Almost Euclidean sections of the N -dimensional cross-polytope using $\mathrm{O}(\mathrm{N})$ random bits

Shachar Lovett ${ }^{1}$ and Sasha Sodin ${ }^{2}$

January 23, 2007

Abstract

It is well known that \mathbb{R}^{N} has subspaces of dimension proportional to N on which the ℓ_{1} norm is equivalent to the ℓ_{2} norm; however, no explicit constructions are known. Extending earlier work by ArtsteinAvidan and Milman, we prove that such a subspace can be generated using $O(N)$ random bits.

1 Introduction

We study embeddings of ℓ_{2} spaces into ℓ_{1} spaces. Recall that the ℓ_{p} norm on \mathbb{R}^{N} is defined by:

$$
\|x\|_{p}=\left(\sum_{i=1}^{N}\left|x_{i}\right|^{p}\right)^{1 / p}(p \geq 1)
$$

The following inequality holds on \mathbb{R}^{N} :

$$
\|x\|_{2} \leq\|x\|_{1} \leq \sqrt{N}\|x\|_{2}
$$

It is well known since the work of Figiel, Lindenstrauss and Milman [7] and Kashin [13] that there exists a subspace E of \mathbb{R}^{N} of dimension

[^0]$\Theta(N)$ such that for all $x \in E,\|x\|_{1}=\Theta\left(\sqrt{N}\|x\|_{2}\right)$ (for the convenience of the reader, we recall the Θ-notation at the end of the introduction).

More formally put, for every $0<\eta<1$ and every $N \in \mathbb{N}$ (large enough), there exists an ηN-dimensional subspace $E \hookrightarrow \mathbb{R}^{N}$ such that for every $x \in E$:

$$
\begin{equation*}
c_{\eta} \sqrt{N}\|x\|_{2} \leq\|x\|_{1} \leq \sqrt{N}\|x\|_{2} \tag{1}
\end{equation*}
$$

where $c_{\eta}>0$ depends only on η.
The subspace E gives in particular an embedding of $\left(\mathbb{R}^{\eta N},\|\cdot\|_{2}\right)$ into $\left(\mathbb{R}^{N},\|\cdot\|_{1}\right)$. This allows to reduce various problems in ℓ_{2} norm to corresponding problem in ℓ_{1} norm, with only a constant blowup in the dimension.

An explicit construction of E would therefore have various algorithmic applications. This was put forward by Indyk [10, 11], who proved several related results and applied them to problems in Computer Science.

No explicit subspace E satisfying (1) has been found so far (for large N). However, it is known that a randomly chosen subspace, under various natural definitions of distributions of subspaces, satisfies (1) with probability very close to 1 .

In a sense, this situation is typical for various problems in asymptotic convex geometry, as for numerous properties satisfied by "random" high-dimensional objects it is hard to generate a deterministic object satisfying the property.

To resolve this dissonance, a new line of research was introduced by Sh. Artstein-Avidan and V. Milman. In the innovating work [3], the authors proposed to reduce the randomness needed to generate the random objects. More precisely, they showed that the random constructions in the proofs of a broad range of theorems, from Milman's Quotient of Subspace theorem to Zig-Zag approximation, can be performed on the finite probability space $\{-1,+1\}^{R}$ equipped with the uniform probability measure, where $R \in \mathbb{N}$ is reasonably small (the reader may refer to the work [4] by Artstein-Avidan and Milman for further developments and to the ICM lecture by Szarek [16] for a discussion of these and related issues).

In this case, we say informally that R random bits are used in the construction. For example, regarding the property (1), ArtsteinAvidan and Milman showed that $O(N \log N)$ random bits suffice to construct the subspace E.

Their proof uses ε-net arguments, and decreasing the number of random bits beyond $\Omega(N)$ will probably require entirely new proof ideas. However, the $\log N$ factor in [3] seemed to be an artefact of the proof.

In this work, we show that this is indeed the case, and reduce the number of random bits to $O(N)$ using a modification of the construction from [3].

Theorem 1. For every $0<\eta<1$, an ηN-dimensional subspace of \mathbb{R}^{N} satisfying (1) can be generated using $O(N)$ random bits. Moreover, the memory needed to generate the subspace is $O\left(\log ^{2} N\right)$.

As promised, we recall now the Θ-notation:
Notation. Let f, g be two functions from $(a,+\infty)$ or $(a,+\infty) \cap \mathbb{N}$ to \mathbb{R}_{+}. We will write:

1. $f=O(g)$ if there exist two constants $C>0$ and $x_{0} \geq a$ such that $f(x) \leq C g(x)$ for every $x \geq x_{0}$;
2. $f=o(g)$ if $f(x) / g(x) \rightarrow 0$ as $x \rightarrow \infty$;
3. $f=\Omega(g)$ if $g=O(f)$;
4. $f=\omega(g)$ if $g=o(f)$;
5. and finally, $f=\Theta(g)$ if $f=O(g)$ and $f=\Omega(g)$.

Acknowledgement. We thank our supervisors, Omer Reingold and Vitali Milman, for constant support and for their interest in this work. We are also grateful to Shiri Artstein-Avidan for numerous discussions and explanations, and in particular for focusing our attention on bounding the operator norm as the main technical challenge.

