1, . . . Fm is said to be treelike if each Fi is used at most once as an antecedent to an
inference.
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The projection rule is a special case of the subsumption rule, however, the projection rule is the
one most used in satisfiability algorithms.

We make use of a well-known bound on the randomized two-party communication complexity
of the set-disjointness function. For more on communication complexity see [22].

Definition 3.3 Let f( ~X, ~Y ) be a function. A randomized two-player protocol for f is a two-party
communication protocol in which Player I has private access to ~X, Player II has private access
to ~Y , and the players share access to a source of random bits, so that for all inputs ~X and ~Y ,
with probability at least 2/3, the players agree upon the correct value of f( ~X, ~Y ). A deterministic
protocol is one in which the answer arrived at by the players is independent of any randomness
and is uniquely determined by the input ~X, ~Y . The cost of a protocol is the maximum number
of bits communicated between the two players taken over settings of the input and the random
bits. The randomized communication complexity of f is the minimum cost of a randomized two-
player protocol that computes f . The set-disjointness function on n bits is a Boolean function
setdisjn : {0, 1}n × {0, 1}n → {0, 1} with

setdisj( ~X, ~Y ) =

{

1 if ∃i ∈ [n], Xi = Yi = 1
0 otherwise

Theorem 5 ([19, 30], cf. [22]) The two-party randomized communication complexity of setdisjn
is Ω(n).

All that is actually used about OBDDs is a simple connection between OBDDs and communi-
cation complexity that is the starting point for the reduction. We do not use it explicitly in this
article, however, it is an ingredient for the proof of Lemma 8 which appears in [3].

Proposition: If there is size S OBDD for a function f(x1, . . . xn) with respect to the variable
order xi1 , . . . xin , then for each k ∈ [n], there is a two-party communication protocol computing f
with respect to the variable partition {xi1 , . . . xik}, {xik+1, . . . xin} that uses dlog Se many bits of
communication.

4 The difficult CNFs: Indirect matching principles

The CNF IndMatchm is a propositional encoding of the fact that in a graph on 3m vertices, it
is impossible to simultaneously have a perfect matching on 2m vertices and an independent set of
size 2m + 1. It is similar to CNF Matchm used by Impagliazzo, Pitassi, and Urquhart to prove
size lower bounds for the tree-like cutting planes system [17]. However, in order to prove the CNFs
difficult for tree-like OBDD refutations with respect to any variable ordering, we introduce a level
of indirection via permutations. There are two kinds of variables used in the CNF Matchm:

1. The edge variables. There are are m ·
(3m

2

)

many variables used to specify the matching: One

variable xi
e for each i = 1, . . . m and each e ∈

([3m]
2

)

. The intended semantics is that the
variable xi

e is equal to one if and only if the edge e is the i’th edge of the matching.

2. The vertex variables. There are (2m+ 1)3m = 6m2 + 3m many variables used to specify the
independent set: One variable yj

u for each j = 1, . . . 2m+ 1 and each u ∈ [3m]. The intended
semantics is that the variable yj

k is equal to one if and only if the vertex u is the j’th element
of the independent set.

The set of all these variables is MV arsm. The following clauses form the CNF Matchm:
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1. (At least m edges in the matching.) For each i ∈ [m]:
∨

e∈([3m]
2 ) x

i
e

2. (Edges form a matching.) For each i, j ∈ [2m] with i 6= j and each e, f ∈
([3m]

2

)

with e∩f 6= ∅:
¬xi

e ∨ ¬xj
f

3. (At least 2m+ 1 vertices in the independent set.) For each j ∈ [2m+ 1]:
∨

u∈[3m] y
j
u

4. (Vertices in the independent set are distinct.) For each i, j ∈ [2m + 1] with i 6= j and each
u ∈ [3m]: ¬yi

u ∨ ¬yj
u

5. (The vertices are independent.) For each e ∈
([3m]

2

)

with e = {u, v}, each k ∈ [m] and each

i, j ∈ [2m+ 1]: ¬yi
u ∨ ¬yj

v ∨ ¬xk
e

Notice that the CNF Matchm has size O(m5).
The difference between the CNF IndMatchm and the CNF Matchm is that we add variables

specifying a permutation π, and for an assignment A to MV arsm, we interpret the independent
set not as {u | ∃j ∈ [2m+ 1], A(yj

u) = 1} but instead as {π(u) | ∃j ∈ [2m+ 1], A(yj
u) = 1}.

Definition 4.1 Let N be given. A set Π of permutations of N is said to be pairwise independent
if for all a, b, c, d ∈ [N ] with a 6= b and c 6= d: Prπ∈Π [π(a) = c ∧ π(b) = d] = 1

N(N−1) .

It is well-known that for any finite field, the set of mappings {x 7→ ax+ b | a ∈ F
∗, b ∈ F} is a

pairwise independent family of permutations of size |F|(|F| − 1).

Proposition: Whenever m is a power of 3, there is a pairwise-independent family of permutations
for [3m], Πm, with |Πm| = 9m2 − 3m.

The variables used in the CNF IndMatchm are the variables used in Matchm, along with
new variables for encoding a permutation: There are l = dlog(|Π|)e many variables that encode a
permutation from Π: z1, . . . zl. The the variables z1, . . . zl encode the permutations of Π in some
surjective fashion. This set of permutation variables is denoted PV arsm. The set of variables
IMV arsm is MV arsm ∪ PV arsm. The CNF IndMatchm has the same clauses of type 1, type 2,
type 3 and type 4 that Matchm has, whereas the clauses enforcing independence are as follows:

(Independence between vertices after application of the permutation.) For each α1, . . . αl ∈ {0, 1},
each e ∈

([3m]
2

)

with e = {u, v}, each k ∈ [m] and each i, j ∈ [2m + 1], with π denoting the

element of Π encoded by ~α:
∨L

i=1 z
1−αi

i ∨ ¬yi
π(u) ∨ ¬yj

π(v) ∨ ¬xk
e

Notice that the CNF IndMatchm has O(m7) many clauses, and size O(m7 logm).

Definition 4.2 Let π be a permutation of [3m]. For each variable v ∈MV arsm we define

π(v) =

{

yj
π(u)

if v = yj
u for some j ∈ [2m+ 1], u ∈ [3m]

xi
e if v = xi

e for some i ∈ [m], e ∈
([3m]

2

)

Lemma 6 Let Γ be a refutation of IndMatchm, with variable ordering v1, . . . vN . For every π ∈ Π,
there is a size at most |Γ| refutation of Matchm that uses the variable ordering π(v1), . . . π(vN ).

Proof: Let α be the assignment to ~z that selects the permutation π−1. We apply the restriction α
to Γ, and we see that the clauses of IndMatchm that that are not satisfied are the non-independence

8



clauses that do not use any ~z variables (ie. all clauses of type 1, type 2, type 3, and type 4), and
the independence clauses of the form ¬yi

π−1(u) ∨ ¬yj
π−1(v)

∨ ¬xk
e , for i, j ∈ [2m + 1], u, v ∈ [3m],

k ∈ [m], and e ∈
([3m]

2

)

. Within each OBDD of the refutation, each query to yi
u is replaced by a

query to yi
π(u). This means that yi

u takes the place of yi
π(u) in the ordering.

Every OBDD is now constructed according to the query order π(v1), . . . π(vN ). It is easily
checked that the proof structure is preserved under this substitution so that the new derivation
is a derivation with respect to the order π(v1), . . . π(vN ) in the sense of Definition 3.2. Moreover,
each clause ¬yi

π−1(u) ∨ ¬yj
π−1(v)

∨ ¬xk
e , becomes ¬yi

u ∨ ¬yj
v ∨ ¬xk

e , so that the new refutation is a

refutation of Matchm.

5 Variable partitions and their densities

The proof of Theorem 12 has two steps. A small refutation of IndMatchm with an arbitrary
ordering of the variables IMV arsm is used to construct a low-communication protocol for the
false clause search associated with Matchm - with respect to a “dense” partition of the variables
MV arsm between the two players. Set-disjointness is then shown to reduce to the false clause
search for Matchm- whenever MV arsm are partitioned in a dense enough fashion.

We view the partition of MV arsm as splitting the players into an edge player, with access to
variables in VI , and a vertex player, with access to variables in VII . In the reduction, the edge
player will place his set disjointness variables Xl on edge variables xi

e and the vertex player will
place his set-disjointness variables Yl on vertex variables yj

u.

Definition 5.1 Let m be a positive integer, and let (VI ,VII) be a partition of MV arsm. For each
i = 1, . . . m, define Ei(VI) to be {e ∈

([3m]
2

)

| xi
e ∈ VI}. For each j = 1, . . . 2m+1, define Vj(VII) to

be {u ∈ [3m] | yj
u ∈ VII}. Except for Lemma 9, we will not discuss more than one variable partition

at a time, so we usually write Ei instead of Ei(VI) and Vj instead of Vj(VII).

An important complication is that for distinct i1, i2 ∈ [m], it is possible that Ei1 6= Ei2 . This
means that not only does the edge used in assignment matter, but the identity of the variable
specifying the edge matters as well. Similarly, it is possible that Vj1 6= Vj2 , so that identity of the
variable used to specify a vertex matters. Because the identity of the variables matters, in contrast
with the reduction of [29], we treat the objects seen by the players as assignments to the variables,
not merely sets of vertices and edges.

Definition 5.2 Let (VI ,VII) be a partition of MV arsm. The density of (VI ,VII), δ (VI ,VII), is
defined as follows:

δ (VI ,VII) :=
1

m2(2m+ 1)5

∑

~ı∈[m]2

∑

~∈[2m+1]5

|⋂5
k=1Ei1 [Vjk

] ∩Ei2 [Vjk
] |

(3m
2

)

6 From Refutation to Search

We transform small refutations of the IndMatchm principles into a low-communication protocol
for a search problem in the variables Mvarsm.

Definition 6.1 Let A be an assignment to MV arsm. We say that A is non-degenerate if it satisfies
all of the clauses from Matchm of type 1, type 2, type 3, and type 4. (Informally, this means that
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the assignment selects m distinct edges and 2m+ 1 distinct vertices.) An edge e ∈
([3m]

2

)

is said to

be bad for A if e = {u, v} and there exist i, j ∈ [2m + 1], k ∈ [m] with A(yi
u) = 1, A(yj

v) = 1, and
A(xk

e) = 1.

Proposition: If A is non-degenerate then there exists an edge that is bad for A.

Definition 6.2 Let m be a positive integer, and let (VI ,VII) be a partition of MV arsm. The search
problem FindBadEdgem (VI ,VII) is defined as follows:

1. Player I has private access to the variables of VI .

2. Player II has private access to the variables of VII .

3. Given a non-degenerate assignment A to MV arsm, the players must find a bad edge of A.

Lemma 7 There a exists a constant c > 0 so that for all m ≥ 84651, if there is a size S
tree-like OBDD refutation of IndMatchm then there is a partition (VI ,VII) of MV arsm so that
δ (VI ,VII) ≥ 2−13 and there exists a deterministic two-player protocol for the search problem
FindBadEdgem (VI ,VII) that uses at most c log S many bits of communication.

The proof of Lemma 7 follows from combining the following to lemmas. To prove Lemma 7, simply
take the partition of MV arsm and the size S refutation of Matchm guaranteed by Lemma 9 and
feed them into Lemma 8.

