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Abstract. We continue a study initiated by Kraj́ıček of a Resolution-
like proof system working with clauses of linear inequalities, R(CP). For
all proof systems of this kind Kraj́ıček proved in [1] an exponential lower
bound of the form:

exp(nΩ(1))

MO(W log2 n)
,

where M is the maximal absolute value of coefficients in a given proof
and W is the maximal clause width.
In this paper we improve this lower bound for two restricted versions
of R(CP)-like proof systems. For tree-like R(CP)-like proof systems we
remove a dependence on the maximal absolute value of coefficients M ,
hence, we give the answer to an open question from [2]. Proof follows from
an upper bound on the real communication complexity of a polyhedra.
For R(CP) we remove a dependence on the maximal clause width W .
Proof follows from the fact that in R(CP) at each step we modify at most
one inequality in a clause. Hence, we can use information about other
inequalities from previous steps and do not need to check all inequalities
in the clause.
Key words: propositional proof complexity, integer programming, cut-
ting planes

Many well known methods in an area of pseudo-boolean constraints optimization
like a branch-and-bound [3] and Cutting Planes with the deduction rule [4] can be
defined in terms of Resolution proof system that operates with clauses of linear
inequalities, R(CP) [1]. This proof system is a natural extension of Resolution
and can be viewed as a generalization of Resolution over formulas in k-DNF,
Res(k), that was introduced in [5]. In the last few years much attention was paid
to complexity of Res(k) [6–8]. From the other hand, it is not much known about
the complexity of R(CP), while it and similar proof systems are often used in
practice [9–11].

Consider a R(CP)-like proof system as a system that work with clauses of
linear inequalities using finite set of tautologically valid axioms and sound deriva-
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tion rules with at most two hypotheses. The main goal of this paper is to im-
prove lower bounds on restricted but still very important families of R(CP)-like
proof systems. Namely, we proved better lower bounds for tree-like R(CP)-like
proof systems and R(CP)-like proof systems with the following restriction on
the derivation rule: all but at most one inequalities in any of two hypotheses are
contained in the conclusion. The later restriction is very natural, for example,
all rules of R(CP) satisfy it, and it is hard to design a derivation rule with two
hypotheses that does not satisfy it. We denote all proof systems with the last
restriction as passive R(CP)-like proof systems.

The main idea of exponential lower bounds that based on monotone interpo-
lation theorem is a transformation of a proof P of the formula F into a monotone
circuit C of size polynomial in |P |. If the formula F formalizes that the intersec-
tion of two disjoint NP-sets is not empty, then the circuit C separates these two
disjoint NP-sets. For example, the pair of disjoint NP-sets, consisting of a set
of graphs with a k-clique and the set of (k − 1)-colorable graphs, the monotone
circuit that separates one set from another has at least exponential size [12].
Hence, the size of proof P is exponential.

There is a very nice connection between boolean circuits and communication
complexity [13], and sometimes it is more easier to think in terms of communica-
tion complexity then in terms of circuits. This idea was used by Kraj́ıček to prove
many important exponential lower bounds in [14, 1, 2]. He reduced the proof-
into-circuit transformation problem into a problem of proving upper bounds on
communication complexity of specific decision problems.

In this paper we give an answer to one of the open questions from [2]: we prove
new upper bound on real monotone communication complexity of a polyhedra
and, hence, a better lower bound for tree-like R(CP)-like proof systems. The
proof is straightforward. The basic techniques are the same as in [14, 1, 2].

For passive R(CP)-like proof systems we introduce a minor modification in
general semantic derivation protocol that allows us also to obtain better lower
bounds. We explain the new idea in the following.

Let U, V ⊆ {0, 1}n be two disjoint NP-sets. We define a formula E(x, y) ∧
F (x, z) such that U is a set of partial assignments on x that can be extended to
assignments satisfying E, and V is a set of partial assignments on x that can be
extended to assignments satisfying F . Informally speaking, we use G to transform
a refutation π of the formula E(x, y) ∧F (x, z) into the real game of two players
A and B. The player A knowing a satisfying assignment (u, y) of subformula E
and the player B knowing a satisfying assignment (v, z) of subformula F attempt
to construct a path P = P0, . . . , Ph through the refutation π to find such i that
ui 6= vi.