2 Construction

Denote $\xi=1-\eta, n=\xi N$. We will construct a random $n \times N$ sign matrix A (that is, $A_{i j}= \pm 1$) using $O(N)$ random bits, and then prove that the kernel

$$
E=\operatorname{Ker} A=\left\{x \in \mathbb{R}^{N} \mid A x=0\right\}
$$

satisfies (1) with high probability.
Recall the following simple definition:

Definition 1. The Hadamard (or entrywise) product of two $n \times N$ matrices A_{1} and A_{2} is the $n \times N$ matrix $A=A_{1} \bullet A_{2}$, defined by $(A)_{i, j}=\left(A_{1}\right)_{i, j}\left(A_{2}\right)_{i, j}$.

Our random matrix A will be the Hadamard product $A_{1} \bullet A_{2}$ of two random matrices A_{1} and A_{2}, independent of each other. The construction of A_{1} and A_{2} will use two different techniques, both of them quite common.

Definition 2. A sequence of random variables X_{1}, \ldots, X_{M} is called k-wise independent if every k of them are independent.

It is well-known that it is possible to construct $M k$-wise independent random signs from $O(k \log M)$ truly independent random signs. More formally, we have:

Lemma A. For every $k \leq M$, there exists a subset

$$
\Upsilon_{k, M} \subset\{-1,1\}^{M}
$$

such that $\left|\Upsilon_{k, M}\right|=2^{C_{k, M}}, C_{k, M}=O(k \log M)$, and for the randomly chosen vector $X=\left(X_{1}, \ldots, X_{M}\right)$ from $\Upsilon_{k, M}$, the following properties hold:

1. For $1 \leq m \leq M, \mathbb{P}\left\{X_{m}=-1\right\}=\mathbb{P}\left\{X_{m}=1\right\}=1 / 2$.
2. The coordinates of X are k-wise independent.
3. The set $\Upsilon_{k, M}$ is explicit, meaning that there exists a bijection $v_{k, M}:\{-1,1\}^{C_{k, M}} \rightarrow \Upsilon_{k, M}$ that can be computed in time polynomial in k and M.

Definition 3. The random variables $\left(X_{1}, \cdots, X_{M}\right)$ satisfying the conditions 1.-2. of Lemma A are called k-wise independent random signs.

For completeness, we reproduce a proof of Lemma A due to Alon, Babai and Itai [1] in Appendix A.

The elements of our first matrix A_{1} will be k-wise independent with $k=\Theta(\log N)$. That is, A_{1}, regarded as a vector in $\{-1,1\}^{n N}$, will be a uniformly chosen element of $\Upsilon_{k, n N}$.
Remark. Regardless of the distribution of the random sign matrix A_{2}, the entries $A_{i j}$ of the Hadamard product $A=A_{1} \bullet A_{2}$ are k-wise independent random signs (in the sense of Definition 3).

Recall the definition of ℓ_{2} operator norm:

Definition 4. For a matrix A, we define its operator norm as

$$
\|A\|=\max _{x \neq 0} \frac{\|A x\|_{2}}{\|x\|_{2}}
$$

The k-wise independence of the elements of A_{1} allows to control the operator norm of A. The following technical lemma may be of independent interest:

Lemma 2. Let V be any $n \times N$ matrix of $2 k$-wise independent random signs, $k \leq c_{2} \sqrt{N}$ (where $c_{2}>0$ is a numerical constant). Denote $\xi=n / N \leq 1$. Then, for $t \geq 0$,

$$
\begin{aligned}
\mathbb{P}\left\{\frac{1}{\sqrt{N}}\|V\| \geq 1+\sqrt{\xi}+t\right\} & \leq 2 n\left(1+\frac{t}{1+\sqrt{\xi}}\right)^{-2 k} \\
& \leq 2 n \exp \left\{\frac{-2 k t}{1+\sqrt{\xi}+t}\right\}
\end{aligned}
$$

We prove the lemma in Section 3.
Corollary 3. Let $0<\xi<1, n=\xi N$; let A_{1} be constructed as above with k-wise independent entries, and let $A=A_{1} \bullet A_{2}$, where A_{2} is an arbitrary random sign matrix independent of A_{1}. There exists a numerical constant $C_{1}>0$ such that for $k \geq C_{1} \log n$,

$$
\mathbb{P}[\|A\|>3 \sqrt{N}]<1 / n
$$

We now head to construct a probability space for A_{2}; we use random walks on expander graphs (see Hoory, Linial and Wigderson [9] for an extensive survey). Let us recall the basic definitions.

Let $G=(\mathcal{V}, \mathcal{E})$ be a d-regular graph; the value of d plays no significant role in the estimates, so the reader may assume $d=4$. Let P^{G} be the transition matrix of the random walk of G :

$$
P_{u v}^{G}= \begin{cases}1 / d, & (u, v) \in \mathcal{E} \\ 0, & (u, v) \notin \mathcal{E}\end{cases}
$$

Denote by $1=\lambda_{1} \geq \lambda_{2} \geq \lambda_{3} \geq \cdots$ the eigenvalues of P^{G} arranged in decreasing order, and denote $\lambda=\max _{i \geq 2}\left|\lambda_{i}\right|$.