Lemma 8 (cf. [17, 3]) There exists a constant c > 0 so that for all m, and every partition (VI ,VII)
of MV arsm, if there is treelike OBDD refutation of Matchm of size S that uses a variable order
in which either every variable of VI precedes every variable of VII, or vice-versa, then for each
i ∈ [n], then there is a deterministic two-player protocol for FindBadEdgem (VI ,VII) that uses at
most c log S many bit of communication.

Lemma 9 For m ≥ 84651, if there exists size S refutation of IndMatchm, then there exists a
partition of MV arsm, (VI ,VII), with δ(VI ,VII) ≥ 2−13, and a size S refutation of Matchm in
which every variable of VI precedes every variable of VII, or vice-versa.

Proof: Let v1, . . . vN be the variable ordering of IMV arsm used by the refutation of IndMatchm.
Let i0 be the first position to split either the set of vertex variables or the set of edge variables
in half. More formally, for each i = 1, . . . N , let vvars(i) be the number of vertex variables in
{v1, . . . vi}, let evars(i) be the number of edge variables in {v1, . . . vi}, and let i0 least integer with
either evars(i0) ≥ m

2 ·
(3m

2

)

or vvars(i0) ≥ 2m+1
2 · 3m. Notice that there are two possible cases:

The first is that evars(i0) ≥ m
2 ·

(3m
2

)

so that {v1, . . . vi0} contains exactly m
2 ·

(3m
2

)

many edge
variables and {vi0+1, . . . vN} contains at least 1

2 · (6m2 + 3m) many vertex variables. The second
is that vvars(i0) ≥ 2m+1

2 · 3m so that {v1, . . . vi0} contains exactly 1
2 · (6m2 + 3m) many vertex

variables and {vi0+1, . . . vN} contains at least m
2 ·

(3m
2

)

many edge variables. In the first case, we
set VI = {v1, . . . vi0} and VII = {vi0+1, . . . vN}. In the second case, we set VII = {v1, . . . vi0} and
VI = {vi0+1, . . . vN}. In either case, 1

m

∑m
i=1 |Ei| ≥ 1

2

(3m
2

)

and 1
2m+1

∑2m+1
i=1 |Vj | ≥ 3m

2 . Therefore,
by Lemma 2:

1

(2m+ 1)5

∑

~∈[2m+1]5

|Vj1 ∩ Vj2 ∩ Vj3 ∩ Vj4 ∩ Vj5| ≥
3m

32
(1)
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1

m2

∑

~ı∈[m]2

|Ei1 ∩ Ei2 | ≥
1

4

(

3m

2

)

(2)

We now calculate the expected value of δ(π(VI ), π(VII)) over π ∈ Π. We begin by noting that
for all i ∈ [m], Ei(π(VI)) = Ei(VI) = Ei and for all j ∈ [2m+ 1], Vj(π(VII)) = π(Vj(VII)) = π(Vj).
For each ~ı ∈ [3m]2, let E~ı = Ei1 ∩Ei2 and for each ~ ∈ [2m+ 1]5, let V~ = Vj1 ∩Vj2 ∩Vj3 ∩Vj4 ∩Vj5 .

For each {u, v} ∈
(

[3m]
2

)

, by the pairwise independence of the permutations, we have that:

Prπ∈Π [{π(u), π(v)} ∈ E~ı] =
∑

{a,b}∈E~ı

(Prπ∈Π [π(u) = a, π(v) = b] + Prπ∈Π [π(u) = b, π(v) = a}])

=
2|E~ı|

3m(3m− 1)
=

|E~ı|
(

3m
2

)

Therefore, by linearity of expectation, we have that:

Eπ∈Π

[

|E~ı

[

π
(

V~

)]

|
]

=
∑

{u,v}∈(V~
2
)

Prπ [{π(u), π(v)} ∈ E~ı] =
|E~ı|
(3m

2

)

(|V~|
2

)

And thus we bound Eπ∈Π [δ(π(VI ,VII))|] from below as follows:

Eπ∈Π





1

m2(2m+ 1)5

∑

~ı∈[m]2

∑

~∈[2m+1]5

|⋂5
k=1Ei1(π(VI)) [Vjk

(π(VII))] ∩ Ei2(π(VI)) [Vjk
(π(VII))] |

(3m
2

)





= Eπ∈Π





1

m2(2m+ 1)5

∑

~ı∈[m]2

∑

~∈[2m+1]5

|⋂5
k=1Ei1 [π(Vjk

)] ∩ Ei2 [π(Vjk
)] |

(3m
2

)





= Eπ∈Π





∑

~ı∈[m]2

∑

~∈[2m+1]5

|E~ı

[

π
(

V~

)]

|
m2(2m+ 1)5

(3m
2

)



 =
∑

~ı∈[m]2

∑

~∈[2m+1]5

Eπ∈Π

[

|E~ı

[

π
(

V~

)]

|
]

m2(2m+ 1)5
(3m

2

)

=
∑

~ı∈[m]2

|E~ı|
m2

(3m
2

)

∑

~∈[2m+1]5

(|V~|
2

)

(2m+ 1)5
≥

∑

~ı∈[m]2

|E~ı|
m2

(3m
2

)

(

3m/32

2

)

(by Equation 1)

=

(

3m/32

2

)

∑

~ı∈[m]2

|E~ı|
m2

(3m
2

) ≥
(

3m/32

2

) (

1

4

)

(by Equation 2)

=
1

4

(3m/32)(3m/32 − 1)

2
=

1

4 · (32)2
(3m)(3m − 32)

2

=
1

4 · (32)2
((

3m

2

)

− (3m)(31)

2

)

=
1

212

(

3m

2

)(

1 − 31

3m− 1

)

=

(

2−12 − 31

3m− 1

)(

3m

2

)

Choose a permutation π with 1
m2(2m+1)5

∑

~ı∈[m]2
∑

~∈[2m+1]5 |E~ı

[

π
(

V~

)]

| ≥
(

2−12 − 31
3m−1

)

(3m
2

)

.

By Lemma 6, there is a size S refutation of Matchm that uses the variable ordering π(v1), . . . π(vN ).
Notice that in this order, either every variable of π(VI) precedes every variable of π(VII), or every
variable of π(VII) precedes every variable of π(VI). By the above calculation, δ(π(VI), π(VII)) ≥
2−12 − 31

3m−1 . Because m ≥ 84651, we have 31
3m−1 ≤ 2−13, so δ(π(VI), π(VII)) ≥ 2−12 − 2−13 = 2−13.
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7 Reduction and lower bound

The reduction from setdisjn( ~X, ~Y ) to FindBadEdgem(VI ,VII) uses public random coins to pro-
duce a “layout” that assigns certain variables from ~X variables of VI , and certain variables of ~Y
to variables of VII , and hardwiring values for the rest of the variables in MV arsm. We define
these layouts in Definition 8.2 in Section 8. We denote the set of all layouts by L, and denote
the assignment constructed using layout L with set-disjointness instance ( ~X, ~Y ) by AL, ~X,~Y . The
correctness of the reduction comes down to the following lemma:

Lemma 10 (Proof in Section 8) For every δ0 > 0, there exist c0, c1 > 0 so that for all m ≥
31(2/δ0)

8, and all partitions of MV arsm, (VI ,VII) with δ(VI ,VII) ≥ δ0, for all n with n ≤ c0m,
there exists a set L, a distribution D on L with probability function µ, a function A : L×{0, 1}n ×
{0, 1}n → {0, 1}MV arsm , and a function pe : L × {0, 1}n × {0, 1}n →

(

[3m]
2

)

so that:

1. For all L ∈ L, ( ~X, ~Y ) ∈ {0, 1}n × {0, 1}n, all v ∈ VI , AL, ~X,~Y (v) is determined by L and ~X,

and for all v ∈ VII, AL, ~X,~Y (v) is determined by L and ~Y .

2. For all L ∈ L, all ( ~X, ~Y ) ∈ {0, 1}n × {0, 1}n, the assignment AL, ~X,~Y is non-degenerate.

3. For all ( ~X, ~Y ) ∈ {0, 1}n × {0, 1}n, and all e ∈
([3m]

2

)

, if e is bad for AL, ~X,~Y , then e = pe(L)

or setdisjn( ~X, ~Y ) = 1.

4. For all ( ~X, ~Y ) ∈ {0, 1}n × {0, 1}n with setdisjn( ~X, ~Y ) = 1, there exists S ⊆ L with µ(S) ≥
δ80/2

9 so that for all A ∈ {A
L, ~X,~Y

| L ∈ S}:

max
e∈([3m]

2 )
µ(pe(L) = e | AL, ~X,~Y = A, L ∈ S) ≤ 1 − c1

Condition 1 is the requirement that the Player I can compute the value of AL, ~X,~Y (v) for v ∈ VI

without communicating with Player II, and that player II can compute A
L, ~X,~Y

(v) for v ∈ VII

without communication. Condition 2 guarantees that the assignment created is a valid instance of
the FindBadEdgem(VI ,VII) problem. The function pe can be thought of as specifying a “planted
bad edge”: The reduction is based on the idea of having positions with Xk = Yk = 1 create bad
edges. However, because the assignment is non-degenerate, there must always be some bad edge,
even when setdisjn( ~X, ~Y ) = 0. The players knowingly create one such edge and we call this edge
the planted edge for the layout, pe(L). Condition 3 states that when setdisjn( ~X, ~Y ) = 0, the only
bad edge is the planted edge. Condition 4 states that when setdisjn( ~X, ~Y ) = 1, conditioned on the
layout coming from the set S, no assignment is overly-correlated with a particular planted edge.

Lemma 11 For all δ > 0, there exist C0, C1 > 0 so that for all m ≥ 31(2/δ)8, for all partitions
of MV arsm, (VI ,VII), with δ(VI ,VII) ≥ δ, for all n ≤ C0m, if there is a two-player deterministic
protocol SEARCH that solves FindBadEdgem(VI ,VII) using r bits of communication, then the
randomized communication complexity of setdisjn is ≤ C1r.

Proof: Let C0 be the c0 as in the statement of Lemma 10 with δ0 = δ. We give a one-sided reduction
that never gives a wrong answer when setdisjn( ~X, ~Y ) = 0, and when setdisjn( ~X, ~Y ) = 1, it gives
the correct answer with probability ≥ c1δ

8/29, where c1 is the second constant guaranteed by
Lemma 10. Repeating the protocol a constant number of times and returning a 0 only if all runs
produce a 0 gives a protocol with correctness ≥ 2/3.
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1. Using public randomness, the players select a reduction layout L according to the distribution
D guaranteed by Lemma 10.

2. The players run SEARCH using the assignment AL, ~X,~Y and let e be the edge returned by

SEARCH. If pe(L) = e then return 0, and if pe(L) 6= e then return 1.