The protocol G is defined by induction on a size of the refutation π. Players
start from the last line of π, empty clause ∅ = P0 and Pj+1 is one of the two
clauses that are hypotheses of an inference rule

X Y

Pj



that derives Pj in π such that both tuples (u, y, z) and (v, y, z) do not satisfy
Pj+1. Players first determine whether (u, y, z) and (v, y, z) satisfy X . Since the
inference rule is sound, there are three possibilities:

1. both (u, y, z) and (v, y, z) satisfy X and therefore none of (u, y, z) and (v, y, z)
satisfy Y ,

2. none of (u, y, z) and (v, y, z) satisfy X ,
3. only one of (u, y, z) and (v, y, z) satisfy X .

In the first case players’ strategy S(u, v, Pj) is to take Y , in the second case they
take X . In the third case players stop constructing the path and find a natural
number i that ui 6= vi. Such i must exists as necessarily u 6= v. As none of the E
or F cannot be both satisfied by (u, y, z) and (v, y, z) the players must eventually
enter the possibility 3 and find such i that ui 6= vi.

Actually, in Kraj́ıček’s proof of [14, Theorem 5.1] we need only to change a
part of the strategy S(u, v, Pj) testing that (u, y, z) and (v, y, z) satisfy X . Since
X is a clause and (|X | − p) of its inequalities are not satisfied by (u, y, z) and
(v, y, z) (they are contained in Pi that is not satisfied by (u, y, z) and (v, y, z))
we need to check only the remaining p inequalities.

This simple idea allows us to improve the lower bound for the case of p-passive
systems.

The paper is organized as follows. In Sect. 1 we give all necessary definitions,
in Sect. 2 we recall the notion of interpolation and prove new lower bound on
tree-like R(CP)-like proof systems. In Sect. 3 we propose the simple protocol
modification to remove the dependence on the maximal clause width in the
lower bound for passive R(CP)-like proof systems.

1 Definitions

In this paper we use the following notation: we typically denote integer vec-
tors with letters a, b, c, their coordinates with ai, bi, ci, vectors of Boolean vari-
ables with u, v, w, x, y, z and integers with A, B, C. We will write a ·x instead of∑

i aixi.

1.1 Resolution over linear inequalities

Now we describe several propositional proof systems for the language of sys-
tems of linear inequalities that have no 0/1-solutions. A proof system R(CP)
was defined in [1] as follows. The lines of the system are disjunctions of linear
inequalities: a · x ≥ A ∨ . . . ∨ b · x ≥ B. The derivation rules are (we denote by
Γ an arbitrary disjunction of linear inequalities)

a · x ≥ A ∨ Γ b · x ≥ B ∨ Γ

(a + b) · x ≥ A + B ∨ Γ
,

a · x ≥ A ∨ Γ

Ca · x ≥ CA ∨ Γ
, where C ≥ 0 ,

Ca · x ≥ A ∨ Γ

a · x ≥ dA/Ce ∨ Γ
,

xi ≥ 0 −xi ≥ −1
for all variables xi ,

a · x ≥ A ∨ (−a) · x ≥ 1 − A
,

Γ

a · x ≥ A ∨ Γ
,

a · x ≥ A ∨ a · x ≥ A ∨ Γ

a · x ≥ A ∨ Γ
.



Note that one can omit 0 ≥ 1 from 0 ≥ 1∨ Γ because the contradiction 0 ≥ 1 is
easily transformable into any other inequality. The goal is to derive 0 ≥ 1.

We also define a family of R(CP)-like proof systems, that operate with dis-
junctions of linear inequalities by finite set of tautologically valid axioms and
sound derivation rules that have at most two hypotheses. We are interested in
its sub-family of p-passive R(CP)-like proof systems, where all derivation rules
are of the form

∆1 ∨ Γ1 ∆2 ∨ Γ2

∆3 ∨ Γ1 ∨ Γ2
,

where ∆i and Γi are arbitrary disjunctions of linear inequalities and |∆i| ≤ p,
for i = 1, 2.

1.2 Real Communication Complexity

The following set of definitions is an extension of boolean communication com-
plexity [13, 15], that allows players to communicate with each other not only by
bits, but with real numbers. It was introduced in [2].

Let I be finite set, U, V ⊂ {0, 1}∗, R ⊆ U × V × I be such that

∀u ∈ U, v ∈ V ∃i ∈ I R(u, v, i) .

We will call relations satisfying this condition multifunctions.

Definition 1. A real game protocol P over domain U × V with range I is a
binary tree where each internal node v is labeled by two function av : U → R and
bv : V → R and each leaf is labeled with an element i ∈ I.