In this notation, the graph G is called a $(|\mathcal{V}|, d, \lambda)$-graph. We will only need the following fact (cf. [9], [3]):

Fact. For any $d \geq 3$ and any number of vertices $|\mathcal{V}|$ (big enough), there exists a $(|\mathcal{V}|, d, \lambda)$-graph $G=(\mathcal{V}=\{1,2, \cdots,|\mathcal{V}|\}, \mathcal{E})$ such that

1. $\lambda<0.95$ and
2. G is explicit, formally meaning that set of neighbours

$$
\{u \in \mathcal{V} \mid(u, v) \in \mathcal{E}\}
$$

of any vertex $v \in \mathcal{V}$ can be computed in time that is polynomial in $\log |\mathcal{V}|$.
Sometimes we will call such a graph an expander graph with parameter λ.

Let $G=(\mathcal{V}, \mathcal{E})$ be an expander graph, with vertices \mathcal{V} indexed by the elements of $\Upsilon_{4, N}$. Let $v_{1}, v_{2}, \cdots, v_{n}$ be a random walk of length n in G, starting from a random element of \mathcal{V}. Write the sign vectors corresponding to v_{1}, \cdots, v_{n} in $\Upsilon_{4, N}$ as the rows of A_{2}.

The use of expander graphs is similar to [3]; however, we use constant degree expanders. We also show it suffices to use 4 -wise independent rows rather than truly independent rows. This enables the computation to be performed using less memory $\left(O\left(\log ^{2} N\right)\right)$.

Note that the construction uses in total

$$
\begin{align*}
O(\log n \log (N n)) & +O(\log N)+O(n \log d) \\
& =O(n+\log n \log N)=O(N) \tag{2}
\end{align*}
$$

random bits. Also, we have the following:
Lemma 4. Let A_{1} be any constant sign matrix, and let A_{2} be constructed as above. For every $x \in \mathbb{R}^{N}$ and any $\varepsilon \leq c_{\lambda} \sqrt{\xi}$,

$$
\mathbb{P}\left\{\|A x\|_{2}<6 \varepsilon \sqrt{N}\|x\|_{2}\right\}<C_{\lambda} p_{\lambda}^{n}
$$

where the constants $C_{\lambda}, c_{\lambda}>0$ and $0<p_{\lambda}<1$ depend on the parameter $\lambda \in[0,1)$ of the graph G.
Corollary 5. The statement of the lemma remains true if we change A_{1} from constant to drawn from any distribution.

We prove this lemma in Section 4; the proof is a variation on the ideas from Artstein-Avidan and Milman [3].

Now we can reformulate our main result.
Theorem 6. Let A_{1} and A_{2} be constructed as above (A_{1} has $\Theta(\log n)$ independent entries, the rows of A_{2} come from a random walk on an expander); let $A=A_{1} \bullet A_{2}, E=\operatorname{Ker} A$. Then, with probability $1-o(1)$,

$$
\begin{equation*}
\frac{c^{\prime} \xi}{\sqrt{\log 1 / \xi}} \sqrt{N}\|x\|_{2} \leq\|x\|_{1} \leq \sqrt{N}\|x\|_{2} \quad \text { for every } \quad x \in E \tag{3}
\end{equation*}
$$

where $c^{\prime}>0$ is a universal constant.
The proof uses the Lemmata formulated above as well as the following standard lemma from asymptotic convex geometry.

Lemma B. Let A be a random $n \times N$ sign matrix such that:

1. $\mathbb{P}[\|A\|>3 \sqrt{N}] \leq q$;
2. There exist $0<p<1, \varepsilon>0$ and $C>0$ such that for every $y \in \mathbb{R}^{N}$,

$$
\mathbb{P}\left\{\|A y\|_{2}<6 \varepsilon \sqrt{N}\|y\|_{2}\right\}<C p^{n}
$$

Then with probability at least

$$
1-q-p^{\Theta(n)}
$$

over the choice of A, we have:

$$
\|x\|_{1} \geq \delta \sqrt{N}\|x\|_{2} \quad \text { for every } \quad x \in \operatorname{Ker} A
$$

where we can take

$$
\delta=\frac{c \varepsilon}{\sqrt{\frac{1}{\xi} \log \frac{1}{p} \log \left(\frac{1}{\xi} \log \frac{1}{p}\right)}},
$$

$c>0$ being a universal constant.
For completeness, we prove Lemma B in Appendix B.
Proof of Theorem 6. According to Corollary 3 the random matrix A satisfies the condition 1 . of Lemma B with $q=1 / n$. According to Corollary $5 A$ also satisfies 2 ., with $p=p_{\lambda}, C=C_{\lambda}$ and $\varepsilon=c_{\lambda} \sqrt{\xi}$. Now apply Lemma B; note that $\lambda \leq 0.95<1$ is bounded away from 1 and hence p_{λ} and C_{λ} may be replaced by universal constants ($p_{0.95}$ and $C_{0.95}$, resp.)

Clearly, Theorem 6 implies Theorem 1.