By Lemma 10, Condition 1, the players can compute the needed values of AL, ~X,~Y with no
communication. By Lemma 10, Condition 2, the assignment AL, ~X,~Y is non-degenerate, and is

therefore a legal input for the problem FindBadEdgem(VI ,VII). Consider the case when ~X and
~Y are disjoint. By Lemma 10, Condition 3, the only bad edge in AL, ~X,~Y is pe(L), so the protocol

returns 0. Consider the case when ~X and ~Y are intersecting. Apply Lemma 10, Condition 4, and let
S be the set guaranteed for the pair ~X , ~Y . Define the event B as B = {L ∈ S | SEARCH(AL, ~X,~Y ) =

pe(L)}. This is the event that the layout belongs to S and the protocol gives an erroneous answer.
Let AS = {AL, ~X,~Y | L ∈ S}. For each A ∈ AS , let SA = {L ∈ S | AL, ~X,~Y = A} and let

BA = {L ∈ B | AL, ~X,~Y = A}. Because the protocol SEARCH is deterministic, for every A,

the function L 7→ pe(L) is constant on the set BA (taking the value returned by SEARCH(A)).
Therefore, by Lemma 10, Condition 4, for each A ∈ AS , µ(BA) ≤ (1 − c1)µ(SA), and so:

µ(B) =
∑

A∈AS

µ(BA) ≤
∑

A∈AS

µ(SA)(1 − c1) = (1 − c1)µ(S)

Therefore µ(S \ B) ≥ c1µ(S) ≥ c1δ
8/29. Of course, S \ B is the event that L ∈ S and the

protocol gives the answer 1.

7.1 The lower bound

Theorem 12 There exists a constant C > 0 so that for sufficiently large m, every tree-like OBDD
refutation of IndMatchm has size at least 2Cm.

Proof: Apply Theorem 5 and choose N ≥ 0 and c∗ > 0 so that for every n ≥ N , randomized
two-player protocols for solving setdisjn require ≥ c∗n bits of communication. Let C0 and C1

be the constants of Lemma 11, and let m be so large that m ≥ 31(2/(2−13))8 = 31 · 2112 (so
that we can apply Lemma 11 with δ ≥ 2−13), and N ≤ bC0mc (so that we can apply Theo-
rem 5). Set n = bC0mc. Let c > 0 be the constant from Lemma 7. Let Γ be a tree-like OBDD
refutation of IndMatchm of size S. Because m > 84651, we may apply Lemma 7 and choose a
partition (VI ,VII) so that δ(VI ,VII) ≥ 2−13 and a two-player deterministic communication pro-
tocol FindBadEdgem(VI ,VII) that uses at most c log S bits of communication. By Lemma 11,
there is a two-party randomized communication protocol for setdisjn on inputs from Pn that ex-
changes at most C1 logS bits of communication. Therefore, applying the communication bound

for set-disjointness, C1 log S ≤ c∗n = c∗bC0mc, and thus S ≤ 2
c∗bC0mc

C1

8 Reduction layouts

We now take a moment to discuss the gadgets underlying the reduction from set-disjointness to the
problem of finding a bad edge. The basic idea is to create a bad edge for each k with Xk = Yk = 1.
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Figure 1: The basic set-disjointness gadget. A bad edge corresponds to the situation when an edge
and both of its endpoints receive the label 1. The assignment uses: xik

{uk,vk} = Xk, x
ik
{uk,wk} = ¬Xk,

y
jk,1
v = 1, y

jk,2
uk

= Yk, and y
jk,2
wk

= ¬Yk. Notice that {uk, wk} is never a bad edge, and that {uk, vk}
is a bad edge if and only if Xk = Yk = 1.

Figure 2: The set-disjointness gadget at the position with a planted bad edge. A bad edge corre-
sponds to the situation when an edge and both of its endpoints receive the label 1. The assignment
uses: x

in+1

{un+1,vn+1} = 0, x
in+1

{un+1,wn+1} = 1, y
jn+1,1
un+1 = 1, y

jn+1,2
vn+1 = 1, y

jn+1,3
wn+1 = 1.

To do this without communicating, the players use the public randomness to choose uk, vk, wk ∈
[3m] with the intent to place {uk, vk} in the matching if Xk = 1 and {uk, wk} in the matching if
Xk = 0, and to place vk in the independent no matter what, but to include uk if Yk = 1 and to
include wk if Yk = 0. Of course, we must specify which variables are used to place the gadget, and
those variables must be available to the players under the partition. The players use the public
randomness to choose ik ∈ [m] with xik

{uk,vk}, x
ik
{uk ,wk} ∈ VI (equivalently, {uk, vk}, {uk , wk} ∈ Eik)

and jk,1, jk,2 ∈ [m] with y
jk,1
vk

, y
jk,2
uk

, y
jk,2
wk

∈ VII , (equivalently, vk ∈ Vjk,1
and uk, wk ∈ Vjk,2

). The
situation resembles that in Figure 1, with a bad edge occurring only if Xk = Yk = 1 and only then
only at {uk, vk}. The reduction plants one of these gadgets for each k = 1, . . . n.

Because there are m edges in the matching and 2m + 1 vertices in the set, one more vertex
must be placed in addition to the two associated with each set-disjointness gadget. A final gadget
(thought of as being at position n+ 1) will contain the “planted bad edge”, in which three vertices
un+1, vn+1, and wn+1 are all placed in the set, and the edge {un+1, wn+1} is included. Because

all three vertices are placed in the set, three variables y
jn+1,1
un+1 , y

jn+1,2
vn+1 and y

jn+1,3
wn+1 are needed with

un+1 ∈ Vjn+1,1 , vn+1 ∈ Vjn+1,2, and wn+1 ∈ Vjn+1,3 .
The basic idea of the reduction is to randomly plant these n+ 1 gadgets on disjoint variables.

However, to ensure that the probabilities work out as claimed in Lemma 10, we make use of the
density of the partition.

Definition 8.1 Fix a partition of MV arsm, (VI ,VII). Set δ = δ(VI ,VII). For each i ∈ [m] let
Ei = Ei(VI) and for each j ∈ [2m+1] let Vj = Vj(VII). For each i ∈ [m], let N3(i) = {(j1, j2, j3) ∈
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[2m+ 1]3 | j1 6= j2, j2 6= j3, j3 6= j1, |Ei[Vj1 ∩ Vj2 ∩ Vj3 ]| ≥ (δ/3)
(3m

2

)

}, and let N2(i) = {(j1, j2) ∈
[2m + 1]2 | ∃j3 ∈ [2m + 1], (j1, j2, j3) ∈ N3(i)}. Set G = {i ∈ [m] | |N3(i)| ≥ (δ/12)(2m + 1)3}.
Of course, each of G, N3(·), and N2(·) depend upon the partition (VI ,VII), but we drop that from
notation as we will never discuss more than one partition at a time.

Lemma 13 Let δ ∈ [0, 1] and let m be an integer ≥ 3/δ, and let (VI ,VII) be a partition of MV arsm

with δ(VI ,VII) ≥ δ. The size of G is bounded from below as |G| ≥ (δ/12)m

Proof: Let δ = δ(VI ,VII). Because m ≥ 3/δ ≥ ((6/δ) − 1)/2, we have that 3/(2m + 1) ≤ δ/2. By
Definition 5.2 , we have that:

1

m2(2m+ 1)5

∑

~ı∈[m]2

∑

~∈[2m+1]5

|
5

⋂

k=1

(Ei1 [Vjk
] ∩ Ei2[Vjk

]) | = δ

(

3m

2

)

And therefore 1
m(2m+1)3

∑

i∈[m]

∑

~∈[2m+1]3 |Ei[Vj1 ∩ Vj2 ∩ Vj3]| ≥ δ
(3m

2

)

. Because the number of

terms with j1 = j2, j2 = j3 or j1 = j3 is at most 3m(2m + 1)2, such terms can contribute at most
1

m(2m+1)3 3m(2m+ 1)2
(3m

2

)

= 3
2m+1

(3m
2

)

to this sum, so we have:

1

m(2m+ 1)3

∑

i∈[m]

∑

~∈[2m+1]3

~ distinct

|Ei[Vj1 ∩ Vj2 ∩ Vj3]| ≥ (δ − 3/(2m + 1))

(

3m

2

)

≥ (δ/2)

(

3m

2

)

Combining this with the fact that for each i ∈ [m], |Ei| ≤
(3m

2

)

, by averaging, we have that
with probability at least δ/6 over the choice of i,j1,j2,j3, with j1, j2, j3 all distinct, that |Ei[Vj1 ∩
Vj2 ∩Vj3]| ≥ (δ/3)

(

3m
2

)

. Therefore, with probability at least δ/12 over choices of i, there are at least

(δ/12)[2m + 1]3 many triples j1, j2, j3 that are distinct and have |Ei[Vj1 ∩ Vj2 ∩ Vj3 ]| ≥ (δ/3)
(3m

2

)

.
Therefore, |G| ≥ (δ/12)m.

Definition 8.2 Fix an integer m, a partition (VI ,VII) of MV arsm.. A reduction layout (with re-
spect to (VI ,VII), of length n) is a tuple (i1, . . . in+1, (j1,1, j1,2), . . . (jn,1, jn,2), (jn+1,1, jn+1,2, jn+1,3),
(u1, v1, w1), . . . (un+1, vn+1, wn+1)) from the set [m]n+1 × ([2m+ 1]2)n × ([2m+ 1]3)×

(

[3m]3
)n

with
the following properties:

1. The indices i1, . . . in+1 are distinct.

2. The indices j1,1, j1,2, . . . jn,1, jn,2, jn+1,1, jn+1,2, jn+1,3 are distinct.

3. The integers u1, . . . un+1, v1, . . . vn+1, w1, . . . wn+1 are distinct.

4. For each k = 1, . . . n+ 1, {uk, vk} ∈ Eik and {uk, wk} ∈ Eik .

5. For each k = 1, . . . n+ 1, uk, vk, wk ∈ Vjk,1
∩ Vjk,2

.

6. un+1, vn+1, wn+1 ∈ Vjn+1,1 ∩ Vjn+1,2 ∩ Vjn+1,3 .

7. For all k ∈ [n+ 1], ik ∈ G.

8. (jn+1,1, jn+1,2, jn+1,3) ∈ N3(in+1)

9. For k ∈ [n], each (jk,1, jk,2) ∈ N2(ik).
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The set of all reduction layouts of length n with respect to (VI ,VII) is denoted Lm,n(VI ,VII).
When m, n, and (VI ,VII) are clear from context, we simply write L and call L ∈ L a reduction
layout.

When listing the elements of a reduction layout, we will abuse notation write (~ı,~, ~u,~v, ~w) despite the
fact that a reduction layout is emphatically not a member of the product set [m]n+1×[2m+1]2n+3×
[3m]n+1 × [3m]n+1 × [3m]n+1. This matters for the purpose of computing Hamming distances. The
Hamming distance between two reduction layouts in L is their Hamming distance as elements of
the 3n + 3 dimensional Cartesian product [m]n+1 × ([2m + 1]2)n × ([2m + 1]3) ×

(

[3m]3
)n+1

. In
particular, if two reduction layouts L = (~ı,~, ~u,~v, ~w) and L∗ = (~ı∗,~∗, ~u∗, ~v∗, ~w∗) differ in only that
(uk, vk, wk) 6= (u∗k, v

∗
k, w

∗
k) then they are at Hamming distance 1.

