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Abstract

We consider thek-layer pointer jumping problem in the one-way multi-party number-on-the-forehead
communication model. In this problem, the input is a layereddirected graph with each vertex having
outdegree 1, shared amongstk players: Playeri knows all layersexceptthe i th. The players must com-
municate, in the order 1, 2, . . . , k, to determine the vertex reached by following edges from a special start
vertex. This problem has been considered by a number of researchers in the past because sufficiently
strong lower bounds for it would have major consequences in circuit complexity.

We take an information complexity approach to this problem and obtain three lower bounds that
improve upon earlier work. For myopic protocols (where players may see only one layer ahead but
arbitrarily far behind), we greatly improve a lower bound due to Gronemeier (2006). Our new lower
bound is�(n/k), wheren is the number of vertices per layer. For conservative protocols (where players
may see arbitrarily far ahead but not behind, instead seeingonly the vertex reached by following the
pointers up to their layer), we extend an�(n/k2) lower bound due to Damm, Jukna and Sgall (1998) so
that it applies for allk.

The above two bounds apply even to the Boolean version of pointer jumping. Our third lower bound
is for the non-Boolean case and fork ≤ log∗ n. We obtain an�(n log(k−1) n) bound for myopic proto-
cols. Damm et al. had obtained a similar bound for deterministic conservative protocols. All our lower
bounds apply directly to randomised protocols.

1 Introduction

Communication complexity has been a central technique in proving a number of lower bounds, even in mod-
els of computation that do not involve communication. In particular, it has some well known connections to
circuit complexity: proving sufficiently strong lower bounds for certain specific communication problems
would place them outside certain restricted, but well-studied, classes of circuits. For example, the cele-
brated super-logarithmic lower bound on the depth of a monotone circuit for undirected connectivity, due to
Karchmer and Wigderson [KW90], was proven via a lower bound on a related communication problem.

Our focus here is on thepointer jumping(also calledpointer chasing) problem and its multi-party
communication complexity in the so-callednumber-on-the-forehead(NOF) model, introduced by Chandra,
Furst and Lipton [CFL83]. Due to known connections between this model and circuits [Yao90, HG91,
BT94], a strong enough communication lower bound for pointer jumping would place the problem outside
the complexity classACC0. We say more about this connection in Section 1.2. In this work we introduce
an approach to proving such communication lower bounds viainformation complexity, a concept formally
introduced by Chakrabarti et al. [CSWY01] and refined by Bar-Yossef et al. [BJKS02]. Our approach results
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in lower bounds for pointer jumping in certain restricted one-way NOF communication models. Our lower
bounds are at least as high as (in fact, much higher than) would be required to prove non-membership in
ACC0; proving similar bounds in a less restricted communicationmodel would imply that pointer jumping
is not inACC0.

1.1 The Problem and Our Results

The term “pointer jumping” has been used to refer to any of a family of related problems, all of which
involve following pointers (i.e., directed edges) out of a starting vertex in a given input graph. The variant
calledmulti-layer pointer jumpingwith k layers, denoted̂MPJk, is defined on a fixed underlying graphGn

k

whose vertex set consists ofk + 1 layers of vertices: layer 0 has a single vertexv0 and layers 1 throughk
haven vertices each, and every vertex in layeri has a directed edge to every vertex in layeri + 1. The input
is a subgraph ofGn

k in which every vertex (except those in layerk) has outdegree 1. The desired output is
the name of the unique vertex in layerk reachable fromv0, i.e., the final vertex reached by “jumping along
pointers” starting atv0. The output is thereforedlogne bits long.1 We can also consider a Boolean version,
denotedMPJk, by shrinking layerk so that it consists of 2 vertices. We give a more formal definition later.

A couple of other variants of pointer jumping that have been studied before aretree pointer jumping
(TPJk), where the underlying graphGn

k is replaced by a completen-ary tree of heightk + 1, andbipartite
pointer jumping(BPJk), whereGn

k is replaced by a bipartite graph with directed edges in both directions and
one is required to followk edges (pointers) from a designated start vertex.