3 Operator norm of a matrix with $2 k$ wise independent entries

Proof of Lemma 2. We start by bounding the expectation of $\|V\|^{2 k}$. For a real symmetric $n \times n$ matrix W, denote by $\lambda_{1}(W), \cdots, \lambda_{n}(W)$ the eigenvalues of W, and let $\lambda_{\max }(W)=\max _{i} \lambda_{i}(W)$. Observe that

$$
\|V\|^{2}=\lambda_{\max }\left(V^{t} V\right)=\lambda_{\max }\left(V V^{t}\right)
$$

and hence:

$$
\begin{aligned}
\mathbb{E}\|V / \sqrt{N}\|^{2 k} & =\mathbb{E} \lambda_{\max }\left(V V^{t} / N\right)^{k} \\
& \leq \mathbb{E} \sum_{i=1}^{n} \lambda_{i}\left(V V^{t} / N\right)^{k}=\mathbb{E} \operatorname{Tr}\left(\left(V V^{t} / N\right)^{k}\right)
\end{aligned}
$$

The trace of $\left(V V^{t}\right)^{k}$ is equal to

$$
\sum V_{i_{1}, j_{1}} V_{i_{2}, j_{1}} V_{i_{2}, j_{2}} V_{i_{3}, j_{2}} \cdots V_{i_{k}, j_{k}} V_{i_{1}, j_{k}}
$$

where the sum is over closed paths $\left(i_{1}, j_{1}, \ldots, i_{k}, j_{k}, i_{1}\right)$ in the bipartite graph $K_{n, N}$. The expectation of each term in the sum is 0 if there is some $V_{i, j}$ that appears an odd number of times, and 1 if all the terms appear an even number of times. So, the expectation is equal to the number $m(k ; n, N)$ of closed even paths of length $2 k$ in $K_{n, N}$, starting on the side of size n (an even path is a path in which every edge appears an even number of times).

Instead of estimating this expectation directly, we follow an idea of Aubrun [5] and take a different route. The trace of $\left(V V^{t}\right)^{k}$ is a sum over products of powers of at most $2 k$ elements from V , and so, since the elements of V come from a $2 k$-wise independent probability space, the expectation is the same as if the elements of V were truly independent. Hence, we can use estimates known for matrices with i.i.d. elements.

We chose to use such an estimate for matrices with Gaussian i.i.d elements. Let \widetilde{V} be an $n \times N$ matrix, whose entries are independent, $\widetilde{V}_{i, j} \sim N(0,1)$. For every entry $1 \leq i \leq n, 1 \leq j \leq N$ and every integer $l \geq 1$ we have:

$$
\mathbb{E} \widetilde{V}_{i, j}^{2 l} \geq\left(\mathbb{E} \widetilde{V}_{i, j}^{2}\right)^{l}=1=\mathbb{E} V_{i, j}^{2 l} ; \quad \mathbb{E} \widetilde{V}_{i, j}^{2 l+1}=0=\mathbb{E} V_{i, j}^{2 l+1}
$$

Therefore

$$
\begin{aligned}
\mathbb{E} \operatorname{Tr}\left(\left(V V^{t} / N\right)^{k}\right) & \leq \mathbb{E} \operatorname{Tr}\left(\left(\tilde{V} \widetilde{V}^{t} / N\right)^{k}\right)=\mathbb{E} \sum_{i=1}^{n} \lambda_{i}\left(\tilde{V} \widetilde{V}^{t} / N\right)^{k} \\
& \leq n \mathbb{E} \lambda_{\max }\left(\tilde{V} \widetilde{V}^{t} / N\right)^{k}=n \mathbb{E}\|\tilde{V} / \sqrt{N}\|^{2 k}
\end{aligned}
$$

We use the following bound for Gaussian random matrices with independent entries (see Davidson-Szarek [6, Thm. II.13], extending an idea of Y. Gordon):

$$
\mathbb{P}\{\|\widetilde{V} / \sqrt{N}\| \geq 1+\sqrt{\xi}+t\}<\exp \left(-N t^{2} / 2\right), \quad t \geq 0
$$

Now,

$$
\begin{aligned}
& \mathbb{E}\|\widetilde{V} / \sqrt{N}\|^{2 k}=\int_{0}^{\infty} 2 k t^{2 k-1} \mathbb{P}\{\|\widetilde{V} / \sqrt{N}\| \geq t\} d t \\
& \quad<(1+\sqrt{\xi})^{2 k}+2 k \int_{0}^{\infty}(1+\sqrt{\xi}+u)^{2 k-1} \exp \left(-N u^{2} / 2\right) d u
\end{aligned}
$$

It is easy to see that the second term is smaller than the first one:

$$
\begin{aligned}
& 2 k \int_{0}^{\infty}(1+\sqrt{\xi}+u)^{2 k-1} \exp \left(-N u^{2} / 2\right) d u \\
& <2 k(1+\sqrt{\xi})^{2 k-1} \int_{0}^{\infty} \exp \left\{\frac{2 k-1}{1+\sqrt{\xi}} u-N u^{2} / 2\right\} d u \\
& <\frac{2 k}{\sqrt{N}}(1+\sqrt{\xi})^{2 k-1} \int_{-\infty}^{\infty} \exp \left\{\frac{2 k-1}{\sqrt{N}+\sqrt{n}} u-u^{2} / 2\right\} d u \\
& \quad=(1+\sqrt{\xi})^{2 k-1} \frac{\sqrt{8 \pi} k}{\sqrt{N}} \exp \left\{\frac{1}{2}\left(\frac{2 k-1}{\sqrt{N}+\sqrt{n}}\right)^{2}\right\} \\
& =(1+\sqrt{\xi})^{2 k} \times O(k / \sqrt{N}) \times e^{O\left(k^{2} / N\right)} .
\end{aligned}
$$

