
On Approximating Restricted Cycle Covers∗

Bodo Manthey†

Yale University, Department of Computer Science

manthey@cs.yale.edu

Abstract

A cycle cover of a graph is a set of cycles such that every vertex is part
of exactly one cycle. An L-cycle cover is a cycle cover in which the length of
every cycle is in the set L. The weight of a cycle cover of an edge-weighted
graph is the sum of the weights of its edges.

We come close to settling the complexity and approximability of computing
L-cycle covers. On the one hand, we show that for almost all L, computing
L-cycle covers of maximum weight in directed and undirected graphs is APX-
hard and NP-hard. Most of our hardness results hold even if the edge weights
are restricted to zero and one.

On the other hand, we show that the problem of computing L-cycle covers
of maximum weight can be approximated within a factor of 2 for undirected
graphs and within a factor of 8/3 in the case of directed graphs. This holds
for arbitrary sets L.

1 Introduction

A cycle cover of a graph is a spanning subgraph that consists solely of cycles such
that every vertex is part of exactly one cycle. Cycle covers play an important role
in the design of approximation algorithms for the travelling salesman problem [4,6,
7, 10–13, 23], the shortest common superstring problem [9, 30], and vehicle routing
problems [19].

In contrast to Hamiltonian cycles, which are special cases of cycle covers, cycle
covers of maximum weight can be computed efficiently. This is exploited in the
aforementioned approximation algorithms, which usually start by computing an
initial cycle cover and then join cycles to obtain a Hamiltonian cycle. This technique
is called subtour patching [16].

Short cycles in a cycle cover limit the approximation ratios achieved by such
algorithms. In general, the longer the cycles in the initial cover, the better the

∗Parts of this paper appeared in preliminary form in the Proceedings of the 3rd Workshop
on Approximation and Online Algorithms (WAOA 2005) [26] and the 32nd Int. Workshop on
Graph-Theoretical Concepts in Computer Science (WG 2006) [25].

†On leave from the Department of Computer Science of Saarland University. Work done in part
at the Institute for Theoretical Computer Science of the University of Lübeck supported by DFG
research grant RE 672/3 and at the Department of Computer Science of Saarland University.

1

Electronic Colloquium on Computational Complexity, Report No. 11 (2007)

ISSN 1433-8092

approximation ratio. Thus, we are interested in computing cycle covers that do not
contain short cycles. Moreover, there are approximation algorithms that perform
particularly well if the cycle covers computed do not contain cycles of odd length [6].
Finally, some vehicle routing problems [19] require covering vertices with cycles of
bounded length.

Therefore, we consider restricted cycle covers, where cycles of certain lengths are
ruled out a priori: For L ⊆ N, an L-cycle cover is a cycle cover in which the length of
each cycle is in L. To fathom the possibility of designing approximation algorithms
based on computing cycle covers, we aim to characterise the sets L for which L-
cycle covers of maximum weight can be computed, or at least well approximated,
efficiently.

Beyond being a basic tool for approximation algorithms, cycle covers are inter-
esting in their own right. Matching theory and graph factorisation are important
topics in graph theory. The classical matching problem is the problem of finding
one-factors, i. e., spanning subgraphs, each vertex of which is incident to exactly
one edge. Cycle covers of undirected graphs are also known as two-factors because
every vertex is incident to exactly two edges. A considerable amount of research
has been done on structural properties of graph factors and on the complexity of
finding graph factors (cf. Lovász and Plummer [24] and Schrijver [29]). In particular,
the complexity of finding restricted two-factors, i. e., L-cycle covers in undirected
graphs, has been investigated, and Hell et al. [22] showed that finding L-cycle covers
in undirected graphs is NP-hard for almost all L. However, almost nothing is known
so far about the complexity of finding directed L-cycle covers.

1.1 Preliminaries

Let G = (V, E) be a graph with vertex set V and edge set E. If G is undirected, then
a cycle cover of G is a subset C ⊆ E of the edges of G such that all vertices in V
are incident to exactly two edges in C. If G is a directed graph, then a cycle cover of
G is a subset C ⊆ E such that all vertices are incident to exactly one incoming and
one outgoing edge in C. Thus, the graph (V, C) consists solely of vertex-disjoint
cycles. The length of a cycle is the number of edges it consists of. The shortest
cycles of undirected and directed graphs are of length three and two, respectively.

We call a cycle of length λ a λ-cycle for short. Cycles of even or odd length will
simply be called even or odd cycles, respectively.

An L-cycle cover of an undirected graph is a cycle cover in which the length
of every cycle is in L ⊆ U = {3, 4, 5, . . .}. An L-cycle cover of a directed graph
is analogously defined except that L ⊆ D = {2, 3, 4, . . .}. A k-cycle cover is a
{k, k + 1, . . .}-cycle cover. In the following, let L = U \ L in the case of undirected
graphs and L = D \ L in the case of directed graphs (this will be clear from the
context).

Given edge weights w : E → N, the weight w(C) of a subset C ⊆ E of the
edges of G is w(C) =

∑

e∈C w(e). In particular, this defines the weight of a cycle
cover since we view cycle covers as sets of edges. Let U ⊆ V be any subset of the
vertices of G. The internal edges of U are all edges of G that have both vertices
in U . We denote by wU(C) the sum of the weights of all internal edges of U in C.

2

The external edges at U are all edges of G with exactly one vertex in U .
For L ⊆ U , L-UCC is the decision problem whether an undirected graph con-

tains an L-cycle cover as spanning subgraph.
Max-L-UCC(0,1) is the following optimisation problem: Given an undirected

complete graph with edge weights zero and one, find an L-cycle cover of maximum
weight. We can also consider the graph as being not complete and without edge
weights. Then we try to find an L-cycle cover with a minimum number of “non-
edges” (“non-edges” correspond to weight zero edges, edges to weight one edges),
i. e., the L-cycle cover should contain as many edges as possible. Thus, Max-L-
UCC(0,1) generalises L-UCC.

Max-L-UCC is the problem of finding L-cycle covers of maximum weight in
graphs with arbitrary non-negative edge weights.

For k ∈ U , k-UCC, Max-k-UCC(0,1), and Max-k-UCC are defined like
L-UCC, Max-L-UCC(0,1), and Max-L-UCC except that k-cycle covers rather than
L-cycle covers are sought.

The problems L-DCC, Max-L-DCC(0,1), and Max-L-DCC as well as k-
DCC, Max-k-DCC(0,1), and Max-k-DCC are defined for directed graphs like
their undirected counterparts except that L ⊆ D and k ∈ D.

An instance of Min-Vertex-Cover(λ) is an undirected λ-regular graph H =
(X, F), i. e., every vertex in X is incident to exactly λ edges. A vertex cover of H
is a subset X̃ ⊆ X such that at least one vertex of every edge in F is in X̃. The
aim is to find a subset X̃ ⊆ X of minimum cardinality. Min-Vertex-Cover(λ) is
APX-complete for λ ≥ 3 as follows easily from results by Alimonti and Kann [2] as
well as Chleb́ık and Chleb́ıková [14].

An instance of the λ-dimensional matching problem λ-DM is a tuple (X, F)
where X is a finite set and F is a collection F of subsets of X, each of cardinality
λ. The question is whether there exists a subset F̃ ⊆ F such that for every x ∈ X
there is a unique a ∈ F̃ with x ∈ a. For λ ≥ 3, λ-DM is NP-complete [15].

1.2 Previous Results

Undirected Cycle Covers. Max-U-UCC, and thus also U-UCC and Max-U-
UCC(0,1), can be solved in polynomial time via Tutte’s reduction to the classical
perfect matching problem [24]. Hartvigsen presented a polynomial-time algorithm
that can be used to decide 4-UCC in polynomial time [17]. Furthermore, it can be
adapted to solve Max-4-UCC(0,1) as well.

Max-k-UCC admits a simple factor 3/2 approximation for all k: Compute a
maximum weight cycle cover, break the lightest edge of each cycle, and join the
paths thus obtained to a Hamiltonian cycle. Unfortunately, this algorithm cannot be
generalised to work for Max-L-UCC for general L. For the problem of computing k-
cycle covers of minimum weight in graphs with edge weights one and two, there exists
a factor 7/6 approximation algorithm for all k [8]. Hassin and Rubinstein [20, 21]
devised a randomised approximation algorithm for Max-{3}-UCC that achieves an
approximation ratio of 83/43 + ε.

Hell et al. [22] proved that L-UCC is NP-hard for L 6⊆ {3, 4}. Vornberger showed
that Max-5-UCC is NP-hard [31]. For k ≥ 7, Max-k-UCC(0,1) and Max-k-UCC are

3

APX-complete [5].
The complexity of finding restricted cycle covers in undirected graphs seems to

be well understood. However, hardly anything is known about the approximability
of Max-L-UCC(0,1) and Max-L-UCC for arbitrary L.

Directed Cycle Covers. D-DCC, Max-D-DCC(0,1), and Max-D-DCC (Max-D-
DCC is also called the assignment problem) can be solved in polynomial time by
reduction to the maximum weight perfect matching problem in bipartite graphs [1].
But already 3-DCC is NP-complete [15]. Max-k-DCC(0,1) and Max-k-DCC are
APX-complete for all k ≥ 3 [5].

Similar to the factor 3/2 approximation algorithm for undirected cycle covers,
Max-k-DCC has a simple factor 2 approximation algorithm for all k: Compute a
maximum weight cycle cover, break the lightest edge of every cycle, and join the
cycles to obtain a Hamiltonian cycle. Again, this algorithm cannot be generalised
to work for arbitrary L. There is a factor 4/3 approximation algorithm for Max-3-
DCC [7] and a factor 3/2 approximation algorithm for Max-k-DCC(0,1) for k ≥ 3 [5].

While the complexity of k-cycle covers in directed graphs is well understood,
almost nothing is known about the complexity and approximability of L-cycle covers
in general.

1.3 Our Results

We prove that Max-L-UCC(0,1) is APX-hard for all L with L 6⊆ {3, 4} (Section 2.2)
and that Max-L-UCC is APX-hard if L 6⊆ {3} (Section 2.3). The hardness results
for Max-L-UCC hold even if we allow only the edge weights zero, one, and two.

We show a dichotomy for directed graphs: For all L with L 6= {2} and L 6= D, L-
DCC is NP-hard and Max-L-DCC(0,1) and Max-L-DCC are APX-hard (Section 2.5),
while all three problems are solvable in polynomial time if L = {2} or L = D.

Of course, the hardness results for Max-L-UCC(0,1) and Max-L-DCC(0,1) carry
over to the problem of computing L-cycle covers of minimum weight in graphs
restricted to edge weights one and two.

