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Abstract

It is well known that R
N has subspaces of dimension proportional

to N on which the `1 norm is equivalent to the `2 norm; however, no
explicit constructions are known. Extending earlier work by Artstein–
Avidan and Milman, we prove that such a subspace can be generated
using O(N) random bits.

1 Introduction

We study embeddings of `2 spaces into `1 spaces. Recall that the `p
norm on R

N is defined by:

‖x‖p =

(
N∑

i=1

|xi|p
)1/p

(p ≥ 1)

The following inequality holds on R
N :

‖x‖2 ≤ ‖x‖1 ≤
√
N‖x‖2
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It is well known since the work of Figiel, Lindenstrauss and Milman
[7] and Kashin [13] that there exists a subspace E of R

N of dimension
Θ(N) such that for all x ∈ E, ‖x‖1 = Θ(

√
N‖x‖2) (for the convenience

of the reader, we recall the Θ-notation at the end of the introduction).
More formally put, for every 0 < η < 1 and every N ∈ N (large

enough), there exists an ηN -dimensional subspace E ↪→ RN such that
for every x ∈ E:

cη
√
N‖x‖2 ≤ ‖x‖1 ≤

√
N‖x‖2 (1)

where cη > 0 depends only on η.
The subspace E gives in particular an embedding of (RηN , ‖ · ‖2)

into (RN , ‖ · ‖1). This allows to reduce various problems in `2 norm
to corresponding problem in `1 norm, with only a constant blowup in
the dimension.

An explicit construction of E would therefore have various algo-
rithmic applications. This was put forward by Indyk [10, 11], who
proved several related results and applied them to problems in Com-
puter Science.

No explicit subspace E satisfying (1) has been found so far (for
large N). However, it is known that a randomly chosen subspace,
under various natural definitions of distributions of subspaces, satisfies
(1) with probability very close to 1.

In a sense, this situation is typical for various problems in asymp-
totic convex geometry, as for numerous properties satisfied by “ran-
dom” high-dimensional objects it is hard to generate a deterministic
object satisfying the property.

To resolve this dissonance, a new line of research was introduced
by Sh. Artstein-Avidan and V. Milman. In the innovating work [3],
the authors proposed to reduce the randomness needed to generate the
random objects. More precisely, they showed that the random con-
structions in the proofs of a broad range of theorems, from Milman’s
Quotient of Subspace theorem to Zig-Zag approximation, can be per-
formed on the finite probability space {−1,+1}R equipped with the
uniform probability measure, where R ∈ N is reasonably small (the
reader may refer to the work [4] by Artstein–Avidan and Milman for
further developments and to the ICM lecture by Szarek [16] for a
discussion of these and related issues).

In this case, we say informally that R random bits are used in
the construction. For example, regarding the property (1), Artstein-
Avidan and Milman showed that O(N logN) random bits suffice to
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construct the subspace E.
Their proof uses ε-net arguments, and decreasing the number of

random bits beyond Ω(N) will probably require entirely new proof
ideas. However, the logN factor in [3] seemed to be an artefact of the
proof.

In this work, we show that this is indeed the case, and reduce the
number of random bits to O(N) using a modification of the construc-
tion from [3].

Theorem 1. For every 0 < η < 1, an ηN -dimensional subspace of R
N

satisfying (1) can be generated using O(N) random bits. Moreover, the
memory needed to generate the subspace is O(log2N).

As promised, we recall now the Θ-notation:

Notation. Let f, g be two functions from (a,+∞) or (a,+∞) ∩ N to
R+. We will write:

1. f = O(g) if there exist two constants C > 0 and x0 ≥ a such
that f(x) ≤ Cg(x) for every x ≥ x0;

2. f = o(g) if f(x)/g(x) → 0 as x→ ∞;

3. f = Ω(g) if g = O(f);

4. f = ω(g) if g = o(f);

5. and finally, f = Θ(g) if f = O(g) and f = Ω(g).

Acknowledgement. We thank our supervisors, Omer Reingold and
Vitali Milman, for constant support and for their interest in this work.
We are also grateful to Shiri Artstein–Avidan for numerous discus-
sions and explanations, and in particular for focusing our attention on
bounding the operator norm as the main technical challenge.