In the number-on-the-forehead (NOF) model of communication, there arek players who share an input
(x1, . . . , xk) ∈ A1×· · ·×Ak as follows: Playeri sees everyx j where j 6= i . We think ofxi as being written
on Playeri ’s forehead. The goal is to exchange messages according to aprotocol so as to jointly compute
a function f : A1 × · · · × Ak → B. For the purposes of proving lower bounds againstACC0 circuits, it
suffices to considersimultaneous messageprotocols, where all players simultaneously send their messages
to a referee (who is not one of thek players) who sees no input and computes the desired output asfunction
of the messages he receives. In this paper, as in some earlierwork [NW93, PRS97, DJS98], we consider the
more generalone-way blackboard communicationmodel, where players communicate one after another, in
the fixed order 1, 2, . . . , k, by writing their messages on a blackboard visible to all. Playerk’s message is
the desired output.

It is natural to considerk-player NOF protocols forMPJk where the input on Playeri ’s forehead describes
the i th layer of edges in the input graph (i.e., edges from vertices in layeri − 1 to vertices in layeri ). Note
that it is important that the players speak in the order 1, 2, . . . , k in order for the problem to be nontrivial:
any other order of speaking leads to an easy protocol with only O(logn) communication.

Unfortunately, we are unable to prove our results in the unrestricted one-way model. Instead, we work
with two different restrictions of the model. Our first lowerbound applies tomyopic protocols: those in
which Playeri only seesx1, . . . , xi−1 andxi+1. This model was recently introduced by Gronemeier [Gro06]
who proved a lower bound of�(n(1−ε)/k logn) for M̂PJk in this model, forε-error protocols.2 Note that this
bound becomes trivial fork = O(logn) players. We prove the following, much stronger, lower bound.

Theorem 1. A randomised myopic protocol forMPJk must communicate�(n/k) bits.

1Throughout this paper we use “log” to denote logarithm to thebase 2.
2Gronemeier defines myopic protocols using information theoretic terminology. In fact, the notion he defines should be de-

scribed as “protocol that is myopic for a particular input distribution.” In his work, he only applies his definition withthe uniform
distribution on inputs, in which case his information theoretic definition reduces to our structural one. Indeed, protocols myopic
for arbitrary input distributions can communicate essentially nothing,for one could always consider distributions that perfectly
correlate the inputs on the players’ foreheads.
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Our second lower bound applies toconservative protocols: those in which Playeri only seesxi+1, . . . , xk

and the functiongx,i : Ai × Ai+1 × · · · × Ak → B given bygx,i (zi , . . . , zk) = f (x1, . . . , xi−1, zi , . . . , zk).
For pointer jumping, this amounts to saying that Playeri sees all layersi +1, . . . , k of edges (i.e., the layers
following the one on her forehead), but not layers 1, . . . , i −1; however, she does see the result of following
i − 1 pointers starting fromv0. This model was introduced by Damm, Jukna and Sgall [DJS98] who
proved a lower bound of�(n/k2) for M̂PJk for deterministic protocols involving up tok = o

(
(n/ logn)1/3

)

players (their argument also applies toMPJk and can be extended to randomised protocols using some careful
estimation). Here, we obtain the same lower bound without anextra restriction onk, and via different
techniques.

Theorem 2. A randomised conservative protocol forMPJk must communicate�(n/k2) bits.

Although these models are quite restrictive, we note that the only known nontrivial upper bound for
pointer jumping, due to Damm et al. [DJS98], is via a protocolthat isbothmyopic and conservative (but see
Section 1.2, below). Their improvement over a trivial upperbound is forM̂PJk only: they give a (conservative
and myopic) protocol for it with communicationO(n log(k−1) n) for k ≤ log∗ n andO(n) for k > log∗ n.3

The trivial upper bound would have beenO(n logn). This shows that both restricted models do allow
nontrivial protocols. They also give a matching�(n log(k−1) n) lower bound for deterministic conservative
protocols; their proof doesnot generalise to randomised protocols. Here, we give a matching lower bound
for randomisedmyopicprotocols.