To show the hardness of directed cycle covers, we show that certain kinds of
graphs, called L-clamps, exist for non-empty L ⊆ D if and only if L 6= D (Theo-
rem 2.10). This graph-theoretical result might be of independent interest.

Finally, we devise approximation algorithms for Max-L-UCC and Max-L-DCC
that achieve ratios of 2 and 8/3, respectively (Section 3). Both algorithms work for
all sets L.

2 The Hardness of Approximating L-Cycle Cov-

ers

2.1 Clamps and Gadgets

To begin the hardness proofs, we introduce clamps, which were defined by Hell et
al. [22]. Clamps are crucial for our hardness proof.

4

︸ ︷︷ ︸

Λ−3 vertices

v

u

(a) L-clamp.

︸ ︷︷ ︸

Λ−3 vertices

x

y

z

(b) L-gadget.

Figure 1: An L-clamp and an L-gadget for finite L with max(L) = Λ.

Let K = (U, E) be an undirected graph, let u, v ∈ U be two vertices of K,
which we call the connectors of K, and let L ⊆ U . We denote by K−u and K−v

the graphs obtained from K by deleting u and v, respectively, and their incident
edges. K−u−v is obtained from K by deleting both u and v. For k ∈ N, Kk is the
following graph: Let y1, . . . , yk /∈ U be new vertices, add edges {u, y1}, {yi, yi+1} for
1 ≤ i ≤ k − 1, and {yk, v}. For k = 0, we directly connect u to v. The graph K is
called an L-clamp if the following properties hold:

1. Both K−u and K−v contain an L-cycle cover.

2. Neither K nor K−u−v nor Kk for any k ∈ N contains an L-cycle cover.

Figure 1(a) shows an example of an L-clamp for finite L. Hell et al. [22] proved
the following result which we will exploit for our reduction.

Lemma 2.1 (Hell et al. [22]). Let L ⊆ U be non-empty. Then there exists an
L-clamp if and only if L 6⊆ {3, 4}.

Let G be a graph with vertex set V and U ⊆ V . We say that U is an L-clamp
with connectors u, v ∈ U in G if the subgraph of G induced by U is an L-clamp and
the only external edges of U are incident to u or v.

Let us fix some technical terms. For this purpose, let C be a cycle cover of G.
For any V ′ ⊆ V , we say that V ′ is isolated in C if there is no edge in C connecting
V ′ to V \ V ′. We say that the L-clamp U absorbs u and expels v if U \ {v} is
isolated in C. Analogously, U absorbs v expels u if U \ {u} is isolated in C.

An L-clamp implements an exclusive-or of u and v: Exactly one of them is
absorbed, the other one is expelled. For our purpose of reducing from Min-Vertex-
Cover(λ), we need a one-out-of-three behaviour. A graph K with connectors x, y, z
is called an L-gadget if the following property is fulfilled: Let K be a subgraph of
a larger graph G as described above (now x, y, and z can be incident to external
edges). Then, in all L-cycle covers C of G, exactly two of K’s connectors are expelled
while the third one is absorbed. To put it another way: Either K−x−y or K−x−z or
K−y−z is isolated in C.

For finite sets L, we obtain an L-gadget, shown in Figure 1(b), immediately by
equipping the L-clamp of Figure 1(a) with an additional connector.

For infinite sets L, we first build an intermediate subgraph. A triple L-clamp
is built from three L-clamps and has three connectors u1, u2, u3. Figure 2(a) shows
the construction. Triple L-clamps show a two-out-of-three behaviour: Only one
connector will be expelled, the other two will be absorbed. More precisely: One of

5

K2

v

u2

u3u1

K1 K3

(a) A triple L-clamp with con-
nectors u1, u2, u3. The connec-
tors of L-clamp Ki are ui and v.

︸ ︷︷ ︸

τ vertices
ba

x

y

z
t2

t3

u3
t1

u2

u1

v2

v3

v1

(b) An L-gadget with connectors x, y, z. The connectors
of triple L-clamps Ti are ti, ui, vi. For legibility, the
triple L-clamps are not shown explicitely but only their
connectors.

Figure 2: A triple L-clamp and an L-gadget.

the three clamps has to absorb v. The other two absorb their connectors ui, which
are also connectors of the triple clamp.

Now we are prepared to build L-gadgets. These graphs are build from three
triple L-clamps, which have connectors ui, vi, ti for i ∈ {1, 2, 3}. Figure 2(b) shows
such an L-gadget. Since L is infinite, there exists a τ ≥ 1 with τ + 6 ∈ L. Let us
argue why the L-gadget behaves as claimed. For this purpose, let C be an arbitrary
L-cycle cover of G, where G contains the L-gadget as a subgraph. First, we observe
that all τ + 2 vertices of the path connecting a to b must be on the same cycle c in
C. The only other vertices to which a is incident are t1, t2, and t3. By symmetry,
we assume that t1 lies also in c. Therefore, T1 absorbs u1 and v1. Thus, v2 and u3

are absorbed by T2 and T3, respectively, and c runs through x, u2, v3 back to b to
form a (τ + 6)-cycle. Thus, x is absorbed by the gadget. T2 expels u2 and absorbs
u3, while T3 expels v3 and absorbs v2. Hence, the gadget expels y and z as claimed.
The other two cases are symmetric.

To conclude this section about clamps, we transfer the notion of L-gadgets to
edge weighted graphs and prove some properties. The transformation to graphs
with edge weights zero and one is made in the obvious way: Let G be an undirected
complete graph with vertex set V and edge weights zero and one. Let U ⊆ V . We
say that U is an L-gadget with connectors x, y, z ∈ U if the subgraph of G induced
by U restricted to the edges of weight one is an L-gadget.

Let σ be the number of vertices of an L-gadget. We call U healthy in C if U
absorbs x, y, or z, expels its other two connectors, and wU(C) = σ − 1. Since the
edge weighted graph is complete, L-cycle may traverse L-gadgets arbitrarily. The
following lemma shows that we lose weight by not traversing them healthily.

Lemma 2.2. Let G be an undirected graph with vertex set V and edge weights zero
and one, and let U ⊆ V be an L-gadget with connectors x, y, z in G. Let C be an
arbitrary L-cycle cover of G and |U | = σ. Then the following properties hold:

1. wU(C) ≤ σ − 1.

2. If there are 2α external edges at U in C, then wU(C) ≤ σ − α.

6

3. Assume that U absorbs x. Then there exists an L-cycle cover C̃ that differs
from C only in the internal edges of U and has wU(C̃) = σ − 2. The same
holds if U absorbs y or z.

4. Assume that there are two external edges at U in C that are incident to two
different connectors. Then wU(C) ≤ σ − 2.

Proof. If wU(C) = σ was true, then U would contain an L-cycle cover consisting
solely of weight one edges since |U | = σ. This would contradict U being an L-gadget.

The second claim follows immediately from |U | = σ and the fact that every
vertex is incident to exactly two edges in a cycle cover.

Since U is an L-gadget, U \ {y, z} contains an L-cycle cover consisting of σ − 1
weight one edges. This holds for U \ {x, z} and U \ {x, y} as well.

The fourth claim remains to be proved. If there are more than two external
edges at U in C, we have at least four external edges and thus wU(C) ≤ σ − 2. So
assume that there are exactly two external edges at U in C incident to, say, x and
y. We have σ−1 internal edges of U in C. If all of them had weight one, this would
contradict the property that in an unweighted L-gadget always U \{x, y}, U \{x, z},
or U \ {y, z} is isolated.

2.2 The Reduction for Undirected Graphs

Now we present an L-reduction from Min-Vertex-Cover(λ) to show the inapproxima-
bility of Max-L-UCC(0,1) for L 6⊆ {3, 4}. The inapproximability of Max-L-UCC for
L 6⊆ {3} and Max-L-DCC(0,1) for L 6= {2} and L 6= D will be shown in subsequent
sections. L-reductions were introduced by Papadimitriou and Yannakakis [27] (cf.
Ausiello et al. [3]).

Let L ⊆ U be non-empty with L 6⊆ {3, 4}. Thus, L-gadgets exist and we fix one
as in the previous section. Let λ = min(L). (This choice is arbitrary. We could
choose any number in L.) We will reduce Min-Vertex-Cover(λ) to Max-L-UCC(0,1).
Min-Vertex-Cover(λ) is APX-complete since λ ≥ 3.

Let H = (X, F) be an instance of Min-Vertex-Cover(λ) with |X| = n vertices
and |F | = m = λn/2 edges. Our instance G for Max-L-UCC(0,1) consists of λ
subgraphs G1, . . . , Gλ, each containing σm vertices. We start by describing G1.
Then we state the differences between G1 and G2, . . . , Gλ and say to which edges
between these graphs weight one is assigned.

Let a = {x, y} ∈ F be any edge of H . We construct an L-gadget Fa for a that
has connectors x1

a, y1
a and z1

a. We call Fa an edge gadget.
Now let x ∈ X be any vertex of H and let a1, . . . , aλ ∈ F be the λ edges that are

incident to x. We connect the vertices x1
a1

, . . . , x1
aλ

to form a path by assigning weight
one to the edges {x1

aη
, x1

aη+1
} for η ∈ {1, . . . , λ − 1}. Together with edge {x1

aλ
, x1

a1
},

these edges form a cycle of length λ ∈ L, but note that w({x1
aλ

, x1
a1
}) = 0. These λ

edges are called the junctions of x. The junctions at Fa for some a = {x, y} ∈ F
are the junctions of x and y that are incident to Fa. Overall, the graph G1 consists
of σm vertices since every edge gadget consists of σ vertices.

The graphs G2, . . . , Gλ are almost exact copies of G1. The graph Gξ (ξ ∈
{2, . . . , λ}) consists of L-gadgets with connectors xξ

a, yξ
a, and zξ

a for each edge

7

Fa

x1
a

x2
a

x3
a

Fb Fc

x1
b x1

c

x2
c

x3
cx3

b

x2
b

y
2

cz2
c

z1
cz1

b

z2
b

z3
b z3

cz3
a

z2
a

z1
a

y1
a y

1

cy1
b

y2
a y2

b

y3
by3

a y
3

c

Figure 3: The construction for x ∈ X incident to a = {x, y}, b = {x, y}, c = {x, y} ∈
F for λ = 3. Fa, Fb, and Fc are grey. The three ellipse in the second and third row
build G2 and G3, respectively. The cycles connecting the z-vertices are dotted. The
junctions of x and their copies are solid, except for {x1

c , x
1
a}, which has weight zero

and is dashed.

a = {x, y} ∈ F , just as above. The edge weights are also identical with the single
exception that the edge {xξ

aλ
, xξ

a1
} also has weight one. Note that we only use the

term “edge gadget” for the subgraphs of G1 defined above although almost the same
subgraphs occur in G2, . . . , Gλ as well. Similarly, the term “junction” refers only to
edges in G1 as defined above.