2 Construction

Denote ξ = 1 − η, n = ξN . We will construct a random n × N sign
matrix A (that is, Aij = ±1) using O(N) random bits, and then prove
that the kernel

E = KerA =
{
x ∈ R

N
∣∣Ax = 0

}

satisfies (1) with high probability.
Recall the following simple definition:
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Definition 1. The Hadamard (or entrywise) product of two n × N
matrices A1 and A2 is the n × N matrix A = A1 • A2, defined by
(A)i,j = (A1)i,j(A2)i,j .

Our random matrix A will be the Hadamard product A1 • A2 of
two random matrices A1 and A2, independent of each other. The
construction of A1 and A2 will use two different techniques, both of
them quite common.

Definition 2. A sequence of random variables X1, ...,XM is called
k-wise independent if every k of them are independent.

It is well-known that it is possible to construct M k-wise indepen-
dent random signs from O(k logM) truly independent random signs.
More formally, we have:

Lemma A. For every k ≤M , there exists a subset

Υk,M ⊂ {−1, 1}M

such that |Υk,M | = 2Ck,M , Ck,M = O(k logM), and for the randomly
chosen vector X = (X1, ...,XM ) from Υk,M , the following properties
hold:

1. For 1 ≤ m ≤M , P{Xm = −1} = P{Xm = 1} = 1/2.

2. The coordinates of X are k-wise independent.

3. The set Υk,M is explicit, meaning that there exists a bijection
υk,M : {−1, 1}Ck,M → Υk,M that can be computed in time poly-
nomial in k and M .

Definition 3. The random variables (X1, · · · ,XM ) satisfying the con-
ditions 1.-2. of Lemma A are called k-wise independent random signs.

For completeness, we reproduce a proof of Lemma A due to Alon,
Babai and Itai [1] in Appendix A.

The elements of our first matrix A1 will be k-wise independent
with k = Θ(logN). That is, A1, regarded as a vector in {−1, 1}nN ,
will be a uniformly chosen element of Υk,nN .

Remark. Regardless of the distribution of the random sign matrix A2,
the entries Aij of the Hadamard product A = A1 • A2 are k-wise
independent random signs (in the sense of Definition 3).

Recall the definition of `2 operator norm:
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Definition 4. For a matrix A, we define its operator norm as

‖A‖ = max
x 6=0

‖Ax‖2

‖x‖2
.

The k-wise independence of the elements of A1 allows to control
the operator norm of A. The following technical lemma may be of
independent interest:

Lemma 2. Let V be any n×N matrix of 2k-wise independent random
signs, k ≤ c2

√
N (where c2 > 0 is a numerical constant). Denote

ξ = n/N ≤ 1. Then, for t ≥ 0,

P

{
1√
N

‖V ‖ ≥ 1 +
√
ξ + t

}
≤ 2n

(
1 +

t

1 +
√
ξ

)−2k

≤ 2n exp

{ −2kt

1 +
√
ξ + t

}
.

We prove the lemma in Section 3.

Corollary 3. Let 0 < ξ < 1, n = ξN ; let A1 be constructed as above
with k-wise independent entries, and let A = A1 • A2, where A2 is
an arbitrary random sign matrix independent of A1. There exists a
numerical constant C1 > 0 such that for k ≥ C1 log n,

P[‖A‖ > 3
√
N ] < 1/n .

We now head to construct a probability space for A2; we use ran-
dom walks on expander graphs (see Hoory, Linial and Wigderson [9]
for an extensive survey). Let us recall the basic definitions.

Let G = (V, E) be a d-regular graph; the value of d plays no signif-
icant role in the estimates, so the reader may assume d = 4. Let PG

be the transition matrix of the random walk of G:

PG
uv =

{
1/d, (u, v) ∈ E
0, (u, v) /∈ E .

Denote by 1 = λ1 ≥ λ2 ≥ λ3 ≥ · · · the eigenvalues of PG arranged in
decreasing order, and denote λ = maxi≥2 |λi|.

In this notation, the graph G is called a (|V|, d, λ)-graph. We will
only need the following fact (cf. [9], [3]):

Fact. For any d ≥ 3 and any number of vertices |V| (big enough),
there exists a (|V|, d, λ)-graph G = (V = {1, 2, · · · , |V|}, E) such that
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1. λ < 0.95 and

2. G is explicit, formally meaning that set of neighbours

{u ∈ V | (u, v) ∈ E}
of any vertex v ∈ V can be computed in time that is polynomial
in log |V|.

Sometimes we will call such a graph an expander graph with pa-
rameter λ.