Theorem 3. A randomised myopic protocol for̂MPJk, involving k ≤ log∗ n players, must communicate
�(n log(k−1) n) bits.

Our techniques in fact allow us to combine and extend Theorems 1 and 2 by relaxing the restrictions on
the communication model somewhat. Rather than constrain every player in the same way, we can consider
protocols where some players are myopic and others conservative. We define specific players to be myopic
or conservative in the natural way; e.g., Playeri is myopic if she only sees inputsx1, . . . , xi−1 andxi+1. Let
us define a(km, kc)-split protocolto be a one-way NOF protocol with(km + kc) players such that players 1
throughkm are myopic and the rest are conservative.

Theorem 4. Let k = km + kc where0 ≤ km ≤ k. A randomised(km, kc)-split protocol for MPJk must
communicate�

(
min{n/km, n/k2

c}
)

bits.

1.2 Related Work: Motivation and Prior Results

The complexity classACC0 is defined to be the class of all Boolean functions computableusing circuits with
constant depth and polynomial size that consist of (unbounded fan-in)AND, OR, NOT, andMODm gates, for
arbitrary values ofm. This is about the smallest well-studied class for which we do not know an explicit
non-member. Finding an explicit function not inACC0 is a major open problem in complexity theory. The
function MPJk is often considered a good candidate, partly because it is complete forLOGSPACE, which
containsACC0, and partly because it seems amenable to a communication complexity approach that we
now describe.

A series of papers by Yao [Yao90], Håstad and Goldmann [HG91], and Beigel and Tarui [BT94] showed
thatACC0 is included inSYM+, the class of depth-2 circuits with polylogarithmic fan-inAND gates at the

3We use log(k) n to denote thekth iterated logarithm ofn. More precisely, log(1) n = logn, and log(k) n = log
(

log(k−1) n
)

for

k > 1. We use log∗ n to denote the smallest integerr such that log(r ) n ≤ 1.
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input level and a single quasi-polynomial fan-in symmetricgate at the output level. This in turn means that
for every function f : {0, 1}n → {0, 1} in ACC0 and every possible way of splitting its input bits intok =
poly(logn) parts, the corresponding multi-player communication problem f (x1, . . . , xk) has a simultaneous
message (hence, one-way) NOF protocol that communicates poly(logn) bits. Therefore, removing the
restrictions (myopia/conservativeness) on the communication model in either of our Theorems 1 or 2 would
imply MPJk /∈ ACC0. This is our primary motivation.

We have already mentioned the work of Damm et al. [DJS98] and Gronemeier [Gro06] on lower bounds
for MPJk. One other significant lower bound in the area is due to Wigderson (unpublished, but see Babai,
Hayes and Kimmel [BHK01] for an exposition), building on thework of Nisan and Wigderson [NW93]: it
shows that anunrestricteddeterministic one-way NOF protocol forMPJ3 requires�(

√
n) bits of communi-

cation. Improving this bound is a key open question, as is proving anyunrestricted�(nε) bound forMPJ4.
We hope that this work provides new insights and spurs progress on these problems.

An important potential obstacle in proving more such unrestricted lower bounds was identified by
Pudlák, Rödl and Sgall [PRS97]. They showed, via an ingenious non-constructive probabilistic argument,
that a special case ofMPJ3, where the middle layer is apermutation, has a one-way NOF protocol with
communicationO((n log logn)/ logn). The protocol is neither myopic nor conservative. This result should
be viewed as cautioning against a hasty conjecture of an�(n) lower bound forMPJ3. However, such a lower
bound is not yet ruled out, because the protocol does not workfor a general instance ofMPJ3.