Definition 8.3 Fix m,n, a partition (VI ,VII) of MV arsm. Let L = (~ı,~, ~u,~v, ~w) be a reduc-
tion layout from L, and let X1, . . . Xn, Y1, . . . Yn be a set-disjointness instance. We define an
assignment AL, ~X,~Y to the variables of MV arsm as follows: Set I = {i1, . . . in+1}. Set J =

{j1,1, j1,2, . . . jn,1, jn,2, jn+1,1, jn+1,2, jn+1,3}. Set V = {u1, . . . un+1, v1, . . . vn+1, w1, . . . wn+1}. Let
β, β (L), be the lexicographically first assignment to the variables {xi

e | i ∈ [m]− I, e ∈ [3m− V ]2}
∪{yj

u | j ∈ [2m + 1] − J, u ∈ [3m] − V } so that β defines a matching of size m − n − 1 and an
independent set of size 2(m− n− 1) on [3m] \ V . Define AL, ~X,~Y as follows:

AL, ~X,~Y (xi
e) =























β(xi
e) if i ∈ [m] − I and e ∈ ([3m] − V )2

Xk if i = ik and e = {uk, vk} for some k ∈ [n]
¬Xk if i = ik and e = {uk, wk} for some k ∈ [n]

1 if i = in+1 and e = {un+1, wn+1}
0 otherwise

AL, ~X,~Y (yj
x) =















































β(yj
x) if j ∈ [2m+ 1] − J and u ∈ [3m] − V

1 if j = jk,1 and x = vk for some k ∈ [n]
Yk if j = jk,2 and x = uk for some k ∈ [n]
¬Yk if j = jk,2 and x = wk for some k ∈ [n]
1 if j = jn+1,1 and x = un+1

1 if j = jn+1,2 and x = vn+1

1 if j = jn+1,3 and x = wn+1

0 otherwise

Notice that when both players have access to the layout L, condition 4 of Definition 8.2 ensures
that Player I can compute the assignment to all variables in VI by only consulting his private
set-disjointness variables, and conditions 5 and 6 similarly guarantee that Player can compute the
assignment to all variables in VII by only consulting his private set-disjointness variables. This
guarantees Condition 1 in Lemma 10. The conditions 1, 2 and 3 of Definition 8.2 ensure that
AL, ~X,~Y is well-defined and non-degenerate. This guarantees Condition 2 in Lemma 10.

Definition 8.4 Let m and n be given. Let (VI ,VII) be a variable partition for MV arsm. Let ~X,
~Y be a set-disjointness instance, and let L = (~ı,~, ~u,~v, ~w) be a reduction layout from Lm,n. The

planted edge for ~X, ~Y ,L, pe(L), is defined to be {un+1, wn+1}.

Condition 3 of Lemma 10 is the content of the following lemma.
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Lemma 14 Let L = (~ı,~, ~u,~v, ~w) be a reduction layout. If e is a bad edge of AL, ~X,~Y then e = pe(L),

or, e = {ul, vl} with Xl = Yl = 1.

Proof: Let L = (~ı,~, ~u,~v, ~w) be a reduction layout, and letX1, . . . Xn, Y1, . . . Yn be a set intersection
instance. Let e be a bad edge for the assignment AL, ~X,~Y . First of all, because β sets no bad edges,

e ∩ V 6= ∅. Furthermore, for all e with |e ∩ V | = 1 have AL, ~X,~Y (xi
e) = 0 for all i, so e ⊆ V .

Finally, for e ⊆ V , with some AL, ~X,~Y (xi
e) = 1, we have that for some k ∈ [n], e = {uk, vk} or

e = {uk, wk}. Choose k so that e = {uk, vk} or e = {uk, wk}. If k = n+ 1 then we must have that
e = {un+1, wn+1}, and e the bad edge, so consider the case when k ≤ n. Notice that for all i′ 6= ik,
AL, ~X,~Y (xi′

e ) = 0. On the other hand, e is a bad edge, so there is some xi
e that gets set to 1, therefore

AL, ~X,~Y (xik
e ) = 1. We now rule out the case that e = {uk, wk}. Because AL, ~X,~Y (xik

e ) = 1, we have by

construction that Xk = 0. Because e is bad, for some j, j′, AL, ~X,~Y (yj
uk

) = 1 and AL, ~X,~Y (yj′
wk

) = 1.

However, yj
uk

and yj′
wk

cannot both be set to 1. Suppose that e = {uk, vk}. Because AL, ~X,~Y (xil
e ) = 1,

we have by construction that Xl = 1. If (Xl, Yl) = (1, 1), then the lemma holds. Otherwise, Yl = 0.
But in this case, we have that for all j, AL, ~X,~Y (yj

ul
) = 0, contradiction to e being a bad edge.

9 The distribution on reduction layouts

There is a technical point that we defer until after we describe the distribution: Why the experiment
does not get stuck and find itself in a position of attempting to choose an item from an empty set.
For n a sufficiently small constant fraction of m, this is ruled out by some calculations that follow
the description of the experiment.

Definition 9.1 Let (VI ,VII) be a variable partition for MV arsm. Let G, N3(·), and N2(·) be as
in Definition 8.1. The distribution D on L is given by the following experiment:

1. For each k = 1, . . . n+ 1: Choose ik from G \ {i1, . . . ik−1}.

2. Set J = ∅.

3. For each k = 1, . . . n:

(a) Uniformly choose (jk,1, jk,2) from N2(ik) \ pm[2m+1](J)

(b) Set J := J ∪ {jk,1, jk,2}

4. Uniformly choose (jn+1,1, jn+1,2, jn+1,3) from N3(in+1) \ tm[2m+1](J)

5. Set J := J ∪ {jn+1,1, jn+1,2, jn+1,3}

6. Set V ∗ = ∅.

7. For each k = 1, . . . n:

(a) Uniformly choose (uk, vk, wk) from K1,2(Eik

[(

Vjk,1
∩ Vjk,2

)]

) \ tm[3m](V
∗).

(b) Set V ∗ = V ∗ ∪ {uk, vk, wk}.

8. Uniformly choose (un+1, vn+1, wn+1) from K1,2(Ein+1

[(

Vjn+1,1 ∩ Vjn+1,2 ∩ Vjn+1,3

)]

)\tm[3m](V
∗).
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9. Return the layout (~ı,~, ~u,~v, ~w).

Proposition: For all L ∈ L, µ(L) > 0.

The above proposition can be checked by iteratively noting that when we condition on the
experiment producing a prefix of L, the probability that it selects the next coordinate of L is
non-zero.

Lemma 15 Let δ0 ∈ [0, 1] and let m be an integer ≥ 450/δ20 . Let (VI ,VII) be a partition of
MV arsm with δ(VI ,VII) ≥ δ0. Let n given with γ = n+1

m . For all runs of the experiment in
Definition 9.1, and for each k = 1, . . . n:

1. |G \ {i1, . . . ik−1}| > ((δ0/12) − γ)m.

2. |N2(ik) \ pm[2m+1](J) ≥ ((δ0/3) − 2γ)(2m + 1)2

3. |N3(in+1) \ tm[2m+1](J)| ≥ ((δ0/3) − 3γ)(2m + 1)3

4. |K1,2

(

Eik

[

Vjk,1
∩ Vjk,2

])

\ tm[3m](V
∗)| ≥ (δ20/10 − 3γ)(3m)3

5. |K1,2

(

Ein+1

[

Vjn+1,1 ∩ Vjn+1,2 ∩ Vjn+1,3

])

\ tm[3m](V
∗)| ≥ (δ20/10 − 3γ)(3m)3

Proof: Set δ = δ(VI ,VII). For each k = 1, . . . n, as we choose (jk,1, jk,2) (and (jn+1,1, jn+1,2, jn+1,3)),
|J | ≤ 2n < 2(n + 1) = 2γm and as we choose each (uk, vk, wk), |V ∗| ≤ 3n < 3(n + 1) = 3γm.

1. By Lemma 13, |G| ≥ (δ/12)m ≥ (δ0/12)m. On the other hand, |{i1, . . . ik−1}| ≤ n < γm.
Therefore, |G \ {i1, . . . ik−1}| > ((δ0/12) − γ)m.

2. Because |J | ≤ 2n, we have that pm[2m+1](J) ≤ 2n(2m+1)+(2m+1)2n < 2(2γm)(2m+1) =
2(2γm)(2m + 1) = 2γ(2m)(2m + 1) < 2γ(2m + 1)2. Combining this with the fact that
ik ∈ G and therefore |N2(ik)| ≥ |N3(ik)| ≥ (δ/3)(2m + 1)2 ≥ (δ0/3)(2m + 1)2 we have that
|N2(ik) \ pm[2m+1](J)| ≥ ((δ0/3) − 2γ)(2m+ 1)2.

3. Because |J | ≤ 2n we have that tm[2m+1](J) ≤ 3(2n)(2m + 1)2 < 3(2γm)(2m + 1)2 =
3γ(2m)(2m+1)2 < 3γ(2m+1)3. Because ip ∈ G, |N3(ip)| ≥ (δ/3)(2m+1)3 ≥ (δ0/3)(2m+1)3.
Therefore: |N3(ip) \ tm[2m+1](J)| ≥ ((δ0/3) − 3γ)(2m + 1)3.

4. Because |V ∗| ≤ 3n, |tm(V ∗)| ≤ 3(3n)(3m)2 < 3(3γm)(3m)2 = 3γ(3m)3. We now get
a lower bound on the size of K1,2

(

Eik [Vjk,1
∩ Vjk,2

]
)

: First, because (jk,1, jk,2) ∈ N2(ik),

there exists some j′ with |Ei[Vj′ ∩ Vjk,1
∩ Vjk,2

]| ≥ (δ/3)
(3m

2

)

≥ (δ0/3)
(3m

2

)

, so we have that

|Eik

[

Vjk,1
∩ Vjk,2

]

≥ (δ0/3)
(3m

2

)

. Feeding this lower bound on the edge density into Lemma 3,
we have that:

|K1,2(Eik

[

Vjk,1
∩ Vjk,2

]

)| ≥
(

δ20/9 − (5/m)
)

· (3m)3

Combining the upper bound on |tm(V ∗)| and with the preceding lower bound:

|K1,2(Eik

[

Vjk,1
∩ Vjk,2

]

) \ tm(V ∗)| ≤
(

(δ20/9) − (5/m) − 3γ
)

(3m)3

Because m ≥ 450/δ20 , we have that 5/m ≤ δ20/90 and therefore the above quantity is ≥
(δ20/9 − δ20/90 − 3γ)(3m)3 = (δ20/10) − 3γ)(3m)3.

5. This derivation is identical to the previous, except that it uses the lower bound of |Ei[Vjn+1,1 ∩
Vjn+1,2 ∩ Vjn+1,3]| ≥ (δ0/3)

(

3m
2

)

that holds because (jn+1,1, jn+2,2, jn+1,3) ∈ N3(in+1).
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The following two statements are used to prove Lemma 10.

Definition 9.2 A reduction layout L = (~ı,~, ~u,~v, ~w) is said to be l-switchable if (jn+1,2, jl,1, jl,2) ∈
N3(il) and K({un+1, ul}, {vn+1, vl, wn+1, wl}) ⊆ Ein+1[Vjn+1,1 ∩ Vjn+1,2 ∩ Vjn+1,3 ] ∩ Eil [Vjl,1

∩ Vjl,2
].

Let S l denote the set of l-switchable reduction layouts from L.

Lemma 16 (Proof in Section 11) For all δ0 ∈ [0, 1], for all m ≥ 31(2/δ0)
8, all partitions (VI ,VII)

of MV arsm with δ(VI ,VII) ≥ δ0, for all n ≤ δ10
0

212·32·5m, for all l ∈ [n], µ(S l) ≥ δ80/2
9.