Finally, we describe how to connect G1, . . . , Gλ with each other. For every edge
a ∈ F , there are λ vertices z1

a, . . . , z
λ
a . These are connected to form a cycle consisting

solely of weight one edges, i. e., we assign weight one to all edges {zξ
a, z

ξ+1
a } for ξ ∈

{1, . . . , λ−1} and to {zλ
a , z1

a}. Figure 3 shows an example of the whole construction
from the viewpoint of a single vertex.

We call edges that are not junctions but connect two different gadgets illegal.
Edges with both vertices in the same gadget are called internal edges. The fourth
kind of edges are the z-edges of Fa for a ∈ F , which are the two edges {z1

a, z
2
a} and

{z1
a, z

λ
a}. The z-edges are not illegal.

Let C be any subset of the edges of the graph G thus constructed, and let
a = {x, y} ∈ F be an arbitrary edge of H . We say that C legally connects Fa if
the following properties are fulfilled:

• C contains no illegal edges incident to Fa and exactly two or four junctions at
Fa.

• If C contains exactly two junctions at Fa, then these belong to the same vertex
and there are two z-edges at Fa in C.

• If C contains four junctions at Fa, then C does not contain the z-edges at Fa.

We call C legal if C legally connects all gadgets. If C̃ is a legal L-cycle cover, then
for all x ∈ X either all junctions of x or no junction of x is in C̃. From a legal
L-cycle cover C̃, we obtain the subset X̃ = {x | the junctions of x are in C̃} ⊆ X.
Since at least two junctions at Fa are in C̃ for every a ∈ F , the set X̃ is a vertex
cover of H .

8

The idea behind the reduction is as follows: Consider an edge a = {x, y} ∈ F .
We interpret x1

a being expelled to mean that x is in the vertex cover. (In this case,
the junctions of x are in the cycle cover.) Analogously, y is in the vertex cover if y1

a

is expelled. The vertex z1
a is only absorbed if both x and y are in the vertex cover.

If only one of x and y is in the vertex cover, z1
a forms a λ-cycle with z2

a, . . . , z
λ
a .

We only considered G1 when defining the terms “legally connected” and “legal”.
This is because in G1, we lose weight one for putting x into the vertex cover since
the junction {x1

aλ
, x1

a1
} weighs zero. The other λ − 1 copies of the construction are

only needed because z1
a must be part of some cycle if z1

a is not absorbed.

Lemma 2.3. Let X̃ be a vertex cover of size ñ of H. Then G contains an L-cycle
cover C̃ with w(C̃) = σλm − ñ.

Proof. We start by describing C̃ in G1. For every vertex x ∈ X̃, the cycle consisting
of all λ junctions is in C̃. Let a = {x, y} ∈ F be any edge. Then either x or y or
both are in X̃. If only x is in X̃, we let Fa absorb y1

a, while z1
a is expelled. If only y

is in X̃, we let Fa absorb x1
a, while z1

a is again expelled. If both x and y are in X̃,
then we let x1

a and y1
a be expelled while z1

a is absorbed.
We perform the same construction as for G1 for all copies G2, . . . , Gλ. If z1

a is
expelled, then t2a, . . . , t

λ
a are expelled as well. We let them form a λ-cycle in C̃.

Clearly, C̃ is legal. Furthermore, C̃ is an L-cycle cover: Every cycle either has
length λ ∈ L or lies totally inside a single L-gadget. Since all L-gadget are healthy
in C̃, C̃ is an L-cycle cover.

All edges of C̃ within G2, . . . , Gλ have weight one. The only edges that connect
different copies Gξ and Gξ′ are edges {zξ

a, z
ξ+1
a } and {zλ

a , x1
a}, which have weight one

as well. Almost all edges used in G1 also have weight one; the only exception is
one junction of weight zero for each x ∈ X̃. Since |X̃| = ñ, there are ñ edges of
weight zero in C̃. The graph G contains σλm vertices, thus C̃ contains σλm edges,
σλm − ñ of which have weight one.

Let C be an L-cycle cover of G and let a ∈ F . We define WFa
(C) as the sum of

the weights of all internal edges of Fa plus half the number of z-edges in C at Fa.
Analogously, WGξ

(C) is the number of weight one edges with both vertices in Gξ

plus half the number of weight one edges with exactly one vertex in Gξ.

Lemma 2.4. Let C be an L-cycle cover and let j be the number of weight one
junctions in C. Then w(C) = j +

∑

a∈F WFa
(C) +

∑λ
ξ=2 WGξ

(C).

Proof. Every edge with both vertices in the same Gξ is counted once. The only edges
of weight one between different Gξ are the edges {zξ

a, z
ξ+1
a } and {zλ

a , z1
a}. These are

counted with one half in both WGξ
(C) and WGξ+1

(C) for 2 ≤ ξ ≤ λ − 1 or one half
in both WGξ

(C) and WFa
(C) for ξ ∈ {2, λ}.

In a legal L-cycle cover C̃ as described in Lemma 2.3, we have WGξ
(C̃) = σm

for all ξ ∈ {2, . . . , λ} since every vertex in Gξ is only incident to edges of weight one
of the cycle cover by construction. Now we show that it is always best to traverse
the gadgets legally and to keep the gadgets healthy.

Lemma 2.5. Given an arbitrary L-cycle cover C, we can compute a legal L-cycle
cover C̃ with w(C̃) ≥ w(C) in polynomial time.

9

Proof. We proceed as follows to obtain C̃:

1. Let C ′ be C with all illegal edges with at least one endpoint in G1 removed.

2. For all x ∈ X in arbitrary order: If at least one junction of x is in C, then put
all junctions of x into C ′.

3. For all a = {x, y} ∈ F in arbitrary order: If neither the junctions of x nor the
junctions of y are in C ′, choose arbitrarily one vertex of a, say x, and add all
junctions of x to C ′.

4. Rearrange C ′ within G1 such that all clamps are healthy in C ′.

5. Rearrange C ′ such that all G2, . . . , Gλ are traversed exactly like G1.

6. For all a ∈ F : If z1
a, . . . , z

ξ
a are not absorbed, let them form a λ-cycle. Call the

result C̃.

The running-time of the algorithm is polynomial. Moreover, C̃ is a legal L-cycle
cover by construction. What remains is to prove w(C̃) ≥ w(C).

Let w(C) = j +
∑

a∈F WFa
(C) +

∑λ
ξ=2 WGξ

(C) be the weight of C according to

Lemma 2.4, i. e., C contains j junctions of weight one. Analogously, let w(C̃) =
̃ +

∑

a∈F WFa
(C̃) +

∑λ
ξ=2 WGξ

(C̃), i. e., ̃ is the number of junctions of weight one

in C̃.
All illegal edges have weight zero, and we do not remove any junctions. We have

WGξ
(C̃) = σm for all ξ, which is maximal. Thus, no weight is lost in this way. What

remains is to consider the internal edges of the gadgets and the z-edges.
Let a = {x, y} be an arbitrary edge of H . If WFa

(C) ≤ WFa
(C̃), then nothing

has to be shown. Those gadgets Fa with WFa
(C) > WFa

(C̃) remain to be considered.
We have WFa

(C̃) ≥ σ − 2 and WFa
(C) ≤ σ − 1 according to Lemma 2.2. Thus,

WFa
(C) = σ − 1 and WFa

(C̃) = σ − 2 = WFa
(C) − 1 for all a ∈ F with WFa

(C) >
WFa

(C̃). What remains to be proved is that for all such gadgets, there is a junction
of weight one in C̃ that is not in C and can thus compensate for the loss of weight
one in Fa. This means that we have to show that ̃ is at least j plus the number of
edges a with WFa

(C) > WFa
(C̃).

If WFa
(C) = σ− 1, then according to Lemma 2.2(4), the junctions at Fa in C (if

there are any) belong to the same vertex. Since WFa
(C̃) = σ − 2, all four junctions

at Fa are in C̃. Thus, while executing the above algorithm, there is a moment at
which at least one of, say, y’s junctions at Fa is in C ′, and the junctions of x are
added in the next step. We say that a vertex x compensates Fa if

1. C̃ contains x’s junctions,

2. no junction of x at Fa is in C, and

3. at the moment at which x’s junctions are added, C ′ already contains at least
one junction of y at Fa.

10

Thus, every gadget Fa with WFa
(C̃) < WFa

(C) is compensated by some vertex
x ∈ a.

It remains to be shown that the number of gadgets that are compensated by
some vertex is at most equal to the number of weight one junctions added to C ′.
Let η ∈ {0, . . . , λ} be the number of junctions of x in C. If η = λ, then x does
not compensate any gadget. If η = 0, i. e., C does not contain any of x’s junctions,
then the junctions of x are added during Step 3 of the algorithm because there is
some edge a ∈ F with x ∈ a such that there is no junction at all in C ′ at Fa before
adding x’s junctions. Thus, x does not compensate Fa. At most λ − 1 gadgets are
compensated by x, and λ−1 junctions of x have weight one. The case that remains
is η ∈ {1, . . . , λ − 1}. Then λ − η junctions of x are added and at least λ − η − 1
of them have weight one. On the other hand, there are at least η + 1 gadgets Fa

such that at least one junction of x at Fa is already in C: Every junction is at two
gadgets, and thus η junctions are at η + 1 or more gadgets. Thus, at most λ− η− 1
gadgets are compensated by x.

Finally, we prove the following counterpart to Lemma 2.3.

Lemma 2.6. Let C̃ be the L-cycle cover constructed as described in the proof of
Lemma 2.5 and let X̃ = {x | x’s junctions are in C̃} be the subset of X obtained
from C̃. Choose ñ such that w(C̃) = σλm − ñ. Then |X̃| = ñ.

Proof. The proof is similar to the proof of Lemma 2.3. We set the weight of all
junctions to one. With respect to the modified edge weights, the weight of C̃ is
σλm. Thus, ñ is the number of weight zero junctions in C̃, which is just |X̃|.

Now we are prepared to prove the main theorem of this section.

Theorem 2.7. For all L ⊆ U with L 6⊆ {3, 4}, Max-L-UCC(0,1) is APX-hard.