If $k \leq c_{2} \sqrt{N}$ (for an appropriately chosen numerical constant $c_{2}>0$), the product of the O-terms is not greater than 1. Hence

$$
\mathbb{E}\|\widetilde{V} / \sqrt{N}\|^{2 k}<2(1+\sqrt{\xi})^{2 k}
$$

implying that

$$
\mathbb{E}\|V / \sqrt{N}\|^{2 k}<2 n(1+\sqrt{\xi})^{2 k} .
$$

Now by Chebyshev's inequality

$$
\mathbb{P}\{\|V / \sqrt{N}\| \geq 1+\sqrt{\xi}+t\} \leq \frac{\mathbb{E}\|V / \sqrt{N}\|^{2 k}}{(1+\sqrt{\xi}+t)^{2 k}}<2 n\left(\frac{1+\sqrt{\xi}}{1+\sqrt{\xi}+t}\right)^{2 k}
$$

Remarks.

1. The lemma shows that for $k=\Omega(\log N)$ the operator norm of V / \sqrt{N} is not much larger than $1+\sqrt{\xi}$. This matches the bound for matrices with independent entries (cf. Geman [8]).
2. A more direct proof would be to bound the numbers $m(k ; n, N)$ directly, as in the work of Geman [8]. This would yield an estimate similar to the one we get.

4 Bound for a single vector

Fix $x,\|x\|_{2}=1$; let us bound the probability

$$
\mathbb{P}\left\{\|A x\|_{2}<6 \varepsilon \sqrt{N}\right\}
$$

when $A=A_{1} \bullet A_{2}, A_{1}$ is a fixed sign matrix and A_{2} is generated from a random walk on an expander as explained in Section 2.

Recall that $G=(\mathcal{V}, \mathcal{E})$ is a d-regular graph with $2^{O(\log N)}$ vertices, and P^{G} is the transition matrix of the random walk on $G ; \lambda$ is the second largest absolute value of an eigenvalue of P^{G}.

First we bound from below the probability that a coordinate of $A x$ is not very small.

Lemma 7. Let Ψ be a random vector in $\{-1,+1\}^{N}$ with 4 -wise independent coordinates. Then

$$
\mathbb{P}\left\{\langle\Psi, x\rangle^{2} \geq 1 / 2\right\} \geq 1 / 12
$$

Proof. First,

$$
\begin{gathered}
\mathbb{E}\langle\Psi, x\rangle^{2}=\sum_{i, j=1}^{N} x_{i} x_{j} \mathbb{E} \Psi_{i} \Psi_{j}=\sum_{i=1}^{N} x_{i}^{2}=1 ; \\
\mathbb{E}\langle\Psi, x\rangle^{4}=\sum_{i, j, k, l=1}^{N} x_{i} x_{j} x_{k} x_{l} \mathbb{E} \Psi_{i} \Psi_{j} \Psi_{k} \Psi_{l} \\
=\sum_{i=1}^{N} x_{i}^{4}+6 \sum_{1 \leq i<j \leq N} x_{i}^{2} x_{j}^{2}<3\left(\sum_{i=1}^{N} x_{i}^{2}\right)^{2}=3 .
\end{gathered}
$$

Recall the Paley-Zygmund inequality [14]:

Lemma (Paley-Zygmund). If $Z \geq 0$ is a random variable with finite second moment, $0<\theta<1$, then

$$
\mathbb{P}\{Z \geq \theta \mathbb{E} Z\} \geq(1-\theta)^{2} \frac{\mathbb{E}(Z)^{2}}{\mathbb{E}\left(Z^{2}\right)}
$$

Applying the inequality for $Z=\langle\Psi, x\rangle^{2}, \theta=1 / 2$, we obtain the statement of the lemma.

Proof of Lemma 4. Let us show that a constant fraction of the rows ψ_{i} of A satisfy w.h.p

$$
\begin{equation*}
\left\langle\psi_{i}, x\right\rangle \geq 1 / 2 . \tag{4}
\end{equation*}
$$

For fixed A_{1} and $1 \leq i \leq n$, the coordinates of ψ_{i} are 4 -wise independent; therefore by Lemma 7 there is a subset $S_{i} \subset \mathcal{V}$ such that $\left|S_{i}\right| /|\mathcal{V}| \geq 1 / 12$, and the i-th ψ_{i} of A satisfies (4) iff the i-th row v_{i} of A_{2} lies in S_{i}.