The value of the real game protocol P on input (x, y) is the label of the leaf
reached by starting from the root, and walking on the tree. At each internal node
v labeled by (av, bv) we walk left if av(x) < bv(y) and right if av(x) ≥ bv(y). The
number of rounds of the real game with protocol P on input (x, y) is the length
of the path taken on input (x, y). The number of rounds of the real game with
protocol P is the height of the tree. If for every u ∈ U and v ∈ V the value i of
P satisfies R(u, v, i), we say that P computes R.

Definition 2. The real communication complexity of a multifunction R, CCR(R),
is the minimal number of rounds of the real game with protocol P , over all P
that compute R.

Usually, sets U , V are defined by some partial Boolean function f that maps
W ⊆ {0, 1}n to {0, 1}. We take U := f−1(1), V := f−1(0) and I := {1, . . . , n}.
Relation R(u, v, i) is true if strings u and v differ in position i. We are interested
in monotone partial Boolean functions, that have at least one extension to a
monotone Boolean function [13]. For such a function f define Rmono

f ⊆ U×V ×I
by

Rmono
f (u, v, i) iff u ∈ U ∧ v ∈ V ∧ ui = 1 ∧ vi = 0 .

As it happens with monotone boolean functions and Boolean communication
complexity, there is a relation between the real communication complexity of
Rmono

f and the depth of monotone real circuit computing f .



1.3 Monotone Real Circuits

A monotone real circuit is a circuit of fan-in 2 computing with real numbers
where every gate computes a nondecreasing real function [16]. Since monotone
real circuits are generalization of monotone boolean circuits, we require that they
output 0 or 1 on every input from {0, 1}∗. The depth and size of the monotone
real circuit are defined as for boolean circuits.

Lemma 1 (Lemma 1.4, [2]). Let f be a partial monotone boolean function.
Then CCR(Rmono

f ) is at most the minimal depth of a monotone real circuit C
that computes the function f . Moreover,

CCR(Rmono
f ) ≤ log3/2 SR(f) ,

where SR(f) is the minimal size of a monotone real formula computing f .

There is an important open question about the converse statement. A positive
answer on it would immediately imply an extension of lower bound proved in
this paper from tree-like R(CP) to general R(CP) [2].

1.4 Protocols

The notions of protocol and monotone protocol were defined in [14]. We need
them for transformation of a refutation in some proof system into the real game
in a natural and intuitive way.

Definition 3 (Definition 2.1, [2]). Let U, V ⊆ {0, 1}n be two sets and let
R ⊆ U × V × I be a multifunction. A protocol for R is a labeled directed graph
G satisfying the following conditions:

1. Graph G is acyclic and has one source denoted by ∅. The nodes with zero out-
degree are leaves, all other are inner nodes. All inner nodes have out-degree
2.

2. All leaves are labeled by elements of I.

3. There is a strategy S(u, v, x) such that S assigns to a node x and a pair
u ∈ U and v ∈ V one of the two children S(u, v, x) of y.

4. For every pair u ∈ U , v ∈ V there is a set F (u, v) of nodes of G satisfying:

(a) ∅ ∈ F (u, v).

(b) x ∈ F (u, v) → S(u, v, x) ∈ F (u, v).

(c) If i is the label of a leaf from F (u, v) then R(u, v, i) holds.

We call such set F the consistency condition.

The protocol is tree-like iff the underlying graph is a tree.

A protocol for a particular multifunction R = {(u, v, i)|ui = 1 ∧ vi = 0} is
called a monotone protocol for U , V .



Definition 4 (Definition 2.2, [2]). Let G be a protocol for R. Let S(u, v, x)
be the strategy and F (u, v) be the consistency condition of G.

The real communication complexity of G, denoted CCR(G), is the minimal
t such that for every x ∈ G the players (first knows pair (u, x), the second knows
(v, x)) decide x ∈ F (u, v) and compute S(u, v, x) in at most t round of the real
game.

For tree-like protocol it is possible to prove an exponential lower bounds on the
following set of functions:

Let I, J be sets of size n. Consider a monotone Boolean function BPM that
gives to a bipartite graph Γ ⊆ I×J the value 1 iff Γ contains a perfect matching.
Inputs to BPM are n2 variables xij , i ∈ I, j ∈ J . Their truth evaluations are in
one to one correspondence with bipartite graphs.

Theorem 1 (Theorem 2.5, [2]). Let G be a tree-like protocol for BPM of size
S, such that CCR(G) = t. Then

S = exp(Ω((
n

t log n
)1/2)) .