Proof. We show that the reduction presented is an L-reduction. Then the result
follows from the APX-hardness of Min-Vertex-Cover(λ). Let opt(H) be the size
of a minimum vertex cover of H and opt(G) be the weight of a maximum weight
L-cycle cover of G. From Lemmas 2.3, 2.5, and 2.6, we obtain that opt(G) =
σλm − opt(H) ≤ σλm. Since H is λ-regular, we have opt(H) ≥ n/2. Thus,

opt(G) ≤ σλm = σλ(λ/2) · n ≤ (σλ2/2) · opt(H).

Let C be an arbitrary L-cycle cover of G, C̃ be a legal L-cycle cover obtained
from C as in Lemma 2.5, and X̃ ⊆ X obtained from C̃. Then

∣
∣|X̃| − opt(H)

∣
∣ =

∣
∣w(C̃) − opt(G)

∣
∣ ≤

∣
∣w(C) − opt(G)

∣
∣,

which completes the proof.

2.3 Adaption of the Reduction to Max-L-UCC

To prove the APX-hardness of Max-L-UCC for L 6⊆ {3}, all we have to do is to deal
with L = {4} and L = {3, 4}. For all other sets L, the inapproximability follows
from Theorem 2.7. We will adapt the reduction presented in the previous section.

11

u

v

(a) The clamp.

u

v

(b) Absorbing v.

u

v

(c) Absorbing u.

x

p

(d) Illegal traversal of Kx.

Figure 4: A weighted L-clamp for {4} ⊆ L ⊆ {3, 4} and how to traverse it. Bold
edges have weight two; solid, dashed, and dotted edges have weight one.

t t′

Kx

x

y

Ky

Kz

z

(a) The weighted L-gadget.

t t′x

Kx

y

Ky

Kz

z

(b) How to absorb x.

Figure 5: A weighted L-gadget and how to use it.

To do this, we have to find an edge weighted analogue of an L-clamp. We do
not explicitly define the properties a weighted L-clamp has to fulfil. Instead, we
just call the graph shown in Figure 4(a) a weighted L-clamp for L = {3, 4} and
L = {4}.

The basic idea is that all three edges of weight two of the weighted clamp have
to be traversed in a cycle cover. Since 4-cycles are forbidden, we have to take either
the two dotted edges or the two dashed edges. Otherwise, we would have to take an
edge of weight zero. Furthermore, if we take the dashed edges, we have to absorb
v and to expel u, and if we take the dotted edges, we have to absorb u and to
expel v (Figures 4(b) and 4(c)). Again, we would have to take edges of weight zero
otherwise.

Using three weighted L-clamps Kx, Ky, Kz, we build an L-gadget as shown in
Figure 5(a). Note that both t and t′ can serve as a connector for each of the clamps.
This weighted L-gadget has essentially the same properties as the L-gadgets of
Section 2.1, which were stated as Lemma 2.2. The difference is that σ = 32 is no
longer the number of vertices, but the number of vertices plus the number of edges
of weight two.

Lemma 2.8. Let G be an undirected graph with vertex set V and edge weights zero
and one, and let U ⊆ V be a weighted L-gadget with connectors x, y, z in G. Let C
be an arbitrary L-cycle cover of G. Then the following properties hold:

1. wU(C) ≤ 31.

2. If there are 2α external edges at U in C, then wU(C) ≤ 32 − α.

12

3. If U absorbs x, then there exists an L-cycle cover C̃ that differs from C only
in the internal edges of U and has wU(C̃) = 30. The same holds if U absorbs
y or z.

4. Assume that there are two external edges at U in C that are incident to two
different connectors. Then wU(C) ≤ 30.

Proof. The only way to achieve wU(C) > 31 is wU(C) = 32, which requires that
we have 23 internal edges including all nine edges of weight two. Since 4-cycles are
forbidden, such an L-cycle cover does not exist.

If we have 2α external edges, then we have 23 − α internal edges. At most nine
of them are of weight two.

If U absorbs x, then we can achieve a weight of 30 by letting Ky and Kz absorb
t1 and t2, respectively (Figure 5(b)). (We can also connect Ky and Kz via t and
t′ to obtain a 14-cycle. The weight would be the same.) In the same way, we can
achieve weight 30 if U absorbs y or z.

What remains is to show claim 4. We have wU(C) ≤ 31 and 22 internal edges. If
wU(C) > 30, then wU(C) = 31, and C contains all nine edges of weight two and no
internal edge of weight zero of U . By symmetry, it suffices to consider the case that
x is incident to one external edge. Figure 4(d) shows which edges are mandatory in
order to keep all three edges of weight two. Since the cycle that contains x must be
continued at p, vertex p is incident to an edge of weight zero in C, which proves the
claim.

Given these properties, we can plug the L-gadget into the reduction described
in the previous section to obtain the APX-hardness of Max-L-UCC for L = {4} and
L = {3, 4}. Together with Theorem 2.7, we obtain the following result.

Theorem 2.9. Max-L-UCC is APX-hard for all L with L 6⊆ {3} even if the edge
weights are restricted to be zero, one, or two.

2.4 Clamps in Directed Graphs

The aim of this section is to prove a counterpart to Lemma 2.1 (for the existence of
L-clamps) for directed graphs. Let K = (V, E) be a directed graph and u, v ∈ V .
Again, K−u, K−v, and K−u−v denote the graphs obtained by deleting u, v, and both
u and v, respectively. For k ∈ N, Kk

u denotes the following graph: Let y1, . . . , yk /∈ V
be new vertices and add edges (u, y1), (y1, y2), . . . , (yk, v). For k = 0, we add the
edge (u, v). The graph Kk

v is similarly defined, except that we now start at v, i. e.,
we add the edges (v, y1), (y1, y2), . . . , (yk, u). K0

v is K with the additional edge (v, u).
Now we can define clamps for directed graphs: Let L ⊆ D. A directed graph

K = (V, E) with u, v ∈ V is a directed L-clamp with connectors u and v if the
following properties hold:

• Both K−u and K−v contain an L-cycle cover.

• Neither K nor K−u−v nor Kk
u nor Kk

v for any k ∈ N contains an L-cycle cover.

Let us now prove that directed L-clamps exist for almost all L.

13

Theorem 2.10. Let L ⊆ D be non-empty. Then there exists a directed L-clamp if
and only if L 6= D.

Proof. We first prove that directed L-clamps exist for all non-empty sets L ⊆ D
with L 6= D. We start by considering finite L. If L is finite, max(L) = Λ exists. For
L = {2}, the graph shown in Figure 6(a) is a directed L-clamp: Either u or v forms
a 2-cycle with x1, and there are no other possibilities. Otherwise, we have Λ ≥ 3.
Figure 6(b) shows a directed L-clamp for this case, which is a directed variant of
the undirected clamp shown in Figure 1(a).

Now we consider finite L. Figure 6(c) shows an L-clamp for L = {2}: x1, x2,
and x3 must be on the same path since length two is forbidden. This cycle must
include u or v but cannot include both of them

Otherwise, max(L) = Λ ≥ 3 and Λ + 2 ∈ L and the graph shown in Figure 6(d)
is an L-clamp: The vertices x1, . . . , xΛ−1 must all be on the same cycle. Thus, either
(y, x1) or (z, x1) is in the cycle cover. By symmetry, it suffices to consider the first
case. Since Λ /∈ L, the edge (xΛ−1, y) cannot be in the cycle cover. Thus, (v, y) and
(xΛ−1, z) and hence (z, v) are in the cycle cover.

The case that remains to be considered is that both L and L are infinite. We
distinguish two subcases. Either there exists a Λ ≥ 4 with Λ, Λ + 2 /∈ L and
Λ + 1 ∈ L. In this case, the graph shown in Figure 6(e) is an L-clamp: x1, . . . , xΛ

must be on the same cycle. Since the lengths Λ and Λ + 2 are not allowed, either v
or u is expelled and the other vertex is absorbed.

If no Λ exists with Λ, Λ + 2 /∈ L and Λ + 1 ∈ L (but L and L are infinite), then
there exists a Λ ≥ 3 with Λ /∈ L and Λ + 2 ∈ L and we can use the graph already
used for finite L (Figure 6(d)) as a directed L-clamp.

From Lemma 2.11 below we obtain the fact that D-clamps do not exist, which
completes the proof.

Lemma 2.11. Let G = (V, E) be a directed graph and let u, v ∈ V . If G−u and G−v

both contain a cycle cover, then

• both G and G−u−v contain cycle covers or

• all Gk
u and Gk

v for k ∈ N contain cycle covers.

Proof. Let E−u and E−v be the sets of edges of the cycle covers of G−u and G−v,
respectively. We construct two sequences of edges P = (e1, e2, . . .) and P ′ =
(e′1, e

′
2, . . .). These sequences can be viewed as augmenting paths and we use them

to construct cycle covers of G−u−v and G or Gk
u and Gk

v. The sequence P is given
uniquely by traversing edges of E−v forwards and edges of E−u backwards:

• e1 = (u, x1) is the unique outgoing edge of u = x0 in E−v.

• If ei = (xi−1, xi) ∈ E−v, i. e., if i is odd, then ei+1 = (xi+1, xi) ∈ E−u is the
unique incoming edge of xi in E−u.

• If ei = (xi, xi−1) ∈ E−u, i. e., if i is even, then ei+1 = (xi, xi+1) ∈ E−v is the
unique outgoing edge of xi in E−v.

14

x1
u v

(a) A {2}-clamp.

x2 x3 xΛ−2

︸ ︷︷ ︸

Λ−3 vertices

xΛ−1x1

u

v

(b) An L-clamp for finite sets L
with max(L) = Λ ≥ 3.

x1 x3

x2

u

v

(c) A {2}-clamp.

︸ ︷︷ ︸

Λ − 3 vertices

u v

x3x2 xΛ−2
x1

xΛ−1

y

z

(d) An L-clamp for Λ 6∈ L and Λ+2 ∈ L
with Λ ≥ 3.

︸ ︷︷ ︸

dΛ/2e − 2 vertices

bΛ/2c − 2 vertices
︷ ︸︸ ︷

xbΛ/2c+1

xbΛ/2cx2x1

xΛ

u v

(e) An L-clamp for Λ, Λ+2 6∈ L and Λ+1 ∈ L with
Λ ≥ 4.

Figure 6: Directed L-clamps. The connectors are u and v, the internal vertices are
x1, x2, . . . and y, z.

• If in any of the above steps no extension of P is possible, then stop.

Let P = (e1, . . . , e`). We observe two properties of the sequence P :

Lemma 2.12. 1. No edge appears more than once in P .