Let G = (V, E) be an expander graph, with vertices V indexed by
the elements of Υ4,N . Let v1, v2, · · · , vn be a random walk of length
n in G, starting from a random element of V. Write the sign vectors
corresponding to v1, · · · , vn in Υ4,N as the rows of A2.

The use of expander graphs is similar to [3]; however, we use con-
stant degree expanders. We also show it suffices to use 4-wise inde-
pendent rows rather than truly independent rows. This enables the
computation to be performed using less memory (O(log2N)).

Note that the construction uses in total

O(log n log(Nn)) +O(logN) +O(n log d)

= O(n+ log n logN) = O(N)
(2)

random bits. Also, we have the following:

Lemma 4. Let A1 be any constant sign matrix, and let A2 be con-
structed as above. For every x ∈ R

N and any ε ≤ cλ
√
ξ,

P

{
‖Ax‖2 < 6ε

√
N‖x‖2

}
< Cλp

n
λ ,

where the constants Cλ, cλ > 0 and 0 < pλ < 1 depend on the param-
eter λ ∈ [0, 1) of the graph G.

Corollary 5. The statement of the lemma remains true if we change
A1 from constant to drawn from any distribution.

We prove this lemma in Section 4; the proof is a variation on the
ideas from Artstein-Avidan and Milman [3].

Now we can reformulate our main result.

Theorem 6. Let A1 and A2 be constructed as above (A1 has Θ(log n)
independent entries, the rows of A2 come from a random walk on an
expander); let A = A1•A2, E = KerA. Then, with probability 1−o(1),

c′ξ√
log 1/ξ

√
N‖x‖2 ≤ ‖x‖1 ≤

√
N‖x‖2 for every x ∈ E , (3)
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where c′ > 0 is a universal constant.

The proof uses the Lemmata formulated above as well as the fol-
lowing standard lemma from asymptotic convex geometry.

Lemma B. Let A be a random n×N sign matrix such that:

1. P[‖A‖ > 3
√
N ] ≤ q;

2. There exist 0 < p < 1, ε > 0 and C > 0 such that for every
y ∈ R

N ,

P

{
‖Ay‖2 < 6ε

√
N‖y‖2

}
< Cpn .

Then with probability at least

1 − q − pΘ(n)

over the choice of A, we have:

‖x‖1 ≥ δ
√
N‖x‖2 for every x ∈ KerA ,

where we can take

δ =
cε√

1
ξ log 1

p log (1
ξ log 1

p)
,

c > 0 being a universal constant.

For completeness, we prove Lemma B in Appendix B.

Proof of Theorem 6. According to Corollary 3 the random matrix A
satisfies the condition 1. of Lemma B with q = 1/n. According to
Corollary 5 A also satisfies 2., with p = pλ, C = Cλ and ε = cλ

√
ξ.

Now apply Lemma B; note that λ ≤ 0.95 < 1 is bounded away from
1 and hence pλ and Cλ may be replaced by universal constants (p0.95

and C0.95, resp.)

Clearly, Theorem 6 implies Theorem 1.
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3 Operator norm of a matrix with 2k-

wise independent entries

Proof of Lemma 2. We start by bounding the expectation of ‖V ‖2k.
For a real symmetric n × n matrix W , denote by λ1(W ), · · · , λn(W )
the eigenvalues of W , and let λmax(W ) = maxi λi(W ). Observe that

‖V ‖2 = λmax(V
tV ) = λmax(V V

t)

and hence:

E‖V/
√
N‖2k = Eλmax(V V

t/N)k

≤ E

n∑

i=1

λi(V V
t/N)k = ETr((V V t/N)k) .

The trace of (V V t)k is equal to

∑
Vi1,j1Vi2,j1Vi2,j2Vi3,j2 · · · Vik,jk

Vi1,jk
,

where the sum is over closed paths (i1, j1, ..., ik , jk, i1) in the bipartite
graph Kn,N . The expectation of each term in the sum is 0 if there
is some Vi,j that appears an odd number of times, and 1 if all the
terms appear an even number of times. So, the expectation is equal
to the number m(k;n,N) of closed even paths of length 2k in Kn,N ,
starting on the side of size n (an even path is a path in which every
edge appears an even number of times).

Instead of estimating this expectation directly, we follow an idea
of Aubrun [5] and take a different route. The trace of (V V t)k is a
sum over products of powers of at most 2k elements from V, and so,
since the elements of V come from a 2k-wise independent probability
space, the expectation is the same as if the elements of V were truly
independent. Hence, we can use estimates known for matrices with
i.i.d. elements.