2 Lower bound for tree-like R(CP)-like proof systems

The following definition was introduced in [14] and is a generalization of usual
derivation in a proof system. A sequence of sets D1, . . . , Dk ⊆ {0, 1}N is a
semantic derivation of Dk from A1, . . . , Am if each Di is either one of Aj , or
contains Di1 ∩ Di2 for some i1, i2 < i. Till the end of this section we use N =
n + s + t. Let us consider the following problem for two players:

Definition 5 (Definition 3.1, [2]). For set A ⊆ {0, 1}N we fix u, v ∈ {0, 1}n,
y ∈ {0, 1}s and z ∈ {0, 1}t. Consider the following three tasks:

1. Decide whether (u, y, z) ∈ A.

2. Decide whether (v, y, z) ∈ A.

3. If (u, y, z) ∈ A and (v, y, z) 6∈ A, then find such i ≤ n that

ui = 1 ∧ vi = 0

or find some u′ satisfying

u′ ≥ u ∧ (u′, y, z) 6∈ A (where u′ ≥ u means
∧

i≤n(u′
i ≥ ui)) .

These tasks can be solved by two players, one knowing (u, y) and another one
knowing (v, z).

A monotone real communication complexity of A, MCCR(A) is the minimal
t such that tasks 1-3 have real communication complexity at most t.



We define subset Q(b) of Z
W as follows

Q(b) = {a ∈ Z
W |∀i ≤ W (ai ≤ bi − 1)} .

We need to prove the following lemma to improve the lower bound for tree-like
R(CP)-like proof systems. It extends Lemma 5.1, [14] to real communication
complexity.

Lemma 2. Let linear mapping

H : {0, 1}N → Z
W

be defined by a matrix with elements from Z.
Let Y ⊆ Z

W be any set defined as

Y = Z
W \ Q(b) ,

for some b ∈ Z
W . We fix X := H−1(Y ).

Then

MCCR(X) = O(W ) + O(log(n)) .

Proof. 1. To decide whether (u, y, z) ∈ X we need to find such i ∈ 1, ..., W that

n∑

j=1

hij · uj +
n+s∑

j=n+1

hij · yj +
n+s+t∑

j=n+s+1

hij · zj ≥ bi . (1)

Player A knows all elements in this sum except z. Let integer zi satisfy the
equality

n∑

j=1

hij · uj +

n+s∑

j=n+1

hij · yj + zi = bi .

The players compare zi and z′i =
∑n+s+t

j=n+s+1 hij · zj for all i ∈ 1, ..., W and if
for some i the inequality zi ≤ z′i holds, then (1) is also holds and therefore
(u, y, z) ∈ X . Otherwise, (u, y, z) 6∈ X .
To decide whether (u, y, z) ∈ X players need W rounds.

2. Similarly, in W rounds we can decide whether (v, y, z) ∈ X .
3. Assume that (u, y, z) ∈ X and (v, y, z) 6∈ X . It means that for some i ∈

1, ..., W is

n∑

j=1

hij · uj +

n+s∑

j=n+1

hij · yj +

n+s+t∑

j=n+s+1

hij · zj ≥ bi ,

and also

n∑

j=1

hij · vj +
n+s∑

j=n+1

hij · yj +
n+s+t∑

j=n+s+1

hij · zj < bi .



From the last two inequalities it follows that

∑

j∈J

hij · uj >
∑

j∈J

hij · vj ,

where J = {1, . . . , n}.
For all j such that hij < 0 first player assigns 1 to uj . If for some u′ ≥ u the
triple (u′, y, z) 6∈ X , then he communicates one bit of the answer to second
player, and they stop if it is equal to 1. Otherwise,

∑

j∈J

hij · u
′
j >

∑

j∈J

hij · vj , (2)

where J = {1, . . . , n}.
Let fix J1 = {1, . . . , bn/2c} and J2 = {bn/2c+1, . . . , n}. Note that it is holds
either

∑

j∈J1

hij · u
′
j >

∑

j∈J1

hij · vj or
∑

j∈J2

hij · u
′
j >

∑

j∈J2

hij · vj ,

otherwise (2) is not satisfying. Continue with one of the satisfied inequalities
and find such j that (u′

j = 1 ∧ vj = 0) or (u′
j = 0 ∧ vj = 1). Since in this

case, hij > 0 (otherwise u′
j is equal to 1), we have that u′

j = uj = 1∧vj = 0.
The real communication complexity of described binary search procedure is
equal to O(log(n)).

ut

Following [2] we define a set Ã for the A ⊆ {0, 1}n+s as follows:

Ã :=
⋃

(a,b)∈A

{(a, b, c) | c ∈ {0, 1}t} ,

where a, b, c are from {0, 1}n, {0, 1}s and {0, 1}t respectively. For B ⊆ {0, 1}n+t

we define in the same way B̃:

B̃ :=
⋃

(a,c)∈B

{(a, b, c) | b ∈ {0, 1}s} .