2. If ` is odd, i. e., e` ∈ E−v, then e` = (x`−1, u). If ` is even, i. e., e` ∈ E−u,
then e` = (v, x`−1).

Proof. Assume the contrary of the first claim and let ei = ej (i 6= j) be an edge that
appears at least twice in P such that i is minimal. If i = 1, then ej = (u, x1) ∈ E−v.
This would imply ej−1 = (u, xj−2) ∈ E−u, a contradiction. If i > 1, then assume
ei = (xi−1, xi) ∈ E−v without loss of generality. Since exactly one edge leaves xi−1

in E−u, the edge ei−1 = ej−1 is uniquely determined, contradicting the minimality
of i.

Let us now prove the second claim. Without loss of generality, we assume that
the last edge e` belongs to E−v. Let e` = (x`−1, x`). The path P cannot be extended,
which implies that there does not exist an edge (x`+1, x`) ∈ E−u. Since E−u is a
cycle cover of G−u, this implies x` = u and completes the proof.

Now we build the sequence P ′ analogously, except that we start with the edge
e′1 = (x′

1, v) ∈ E−u. Again, we traverse edges of E−v forwards and edges of E−u

backwards. Let P ′ = (e′1, . . . , e
′
`′).

No edge appears in both P and P ′ as can be proved similarly to the first observa-
tion above. Moreover, either P ends at u and P ′ ends at v or vice versa: e` = (x`−1, u)
if and only if e′`′ = (v, x`′−1) and e` = (v, x`−1) if and only if e′`′ = (x`′−1, u). Let
P−u ⊆ E−u denote the set of edges of E−u that are part of P . The sets P−v, P ′

−u,
P ′
−v are defined similarly.

15

u v

(a) A graph G.

u v

(e) Another graph G.

u v

(b) Cycle covers of G−v (dashed and solid)
and G−u (dotted and solid).

u v

(f) Cycle covers of G−v (dashed and solid)
and G−u (dotted and solid).

u

u

v

v

(c) P (top) and P ′ (bottom). Dashed and
dotted edges belong to the cycle covers of G−v

and G−u, respectively.

u

u v

v

(g) P (top) and P ′ (bottom).

u

u

v

v

(d) Cycle covers of G0
v

(top) and G0
u

(bot-
tom).

u v

u v

(h) Cycle covers of G (top) and G−u−v (bot-
tom).

Figure 7: Constructing new cycle covers from the sequences P and P ′.

Two examples are shown in Figure 7: Figures 7(a) and 7(b) show a graph with
its cycle covers, while Figure 7(c) depicts P and P ′, the former starting at u and
ending at v and the latter starting at v and ending at u. Figures 7(e), 7(f), and 7(g)
show another example graph, this time P starts and ends at u and P ′ starts and
ends at v.

We distinguish two cases. Let us start with the case that P starts at u and ends
at v and, consequently, P ′ starts at v and ends at u. Then

E0
u = (E−v \ P−v) ∪ P−u ∪ {(u, v)}

is a cycle cover of G0
u. To prove this, we have to show indegE0

u
(x) = outdegE0

u
(x) = 1

for all x ∈ V :

• We removed the outgoing edge of u in E−v, which is in P−v. The incoming
edge of u in E−v is left. P−u does not contain any edge incident to u and (u, v)
is an outgoing edge of u. Thus, indegE0

u
(u) = outdegE0

u
(u) = 1.

• There is no edge incident to v in E−v. P−u contains an outgoing edge of v and
(u, v) is an incoming edge of v. Thus, indegE0

u
(v) = outdegE0

u
(v) = 1.

16

• For all x ∈ V \ {u, v}, either both P−v and P−u contain an incoming edge of
x or none of them does. Analogously, either both P−v and P−u contain an
outgoing edge of x or none of them does. Thus, replacing P−v by P−u changes
neither indeg(x) nor outdeg(x).

By replacing the edge (u, v) by a path (u, y1), . . . , (yk, v), we obtain a cycle cover of
Gk

u for all k ∈ N. A cycle cover of G0
v is obtained similarly:

E0
v = (E−u \ P−u) ∪ P−v ∪ {(v, u)}.

As above, we get cycle covers of Gk
v by replacing (v, u) by a path (v, y1), . . . , (yk, u).

Figure 7(d) shows an example how the new cycle covers are obtained.
The case that remains to be considered is that P starts and ends at u and P ′

starts and ends at v. In this case,

(E−v \ P−u) ∪ P−v and (E−u \ P ′
−v) ∪ P ′

−u

are cycle covers of G and

(E−v \ P−v) ∪ P−u and (E−u \ P ′
−u) ∪ P ′

−v

are cycle covers of G−u−v. The proof is similar to the previous case above. Fig-
ure 7(h) shows an example.

2.5 Intractability for Directed Graphs

From the hardness results in the previous sections and the work by Hell et al. [22],
we obtain the NP-hardness and APX-hardness of L-DCC and Max-L-DCC(0,1),
respectively, for all L with 2 /∈ L and L 6⊆ {2, 3, 4}: We use the same reduction
as for undirected cycle covers and replace every undirected edge {u, v} by a pair of
directed edges (u, v) and (v, u). However, this does not work if 2 ∈ L and also leaves
open the cases when L ({2, 3, 4}. D-DCC, Max-D-DCC(0,1), and Max-D-DCC
can be solved in polynomial time, but the case L = {2} is also easy: Replace two
opposite edges (u, v) and (v, u) by an edge {u, v} of weight w(u, v) + w(v, u) and
compute a matching of maximum weight on the undirected graph thus obtained.

We will settle the complexity of the directed cycle cover problems by showing
that L = {2} and L = D are the only tractable cases. For all other L, L-DCC
is NP-hard and Max-L-DCC(0,1) and Max-L-DCC are APX-hard Let us start by
proving the APX-hardness.

Theorem 2.13. Let L ⊆ D be a non-empty set. If L 6= {2} and L 6= D, then
Max-L-DCC(0,1) and Max-L-DCC are APX-hard.

Proof. We adapt the proof presented in Section 2.2. Since L 6= {2}, there exists
a λ ∈ L with λ ≥ 3. Thus, Min-Vertex-Cover(λ) is APX-complete. All we need
is such a λ and a directed L-clamp. Then we can reduce Min-Vertex-Cover(λ) to
Max-L-DCC(0,1).

We use the L-clamps to build L-gadgets, which again should have the property
that they absorb one of their connectors and expel the other two. In case of L being

17

︸ ︷︷ ︸

Λ−3 vertices

x

y

z

(a) L-gadget for finite L.

︸ ︷︷ ︸

τ vertices
ba

x

y

z
t2

t3

u3
t1

u2

u1

v2

v3

v1

(b) L-gadget for infinite L with τ + 6 ∈ L. The
triple clamps are represented by their connectors
ti, ui, vi.

Figure 8: Directed L-gadgets with connectors x, y, z.

finite, the graph shown in Figure 8(a) is a directed L-gadget. In case of infinite
L, we can build directed triple L-clamps exactly as for undirected graphs. Using
these, we can build directed L-gadgets, which are simply directed variants of their
undirected counterparts (Figure 8(b)).

The edge gadgets build the graph G1: Let x ∈ X be a vertex of H and
a1, . . . , aλ ∈ F be the edges incident to x in H (in arbitrary order). Then we
assign weight one to the edges (x1

aξ
, x1

aξ+1
) for all ξ ∈ {1, . . . , λ − 1}. The edge

(x1
aλ

, x1
a1

) has weight zero. These λ edges are called the junctions of x.
Again, G2, . . . , Gλ are exact copies of G1 except that weight one is assigned also

to (xξ
aλ

, xξ
a1

) for all ξ ∈ {2, 3, . . . , λ}.
Again, we let the z-vertices form λ-cycles: For all edges a ∈ F , we assign weight

one to (zξ
a, z

ξ+1
a) for ξ ∈ {1, 2, . . . , λ − 1} and to (zλ

a , z1
a).

Weight zero is assigned to all edges that are not mentioned.
The remainder of the proof goes along the same lines as the APX-hardness proof

for undirected L-cycle covers.

Note that the NP-hardness of L-DCC for L /∈ {{2},D} does not follow directly
from the APX-hardness of Max-L-DCC(0,1): A famous counterexample is 2SAT, for
which it is APX-hard to maximise the number of simultaneously satisfied clauses [27],
although testing whether a 2CNF formula is satisfiable takes only linear time.

Theorem 2.14. Let L ⊆ D be a non-empty set. If L 6= {2} and L 6= D, then
L-DCC is NP-hard.

Proof. All we need is an L-clamp and some λ ∈ L with λ ≥ 3. We present a
reduction from λ-DM (which is NP-complete since λ ≥ 3) that is similar to the
reduction of Hell et al. [22] used to prove the NP-hardness of L-UCC for L 6⊆ {3, 4}.

Let (X, F) be an instance of λ-DM. Note that we will construct a directed graph
G as an instance of L-DCC, i. e., G is neither complete nor edge-weighted. For each
x ∈ X, we have a vertex in G that we again call x. For a = {x1, . . . , xλ} ∈ F , we
construct a λ-cycle consisting of the vertices a1, . . . , aλ. Then we add λ L-clamps

18

a3a2a1

x y z

Figure 9: The construction for the NP-hardness of L-DCC from the viewpoint of
a = {x, y, z} ∈ F . Each ellipse represents an L-clamp.

K
xη
a with aη and xη as connectors for all η ∈ {1, . . . , λ}. See Figure 9 for an example.

What remains to be shown is that G ∈ L-DCC if and only if (X, F) ∈ λ-DM.
Assume first that (X, F) ∈ λ-DM. Thus, there exists a subset F̃ ⊆ F such
that

⋃

a∈F̃ a = X and every element x ∈ X is contained in exactly one set of

F̃ . We construct an L-cycle cover of G in which all clamps are healthy: Let
a = {x1, . . . , xλ} ∈ F . If a ∈ F̃ , then let K

xη
a expel aη and absorb xη for all

η ∈ {1, . . . , λ}, and let a1, a2, . . . , aλ form a λ-cycle. If a /∈ F̃ , let K
xη
a expel xη and

absorb aη for all η ∈ {1, . . . , λ}. All connectors are absorbed by exactly one clamp
or are covered by a λ-cycle since F̃ is a matching.