We chose to use such an estimate for matrices with Gaussian i.i.d
elements. Let Ṽ be an n×N matrix, whose entries are independent,
Ṽi,j ∼ N(0, 1). For every entry 1 ≤ i ≤ n, 1 ≤ j ≤ N and every
integer l ≥ 1 we have:

EṼ 2l
i,j ≥ (EṼ 2

i,j)
l = 1 = EV 2l

i,j ; EṼ 2l+1
i,j = 0 = EV 2l+1

i,j .
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Therefore

ETr((V V t/N)k) ≤ ETr((Ṽ Ṽ t/N)k) = E

n∑

i=1

λi(Ṽ Ṽ
t/N)k

≤ nEλmax(Ṽ Ṽ
t/N)k = nE‖Ṽ /

√
N‖2k .

We use the following bound for Gaussian random matrices with
independent entries (see Davidson–Szarek [6, Thm. II.13], extending
an idea of Y. Gordon):

P

{
‖Ṽ /

√
N‖ ≥ 1 +

√
ξ + t

}
< exp(−Nt2/2) , t ≥ 0 .

Now,

E‖Ṽ /
√
N‖2k =

∫ ∞

0
2kt2k−1

P

{
‖Ṽ /

√
N‖ ≥ t

}
dt

< (1 +
√
ξ)2k + 2k

∫ ∞

0
(1 +

√
ξ + u)2k−1 exp(−Nu2/2) du .

It is easy to see that the second term is smaller than the first one:

2k

∫ ∞

0
(1 +

√
ξ + u)2k−1 exp(−Nu2/2) du

< 2k(1 +
√
ξ)2k−1

∫ ∞

0
exp

{
2k − 1

1 +
√
ξ
u−Nu2/2

}
du

<
2k√
N

(1 +
√
ξ)2k−1

∫ ∞

−∞
exp

{
2k − 1√
N +

√
n
u− u2/2

}
du

= (1 +
√
ξ)2k−1

√
8π k√
N

exp

{
1

2

(
2k − 1√
N +

√
n

)2
}

= (1 +
√
ξ)2k ×O(k/

√
N) × eO(k2/N) .

If k ≤ c2
√
N (for an appropriately chosen numerical constant c2 > 0),

the product of the O-terms is not greater than 1. Hence

E‖Ṽ /
√
N‖2k < 2(1 +

√
ξ)2k ,

implying that
E‖V/

√
N‖2k < 2n(1 +

√
ξ)2k .

Now by Chebyshev’s inequality

P

{
‖V/

√
N‖ ≥ 1 +

√
ξ + t

}
≤ E‖V/

√
N‖2k

(1 +
√
ξ + t)2k

< 2n

(
1 +

√
ξ

1 +
√
ξ + t

)2k
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Remarks.

1. The lemma shows that for k = Ω(logN) the operator norm of
V/

√
N is not much larger than 1+

√
ξ. This matches the bound

for matrices with independent entries (cf. Geman [8]).

2. A more direct proof would be to bound the numbers m(k;n,N)
directly, as in the work of Geman [8]. This would yield an esti-
mate similar to the one we get.

4 Bound for a single vector

Fix x, ‖x‖2 = 1; let us bound the probability

P

{
‖Ax‖2 < 6ε

√
N
}

when A = A1 •A2, A1 is a fixed sign matrix and A2 is generated from
a random walk on an expander as explained in Section 2.

Recall that G = (V, E) is a d-regular graph with 2O(log N) vertices,
and PG is the transition matrix of the random walk on G; λ is the
second largest absolute value of an eigenvalue of PG.

First we bound from below the probability that a coordinate of Ax
is not very small.

Lemma 7. Let Ψ be a random vector in {−1,+1}N with 4-wise in-
dependent coordinates. Then

P
{
〈Ψ, x〉2 ≥ 1/2

}
≥ 1/12 .

Proof. First,

E〈Ψ, x〉2 =

N∑

i,j=1

xixjEΨiΨj =

N∑

i=1

x2
i = 1 ;

E〈Ψ, x〉4 =
N∑

i,j,k,l=1

xixjxkxl EΨiΨjΨkΨl

=

N∑

i=1

x4
i + 6

∑

1≤i<j≤N

x2
ix

2
j < 3

(
N∑

i=1

x2
i

)2

= 3 .

Recall the Paley–Zygmund inequality [14]:
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Lemma (Paley–Zygmund). If Z ≥ 0 is a random variable with finite
second moment, 0 < θ < 1, then

P {Z ≥ θEZ} ≥ (1 − θ)2
E(Z)2

E(Z2)
.