We need a modification of Kahale's Chernoff-type bound on expanders [12], see also Alon, Feige, Wigderson and Zuckerman [2, Theorem 4], Artstein-Avidan and Milman [3, Section 4], and Hoory, Linial and Wigderson [9, Theorem 3.11] for related results ${ }^{1}$

Lemma 8. Let $G=(\mathcal{V}, \mathcal{E})$ be a graph; as before, let $1=\lambda_{1} \geq \lambda_{2} \geq$ $\lambda_{3} \geq \cdots$ be the eigenvalues of P^{G}; denote $\lambda=\max _{i \geq 2}\left|\lambda_{i}\right|$. The probability that a random walk on G, starting from a random point in \mathcal{V}, is in S_{i} on the i-th step, $i=1,2, \cdots, k$, is at most

$$
\prod_{i=1}^{k-1} \sqrt{\lambda+(1-\lambda) \frac{\left|S_{i}\right|}{|V|}} \sqrt{\lambda+(1-\lambda) \frac{\left|S_{i+1}\right|}{|V|}}
$$

Proof of Lemma 8. Denote $e=(1,1, \cdots, 1) / \sqrt{|\mathcal{V}|}$, and denote by Π_{i} the projector on the coordinates in S_{i}. Then the probability in question equals

$$
\begin{align*}
& \left\langle\Pi_{k} P^{G} \Pi_{k-1} P^{G} \cdots P^{G} \Pi_{1} e, e\right\rangle \\
& \quad \leq\left\|\Pi_{k} P^{G} \Pi_{k-1}\right\| \times\left\|\Pi_{k-1} P^{G} \Pi_{k-2}\right\| \times \cdots \times\left\|\Pi_{2} P^{G} \Pi_{1}\right\|, \tag{5}
\end{align*}
$$

[^1]where we used the submultiplicativity of operator norm and the equality $\Pi_{i}^{2}=\Pi_{i}$. Let us bound the norms
$$
\left\|\Pi_{i+1} P^{G} \Pi_{i}\right\|=\max _{\|g\|_{2}=1}\left\|\Pi_{i+1} P^{G} \Pi_{i} g\right\|_{2}
$$

First of all, the vector g for which the maximum is attained is supported in S_{i}; hence $\Pi_{i} g=g$. Let us decompose $g=\alpha e+\beta v$, where $\alpha^{2}+\beta^{2}=1$ and v is a unit vector orthogonal to e.

Note that

$$
|\alpha|=|\langle g, e\rangle| \leq\|g\|_{1} / \sqrt{|\mathcal{V}|} \leq \sqrt{\frac{\left|S_{i}\right|}{|\mathcal{V}|}}\|g\|_{2}=\sqrt{\frac{\left|S_{i}\right|}{|\mathcal{V}|}} .
$$

Therefore $P^{G} g=\alpha e+\beta P^{G} v$. Now,

$$
\left\|\Pi_{i+1} P^{G} g\right\|_{2}=\max _{\|h\|_{2}=1}\left\langle\Pi_{i+1} P^{G} g, h\right\rangle=\max _{\|h\|_{2}=1}\left\langle P^{G} g, \Pi_{i+1} h\right\rangle
$$

we may assume that h is supported in S_{i+1}. Let $h=\alpha^{\prime} e+\beta^{\prime} v^{\prime}$, where v^{\prime} is a unit vector orthogonal to e; as before,

$$
\alpha^{\prime 2}+\beta^{\prime 2}=1 \quad \text { and } \quad\left|\alpha^{\prime}\right| \leq \sqrt{\frac{\left|S_{i+1}\right|}{|\mathcal{V}|}}
$$

Hence

$$
\begin{aligned}
\left\langle P^{G} g, h\right\rangle & =\alpha \alpha^{\prime}+\beta \beta^{\prime}\left\langle P^{G} v, v^{\prime}\right\rangle \leq \alpha \alpha^{\prime}+\lambda \beta \beta^{\prime} \\
& \leq \sqrt{\alpha^{2}+\lambda \beta^{2}} \sqrt{\alpha^{\prime 2}+\lambda \beta^{\prime 2}} \\
& =\sqrt{\lambda+(1-\lambda) \alpha^{2}} \sqrt{\lambda+(1-\lambda) \alpha^{\prime 2}} \\
& \leq \sqrt{\lambda+(1-\lambda) \frac{\left|S_{i}\right|}{|\mathcal{V}|}} \sqrt{\lambda+(1-\lambda) \frac{\left|S_{i+1}\right|}{|\mathcal{V}|}} .
\end{aligned}
$$

Now, if $\|A x\|_{2}<6 \varepsilon \sqrt{N}, A$ has at most $72 \varepsilon^{2} N$ rows ψ such that

$$
\langle\psi, x\rangle^{2} \geq 1 / 2
$$

By Lemma 8, the probability of this event is at most

$$
\begin{align*}
& \binom{n}{\left[72 \varepsilon^{2} N\right]}\left(\frac{11}{12}(1-\lambda)+\lambda\right)^{n-\left[72 \varepsilon^{2} N\right]-1} \\
& \quad \leq 2\left(\frac{e \xi}{72 \varepsilon^{2}}\right)^{72 n \varepsilon^{2} / \xi}\left(\frac{11}{12}(1-\lambda)+\lambda\right)^{n-72 n \varepsilon^{2} / \xi} \tag{6}
\end{align*}
$$

For ε small enough, this probability is exponentially small. More formally, it is easy to see that there exist some constants $C_{\lambda} \geq 1>$ $c_{\lambda}>0$ and $0<p_{\lambda}<1$ depending only on λ, such that

$$
\begin{equation*}
\mathbb{P}\left\{\|A x\|_{2}<6 \varepsilon \sqrt{N}\right\} \leq C_{\lambda} p_{\lambda}^{n} \quad \text { if } \quad 0<\varepsilon \leq c_{\lambda} \sqrt{\xi} . \tag{7}
\end{equation*}
$$

Lemma 4 is proved.