Now we prove the reverse direction. Assume that G ∈ L-DCC, and let C be an
L-cycle cover of G. Then every clamp of G is healthy in C, i. e., it absorbs one of
its connectors and expels the other one. Let a = {x1, . . . , xλ} ∈ F and assume that
K

xη
a expels aη. Since aη must be part of a cycle in C, (aη−1, aη) and (aη, aη+1) must

be in C. We obtain that either all a1, . . . , aλ are absorbed by Kx1

a , . . . , Kxλ
a or that

all are expelled by Kx1

a , . . . , Kxλ
a . Now consider any x ∈ X and let a1, a2, . . . , a` ∈ F

be all the sets that contain x. All clamps Kx
a1

, . . . , Kx
a`

are healthy, C is an L-cycle
cover of G, and x is not incident to any further edges. Hence, there must be a unique
ai such that Kx

ai
absorbs x. Thus,

F̃ = {a = {x1, . . . , xλ} ∈ F | Kxη

a absorbs xη for all η ∈ {1, . . . , λ}}

is a λ-dimensional matching, proving (X, F) ∈ λ-DM.

If the language {1λ | λ ∈ L} is in NP, then L-DCC is also in NP and therefore
NP-complete if L /∈ {{2},D}: We can nondeterministically guess a cycle cover and
then check if λ ∈ L for every cycle length λ occurring in that cover. Conversely, if
{1λ | λ ∈ L} is not in NP, then L-DCC is not in NP either since there is a reduction
of {1λ | λ ∈ L} to L-DCC: On input x = 1λ, construct a graph G on λ vertices that
consists solely of a Hamiltonian cycle. Then x ∈ L if and only if G ∈ L-DCC.

3 Approximation Algorithms

The goal of this section is to devise approximation algorithms for Max-L-UCC and
Max-L-DCC that work for arbitrary L. The catch is that for most L it is impossible
to decide whether some cycle length is in L or not. One possibility would be to
restrict ourselves to sets L such that {1λ | λ ∈ L} is in P. Another possibility
to cope with this problem is to include the permitted cycle lengths in the input.
However, it turns out that such restrictions are not necessary.

19

A necessary and sufficient condition for a complete graph with n vertices to have
an L-cycle cover is that there exist (not necessarily distinct) lengths λ1, . . . , λk ∈ L
for some k ∈ N with

∑k
i=1 λi = n. We call such an n L-admissible and define

〈L〉 = {n | n is L-admissible}. Although L can be arbitrarily complicated, 〈L〉
always allows efficient membership testing.

Lemma 3.1. For all L ⊆ N, there exists a finite set L′ ⊆ L with 〈L′〉 = 〈L〉.

Proof. Let L≤` = {n ∈ L | n ≤ `} ⊆ L. Let gL ∈ N be the greatest common divisor
of all numbers in L. (This exists even if L is infinite.) There exists an `0 ∈ L such
that gL is also the greatest common divisor of L≤`0 .

If gL ∈ L, then 〈{gL}〉 = 〈L〉 and we are done. Thus, we assume gL /∈ L. There
exist ξ1, . . . , ξk ∈ Z and λ1, . . . , λk ∈ L≤`0 for some k ∈ N with

∑k
i=1 ξiλi = gL.

Let ξ = min1≤i≤k ξi. We have ξ < 0 since gL /∈ L. Choose any λ ∈ L≤`0 and

let ` = −ξλ ·
∑k

i=1 λi. Let n ∈ 〈L〉 with n ≥ `, let m = mod(n − `, λ), and let
s =

⌊
n−`
λ

⌋
. We can write n as

n = λs + m + ` = λs +
m

gL

·
k∑

i=1

ξiλi − λξ ·
k∑

i=1

λi = λs +
k∑

i=1

(mξi − λξ) · λi.

Since m < λ and ξi ≥ ξ < 0, we have (mξi−λξ) ≥ 0 for all i. Hence, 〈L≤`0〉 contains
all elements n ∈ 〈L〉 with n ≥ `. Elements of 〈L〉 smaller than ` are contained in
〈L≤`〉 ⊇ 〈L≤`0〉. Hence, 〈L≤`〉 = 〈L〉 and L′ = L≤` is the finite set we are looking
for.

For every fixed L, we can not only test in time polynomial in n whether n is
L-admissible, but we can, provided that n ∈ 〈L〉, also find numbers λ1, . . . , λk ∈ L′

that add up to n, where L′ ⊆ L denotes a finite set with 〈L〉 = 〈L′〉. This can be
done via dynamic programming in time O(n · |L′|), which is O(n) for fixed L.

Although 〈L〉 = 〈L′〉, there are clearly graphs for which the weights of an optimal
L-cycle cover and an optimal L′-cycle cover differ: Let λ ∈ L \ L′ and consider a
graph on λ vertices. We assign weight one to λ edges that form a Hamiltonian
cycle, all other edges are assigned weight zero. However, this does not matter for
our approximation algorithms.

The two approximation algorithms presented in Sections 3.2 and 3.3 are based
on a decomposition technique for cycle covers presented in Section 3.1.

3.1 Decomposing Cycle Covers

In this section, we present a decomposition technique for cycle covers. The technique
can be applied to cycle covers of undirected graphs but also to directed cycle covers
that do not contain 2-cycles.

A single is a single edge (or a path of length one) in a graph, while a double
is a path of length two. Our aim is to decompose a cycle cover C on n vertices into
roughly n/6 singles, n/6 doubles, and n/6 isolated vertices. If n is not divisible by
six, we replace n/6 by bn/6c or dn/6e: If n = 6k + ` for k, ` ∈ N and ` ≤ 5, then we
take k + α` singles and k + β` doubles, where α` and β` are given in Table 1. Thus,

20

` 0 1 2 3 4 5

α` 0 1 1 0 0 1

β` 0 0 0 1 1 1

Table 1: A cycle cover on n = 6k + ` vertices will be decomposed into k + α` singles
and k + β` doubles.

(a) A cycle cover. (b) A decomposition of the cycle cover.

Figure 10: An example of a decomposition according to Lemma 3.2.

we retain half of the edges of C. We aim to decompose the cycle covers such that
at least half of the weight of the cycle cover is preserved.

The reason why we decompose cycle covers into singles and doubles is the fol-
lowing: We cannot decompose them into longer paths since this does not work for
{3}-cycle covers. If we restricted ourselves to decomposing the cycle covers into sin-
gles only, then 3-cycles would limit the weight preserved: We would retain only one
third of the edges of the 3-cycles, thus at most one third of their weight in general.
Finally, if we restricted ourselves to doubles, then 5-cycles would limit the weight
we could obtain since we would retain only two of their five edges.

In our approximation algorithms, we exploit the following observation: If every
cycle cover on n vertices can be decomposed into α singles and β doubles, then,
for every L, every L-cycle cover on n vertices can be decomposed in the same way.
This implies that we can build cycle covers from such a decomposition: Given α
singles and β doubles, and n − 2α − 3β isolated vertices, we can join them to form
an L-cycle cover. (The only restriction is that n must be L-admissible.)

Let us now state the decomposition lemma.

Lemma 3.2. Let C = (V, E) be a cycle cover on n = 6k + ` vertices such that the
length of each cycle is at least three. Let w : E → N be an edge weight function.

Then there exists a decomposition D ⊆ E of C such that (V, D) consists of
vertex-disjoint k +α` singles, k +β` doubles, and n−5k−3β` −2α` isolated vertices
and w(D) ≥ w(E)/2.

Figure 10 illustrates how a cycle cover is decomposed into singles and doubles.
Let us first prove some helpful lemmas.

Lemma 3.3. Let λ, α, β ∈ N with α+2β ≥ λ/2 and 2α+3β ≤ λ. Then every cycle
c of length λ can be decomposed into α singles and β doubles such that the weight of
the decomposition is at least w(c)/2.

21

Proof. Every single involves two vertices of c while every double involves three ver-
tices. Thus, 2α + 3β ≤ λ is a necessary condition for c being decomposable into α
singles and β doubles. It is also a sufficient condition.

We assign an arbitrary orientation to c. Let e0, . . . , eλ−1 be the consecutive edges
of c, where e0 is chosen uniformly at random among the edges of c. We take α singles
e0, e2, . . . , e2α−2 and β doubles (e2α, e2α+1), (e2α+3, e2α+4), . . . , (e2α+3β−3, e2α+3β−2).
Since 2α + 3β ≤ λ, this is a feasible decomposition. The probability that any
fixed edge of c is included in the decomposition is α+2β

λ
. Thus, the expected weight

of the decomposition is α+2β
λ

· w(c) ≥ w(c)/2.

Lemma 3.4. Let λ ∈ N. Suppose that every cycle c of length λ can be decomposed
into α singles and β doubles of weight at least w(c)/2. Then every cycle c′ of length
λ + 6 can be decomposed into α + 1 singles and β + 1 doubles of weight at least
w(c′)/2.

Proof. We have α + 2β ≥ λ/2 and 2α + 3β ≤ λ. Thus, α + 1 + 2(β + 1) ≥ (λ + 6)/2
and 2(α + 1) + 3(β + 1) ≤ λ + 6. The lemma follows from Lemma 3.3.

Lemma 3.4 also holds if we consider more than one cycle: Assume that every
collection of k cycles of lengths λ1, . . . , λk can be decomposed into α singles and β
doubles such that the weight of the decomposition is at least half the weight of the
cycles. Then k cycles of lengths λ1 + 6, λ2, . . . , λk can be decomposed into α + 1
singles and β + 1 doubles such that also at least half of the weight of the cycles
is preserved. Due to Lemma 3.4, we can restrict ourselves to cycles of length at
most eight in the following. The reason for this is the following: If we know how to
decompose cycles of length λ, then we also know how to decompose cycles of length
λ + 6, λ + 12, . . . from Lemma 3.4.

We now come to the proof of the decomposition lemma.

Proof of Lemma 3.2. We prove the lemma by induction on the number of cycles.
As the induction basis, we consider a cycle cover consisting of either a single cycle
or of two odd cycles. Due to Lemma 3.4, we can restrict ourselves to considering
cycles of length at most eight. Tables 2(a) and 2(b) show how to decompose a single
cycle and two odd cycles, respectively. We always perform the decomposition such
that the weight preserved is maximised. In particular, if there are two odd cycles
of different length, we have two options in how to decompose these cycles, and we
choose the one that yields larger weight. Overall, we obtain a decomposition with an
appropriate number of singles and doubles such that at least one half of the weight
is preserved.