Applying the inequality for Z = 〈Ψ, x〉2, θ = 1/2, we obtain the
statement of the lemma.

Proof of Lemma 4. Let us show that a constant fraction of the rows
ψi of A satisfy w.h.p

〈ψi, x〉 ≥ 1/2 . (4)

For fixed A1 and 1 ≤ i ≤ n, the coordinates of ψi are 4-wise inde-
pendent; therefore by Lemma 7 there is a subset Si ⊂ V such that
|Si|/|V| ≥ 1/12, and the i-th ψi of A satisfies (4) iff the i-th row vi of
A2 lies in Si.

We need a modification of Kahale’s Chernoff-type bound on ex-
panders [12], see also Alon, Feige, Wigderson and Zuckerman [2, The-
orem 4], Artstein-Avidan and Milman [3, Section 4], and Hoory, Linial
and Wigderson [9, Theorem 3.11] for related results1

Lemma 8. Let G = (V, E) be a graph; as before, let 1 = λ1 ≥ λ2 ≥
λ3 ≥ · · · be the eigenvalues of PG; denote λ = maxi≥2 |λi|. The
probability that a random walk on G, starting from a random point in
V, is in Si on the i-th step, i = 1, 2, · · · , k, is at most

k−1∏

i=1

√
λ+ (1 − λ)

|Si|
|V |

√
λ+ (1 − λ)

|Si+1|
|V | .

Proof of Lemma 8. Denote e = (1, 1, · · · , 1)/
√

|V|, and denote by Πi

the projector on the coordinates in Si. Then the probability in ques-
tion equals

〈ΠkP
GΠk−1P

G · · ·PGΠ1e, e〉
≤ ‖ΠkP

GΠk−1‖ × ‖Πk−1P
GΠk−2‖ × · · · × ‖Π2P

GΠ1‖ , (5)

1Added in proof: an even stronger result was recently proved. See theorem 5.4 in E.
Mossel, R. O’Donnell, O. Regev, J. Steif and B. Sudakov, Non-Interactive Correlation
Distillation, Inhomogeneous Markov Chains and the Reverse Bonami-Beckner Inequality,
Israel Journal of Mathematics 154 (2006), 299-336.
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where we used the submultiplicativity of operator norm and the equal-
ity Π2

i = Πi. Let us bound the norms

‖Πi+1P
GΠi‖ = max

‖g‖2=1
‖Πi+1P

GΠig‖2 .

First of all, the vector g for which the maximum is attained is
supported in Si; hence Πig = g. Let us decompose g = αe + βv,
where α2 + β2 = 1 and v is a unit vector orthogonal to e.

Note that

|α| = |〈g, e〉| ≤ ‖g‖1/
√

|V| ≤
√

|Si|
|V| ‖g‖2 =

√
|Si|
|V| .

Therefore PGg = αe+ βPGv. Now,

‖Πi+1P
Gg‖2 = max

‖h‖2=1
〈Πi+1P

Gg, h〉 = max
‖h‖2=1

〈PGg,Πi+1h〉 ;

we may assume that h is supported in Si+1. Let h = α′e+β′v′, where
v′ is a unit vector orthogonal to e; as before,

α′2 + β′2 = 1 and |α′| ≤
√

|Si+1|
|V| .

Hence

〈PGg, h〉 = αα′ + ββ′〈PGv, v′〉 ≤ αα′ + λββ′

≤
√
α2 + λβ2

√
α′2 + λβ′2

=
√
λ+ (1 − λ)α2

√
λ+ (1 − λ)α′2

≤
√
λ+ (1 − λ)

|Si|
|V|

√
λ+ (1 − λ)

|Si+1|
|V| .

Now, if ‖Ax‖2 < 6ε
√
N , A has at most 72ε2N rows ψ such that

〈ψ, x〉2 ≥ 1/2 .

By Lemma 8, the probability of this event is at most

(
n

[72ε2N ]

)(
11

12
(1 − λ) + λ

)n−[72ε2N ]−1

≤ 2

(
eξ

72ε2

)72nε2/ξ (11

12
(1 − λ) + λ

)n−72nε2/ξ

. (6)
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For ε small enough, this probability is exponentially small. More
formally, it is easy to see that there exist some constants Cλ ≥ 1 >
cλ > 0 and 0 < pλ < 1 depending only on λ, such that

P

{
‖Ax‖2 < 6ε

√
N
}
≤ Cλp

n
λ if 0 < ε ≤ cλ

√
ξ . (7)

Lemma 4 is proved.