There is also a long line of work on the two-party complexity of the aforementioned variantsBPJk and
B̂PJk, starting with Papadimitriou and Sipser [PS84] and continuing with Nisan and Wigderson [NW93],
Ponzio, Radhakrishnan and Venkatesh [PRV01], Klauck, Nayak, Ta-Shma and Zuckerman [KNTZ01] and
Jain, Radhakrishnan and Sen [JRS02]. We refer the reader to the latter paper for more details and history.
There is some work on the variantTPJk by Klauck et al. [KNTZ01]. Some of these papers also consider
quantum communication settings.

1.3 Organisation of the Paper

The rest of the paper is organised as follows. In Section 2, weoutline the basic plan that all our proofs follow.
We then introduce our terminology and notation formally. InSection 3 we introduce some information
theoretic tools used in the proofs. We then use these tools toperform certain “protocol manipulations”
in Section 4, culminating in a couple ofround elimination lemmasthat form the heart of the argument.
Section 5 uses the round elimination lemmas to prove Theorems 1, 2 and 3. Finally, in Section 6 we
comment on some open problems and give a brief sketch of how our techniques can be extended to prove
Theorem 4.

2 Preliminaries

2.1 Plan of the Proofs

Our proof formalises the following intuitive argument. Suppose there is ak-player one-way NOF protocol
P for MPJk in which each player communicates at mostαn bits, for some “small” quantityα. Let us runP
on a random input and consider the information revealed by Player 1’s message about the second layer of
pointers (i.e., the input on Player 2’s forehead). This layer consists ofn pointers. Since Player 1 sends at
mostαn bits, there exists ani ∈ {1, 2, . . . , n} such that she reveals at mostα bits of information about the
i th pointer.
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Now, consider instances ofMPJk in which the pointer fromv0 always points to thei th vertex in layer 1;
note that such instances are effectively instances ofMPJk−1. We thus have ak-player protocol forMPJk−1,
with the inputs written on the foreheads of Players 2 throughk. In and of itself, such a protocol is silly:
the first player can simply compute the final answer and revealit. However, our protocol has the additional
property that Player 1 reveals onlyα � 1 bits about the input on Player 2’s forehead. Using an appropriate
tool from information theory, we can argue that it does not make much difference if we alter Player 1’s
behaviour so she sendszero information about that input. More precisely, the protocol’s error probability
increases byO(

√
α). At this point, Player 2 can emulate Player 1, so we may eliminate Player 1 from the

game altogether. We now have(k − 1)-player protocolQ for MPJk−1 with slightly larger error probability
thanP.

Iterating this constructionk − 2 times, we eventually arrive at a 2-player protocol forMPJ2, which is
simply a restatement ofINDEX problem. At this point, we can apply standard two-party one-way commu-
nication lower bounds forINDEX . Note that in order for the error to have only increased by a constant, we
needα = O(1/k2), limiting us to an�(n/k2) lower bound. A more careful analysis gives a higher�(n/k)

bound for myopic protocols.
When seeking a super-linear lower bound for̂MPJk, the above outline runs into trouble becauseα > 1,

which means thatO(
√

α) additional error is intolerable. Therefore, we need a different information theoretic
tool. The details appear below, but for readers familiar with the work of Chakrabarti and Regev [CR04],
we mention that the tool we need has the flavour of combining a “message compression lemma” and a
“message switching lemma” from that work. The compression lemma is in turn inspired by the work of
Jain, Radhakrishnan and Sen [JRS03].

Some earlier lower bounds on pointer jumping in traditionaltwo-player settings (i.e., forBPJk, B̂PJk and
TPJk) were proven using similar information theoretic ideas [KNTZ01, JRS02] in a quantum communication
setting. However, extra complications are introduced whendealing withMPJk and the NOF model, which
makes new technical ideas necessary in our work.

2.2 Terminology and Notation

For the rest of the paper, “protocols” shall be assumed to be public coin randomised protocols in the one-
way NOF model, unless explicitly qualified otherwise. The more common Alice-and-Bob protocols with
messages exchanged between two players shall be called “traditional protocols.”