As the induction hypothesis, we assume that the lemma holds if the number of
cycles is less than r. Assume that we have a cycle cover C consisting of r cycles. Let
n = 6k + ` for the number of its vertices for k, ` ∈ N and ` ≤ 5. We remove either
an even cycle or two odd cycles. In the following, let C ′ be the new cycle cover
obtained by removing one or two cycles from C. A little more care is needed than in
the induction basis: Consider for instance the case of removing a 4-cycle. If ` = 4,
then C has to be decomposed into k singles and k + 1 doubles, while we have to
take k singles and k doubles from C ′. Thus, the 4-cycle has to be decomposed into
a double. But if ` = 1, then we need k + 1 singles and k doubles from C and k − 1

22

length ` α β

3 3 0 1

4 4 0 1

5 5 1 1

6 0 1 1

7 1 2 1

8 2 2 1
(a) One cycle.

lengths ` α β decomposition

3 + 3 0 1 1 3 (1,0) + 3 (0,1)

3 + 5 2 2 1 3 (1,0) + 5 (1,1)
or 3 (0,1) + 5 (2,0)

3 + 7 4 1 2 3 (1,0) + 7 (0,2)
or 3 (0,1) + 7 (1,1)

5 + 5 4 1 2 5 (0,1) + 5 (1,1)

5 + 7 0 2 2 5 (2,0) + 7 (0,2)
or 5 (1,1) + 7 (1,1)

7 + 7 2 3 2 7 (1,1) + 7 (2,1)
(b) Two odd cycles.

Table 2: The induction basis. The columns α and β show the number of singles and
doubles needed, respectively. We denote by λ (α, β) that a λ-cycle is decomposed
into α singles and β doubles. If there are two lines for a case, then the option that
yields more weight is chosen.

length ` α β

4 0,3,4,5 0 1

4 1,2 2 0

6 all 1 1

8 0,1,2,5 2 1

8 3,4 0 2
(a) Removing an even cycle.

lengths ` α β decomposition

3 + 3 all 1 1 3 (1,0) + 3 (0,1)

3 + 7 0,3,4,5 1 2 3 (1,0) + 7 (0,2)
or 3 (0,1) + 7 (1,1)

3 + 7 1,2 3 1 3 (1,0) + 7 (2,1)
or 3 (0,1) + 7 (3,0)

5 + 5 0,3,4,5 1 2 5 (0,1) + 5 (1,1)

5 + 5 1,2 3 1 5 (2,0) + 5 (1,1)

5 + 7 all 2 2 5 (2,0) + 7 (0,2)
or 5 (1,1) + 7 (1,1)

7 + 7 0,1,2,5 3 2 7 (1,1) + 7 (2,1)

7 + 7 3,4 1 3 7 (1,1) + 7 (0,2)
(b) Removing two odd cycles.

Table 3: Induction step.

singles and k doubles from C ′. Thus, the 4-cycle has to be decomposed into two
singles. Overall, the 4-cycle has to be decomposed into a double if ` ∈ {0, 3, 4, 5} and
into two singles if ` ∈ {1, 2}. Similar case distinctions hold for all other cases. How
to remove one even or two odd cycles is shown in Tables 3(a) and 3(b), respectively.

To complete the proof, we have to deal with the case of a 3- and a 5-cycle, which
is slightly more complicated and not covered by Table 3(b). We run into trouble if,
for instance, ` = 3. In this case, we have to take two doubles. If the 5-cycle is much
heavier than the 3-cycle, then it is impossible to preserve half of the weight of the
two cycles. But we can avoid this problem: As long as there is an even cycle, we
decompose this one. After that, as long as there are at least three odd cycles, we
can choose two of them such that we do not have a pair of one (3 + 6ξ)-cycle and
one (5 + 6ξ′)-cycle for some ξ, ξ′ ∈ N. The only situation in which it can happen
that we cannot avoid decomposing a (3 + 6ξ)-cycle and a (5 + 6ξ′)-cycle is when
there are only two cycles left. In this case, we have ` = 2, and we have treated this

23

case already in the induction basis.

The decomposition can clearly be done in polynomial time.
If we consider directed graphs where 2-cycles can also occur, only one third of

the weight can be preserved. This can be done by decomposing the cycle cover into
a matching of cardinality dn/3e. (Every λ-cycle can be decomposed into a matching
of up to size bλ/2c. The bottleneck are 3-cycles, which yield only one edge.

An obvious question is whether the decomposition lemma can be improved in
order to preserve more than half of the weight or more than one third of the weight
if we additionally allow 2-cycles. Unfortunately, this is not the case.

The following lemma exploits the fact that the fraction of edges that are preserved
in a cycle cover decomposition is a lower bound for the fraction of the weight that
can be preserved. A generic decomposition lemma states the following: For every
n ∈ N, every k-cycle cover on n vertices can be decomposed into α singles and β
doubles such that at least a fraction r of the weight of the cycle cover is preserved.
(As already mentioned, longer paths are impossible due to 3-cycles.) Lemma 3.2
instantiates this generic lemma with α ≈ n/6, β ≈ n/6, and r = 1/2. In case of the
presence of 2-cycles, we have sketched a decomposition with α ≈ n/3, β = 0, and
r = 1/3.

Lemma 3.5. No decomposition technique for 3-cycle covers can in general preserve
more than one half of the weight of the 3-cycle covers.

Furthermore, no decomposition technique for 2-cycle covers can in general pre-
serve more than one third of the weight of the 2-cycle covers.

Proof. Since, in particular, {3}-cycle covers have to be decomposed, we cannot de-
compose the cycle cover into paths of length more than two. Now consider decom-
posing a {4}-cycle cover. Since paths of length 3 are not allowed, we have to discard
two edges of every 4-cycle. Thus, at most 2 edges of every 4-cycle are preserved,
which proves the first part of the lemma.

The second part follows analogously by considering 3-cycles and observing that
paths of length two or more are not allowed.

Overall, Lemma 3.5 shows that every approximation algorithm for Max-L-UCC
or Max-L-DCC that works for arbitrary sets L and is purely decomposition-based
achieves approximation ratios of at best 2 or 3, respectively. We achieve an approx-
imation ratio of 8/3 < 3 for Max-L-DCC by paying special attention to 2-cycles
(Section 3.3).

3.2 Undirected Cycle Covers

Our approximation algorithm for Max-L-UCC (Algorithm 1) directly exploits Lem-
ma 3.2.

Theorem 3.6. Algorithm 1 is a factor 2 approximation algorithm for Max-L-UCC
for all L ⊆ U . Its running-time is O(n3).

24

Input: undirected complete graph G = (V, E), |V | = n; edge weights w : E → N

Output: an L-cycle cover Capx of G if n is L-admissible, ⊥ otherwise
1: if n /∈ 〈L〉 then
2: return ⊥
3: compute a cycle cover C init in G of maximum weight
4: decompose C init into a set D ⊆ C init of edges according to Lemma 3.2
5: join the singles and doubles in D to obtain an L-cycle cover Capx

6: return Capx

Algorithm 1: A 2-approximation algorithm for Max-L-UCC.

Proof. If L is infinite, we replace L by a finite set L′ ⊆ L with 〈L′〉 = 〈L〉 according
to Lemma 3.1. Algorithm 1 returns ⊥ if and only if n /∈ 〈L〉. Otherwise, an L-cycle
cover Capx is returned. Let C? denote an L-cycle cover of maximum weight of G.
We have w(C?) ≤ w(C init) ≤ 2 · w(D) ≤ 2 · w(Capx). The first inequality holds
because L-cycle covers are special cases of cycle covers. The second inequality holds
due to the decomposition lemma (Lemma 3.2). The last inequality holds since no
weight is lost during the joining. Overall, the algorithm achieves an approximation
ratio of 2.

The running-time of the algorithm is dominated by the time needed to compute
the initial cycle cover, which is O(n3) [1].

3.3 Directed Cycle Covers

In the following, let Copt be an L-cycle cover of maximum weight. Let wλ denote
the weight of the λ-cycles in Copt, i. e., w(Copt) =

∑

λ≥2 wλ.
We use the decomposition lemma only if 2 /∈ L. In this case, the weight of

an optimal L-cycle cover is at most the weight of an optimal 3-cycle cover Copt
3 .

Thus, we proceed as follows: First, we compute a 4/3 approximation C init
3 for Max-

3-DCC, which can be done by using the algorithm of Bläser et al. [7]. We have
w(C init

3) ≥ 3
4
·w(Copt

3) ≥ 3
4
·w(Copt). Now we decompose C init

3 into a collection D of
singles and doubles according to Lemma 3.2. Finally, we join the singles, doubles,
and isolated vertices of D to form an L-cycle cover Capx. We obtain a factor 8/3
approximation for the case that 2 /∈ L:

w(Capx) ≥ w(D) ≥
1

2
· w(C init

3) ≥
3

8
· w(Copt).

We divide the case that 2 ∈ L into two subcases. First, consider the case that
3 /∈ L. In this case, a matching-based algorithm achieves an approximation ratio
of 5/2: We compute a matching of a certain cardinality, which we will specify in
a moment, and then we join the edges of the matching to obtain an L-cycle cover.
The cardinality of the matching is chosen such that an L-cycle cover can be built
from such a matching. A λ-cycle yields a matching of cardinality bλ/2c. Thus, a
matching of cardinality d in a graph of n vertices can be extended to form an L-cycle

25

Input: directed complete graph G = (V, E), |V | = n; edge weights w : E → N

Output: an L-cycle cover Capx of G if n is L-admissible, ⊥ otherwise
1: if n /∈ 〈L〉 then
2: return ⊥
3: if 2 ∈ L and 3 ∈ L then
4: compute a cycle cover C init (without restrictions)
5: for all even cycles c of C init do
6: take every other edge of c such that at least one half of c’s weight is

preserved
7: add the converse edges to obtain 2-cycles; add these cycles to Capx

8: for all odd cycles c of C init do
9: take every other edge and one path of length two of c such that at least

one half of c’s weight is preserved
10: add edges to obtain 2-cycles plus one 3-cycle; add these cycles to Capx

11: else if 2 ∈ L, 3 /∈ L then
12: compute a matching M of maximum weight of cardinality at most D(n, L)
13: join the edges of M to form an L-cycle cover Capx

14: else (2 /∈ L)
15: compute a 4/3-approximation C init

3 to an optimal 3-cycle cover
16: decompose C init

3 into a set D ⊆ C init
3 of edges according to Lemma 3.2

17: join the singles and doubles in D to obtain an L-cycle Capx

18: return Capx

Algorithm 2: A factor 8/3 approximation algorithm for Max-L-DCC.

cover if and only if d ≤ D(n, L), where

D(n, L) = max

{
k∑

i=1

bλi/2c | k ∈ N,
k∑

i=1

λi = n, and λi ∈ L for 1 ≤ i ≤ k

}

.