Lemma 17 (Proof in Section 11) For every δ0 ∈ [0, 1] for every integer d ≥ 1 for all m ≥ 450/δ20 ,
for all partitions (VI ,VII) of MV arsm with δ(VI ,VII) ≥ δ0, for all n ≤ (δ20/60)m, for all reduction
layouts L,L∗ ∈ L with HD(L,L∗) ≤ k, µ(L∗) ≥ (δ20/20)

2de−3d · µ(L).

9.1 The proof of Lemma 10

To prove Lemma 10 we use the following helper lemma.

Lemma 18 (Proof immediately follows that of Lemma 10.) For all δ0 ∈ [0, 1], all m ≥ 450/δ20 ,
all partitions (VI ,VII) of MV arsm with δ(VI ,VII) ≥ δ0, all n ≤ (δ20/20)m, and all set-disjointness
instances ( ~X,~Y ), there exists an involution f : S l → S l so that for all L ∈ S l, AL, ~X,~Y = Af(L), ~X,~Y ,

pe(f(L)) 6= pe(L), and µ(f(L)) ≥ µ(L)(δ20/20)
12e−18.

Proof:(of Lemma 10 from Lemma 18) Let δ0 ∈ [0, 1] be given. Set c0 =
δ10
0

212·32·5 Let m ≥ 31(2/δ0)
8

and n ≤ c0m be given. Let (VI ,VII) be a partition of MV arsm with δ(VI ,VII) ≥ δ. We take
L = Lm,n(VI ,VII) per Definition 8.2, D = Dm,n(VI ,VII) per Definition 9.1, A : (L, ~X, ~Y ) → AL, ~X,~Y
per Definition 8.3, and pe per Definition 8.4.

Condition 1 and Condition 2 follow immediately from Definition 8.2, and Condition 3 follows
from Lemma 14. What remains to be shown is Condition 4. Let ( ~X, ~Y ) ∈ {0, 1}n × {0, 1}n with
setdisjn( ~X, ~Y ) = 1 be given. Choose l ∈ [n] with Xl = Yl = 1 and set S = S l. By Lemma 16,
µ(S l) ≥ δ8/29. Set c = (δ20/20)

12e−18 (The constant of Lemma 18.) We now show that for all
assignments A to MV arsm:

max
e
µ(pe(L) = e | AL, ~X,~Y = A, L ∈ S l) ≤ 1/(1 + c)

Let A be an assignment to MV arsm and let e ∈
(

[3m]
2

)

be given. Let Be
A = {L ∈ S l | AL, ~X,~Y =

A, pe(L) = e}, let S l
A = {L ∈ S l | A

L, ~X,~Y
= A}. Take take as f guaranteed by Lemma 18.

Because f maps S l to S l, we have that f(Be
A) ⊆ S l, because Af(L), ~X,~Y = AL, ~X,~Y = A, we have

that f(Be
A) ⊆ S l

A, and because pe(f(L)) 6= pe(L) = e, we have that f(Be
A) ⊆ S l

A \ Be
A. Because

f is an involution of S l, it is injective, and because µ(f(L)) ≥ cµ(L) for all L, we have that
µ(S l

A \ Be
A) ≥ µ(f(Be

A)) ≥ c1µ(Be
A) and therefore µ(S l

A) = µ(S l
A \ Be

A) + µ(Be
A) ≥ (1 + c)µ(Be

A).

Therefore: µ({pe(L) = e} | {AL, ~X,~Y = A, L ∈ S l}) = µ(Be
A | S l

A) =
µ(Be

A)

µ(Sl
A)

≤ 1
1+c . Noting that

1/(1 + c) = 1 − c/(1 + c), we set c1 = c/(1 + c) and we are done with this Lemma 10.

Proof:(of Lemma 18) Let L = (~ı,~, ~u,~v, ~w). We define f(L) = (~ı,~∗, ~u∗, ~v∗, ~w∗) below. The basic
the idea is to modify the reduction layout L by swapping some vertices between the gadgets at
positions n + 1 and l so that the planted edge changes but the assignment remains the same.
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Figure 3: With layouts L and L∗, when Xl = Xl = 1, set of vertices and edges specified by the
assignments AL, ~X,~Y and AL∗, ~X,~Y are equal. Notice however, that the planted edge under L is {a, r}
whereas the planted edge under L∗ is {b, s}.

This is graphically illustrated in Figure 3. Because of the partitioning of the variables, it is not
immediately clear that L∗ will be a reduction layout. Among other things, we need to ensure that
{u∗l , w∗

l } ∈ Ei∗
l

and {j∗n+1,1, j
∗
n+1,2, j

∗
n+1,3} ∈ N3(i

∗
n+1), which makes use of the hypothesis that L is

l-switchable. We give the full definition of L∗ below, along with the case analysis ensuring that the
conclusions of the lemma hold.

i∗k =







in+1 if k = l
il if k = n+ 1
ik otherwise

u∗i =







ul if i = n+ 1
un+1 if i = l
ui otherwise

j∗k,1 =







jn+1,3 if k = l
jl,2 if k = n+ 1
jk,1 otherwise

v∗k =

{

wn+1 if k = l
vk otherwise

j∗k,2 =

{

jn+1,1 if k = l
jk,2 otherwise

w∗
k =

{

vl if k = n+ 1
wk otherwise

j∗n+1,3 = jl,1

We now check each of the properties required by Lemma 18. This is just case analysis and
rewriting. However, in order to show that f(L) ∈ S l we make use of the hypothesis that L is
l-switchable.

The mapping f is an involution. This is verified by iterating the definition of f . Let L =
(~ı,~, ~u,~v, ~w) be a reduction layout, and let (~ı∗,~∗, ~u∗, ~v∗, ~w∗) = f(L), and let (~ı∗∗,~∗∗, ~u∗∗, ~v∗∗, ~w∗∗) =
f(f(L)). Applying the definitions shows that:

i∗∗k =







i∗n+1 = il if k = l
i∗l = in+1 if k = n+ 1
i∗k = ik otherwise

u∗∗k =







u∗l = un+1 if k = n+ 1
u∗n+1 = ul if k = l
u∗k = uk otherwise

j∗∗k,1 =







j∗n+1,3 = jl,1 if k = l

j∗l,2 = jn+1 if k = n+ 1

j∗k,1 = jk,1 otherwise

v∗∗k =

{

w∗
n+1 = vl if k = l
v∗k = vk otherwise

j∗∗k,2 =

{

j∗n+1,1 = jl,2 if k = l

j∗k,2 = jk,2 otherwise
w∗∗

k =

{

v∗l = wn+1 if i = n+ 1
w∗

k = wk otherwise

j∗∗n+1,3 = j∗l,1 = jn+1,3
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AL, ~X,~Y = Af(L), ~X,~Y . This is follows from expanding the definitions and doing a little bookkeeping,
but it is kind of lengthy, so we defer it until the very end of this proof.

pe(L) 6= pe(f(L)). Because L = (~ı,~, ~u,~v, ~w) is a reduction layout, {un+1, wn+1} ∩ {ul, vl} = ∅.
Applying Definition 8.4, we see that pe(L) = {un+1, wn+1} 6= {ul, vl} = {u∗n+1, w

∗
n+1} =

pe(f(L)).

µ(f(L)) ≥ µ(L) · (δ20/20e3)12. In order to show this, we need that µ(L) > 0 (which holds because
L ∈ L) and µ(f(L)) > 0 (which depends on the fact that f(L) ∈ L, which we show below).
For now we take the non-zero mass of f(L) as a given. The differences between L and f(L)
occur only at: in+1 6= i∗n+1, il 6= i∗l , (jn+1,1, jn+1,2, jn+1,3) 6= (j∗n+1,1, j

∗
n+1,2, j

∗
n+1,3), (jl,1, jl,2) 6=

(j∗l,1, j
∗
l,2), (ul, vl, wl) 6= (u∗l , v

∗
l , w

∗
l ), and (un+1, vn+1, wn+1) 6= (u∗n+1, v

∗
n+1, w

∗
n+1). Therefore

HD(L, f(L)) ≤ 6. We apply Lemma 17 to deduce that µ(f(L)) ≥ µ(L) · (δ20/20)12e−18.

For each L ∈ S l, f(L) ∈ S l. First we check that f(L) = (~ı,~, ~u,~v, ~w) is indeed a reduction layout.
We check each property from Definition 8.2:

1. The indices i∗1, . . . i
∗
n+1 are distinct: This holds because ~ı∗ is a permutation of ~ı.

2. The indices j∗1,1, j
∗
1,2, . . . j

∗
n,1, j

∗
n,2, j

∗
n+1,1, j

∗
n+1,2, j

∗
n+1,3 are distinct: This holds because ~∗

is a permutation of ~.

3. The integers u∗1, . . . u
∗
n+1, v

∗
1 , . . . v

∗
n+1, w

∗
1, . . . w

∗
n+1 are distinct: This is true because u∗1, . . . u

∗
n+1,

v∗1 , . . . v
∗
n+1, w

∗
1, . . . w

∗
n+1 is a permutation of u1, . . . un+1, v1, . . . vn+1, w1, . . . wn+1.

4. For each k = 1, . . . n+ 1, {u∗k, v∗k} ∈ Ei∗k
and {u∗k, w∗

k} ∈ Ei∗k
: Because

K({ul, un+1}, {vl, vn+1, wl, wn+1}) ⊆ Ein+1[Vjn+1,1 ∩ Vjn+1,2 ∩ Vjn+1,3] ∩ Eil [Vjl,1
∩ Vjl,2

]

we have that {u∗l , v∗l } = {un+1, wn+1} ∈ Ein+1 = Ei∗l
, {u∗l , w∗

l } = {un+1, wl} ∈ Ein+1 =
Ei∗l

, {u∗n+1, v
∗
n+1} = {ul, vn+1} ∈ Eil = Ei∗n+1

, and {u∗n+1, w
∗
l } = {ul, wl} ∈ Eil = Ei∗n+1

.
For k ∈ [n]\{l}, we have that {u∗k, v∗k} = {uk, vk} ∈ Eik = Ei∗k

and {u∗k, w∗
k} = {uk, wk} =

Eik ∈ Ei∗k
.

5. For each k = 1, . . . n+ 1, {u∗k, v∗k, w∗
k} ⊆ Vj∗k,1

∩ Vj∗k,2
: Because

K({ul, un+1}, {vl, vn+1, wl, wn+1}) ⊆ Ein+1[Vjn+1,1 ∩ Vjn+1,2 ∩ Vjn+1,3] ∩ Eil [Vjl,1
∩ Vjl,2

]

we have that {u∗l , v∗l , w∗
l } = {un+1, wn+1, wl} ⊆ Vjn+1,3 ∩ Vjn+1,1 = Vj∗l,1

∩ Vj∗l,2
. For the

same reason, {u∗n+1, v
∗
n+1, w

∗
n+1} = {ul, vn+1, vl} ⊆ Vjl,2

∩ Vjn+1,2 = Vj∗n+1,1
∩ Vj∗n+1,2

. For

k ∈ [n] \ {l}, we have that {u∗k, v∗k, w∗
k} = {uk, vk, wk} ⊆ Vjk,1

∩ Vjk,2
= Vj∗

k,1
∩ Vj∗

k,2
.