A Construction of k-wise independent random bits

For completeness, we recall the construction of $2^{r}-1 k$-wise independent random bits from $k r$ independent random bits due to Alon, Babai and Itai [1]. It will be more convenient to work with vectors of $\{0,1\}$ rather than $\{-1,+1\}$.

Let

$$
\alpha_{1}, \cdots, \alpha_{2^{r}-1} \in \operatorname{GF}\left(2^{r}\right)
$$

be the non-zero elements of the finite field of cardinality 2^{r}. $\mathrm{GF}\left(2^{r}\right)$ is a linear space over $\mathrm{GF}(2)$; hence we may represent an element $\alpha \in$ $\mathrm{GF}\left(2^{r}\right)$ as an r-tuple $\widetilde{\alpha} \in \mathrm{GF}(2)^{r}$.

Consider the matrix

$$
M=\left(\begin{array}{ccccc}
1 & \alpha_{1} & \alpha_{1}^{2} & \cdots & \alpha_{1}^{k-1} \\
1 & \alpha_{2} & \alpha_{2}^{2} & \cdots & \alpha_{2}^{k-1} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
1 & \alpha_{2^{r}-1} & \alpha_{2}^{2} & \cdots & \alpha_{2^{r}-1}^{k-1}
\end{array}\right) .
$$

Every k rows of M form a Van der Monde matrix, and in particular are linearly independent. Let

$$
\widetilde{M}=\left(\begin{array}{ccccc}
1 & \widetilde{\alpha}_{1} & \widetilde{\alpha}_{1}^{2} & \cdots & \widetilde{\alpha}_{1}^{k-1} \\
1 & \widetilde{\alpha}_{2} & \widetilde{\alpha}_{2}^{2} & \cdots & \widetilde{\alpha}_{2}^{k-1} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
1 & \widetilde{\alpha}_{2^{r}-1} & \widetilde{\alpha}_{2}^{2} & \cdots & \widetilde{\alpha}_{2^{r}-1}^{k-1}
\end{array}\right)
$$

be the corresponding $k r \times\left(2^{r}-1\right)$ matrix over $\mathrm{GF}(2)$; its rows are also linearly independent. Now let Z be a random vector distributed uniformly in $\mathrm{GF}(2)^{k r}$; let $X=\widetilde{M} Z$.

Claim. The coordinates of the vector X are k-wise independent.

Proof. For every set of indices $\emptyset \neq I \subset\left\{1, \cdots, 2^{r}-1\right\}$ such that $|I|=k$, the matrix \widetilde{M}_{I} formed from the corresponding rows of \widetilde{M} is of rank k; that is, \widetilde{M}_{I} is surjective and the preimages of the vectors in $\{0,1\}^{k}$ are of equal size. The vector Z is distributed uniformly in $\mathrm{GF}(2)^{k r}$; hence the vector $\left(X_{i}\right)_{i \in I}=\widetilde{M}_{I} Z$ is uniformly distributed in $\mathrm{GF}(2)^{k}$.

B Proof of Lemma B

The proof of Lemma B is based on ε-net arguments.
Definition 5. Let $S \subset \mathbb{R}^{N}$ be a convex set. A (finite) subset $\mathcal{N} \subset S$ is called an ε-net in S if for every $x \in S$ there exists $y \in \mathcal{N}$ such that $\|x-y\|_{2} \leq \varepsilon$.
Notation. Let $t>0$ and let $K \subset \mathbb{R}^{n}$ be a convex body. As usual, denote

$$
t K=\{t x \mid x \in K\} .
$$

Similarly to [3], we use the following result, due to Schütt [15]:
Theorem (Schütt). The exists a universal constant $c>0$ such that for any $\zeta>0$ and $\theta \geq c \sqrt{\frac{1}{\zeta} \log \frac{1}{\zeta}}$ there exists a θ-net \mathcal{N} in $\sqrt{N} B_{1}^{N}$ such that $|\mathcal{N}| \leq e^{\zeta N}$.
Proof of Lemma B. Pick $0<\zeta<\xi \log \frac{1}{p}$; then $e^{\zeta}<1 / p^{\xi}$. Set

$$
\delta=\frac{\varepsilon}{c \sqrt{\frac{1}{\zeta} \log \frac{1}{\zeta}}}
$$

Scaling the result of Schütt's theorem times δ, we get an ε-net \mathcal{N} in $\delta \sqrt{N} B_{1}^{N},|\mathcal{N}| \leq e^{\zeta N}$.