A Construction of k-wise independent

random bits

For completeness, we recall the construction of 2r − 1 k-wise inde-
pendent random bits from kr independent random bits due to Alon,
Babai and Itai [1]. It will be more convenient to work with vectors of
{0, 1} rather than {−1,+1}.

Let
α1, · · · , α2r−1 ∈ GF(2r)

be the non-zero elements of the finite field of cardinality 2r. GF(2r)
is a linear space over GF(2); hence we may represent an element α ∈
GF(2r) as an r-tuple α̃ ∈ GF(2)r.

Consider the matrix

M =




1 α1 α2
1 · · · αk−1

1

1 α2 α2
2 · · · αk−1

2

· · · · · · · · · · · · · · ·
1 α2r−1 α2

2 · · · αk−1
2r−1


 .

Every k rows of M form a Van der Monde matrix, and in particular
are linearly independent. Let

M̃ =




1 α̃1 α̃2
1 · · · α̃k−1

1

1 α̃2 α̃2
2 · · · α̃k−1

2

· · · · · · · · · · · · · · ·
1 α̃2r−1 α̃2

2 · · · α̃k−1
2r−1




be the corresponding kr × (2r − 1) matrix over GF(2); its rows are
also linearly independent. Now let Z be a random vector distributed
uniformly in GF(2)kr; let X = M̃Z.

Claim. The coordinates of the vector X are k-wise independent.
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Proof. For every set of indices ∅ 6= I ⊂ {1, · · · , 2r − 1} such that

|I| = k, the matrix M̃I formed from the corresponding rows of M̃ is

of rank k; that is, M̃I is surjective and the preimages of the vectors
in {0, 1}k are of equal size. The vector Z is distributed uniformly in

GF(2)kr; hence the vector (Xi)i∈I = M̃IZ is uniformly distributed in
GF(2)k.

B Proof of Lemma B

The proof of Lemma B is based on ε-net arguments.

Definition 5. Let S ⊂ R
N be a convex set. A (finite) subset N ⊂ S

is called an ε-net in S if for every x ∈ S there exists y ∈ N such that
‖x− y‖2 ≤ ε.

Notation. Let t > 0 and let K ⊂ R
n be a convex body. As usual,

denote
tK = {tx |x ∈ K} .

Similarly to [3], we use the following result, due to Schütt [15]:

Theorem (Schütt). The exists a universal constant c > 0 such that

for any ζ > 0 and θ ≥ c
√

1
ζ log 1

ζ there exists a θ-net N in
√
NBN

1

such that |N | ≤ eζN .

Proof of Lemma B. Pick 0 < ζ < ξ log 1
p ; then eζ < 1/pξ. Set

δ =
ε

c
√

1
ζ log 1

ζ

.

Scaling the result of Schütt’s theorem times δ, we get an ε-net N in
δ
√
NBN

1 , |N | ≤ eζN .
By our assumptions, for every y ∈ N

P

{
‖Ay‖2 < 6ε

√
N‖y‖2

}
< Cpn ,

and so the probability that there exists y ∈ N with

‖Ay‖2 < 6ε
√
N‖y‖2

is at most
CeζNpn = pΘ(n) .
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Assume that for every y ∈ N we have

‖Ay‖2 ≥ 6ε
√
N‖y‖2 ,

and also that ‖A‖ ≤ 3
√
N . This event happens with probability at

least 1 − q − pΘ(n). We will show that whenever these two conditions
hold, every x ∈ KerA satisfies

‖x‖1 ≥ δ
√
N‖x‖2 .

It is enough to show this for x with ‖x‖2 = 1.
Take any x ∈ R

N with ‖x‖1 < δ
√
N and ‖x‖2 = 1. We will show

x /∈ Ker(A). First, x ∈ δ
√
NBN

1 , and so there exists y ∈ N such that
‖x− y‖ ≤ ε. Now we have:

‖Ax‖2 ≥ ‖Ay‖2 − ‖A(x− y)‖2 ≥ 6ε
√
N‖y‖2 − ‖A‖‖x− y‖2

≥ 6ε(1 − ε)
√
N − 3ε

√
N > 0 ,

where we used the fact that

‖y‖2 ≥ ‖x‖2 − ‖x− y‖2 ≥ 1 − ε .
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