We shall assume that each message in a protocol has a predetermined length independent of the actual
input; this makes no asymptotic difference in communication cost. LetP be ak-player protocol in which
Playeri ’s message has length̀i . We say that thesignatureof P is 〈`1, `2, . . . , `k〉 or, equivalently, thatP
is an〈`1, . . . , `k〉-protocol. We define cost(P) := `1 + · · · + `k. We denote the error probability ofP (over
its internal coin tosses) on its worst case input by err(P). For deterministic as well as randomised protocols,
we define the distributional error ofP with respect to input distributionD by err(P,D).

For random variablesX, Y andZ, we use H(X) to denote the entropy ofX (in bits), I(X : Y) to denote
the mutual information betweenX andY, and H(X | Z) and I(X : Y | Z) to denote conditional entropy and
conditional mutual information, respectively. We use a number of basic results from information theory. For
more on the subject we refer the reader to the textbook by Cover and Thomas [CT91].

In addition to the restrictions of myopia and conservativeness, defined above, we will need to consider
the following unusual restriction.

Definition 1 (Quasi-private coin protocols). A protocol involvingk ≥ 2 players is said to be quasi-private
coin if the random coin of Player 1 is private. Players 2 through k may continue to share a public coin.
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Definition 2 (Information cost). Let P be a protocol for a problemφ : A1 × · · · × Ak → B andD a
distribution onA1 × · · · × Ak. The information cost ofP with respect toD, denoted icost(P,D) is defined
to be the following conditional mutual information:

icost(P,D) := I(X2 : M | X3, . . . , Xk)

where(X1, . . . , Xk) ∼ D andM is the random message produced by Player 1 when she sees(X2, . . . , Xk).

Notice that the information cost deals only with thefirst message of the protocol and only captures the
information revealed by this message about the input unavailable to Player 2. We have the following simple
lemma relating the information cost of a protocol to a part ofits actual communication cost.

Lemma 5. Let P be an〈`1, `2, . . . , `k〉-protocol andD be any distribution on the input to P. Then
icost(P,D) ≤ `1.

Proof. Using the notation in Definition 2 we have

icost(P,D) = I(M : X2 | X3, . . . , Xk) ≤ H(M | X3, . . . , Xk) ≤ H(M) ≤ |M| = `1 .

Definition 3 (Pointer jumping). For a positive integern, let [n] := {1, 2, . . . , n}. For k ≥ 2, we define
M̂PJk : [n] ×

(
[n][n]

)k−1 → [n] recursively, as follows. Here,i ∈ [n] and f, f2, . . . , fk ∈ [n][n] .

M̂PJ2(i, f ) = f (i ) ,

M̂PJk(i, f2, f3, . . . , fk) = M̂PJk−1( f2(i ), f3, . . . , fk) , ∀ k > 2 .

We defineMPJk : [n] ×
(
[n][n]

)k−2 × {0, 1}n → {0, 1} similarly, except that we start withMPJ2(i, x) = xi

for i ∈ [n] andx ∈ {0, 1}n.

The crucial fact about pointer jumping that we exploit is that an instance ofMPJk−1 can be “embedded”
in an instance ofMPJk. This is made precise in the following lemma, whose trivial proof we omit.

Lemma 6. For f ∈ [n][n] and i, a ∈ [n], define the function fi :a ∈ [n][n] as follows:

f i :a( j ) =
{

a , if j = i ,

f ( j ) , otherwise.

Then, for any k≥ 3, i ∈ [n] and g∈ [n][n], we haveMPJk−1(a, f3, . . . , fk) = MPJk(i, gi :a, f3, . . . , fk). A
similar statement holds for̂MPJk−1 and M̂PJk.

3 Information Theoretic Tools

We now present two key information theoretic tools that we shall use in our proofs. It may be helpful to keep
in mind the following context while reading this section. Wehave two random variables — to be thought
of as “input” and “response” — and a function that assigns a real-valued score to each input-response pair.
We would like to alter the response in some way so as to simplify it without changing the expected score
much. In Lemma 8 below, the input splits into two independentportions (A and B) and the response (C)
carries a negligible amount of information about one of the portions (A); we show that the response can be
made functionally independent of that portion. In Lemma 9 below, the response (B) carries a small amount
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of information about the input (A); we show that the response can be restricted to lie in a correspondingly
small set.