By our assumptions, for every $y \in \mathcal{N}$

$$
\mathbb{P}\left\{\|A y\|_{2}<6 \varepsilon \sqrt{N}\|y\|_{2}\right\}<C p^{n}
$$

and so the probability that there exists $y \in \mathcal{N}$ with

$$
\|A y\|_{2}<6 \varepsilon \sqrt{N}\|y\|_{2}
$$

is at most

$$
C e^{\zeta N} p^{n}=p^{\Theta(n)}
$$

Assume that for every $y \in \mathcal{N}$ we have

$$
\|A y\|_{2} \geq 6 \varepsilon \sqrt{N}\|y\|_{2}
$$

and also that $\|A\| \leq 3 \sqrt{N}$. This event happens with probability at least $1-q-p^{\Theta(n)}$. We will show that whenever these two conditions hold, every $x \in \operatorname{Ker} A$ satisfies

$$
\|x\|_{1} \geq \delta \sqrt{N}\|x\|_{2} .
$$

It is enough to show this for x with $\|x\|_{2}=1$.
Take any $x \in \mathbb{R}^{N}$ with $\|x\|_{1}<\delta \sqrt{N}$ and $\|x\|_{2}=1$. We will show $x \notin \operatorname{Ker}(A)$. First, $x \in \delta \sqrt{N} B_{1}^{N}$, and so there exists $y \in \mathcal{N}$ such that $\|x-y\| \leq \varepsilon$. Now we have:

$$
\begin{aligned}
\|A x\|_{2} & \geq\|A y\|_{2}-\|A(x-y)\|_{2} \geq 6 \varepsilon \sqrt{N}\|y\|_{2}-\|A\|\|x-y\|_{2} \\
& \geq 6 \varepsilon(1-\varepsilon) \sqrt{N}-3 \varepsilon \sqrt{N}>0,
\end{aligned}
$$

where we used the fact that

$$
\|y\|_{2} \geq\|x\|_{2}-\|x-y\|_{2} \geq 1-\varepsilon
$$

References

[1] N. Alon, L. Babai and A. Itai, A fast and simple randomized parallel algorithm for the maximal independent set problem, J. Algorithms 7 (1986), no. 4, 567-583
[2] N. Alon, U. Feige, A. Wigderson and D. Zuckerman, Derandomized graph products, Comput. Complexity 5 (1995), no. 1, 60-75
[3] S. Artstein-Avidan and V. D. Milman, Logarithmic reduction of the level of randomness in some probabilistic geometric constructions, J. Funct. Anal. 235 (2006), no. 1, 297-329
[4] S. Artstein-Avidan and V. D. Milman, Using Rademcher Permutations to reduce randomness, to appear
[5] G. Aubrun, Sampling convex bodies: a random matrix approach, to appear
[6] K. R. Davidson, S. J. Szarek, Local operator theory, random matrices and Banach spaces, Handbook of the geometry of Banach spaces, Vol. I, 317-366, North-Holland, Amsterdam, 2001
[7] T. Figiel, J. Lindenstrauss and V. D. Milman, The dimension of almost spherical sections of convex bodies, Acta Math. 139 (1977), no. 1-2, 53-94
[8] S. Geman, A limit theorem for the norm of random matrices, Ann. Probab. 8 (1980), no. 2, 252-261
[9] S. Hoory, N. Linial and A. Wigderson, Expander graphs and their applications, Bull. Amer. Math. Soc. (N.S.) 43 (2006), no. 4, 439-561 (electronic)
[10] P. Indyk, Uncertainty Principles, Extractors, and Explicit Embeddings of L_{2} into L_{1}, ECCC TR06-126, 2006
[11] P. Indyk, Stable distributions, pseudorandom generators, embeddings and data stream computation, 41st Annual Symposium on Foundations of Computer Science (Redondo Beach, CA, 2000), 189-197, IEEE Comput. Soc. Press, Los Alamitos, CA, 2000
[12] N. Kahale, Better expansion for Ramanujan graphs, 32nd Annual Symposium on Foundations of Computer Science (San Juan, PR, 1991), 398-404, IEEE Comput. Soc. Press, Los Alamitos, CA, 1991
[13] B. S. Kashin, The widths of certain finite-dimensional sets and classes of smooth functions, Izv. Akad. Nauk SSSR Ser. Mat. 41 (1977), no. 2, 334-351, 478
[14] R. E. A. C. Paley and A. Zygmund, A note on analytic functions in the unit circle, Proc. Camb. Phil. Soc. 28, 1932, 266272
[15] C. Schütt, Entropy numbers of diagonal operators between symmetric Banach spaces., J. Approx. Theory 40 (1984), no. 2, 121-128
[16] S. Szarek, Convexity, Complexity, and High Dimensions, to appear in Proceedings of the International Congress of Mathematicians (Madrid, 2006)

[^0]: ${ }^{1}$ Faculty of Mathematics and Computer Science, The Weizmann Institute of Science, POB 26, Rehovot 76100, Israel. Email: Shachar.Lovett@weizmann.ac.il
 ${ }^{2}$ School of Mathematics, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel. Email: sodinale@tau.ac.il

[^1]: ${ }^{1}$ Added in proof: an even stronger result was recently proved. See theorem 5.4 in E. Mossel, R. O'Donnell, O. Regev, J. Steif and B. Sudakov, Non-Interactive Correlation Distillation, Inhomogeneous Markov Chains and the Reverse Bonami-Beckner Inequality, Israel Journal of Mathematics 154 (2006), 299-336.