6. We have that {u∗n+1, v
∗
n+1, w

∗
n+1} = {ul, vn+1, vl} ⊆ Vjl,1

= Vj∗n+1,3
, because

K({ul, un+1}, {vl, vn+1, wl, wn+1}) ⊆ Ein+1[Vjn+1,1 ∩ Vjn+1,2 ∩ Vjn+1,3] ∩ Eil [Vjl,1
∩ Vjl,2

]

7. For each k ∈ [n + 1], i∗k ∈ G: This holds because ~ı∗ is a permutation of ~ı and for each
k ∈ [n+ 1], ik ∈ G.

8. (j∗n+1,1, j
∗
n+1,2, j

∗
n+1,3) ∈ N3(i

∗
n+1): Because L is l-switchable, (jn+1,1, jl,1, jl,2) ∈ N3(il),

therefore, (j∗n+1,1, j
∗
n+1,2, j

∗
n+1,3) = (jl,2, jn+1,2, jl,1) ∈ N3(il) = N3(i

∗
n+1).

9. For each k = 1, . . . n: (j∗k,1, j
∗
k,2) ∈ N2(i

∗
k). For k ∈ [n] \ {l}, we have that (j∗k,1, j

∗
k,2) =

(jk,1, jk,2) ∈ N2(ik) = N2(i
∗
k). When k = l, because L is a reduction layout, we have

that (jn+1,1, jn+1,2, jn+1,3) ∈ N3(in+1), and therefore (jn+1,3, jn+1,1) ∈ N2(in+1). Thus:
(j∗l,1, j

∗
l,2) = (jn+1,3, jn+1,1) ∈ N2(in+1) = N2(i

∗
l ).
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This establishes that f(L) ∈ L. That f(L) ∈ S l follows immediately from the hypothesis that
L ∈ S l and the definitions: (j∗n+1,2, j

∗
l,1, j

∗
l,2) = (jn+1,2, jn+1,3, jn+1,1) ∈ N3(in+1) = N3(i

∗
l ) and

K({u∗l , u∗n+1}, {v∗l , v∗n+1, w
∗
l , w

∗
n+1}) = K({ul, un+1}, {vl, vn+1, wl, wn+1})

⊆ Ein+1 [Vjn+1,1 ∩ Vjn+1,2 ∩ Vjn+1,3] ∩Eil [Vjl,1
∩ Vjl,2

]

= Eil [Vjl,2
∩ Vjn+1,2 ∩ Vjl,1

] ∩Ein+1 [Vjn+1,3 ∩ Vjn+1,1 ]

= Ei∗n+1
[Vj∗n+1,1

∩ Vj∗n+1,2
∩ Vj∗n+1,3

] ∩Ei∗l
[Vj∗l,1

∩ Vj∗l,2
]

The proof that Af(L), ~X,~Y = AL, ~X,~Y : We expand the definitions of AL, ~X,~Y and Af(L), ~X,~Y , per

definition 8.3 Notice that {i1, . . . in+1} = {i∗1, . . . i∗n+1}, {j1,1, j1,2, . . . jn,1, jn,2, jn+1,1, jn+1,2, jn+1,3, } =
{j∗1,1, j

∗
1,2, . . . j

∗
n,1, j

∗
n,2, j

∗
n+1,1, j

∗
n+1,2, j

∗
n+1,3, }, and {u1, . . . un+1, v1, . . . vn+1, w1, . . . wn+1} = {u∗1, . . . u∗n+1,

v∗1 , . . . v
∗
n+1, w

∗
1, . . . w

∗
n+1}. Let I, J , and V respectively denote these three sets. Because β(L)

and β(L∗) are both the lexicographically first assignment to the variables

{xi
e | i ∈ [m] − I, e ∈

(

[3m− V ]

2

)

} ∪ {yj
u | j ∈ [2m+ 1] − J, u ∈ [3m] − V }

so that β defines a matching of size m− n− 1 and an independent set of size 2(m− n− 1),
we have that β(L) = β(L∗). Write β for this assignment. We compare AL, ~X,~Y and Af(L), ~X,~Y
directly:

AL, ~X,~Y (xi
e) =







































β(xi
e) if i ∈ [m] − I and e ∈

([3m]−V
2

)

Xk if i = ik and e = {uk, vk} for some k ∈ [n] \ {l}
¬Xk if i = ik and e = {uk, wk} for some k ∈ [n] \ {l}

1(= Xl) if i = il and e = {ul, vl}
0(= ¬Xl) if i = il and e = {ul, wl}

1 if i = in+1 and e = {un+1, wn+1}
0 otherwise

Af(L), ~X,~Y (xi
e) =







































β(xi
e) if i ∈ [m] − I and e ∈

(

[3m]−V
2

)

Xk if i = ik and e = {uk, vk} for some k ∈ [n] \ {l}
¬Xk if i = ik and e = {uk, wk} for some k ∈ [n] \ {l}

1 if i = il(= i∗n+1) and e = {ul, vl}(= {u∗n+1, w
∗
n+1})

0 if i = il(= i∗n+1) and e = {ul, wl}(= {u∗n+1, w
∗
l })

1(= Xl) if i = in+1(= i∗l ) and e = {un+1, wn+1}(= {u∗l , v∗l })
0 otherwise

AL, ~X,~Y (yj
x) =



































































β(yj
x) if j ∈ [2m+ 1] − J and u ∈ [3m] − V

1 if j = jk,1 and x = vk for some k ∈ [n]
Yk if j = jk,2 and x = uk for some k ∈ [n] \ {l}
¬Yk if j = jk,2 and x = wk for some k ∈ [n] \ {l}

1(= Yl) if j = jl,2 and x = ul

0(= ¬Yl) if j = jl,2 and x = wl

1 if j = jn+1,1 and x = un+1

1 if j = jn+1,2 and x = vn+1

1 if j = jn+1,3 and x = wn+1

0 otherwise
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Af(L), ~X,~Y (yj
x) =



































































β(yj
x) if j ∈ [2m+ 1] − J and u ∈ [3m] − V

1 if j = jk,1 and x = vk for some k ∈ [n]
Yk if j = jk,2 and x = uk for some k ∈ [n] \ {l}
¬Yk if j = jk,2 and x = wk for some k ∈ [n] \ {l}
1 if j = jl,2(= j∗n+1,1) and x = ul(= u∗n+1)

0 if j = jl,2(= j∗n+1,1 and x = wl(= w∗
l )

1(= Xl) if j = jn+1,1(= j∗l,2) and x = un+1 = u∗l
1 if j = jn+1,2(= j∗n+1,2) and x = vn+1 = v∗n+1

1 if j = jn+1,3(= j∗l,1) and x = wn+1 = v∗l
0 otherwise

10 Distributions from DDWB processes

To prove Lemmas 16 and 17, we make some detailed calculations about the distribution D. It seems
that by moving to slightly more general framework, some of the calculations and case analyses are
simplified. In Lemma 22 in Section 11 we show that the distribution D falls into this framework and
use the machinery of DDWB processes developed in this section to finish the proofs of Lemma 16
and Lemma 17.

Definition 10.1 Let t be an integer, X1, . . . Xt be sets, and let Si :
∏i−1

k=1Xk → P(Xi), and
Fi :

∏i−1
k=1Xk → P(Xi) be families of maps with i ∈ [t]. We define the dependent domains with

blocking process for S1, . . . St and F1, . . . Ft, D(S1, . . . St, F1, . . . Ft), recursively as follows:

1. If S1 \F1 6= ∅, then D(S1, F1) is the distribution that uniformly selects an object from S1 \F1

2. If for every (u1, . . . ui) in the support of D(S1, . . . Si, F1, . . . Fi), we have that Si+1(u1, . . . ui)\
Fi+1(u1, . . . ui) 6= ∅, then D(S1, . . . Si+1, F1, . . . Fi+1) is the distribution that chooses (u1, . . . ui)
according to D(S1, . . . Si, F1, . . . Fi), and then uniformly selects ui+1 from Si+1(u1, . . . ui) \
Fi+1(u1, . . . ui).

The blockage bound of a DDWB process ~S, ~F is the smallest β ≥ 0 so that for all i = 1, . . . t and
all ~u in the support of D(S1, . . . Si−1, F1, . . . Fi−1), |Fi(~u)| ≤ β|Si(~u)|. The covering bound for ~S, ~F
is the largest κ ∈ [0, 1] so that for all i = 1, . . . t and all ~u the support of D(S1, . . . Si−1, F1, . . . Fi−1),
|Si(~u) \ Fi(~u)| ≥ κ|Xi|.

The following easy fact is the crux of some induction arguments.

Proposition: Let π be the distribution on
∏t

i=1Xi given by the DDWB process ~S, ~F . For each
a ∈ S1\F1 (eg. every a in the support of D(S1, F1)), the distribution πa is generated by the DDWB
process on

∏t
i=2Xi given by Sa

2 , . . . S
a
t , F a

2 , . . . F
a
t . If the process ~S, ~F has a blockage bound ≤ β,

then the process ~Sa, ~F a has a blockage bound ≤ β.

The following lemma is used to pass density results for the uniform distribution, such as
Lemma 3, to certain DDWB distributions.

23



Lemma 19 Let
∏t

i=1Xi be a Cartesian product, and let f :
∏t

i=1X
i → [0, 1] be a function that

depends upon at most k coordinates, i1, . . . ik. Let U be the uniform distribution on
∏t

i=1Xi, and

let π be a DDWB distribution on
∏t

i=1Xi given by some ~S and ~F . If the following two conditions
are satisfied:

1. For all ~a ∈ ∏t
i=1Xi, if f(~a) > 0 then for all j = 1, . . . k, aij ∈ Sij(a1, . . . aij−1).

2. The DDWB process ~S, ~F has blockage bound ≤ β.

Then Eπ[f ] ≥ EU [f ] − kβ.

Proof: We prove the claim by induction on k. The lemma clearly holds for k = 0, as in that case
f is constant over

∏t
i=1Xi, and therefore Eπ[f ] = EU [f ]. We now assume that the lemma holds

for functions that depend on only k coordinates, and demonstrate that it holds for functions that
depend on only k + 1 coordinates.

Let t,
∏t

i=1Xi, π, ~S, ~F , and be given as in the statement of the lemma- with f dependent only
upon k + 1 coordinates, i1, . . . ik+1. Let i = i1 be the first coordinate upon which the function f
depends. Set I = [i− 1] and J = [t] \ [i]. Let XI =

∏

k∈I Xk and XJ =
∏

k∈J Xk.
We reduce to the induction hypothesis by showing that for each ~u ∈ XI , a ∈ Xi, so that

(u1, . . . ui−1, a) is in the support ofD(S1, . . . Si, F1, . . . Fi), the conditions of the induction hypothesis
are met for the function f~ua, with process D(S~ua

i+1, . . . S
~ua
t , F ~ua

i+1, . . . F
~ua
t ), and distribution π~ua.