Let us now estimate the weight of a matching of cardinality at most D(n, L) that
has maximum weight among all such matchings. From Copt, we obtain a matching
with a weight of at least

∑

λ≥2

⌊
λ

2

⌋

· wλ ≥
∑

λ≥2

2

5
· wλ =

2

5
· w(Copt).

The reason is that w3 = 0 because 3 /∈ L and that minλ∈{2,4,5,6,7,...}bλ/2c ≥ 2/5.
Thus, by computing a maximum-weight matching M of cardinality at most D(n, L)
and joining the edges to form an L-cycle cover Capx, we obtain a factor 5/2 approx-
imation.

What remains to be considered is the case that L contains both 2 and 3. In this
case, we start by computing an initial cycle cover C init (without any restrictions).
Then we do the following: For every even cycle, we take every other edge such
that at least one half of its weight is preserved. For every edge thus obtained, we
add the converse edge to obtain a collection of 2-cycles. For every odd cycle, we
take every other edge and one path of length two such that at least half of the

26

(a) Initial cycle cover C init. (b) Decomposition of C init. (c) {2, 3}-cycle cover Capx.

Figure 11: Sketch of the algorithm for {2, 3} ⊆ L.

L-UCC Max-L-UCC(0,1) Max-L-UCC

L = ∅ in P in PO in PO

L = {3} in P in PO

L = {4}, {3, 4} APX-complete

L 6⊆ {3, 4} NP-hard APX-hard APX-hard
(a) Undirected cycle covers.

L-DCC Max-L-DCC(0,1) Max-L-DCC

L = {2}, D in P in PO in PO

L /∈ {{2}, D} NP-hard APX-hard APX-hard
(b) Directed cycle covers.

Table 4: The complexity of computing L-cycle covers.

weight is preserved. Then we add edges to obtain 2-cycles and one 3-cycle. In this
way, we obtain a {2, 3}-cycle cover Capx, which is also an L-cycle cover. We have
w(Capx) ≥ 1

2
· w(C init) ≥ 1

2
· w(Copt). Figure 11 shows an example.

Our approximation algorithm is summarised as Algorithm 2. The running-time
of the algorithm of Bläser et al. is polynomial [7] and all other steps can be exe-
cuted in polynomial time as well. Thus, the running-time of Algorithm 2 is also
polynomial.

Theorem 3.7. Algorithm 2 is a factor 8/3 approximation algorithm for Max-L-
UCC for all non-empty sets L ⊆ D. Its running-time is polynomial.

4 Conclusions

For almost all L, finding L-cycle covers is NP-hard and finding L-cycle covers of
maximum weight is APX-hard. Table 4 shows an overview. Although this shows
that computing restricted cycle covers is generally very hard, we have proved that
L-cycle covers of maximum weight can be approximated within a constant factor in
polynomial time for all L.

For directed graphs, we have settled the complexity: If L = {2} or L = D,
then L-DCC, Max-L-DCC(0,1), and Max-L-DCC are solvable in polynomial time,
otherwise they are intractable. For undirected graphs, the status of only five cycle

27

cover problems remains open: L-UCC and Max-L-UCC(0,1) for L = {4}, {3, 4} and
Max-4-UCC.

There are some reasons for optimism that L-UCC and Max-L-UCC(0,1) for
L = {4}, {3, 4} are solvable in polynomial time: Hartvigsen [18] devised a poly-
nomial-time algorithm for finding {4}-cycle covers in bipartite graphs (forbidding
3-cycles does not change the problem for bipartite graphs). Moreover, there are
augmenting path theorems for L-cycle covers for all L with L ⊆ {3, 4} [28], which
includes the two cases that are known to be polynomial-time solvable. Augmenting
path theorems are often a building block for matching algorithms. But there are
also augmenting path theorems for L ⊆ {3, 4} [28], even though these L-cycle cover
problems are intractable.

Acknowledgements

I thank Jan Arpe and Martin Böhme for valuable discussions and comments.

References

[1] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows:
Theory, Algorithms, and Applications. Prentice-Hall, 1993.

[2] Paola Alimonti and Viggo Kann. Some APX-completeness results for cubic
graphs. Theoretical Computer Science, 237(1–2):123–134, 2000.

[3] Giorgio Ausiello, Pierluigi Crescenzi, Giorgio Gambosi, Viggo Kann, Alberto
Marchetti-Spaccamela, and Marco Protasi. Complexity and Approximation:
Combinatorial Optimization Problems and Their Approximability Properties.
Springer, 1999.

[4] Markus Bläser. A 3/4-approximation algorithm for maximum ATSP with
weights zero and one. In Klaus Jansen, Sanjeev Khanna, José D. P. Rolim,
and Dana Ron, editors, Proc. of the 7th Int. Workshop on Approximation Al-
gorithms for Combinatorial Optimization Problems (APPROX), volume 3122
of Lecture Notes in Computer Science, pages 61–71. Springer, 2004.

[5] Markus Bläser and Bodo Manthey. Approximating maximum weight cycle
covers in directed graphs with weights zero and one. Algorithmica, 42(2):121–
139, 2005.

[6] Markus Bläser, Bodo Manthey, and Jǐŕı Sgall. An improved approximation al-
gorithm for the asymmetric TSP with strengthened triangle inequality. Journal
of Discrete Algorithms, 4(4):623–632, 2006.

[7] Markus Bläser, L. Shankar Ram, and Maxim I. Sviridenko. Improved approx-
imation algorithms for metric maximum ATSP and maximum 3-cycle cover
problems. In Frank Dehne, Alejandro López-Ortiz, and Jörg-Rüdiger Sack, ed-
itors, Proc. of the 9th Workshop on Algorithms and Data Structures (WADS),

28

volume 3608 of Lecture Notes in Computer Science, pages 350–359. Springer,
2005.

[8] Markus Bläser and Bodo Siebert. Computing cycle covers without short cycles.
In Friedhelm Meyer auf der Heide, editor, Proc. of the 9th Ann. European Symp.
on Algorithms (ESA), volume 2161 of Lecture Notes in Computer Science, pages
368–379. Springer, 2001. Bodo Siebert is the birth name of Bodo Manthey.

[9] Avrim L. Blum, Tao Jiang, Ming Li, John Tromp, and Mihalis Yannakakis.
Linear approximation of shortest superstrings. Journal of the ACM, 41(4):630–
647, 1994.

[10] Hans-Joachim Böckenhauer, Juraj Hromkovič, Ralf Klasing, Sebastian Seibert,
and Walter Unger. Approximation algorithms for the TSP with sharpened
triangle inequality. Information Processing Letters, 75(3):133–138, 2000.

[11] L. Sunil Chandran and L. Shankar Ram. On the relationship between ATSP
and the cycle cover problem. Theoretical Computer Science, to appear.

[12] Zhi-Zhong Chen and Takayuki Nagoya. Improved approximation algorithms
for metric MaxTSP. Journal of Combinatorial Optimization, to appear.

[13] Zhi-Zhong Chen, Yuusuke Okamoto, and Lusheng Wang. Improved determin-
istic approximation algorithms for Max TSP. Information Processing Letters,
95(2):333–342, 2005.

[14] Miroslav Chleb́ık and Janka Chleb́ıková. Complexity of approximating bounded
variants of optimization problems. Theoretical Computer Science, 354(3):320–
338, 2006.

[15] Michael R. Garey and David S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman and Company, 1979.

[16] Paul C. Gilmore, Eugene L. Lawler, and David B. Shmoys. Well-solved special
cases. In Eugene L. Lawler, Jan Karel Lenstra, Alexander H. G. Rinnooy Kan,
and David B. Shmoys, editors, The Traveling Salesman Problem: A Guided
Tour of Combinatorial Optimization, pages 87–143. John Wiley & Sons, 1985.

[17] David Hartvigsen. An Extension of Matching Theory. PhD thesis, Department
of Mathematics, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA,
September 1984.

[18] David Hartvigsen. Finding maximum square-free 2-matchings in bipartite
graphs. Journal of Combinatorial Theory, Series B, 96(5):693–705, 2006.

[19] Refael Hassin and Shlomi Rubinstein. On the complexity of the k-customer
vehicle routing problem. Operations Research Letters, 33(1):71–76, 2005.

[20] Refael Hassin and Shlomi Rubinstein. An approximation algorithm for maxi-
mum triangle packing. Discrete Applied Mathematics, 154(6):971–979, 2006.

29

[21] Refael Hassin and Shlomi Rubinstein. Erratum to “An approximation algorithm
for maximum triangle packing” [Discrete Applied Mathematics 154 (2006) 971–
979]. Discrete Applied Mathematics, 154(18):2620, 2006.

[22] Pavol Hell, David G. Kirkpatrick, Jan Kratochv́ıl, and Igor Kŕız. On restricted
two-factors. SIAM Journal on Discrete Mathematics, 1(4):472–484, 1988.

[23] Haim Kaplan, Moshe Lewenstein, Nira Shafrir, and Maxim Sviridenko. Ap-
proximation algorithms for asymmetric TSP by decomposing directed regular
multigraphs. Journal of the ACM, 52(4):602–626, 2005.

[24] László Lovász and Michael D. Plummer. Matching Theory, volume 121 of
North-Holland Mathematics Studies. Elsevier, 1986.

[25] Bodo Manthey. Approximation algorithms for restricted cycle covers based
on cycle decompositions. In Fedor V. Fomin, editor, Proc. of the 32nd Int.
Workshop on Graph-Theoretical Concepts in Computer Science (WG), volume
4271 of Lecture Notes in Computer Science, pages 336–347, 2006.

[26] Bodo Manthey. On approximating restricted cycle covers. In Thomas Erlebach
and Giuseppe Persiano, editors, Proc. of the 3rd Workshop on Approximation
and Online Algorithms (WAOA 2005), volume 3879 of Lecture Notes in Com-
puter Science, pages 282–295. Springer, 2006.

[27] Christos H. Papadimitriou and Mihalis Yannakakis. Optimization, approxi-
mation, and complexity classes. Journal of Computer and System Sciences,
43(3):425–440, 1991.

[28] Mark Phillip Russell. Restricted two-factors. Master’s thesis, University of
Waterloo, Waterloo, Ontario, Canada, 2001.

[29] Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency,
volume 24 of Algorithms and Combinatorics. Springer, 2003.

[30] Z. Sweedyk. A 21
2
-approximation algorithm for shortest superstring. SIAM

Journal on Computing, 29(3):954–986, 1999.

[31] Oliver Vornberger. Easy and hard cycle covers. Technical report, Universi-
tät/Gesamthochschule Paderborn, 1980.

30

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