Theorem 2 (Theorem 3.2, [2]). Let A1, . . . , Am ⊆ {0, 1}n+s and B1, . . . , B` ⊆
{0, 1}n+t be two set families. Assume that there is a semantic derivation π =
D1, . . . , Dk of the empty set ∅ = Dk from A1, . . . , Am, B1, . . . , B`. Assume also
that all the sets A1, . . . , Am satisfy the following monotone condition:

(u, y) ∈
⋂

j≤m

Aj ∧ u ≤ u′ → (u′, y) ∈
⋂

j≤m

Aj

and MCCR(Di) ≤ t for all i ≤ k.



Define sets U and V as follows:

U = {u ∈ {0, 1}n | ∃y ∈ {0, 1}s; (u, y) ∈
⋂

j≤m

Aj}

and
V = {v ∈ {0, 1}n | ∃z ∈ {0, 1}t; (v, z) ∈

⋂

j≤`

Bj} .

Then there is a monotone protocol G for the sets U, V of size at most k +n with
real communication complexity CCR at most t.

Moreover, if the semantic derivation π is tree-like, then protocol G is also
tree-like.

The following theorem extends [2, Theorem 3.3] from CP-like proof systems to
R(CP)-like proof systems.

Theorem 3. Let a system of linear inequalities E1(x, y), . . . , Em(x, y), F1(x, z),
. . ., F`(x, z) contain only variables (x1, . . . , xn), (y1, . . . , ys) and (z1, . . . , zt). As-
sume that there is a refutation π of the system in R(CP)-like proof system with
k lines. Let every clause in π have at most W occurrences of linear inequalities.
Assume also that xi occur in all E1, . . . , Em only with non-negative coefficients.

Then there is a monotone protocol G for U, V :

U = {u ∈ {0, 1}n | ∃y ∈ {0, 1}s; (u, y) satisfying
∧

i≤m

Ei(u, y)} ,

V = {v ∈ {0, 1}n | ∃z ∈ {0, 1}t; (v, z) satisfying
∧

j≤`

Fj(v, z)} ,

such that the size of G is at most k + n and its real communication complexity
is O(W ) + O(log(n)).

Moreover, if the refutation π is tree-like, then protocol G is also tree-like.

Proof. Consider a clause D = {hi · (x, y, z)T ≥ bi | i ≤ W} in the refutation π.
Then assignment (x, y, z) satisfies it iff

H · (x, y, z) ∈ Z
W \ Q((b1, . . . , bW )) ,

where H is a N × W -matrix with strings hi. Replace each clause D in π by
D̃ ⊆ {0, 1}N of assignments satisfying it to obtain a semantic refutation of Ẽi

and F̃i. By Lemma 2 for every set S occurring in the refutation it holds that
MCCR(S) = O(W ) + O(log(n)). To complete the proof apply Theorem 2. ut

2.1 Exponential Lower Bounds

In [2] the following set of inequalities was introduced, Halln, that formalize
Hall’s theorem.

Let |I| = |J | = n.



1.
∑

i yki ≥ 1, for all 1 ≤ k ≤ n.
2. yki + yk′i ≤ 1, for all 1 ≤ k < k′ ≤ n.
3.

∑
j y′

kj ≥ 1, for all 1 ≤ k ≤ n.
4. y′

kj + y′
k′j ≤ 1, for all 1 ≤ k < k′ ≤ n.

5. y′
kj + yki − xij ≤ 1, for all 1 ≤ k ≤ n, i ∈ I, j ∈ J .

Let Ei(x, y, y′) be all these linear inequalities. Note, that the set

U := {x ∈ {0, 1}n2

| ∃y, y′(
∧

i

Ei(x, y, y′))}

determines a set of graphs with BPM equal to 1.
The set V of graphs with BPM equal to 0 can be defined analogously by

inequality system Fj(x, z, z′). The union set of all inequalities Ei and Fj is
denoted by Halln.