Observe that the distribution π~ua is given by the DDWB process S~ua
i+1, . . . S

~ua
t and F ~ua

i+1, . . . F
~ua
t , a

process with blockage bound ≤ β because ~S, ~F has blockage bound ≤ β. Moreover, the function
f~ua :

∏t
j=i+1Xi → [0, 1] depends on at most k coordinates. By specializing the hypothesis “for

all ~a, if f(~a) > 0 then for all j = 1, . . . k, aij ∈ Sij (a1, . . . aij−1)” to inputs with prefix ~ua and

weakening its conclusion to cover only j = 2, . . . k, we have that “for all ~b ∈ XJ so that f(~ua~b) > 0,
for all j = 2, . . . k, bij ∈ Sij (~u, a, bi+1, . . . bij−1)”. This is equivalent to “for all ~b ∈ XJ so that

f~ua(~b) > 0, for all j = 2, . . . k, bij ∈ S~ua
ij

(bi+1, . . . bij−1)”. Therefore by the induction hypothesis we
have that:

Eπ~ua [f~ua] ≥ EU~ua [f~ua] − kβ (3)

Furthermore, from the hypothesis “for all ~u ∈ ∏t
i=1Xi, if f(~u) > 0 then ∀j ∈ [k + 1], uij ∈

Sij(u1, . . . uij−1)” we conclude that for all ~v ∈ ∏i
j=1Xj with EU~v [f~v] > 0, vi ∈ Si(v1, . . . vi−1).

Therefore, for all ~u = (u1, . . . ui−1) ∈ XI

EU~u[f~u] =
∑

a∈Xi

1

|Xi|
EU~ua [f~ua] =

∑

a∈Si(~u)

1

|Xi|
EU~ua [f~ua] ≤

∑

a∈Si(~u)

1

|Si(~u)|
EU~ua [f~ua] (4)

We now bound the expectation of f with respect to π from below.

Eπ[f ] =
∑

~u∈XI

πI(~u)
∑

a∈Xi

∑

~b∈XJ

π~u(a~b)f(~ua~b)

=
∑

~u∈Supp(πI)

πI(~u)
∑

a∈Xi

∑

~b∈XJ

χSi(~u)\Fi(~u)(a)

|Si(~u) \ Fi(~u)|
π~ua(~b)f(~ua~b)

=
∑

~u∈Supp(πI)

πI(~u)
∑

a∈Si(~u)

∑

~b∈XJ

1 − χFi(~u)(a)

|Si(~u) \ Fi(~u)|π
~ua(~b)f(~ua~b)
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=
∑

~u∈Supp(πI)

πI(~u)
∑

a∈Si(~u)

1 − χFi(~u)(a)

|Si(~u) \ Fi(~u)|
∑

~b∈XJ

π~ua(~b)f(~ua~b)

=
∑

~u∈Supp(πI)

πI(~u)
∑

a∈Si(~u)

1 − χFi(~u)(a)

|Si(~u) \ Fi(~u)|
Eπ~ua [f~ua]

≥
∑

~u∈Supp(πI)

πI(~u)
∑

a∈Si(~u)

1 − χFi(~u)(a)

|Si(~u) \ Fi(~u)|
(

EU~ua [f~ua] − kβ
)

by Equation 3

= −kβ +
∑

~u∈Supp(πI)

πI(~u)
∑

a∈Si(~u)

1 − χFi(~u)(a)

|Si(~u) \ Fi(~u)|EU~ua [f~ua]

≥ −kβ +
∑

~u∈supp(πI)

πI(~u)
∑

a∈Si(~u)

1 − χFi(~u)(a)

|Si(~u)|
EU~ua [f~ua]

≥ −kβ +
∑

~u∈supp(πI)

πI(~u)





∑

a∈Si(~u)

1

|Si(~u)|EU~ua[f~ua] −
∑

a∈Si(~u)

χFi(~u)(a)

|Si(~u)|





≥ −kβ +
∑

~u∈supp(πI)

πI(~u)





∑

a∈Si(~u)

1

|Si(~u)|EU~ua[f~ua] − |Fi(~u)|
|Si(~u)|





≥ −kβ +
∑

~u∈supp(πI)

πI(~u)





∑

a∈Si(~u)

1

|Si(~u)|EU~ua[f~ua] − β





= −(k + 1)β +
∑

~u∈supp(πI)

πI(~u)
∑

a∈Si(~u)

1

|Si(~u)|EU~ua [f~ua]

≥ −(k + 1)β +
∑

~u∈supp(πI)

πI(~u)EU~u [f~u] by Equation 4

= −(k + 1)β +
∑

~u∈supp(πI)

πI(~u)EU [f ] = −(k + 1)β + EU [f ]

The penultimate equality holds because the function f is independent of the coordinates of I, and
therefore, for all ~u ∈ XI , EU~u [f~u] = EU [f ].

Lemma 20 Let π be a distribution on the Cartesian product
∏t

i=1Xi given by a DDWB process
~S, ~F with covering bound κ. Let c and d be arbitrary. Let ~u,~v ∈ ∏t

i=1Xi be arbitrary. Let I0 ⊆ [t]
so that |I0| = d. If for all i = 1, . . . t,

1. π(~u) > 0 and π(~v) > 0

2. For all i ∈ [t] \ I0, Si(u1, . . . ui−1) = Si(v1, . . . vi−1)

3. For all i ∈ [t] \ I0, |Fi(u1, . . . ui−1) ⊕ Fi(v1, . . . vi−1)| ≤ (c/t)|Xi|

then π(~v) < κ−dec/κπ(~u).
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Proof: Explicit calculation reveals that:

π(~u)

π(~v)
=

∏t
i=1

(

1
|Si(u1,...ui−1)\Fi(u1,...ui−1)|

)

∏t
i=1

(

1
|Si(v1,...vi−1)\Fi(v1,...vi−1)|

) =

t
∏

i=1

|Si(v1, . . . vi−1) \ Fi(v1, . . . vi−1)|
|Si(u1, . . . , ui−1) \ Fi(u1, . . . ui−1)|

=
∏

i∈I0

|Si(v1, . . . vi−1) \ Fi(v1, . . . vi−1)|
|Si(u1, . . . , ui−1) \ Fi(u1, . . . ui−1)|

∏

i∈[t]\I0

|Si(v1, . . . vi−1) \ Fi(v1, . . . vi−1)|
|Si(u1, . . . , ui−1) \ Fi(u1, . . . ui−1)|

≤
∏

i∈I0

|Xi|
κ|Xi|

∏

i∈[t]\I0

|Si(v1, . . . vi−1) \ Fi(v1, . . . vi−1)|
|Si(u1, . . . , ui−1) \ Fi(u1, . . . ui−1)|

= κ−d
∏

i∈[t]\I0

|Si(v1, . . . vi−1) \ Fi(v1, . . . vi−1)|
|Si(u1, . . . , ui−1) \ Fi(u1, . . . ui−1)|

= κ−d
∏

i∈[t]\I0

|Si(u1, . . . ui−1) \ Fi(v1, . . . vi−1)|
|Si(u1, . . . , ui−1) \ Fi(u1, . . . ui−1)|

≤ κ−d
∏

i∈[t]\I0

|Si(u1, . . . ui−1) \ Fi(u1, . . . ui−1)| + |Fi(v1, . . . vi−1) ⊕ Fi(u1, . . . ui−1)|
|Si(u1, . . . , ui−1) \ Fi(u1, . . . ui−1)|

≤ κ−d
∏

i∈[t]\I0

(

1 +
(c/t)|Xi|
κ|Xi|

)

≤ κ−de(t−d) c
tκ ≤ κ−de

c
κ

Definition 10.2 We say that a function F :
∏l

i=1Xi → P(S) is ε-Lipschitz if whenever HD(~u,~v) ≤
d, we have that |F (~u) ⊕ F (~v)| ≤ εd|S|.

Corollary 21 Let π be a distribution on the Cartesian product
∏t

i=1Xi given by a DDWB process
~S, ~F with covering bound κ so that each coordinate i0 ∈ [t] affects at most a functions Si and each
Fi is c/t-Lipschitz. Let ~u,~v ∈ ∏t

i=1Xi be given so that π(~u) > 0 and π(~v) > 0. Then:

π(~v) < κ−aHD(~u,~v)ecHD(~u,~v)/κπ(~u)

Proof: Let ∆ = {i ∈ [t] | ui 6= vi} and let I0 = {i ∈ [t] | Si depends upon some i ∈ ∆}. We
apply Lemma 20: Condition 1 holds by hypothesis. By hypothesis, |I0| ≤ aHD(~u,~v). Condition 2
holds because for all i ∈ [t] \ I0, Si depends only upon indices where ~u and ~v agree. Condition 3
holds because the Fi’s are c/t-Lipschitz: |Fi(u1, . . . ui−1) ⊕ Fj(v1, . . . vi−1)| ≤ (c/t)HD(~u,~v)|Xi| =
(cHD(~u,~v)/t)|Xi|.

The blocking functions that we encounter in our distributions are easily seen to be Lipschitz:

Proposition:

1. The function (u1, . . . ui−1) 7→ {u1, . . . ui−1} from [n]i−1 to P([n]) is 1/n-Lipschitz.

2. The function ((u1, v1), . . . (ui−1, vi−1)) 7→ pm[n]({u1, . . . ui−1, v1, . . . vi−1}) from [n2]i−1 to P([n]2)
is 4/n-Lipschitz.

3. The function ((u1, v1), . . . (ui−1, vi−1)) 7→ tm[n]({u1, v1 . . . ui−1, vi−1}) from
(

[n]2
)i−1

to P([n]3)
is 6/n-Lipschitz.

4. The function ((u1, v1, w1), . . . (ui−1, vi−1, wi−1)) 7→ tm[n]({u1, v1, w1, . . . ui−1, vi−1, wi−1}) from
(

[n]3
)i−1

to P([n]3) is 9/n-Lipschitz.
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11 The distribution D is a DDWB distribution

We give a DDWB process ~S, ~F and show that it produces the distribution D used to generate
reduction layouts used in the reduction from set-disjointness to the FindBadEdge search lemma.
This enables us to use the machinery of DDWB distributions to prove Lemma 16 and Lemma 17.

Definition 11.1 Let (VI ,VII) be a partition of MV arsm. Let G, N3(·), N2(·) be as in Defini-
tion 8.1. We define a DDWB process ~S, ~F over the Cartesian product [m]n+1 ×

(

[2m+ 1]2
)n ×

(

[2m+ 1]3
)

×
(

[3m]3
)n+1

as follows:

1. When choosing ik given i1, . . . ik−1: Xk = [m], Sk = G and Fk(i1, . . . ik−1) = {i1, . . . ik−1}.

2. When choosing (jk,1, jk,2) given~ı, (j1,1, j1,2), . . . (jk−1,1, jk−1,2) (with k ≤ n), we have Xn+1+k =
[2m+ 1]2, Sn+1+k(~ı, (j1,1, j1,2), . . . (jk−1,1, jk−1,2)) = N2(ik), and:

Fn+1+k(~ı, (j1,1, j1,2), . . . (jk−1,1, jk−1,2)) = pm[2m+1] ({j1,1, j1,2, . . . jk−1,1, jk−1,2})

3. When choosing (jn+1,1, jn+1,2, jn+1,3) given~ı, (j1,1, j1,2), . . . (jn,1, jn,2), we have X2n+2 = [2m+
1]3, S2n+2 (~ı, (j1,1, j1,2), . . . (jn,1, jn,2)) = N3(in+1), and:

F2n+2(~ı, (j1,1, j1,2), . . . (jn,1, jn,2)) = tm[2m+1]{j1,1, j1,2, . . . jn,1, jn,2}

4. For k ≤ n, when choosing (uk, vk, wk) given ~ı,~, (u1, v1, w1), . . . (uk−1, vk−1, wk−1), X2n+2+k =
[3m]3, S2n+2+k(~ı,~, (u1, v1, w1), . . . (uk−1, vk−1, wk−1)) = K1,2

(

Eik [Vjk,1
∩ Vjk,2

]
)

, and

F2n+2+k(~ı,~, (u1, v1, w1), . . . (uk−1, vk−1, wk−1)) = tm[3m]({u1, v1, w1, . . . uk−1, vk−1, wk−1})

5. When choosing (un+1, vn+1, wn+1) given ~ı,~, (u1, v1, w1), . . . (un, vn, wn), X3n+3 = [3m]3,
S3n+3(~ı,~, (u1, v1, w1), . . . (uk−1, vk−1, wk−1)) = K1,2

(

Ein+1[Vjn+1,1 ∩ Vjn+1,2 ∩ Vjn+1,3]
)

, and

F3n+3(~ı,~, (u1, v1, w1), . . . (un, vn, wn)) = tm[3m]({u1, v1, w1, . . . un, vn, wn})

Notice that each coordinate affects at most two of the domain functions Sk.

Lemma 22 Let δ0 ∈ [0, 1] be given, and let m ≥ 450/δ20 be given. Let (VI ,VII) be a partition of
MV arsm so that δ(VI ,VII) ≥ δ0 and let γ = n+1

m . The distribution D(VI ,VII) is generated by the

DDWB process ~S, ~F over the Cartesian product [m]n+1 ×
(

[2m+ 1]2
)n × ([2m+ 1]3)×

(

[3m]3
)n+1

.
Moreover, this process has blockage bound ≤ 30γ/δ20 and it has covering bound ≥ min{δ20/10 −
3γ, δ0/3 − 3γ, δ0/12 − γ}.

Proof: That the DDWB process ~S, ~F generates the distribution D follows immediately by com-
paring the above functions with the experiment of Definition 8.2. The covering bounds follow
immediately from Lemma 15, and the blockage bounds are implicit in those calculations.

Corollary 23 If γ ≤ δ20/60, then the covering bound of the process is ≥ δ20/20, ie. κ ≥ δ20/20.

Now we use Lemma 20 to prove Lemma 17:

Proof:(of Lemma 17) Let L = (~ı,~, ~u,~v, ~w) and L∗ = (~ı∗,~∗, ~u∗, ~v∗, ~w∗) be two reduction layouts
from Lp with HD(L,L∗) ≤ d. Let ~S and ~F be the DDWB process for generating the distribution
Dp as described in Definition 11.1.

We now check that the hypotheses of Corollary 21 are met with the process ~S, ~F over [m]n+1 ×
(

[2m+ 1]2
)n × ([2m+ 1]3) ×

(

[3m]3
)n+1

, with t = 3n+ 3, with π = µ, and with ~u = L∗, ~v = L By
Lemma 22 and Corollary 23, the DDWB process generating µ has κ ≥ δ20/20 and γ = n+1

m ≤ δ20/60.
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1. µ(L) > 0 and µ(L∗) > 0. This is satisfied because L ∈ L, and L∗ ∈ L.

2. Each coordinate affects at most two of the domain functions Si.

3. This simply applies Proposition 10 to the definitions of the blocking functions. The func-
tions F1, . . . Fn+1 are 1/m-Lipschitz. The functions Fn+2, . . . F2n+1 are 4/(2m+ 1)-Lipschitz.
The function F2n+2 is 6/(2m + 1)-Lipschitz. The functions F2n+3, . . . F3n+3 are 9/(2m + 1)-
Lipschitz. Because m = n+1

γ = t
3γ , all of the functions are c/t-Lipschitz for some c = Θ(γ).

Therefore, by Corollary 21:
µ(L) ≤ κ−2deΘ(dγ)/κµ(L∗)

Now we use Lemma 19 to prove Lemma 16.

Proof:(of Lemma 16) Fix m > 31(2/δ0)
2, and let (VI ,VII) be a partition of MV arsm with

δ(VI ,VII) ≥ δ0. Let n be given so that n ≤ δ100 /(2
12 ·32 ·5)m. Let l ∈ [n] be given. Let U be uniform

distribution on [m]n+1 ×
(

[2m+ 1]2
)n × ([2m + 1]3) ×

(

[3m]3
)n+1

. Let µ be the mass function for

the distribution D; view µ as a distribution on [m]n+1 ×
(

[2m+ 1]2
)n × ([2m + 1]3) ×

(

[3m]3
)n+1

whose support is on L. Set β to be the blockage bound for the DDWB process generating D.
Let A ⊆ [m]n+1 ×

(

[2m+ 1]2
)n × ([2m + 1]3) ×

(

[3m]3
)n+1

be the event that: il ∈ G and
in+1 ∈ G, (jl,1, jl,2) ∈ N2(il), (jn+1,2, jl,1, jl,2) ∈ N3(il), (jn+1,1, jn+1,2, jn+1,3) ∈ N3(in+1), and
K ({un+1, ul}, {vn+1, vl, wn+1, wl}) ⊆ Eil

[

Vjl,1
∩ Vjl,2

]

∩Ein+1

[

Vjn+1,1 ∩ Vjn+1,2 ∩ Vjn+1,3

]

. Checking

against Definition 9.2 reveals that S l = L ∩ A, and because µ(L) = 1, µ(S l) = µ(L ∩ A) = µ(A).
Because the event A depends only upon the six coordinates il, in+1, (jl,1, jl,2), (jn+1,1, jn+1,2, jn+1,3),

(ul, vl, wl), and (un+1, vn+1, wn+1), and the event A implies that (ul, vl, wl) ∈ K1,2

(

Eil [Vjl,1
∩ Vjl,2

]
)

and (un+1, vn+1, wn+1) ∈ K1,2

(

Ein+1[Vjn+1,1 ∩ Vjn+1,2 ∩ Vjn+1,3]
)

, we may apply Lemma 19 to con-
clude:

µ(A) ≥ U(A) − 6β (5)

Let I denote the indices 1, . . . 2n + 2 (so that, using our abused notation, the coordinates
of I correspond to ~ı,~). Let A = AI , a note that is a subset of the event that il, in+1 ∈ G,
(jl,1, jl,2) ∈ N2(il), (jn+1,1, jn+1,2, jn+1,3) ∈ N3(in+1), and (jn+1,2, jl,1, jl,2) ∈ N3(il). For each
~ı and ~ set D(~ı,~) = |Eil

[

Vjl,1
∩ Vjl,2

]

∩ Ein+1

[

Vjn+1,1 ∩ Vjn+1,2 ∩ Vjn+1,3

]

|/
(3m

2

)

. By Lemma 3:

U(A~ı,~) ≥ (D(~ı,~))8 − 23/3m. Therefore:

U(A) ≥ EU [(D8 − 23/3m) · χA] = EU [(D · χA)8] − 23/3m ≥ (EU [D · χA])8 − 23/3m (6)

Set δ = δ(VI ,VII), and let C be the event that |{jl,1, jl,2, jn+1,1, jn+1,2, jn+1,3}| < 5. Notice
that for all (~ı,~) ∈ Cc, if |Eil [Vjl,1

∩ Vjl,2
] ∩ Ein+1 [Vjn+1,1 ∩ Vjn+1,2 ∩ Vjn+1,3 ]|/

(

3m
2

)

= D(~ı,~) > δ/3
then (jl,1, jl,2) ∈ N2(il), (jn+1,1, jn+1,2, jn+1,3) ∈ N3(in+1), (jn+1,2, jl,1, jl,2) ∈ N3(il), so by virtue
of (~ı,~) 6∈ A, {il, in+1} 6⊆ G. Moreover, we have that (jn+1,1, jn+1,2, jn+1,3) ∈ N3(il). Therefore:

{(~ı,~) ∈ Ac | D(~ı,~) ≥ δ/3} ⊆ C∪{(~ı,~) | (jn+1,1, jn+1,2, jn+1,3) ∈ N3(il)∩N3(in+1), {il, in+1} 6⊆ G}

For each ~ı with {il, in+1} 6⊆ G we have that |N3(il) ∩ N3(in+1)| < (δ/12)(2m + 1)3 and there-
fore U ({(~ı,~) ∈ Ac | D(~ı,~) ≥ δ/3} \ C) < δ/12. By the union bound, U(C) ≤ 10/(2m + 1) so
U ({(~ı,~) ∈ Ac | D(~ı,~) ≥ δ/3}) < δ/12 + 10/(2m + 1). By Lemma 4, EU [D · χAc ] < δ/3 + δ/12 +
10/(2m + 1). Therefore:
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EU [D · χA] ≥ EU [D] − 10/(2m + 1) − 5δ/12 = 7δ/12 − 10/(2m + 1)

≥ 7δ/12 − 6/(2(36/δ)) = 7δ/12 − δ/12 ≥ δ/2 ≥ δ0/2 (7)

Combining equations 5, 6, and 7, we have:

µ(A) ≥ U(A) − 6β ≥ (EU [D · χA])8 − 23/3m− 6β ≥ (δ0/2)
8 − 23/3m − 6β

Because m > 31(2/δ0)
8, we have that 23/3m < (1/4)(2/δ0)

8. By Lemma 22, β ≤ 30γ/δ20 ≤
δ100 /(2

8 · 32 · 5)/δ20 = (1/24)(δ0/2)
8. Therefore:

µ(A) > (δ0/2)
8 − (1/4)(δ0/2)

8 − 6(1/24)(δ0/2)
8 = (1/2)(δ0/2)

8
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A Elementary calculations

Proof:(Of Lemma 2 A standard application of the convexity of the function x 7→ xk. For each
x ∈ X, let dx = |{i ∈ [n] | x ∈ Yi}|. Set d̄x = 1

|X|
∑

x∈X dx. We have that d̄x = 1
|X|

∑

x∈X dx =
1

|X|
∑n

i=1 |Yi| = αn, and therefore by Jensen’s Inequality:

1

nk

∑

~ı∈[n]k

|
k

⋂

l=1

Yil | =
1

nk

∑

x∈X

dk
x ≥ 1

nk
|X|

(

d̄x

)k ≥ 1

nk
|X| (αn)k = αk|X|

Proof:(of Lemma A.)

1. Conditioned on the choice of u1, the probability that {u1, u2} ∈ E and {u1, u3} ∈ E is
(

du1
N

)2
. Because 1

N

∑

u du = 1
N 2α

(

N
2

)

= α(N − 1), convexity shows that the probability that

{u1, u2} ∈ E and {u1, u3} ∈ E is at least N−3 · N(α(N − 1))2 = α2(1 − 2/N + 1/N3). We
now subtract out the probability that u1, u2, u3 are not all distinct, which is clearly no more
than 3/N , and we obtain the stated bound.

2. For each u1 and u2, let D(u1, u2) be the number of common neighbors of u1 and u2. Because
the average degree of u ∈ V is α(N−1), Lemma 2 shows that 1

N2

∑

~u∈V 2 D(u1, u2) ≥ α2((N−
1)/N)2(N − 1) ≥ α2(1 − 2/N). Conditioned on the choice of u1, u2, the probability that all
edges are present is clearly (D(u1, u2)/N)4. Apply Jensen’s Inequality and we have that the

probability that all edges are present is at least
(

α2(1 − 2/N)
)4

= α8(1−2/N)4 ≥ α8(1−8/N).
We now subtract out the probability that u1, u2, u3, u4, u5, u6 are not all distinct, which is
clearly no more than

(

6
2

)

/N = 15/N , and we obtain the stated bound.
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