Theorem 4. Let π be a tree-like refutation of Halln in any R(CP)-like proof
system. Then |π| ≥ exp(Ω(( n

W log(n)+(log(n))2 )1/2)).

Proof. By Theorem 3 there is a tree-like monotone protocol G for BPM problem
of size k + n and real communication complexity t = O(W ) + O(log(n)). The
required lower bound follows from Theorem 1. ut

3 Lower bound for p-passive R(CP)-like proof systems

In this section we improve currently known lower bounds for the family of p-
passive R(CP)-like systems, where for each derivation rule all but at most p
inequalities in any of two hypotheses are contained in the conclusion.

Theorem 5. Let a system of linear inequalities S = E1(x, y), . . ., Em(x, y),
F1(x, z), . . ., F`(x, z) be as in Theorem 3 and a refutation π of the system S in
p-passive R(CP)-like system be of the size k. Then there is a monotone protocol
G for U, V :

U = {u ∈ {0, 1}n | ∃y ∈ {0, 1}s; (u, y) satisfying
∧

i≤m

Ei(u, y)} ,

V = {v ∈ {0, 1}n | ∃z ∈ {0, 1}t; (v, z) satisfying
∧

j≤`

Fj(v, z)} ,

such that the size of G is at most k + n and its real communication complexity
is O(p) + O(log(n)).

Moreover, if the refutation π is tree-like then protocol G is also tree-like.

Proof. The proof is just the same as for [14, Theorem 5.1], except that we use
the main property of p-passive R(CP)-like systems and, hence, in each clause we
need to check only p, but not W inequalities.

Let π = C1, . . . , Ck be a refutation of the system S in p-passive R(CP)-like
system. We construct a monotone protocol G for the real game on U, V as follows.



Assume that player A receives u ∈ U and player B receives v ∈ V . Player A
fixes some y such that

∧
i≤m Ei(u, y) holds and player B fixes some z such that∧

j≤` Fj(v, z) holds. Protocol G has (k + n) nodes, k for all steps of refutation
π and n additional nodes labeled by formulas ui = 1 ∧ vi = 0, i = 1, . . . , n.
The consistency condition F (u, v) consists of clauses Cj such that (v, y, z) and
(u′, y, z) for some u′ ≥ u are not satisfying Cj and of those of the additional n
nodes whose label is valid for the particular pair (u, v).

Let Cj be derived from X and Y by an inference rule

X Y

Cj
.

The strategy function for Cj is defined as follows:

1. If (v, y, z) does not satisfy X and

(a) if for some u′ ≥ u (u′, y, z) does not satisfy X then put S(u, v, Cj) := X ,

(b) otherwise, players find such i that ui = 1 ∧ vi = 0 and S(u, v, Cj) is the
node labeled by ui = 1 ∧ vi = 0.

2. Otherwise (v, y, z) does not satisfy Y (since the inference rule is sound) and

(a) if for some u′ ≥ u (u′, y, z) does not satisfy Y then put S(u, v, Cj) := Y ,

(b) otherwise, players find such i that ui = 1 ∧ vi = 0 and S(u, v, Cj) is the
node labeled by ui = 1 ∧ vi = 0.

Since all xs occur in all Ei, 1 ≤ i ≤ m only with non-negative coefficients, then
for every u′ ≥ u it holds that tuple (u′, y, z) satisfies

∧
i≤m Ei(u, y). Also tuple

(v, y, z) satisfies all Fi, 1 ≤ i ≤ `. Thus, none of the Ei, 1 ≤ i ≤ m and Fi,
1 ≤ i ≤ ` is included in F (u, v). This implies that players eventually have to find
such i that ui = 1 ∧ vi = 0 holds.

Players can compute the relation x ∈ F (u, v) and the function S(u, v, x) in
at most O(p)+O(log(n)) rounds of real game, using the protocol from Lemma 2
for H defined by variables coefficients and b by free coefficients in p inequalities
that are new in X and Y . ut

Since R(CP) proof system is a 1-passive proof system, we have the following
statement similar to Theorem 4.

Corollary 1. Let π be a tree-like refutation of Halln in R(CP). Then |π| ≥

exp(Ω(
√

n
log(n) )).

Remark 1. Using the same idea we can remove the dependence on the maximal
clause width from Kraj́ıček’s lower bound for general R(CP) and obtain lower
bound of the form

exp(nΩ(1))

MO(log2 n)
.

To do that we only need to modify the protocol in [1, Theorem 6.1].
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