The latter lemma is similar to (and stronger than) a lemma of Chakrabarti and Regev [CR04] that was
used to compress the first message of a traditional protocol.We use it here for a very similar purpose.
Lemma 8 is in the spirit of the Average Encoding Theorem of Klauck et al. [KNTZ01] and we use it
here to eliminate “uninformative” messages. It explicatesand generalises similar ideas in Sen [Sen03] and
Chakrabarti and Regev [CR04].

We recall the following well known theorem from informationtheory (see, e.g, Lemma 12.6.1 of Cover
and Thomas [CT91]).

Fact 7 (Pinsker’s inequality). LetP andQ be two probability distributions on the same domain. Then the
Kullback-Leibler divergenceDKL (P‖Q) and the L1 distance‖P − Q‖1 are related by

DKL(P‖Q) ≥
1

2 ln 2
‖P − Q‖2

1 .

Lemma 8. Let A, B and C be random variables with rangesA ,B andC respectively. Suppose A and B
are independent. Then, for every function f: A × B × C → [0, 1], there exists a function g: B → C

such that

EA,B[ f (A, B, g(B))] ≤ EA,B,C[ f (A, B, C)] +
√

ln 2

2
· I(A : C | B) .

Proof. Let 5 be the joint distribution of(A, B, C) and let5A , 5BC , etc. be its marginals. Define the
distribution5′ onA × B × C by 5′(a, b, c) = 5A (a)5BC (b, c). By independence ofA andB, we have

DKL (5‖5′) = I(A : BC) = I(A : B) + I(A : C | B) = I(A : C | B) . (1)

Observe that
∑

b∈B

∑

c∈C

5BC (b, c)
∑

a∈A

5A (a) f (a, b, c) =
∑

a∈A

∑

b∈B

∑

c∈C

5′(a, b, c) f (a, b, c) (2)

≤ EA,B,C[ f (A, B, C)] +
1

2
‖5 − 5′‖1 (3)

≤ EA,B,C[ f (A, B, C)] +
1

2

√
(2 ln 2) · DKL (5‖5′) (4)

= EA,B,C[ f (A, B, C)] +
√

ln 2

2
· I(A : C | B) , (5)

where (3) holds becausef takes values in [0, 1], (4) follows from Pinsker’s inequality and (5) follows
from (1). Now, defineg : B → C by

g(b) := argmin
c∈C

∑

a∈A

5A (a) f (a, b, c) .

Then, the sum on the left side of (2) is at least
∑

b∈B

∑

a∈A

5A (a) f (a, b, g(b))
∑

c∈C

5BC (b, c) =
∑

a∈A

∑

b∈B

5A (a)5B(b) f (a, b, g(b))

= EA,B[ f (A, B, g(B))]

which completes the proof.
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Lemma 9. Let A and B be random variables with rangesA andB respectively. Then, for every function
f : A ×B → [0, 1] and everyλ ≥ 4 I(A : B), there existsB0 ⊆ B and a function g: A → B0 such that
|B0| ≤ 2λ andEA[ f (A, g(A))] ≤ EA,B[ f (A, B)] + 5

2

√
I(A : B)/λ + (1 + loge)/λ.

Proof. This lemma is an analogue of Lemma 3.5 of Chakrabarti and Regev [CR04], but with tighter param-
eters. The proof is fairly technical. We give a complete self-contained proof in Appendix A.

4 Protocol Manipulations

4.1 Removing Player 1’s Message

We now prove a result (Lemma 11) that lets us remove Player 1’smessage in a protocol with a “slight”
additive increase in error probability. The increase is in fact slight only when the information cost is low, to
begin with. We use the result in our round elimination lemmas, below. The result requires the protocol to be
quasi-private coin, so we begin with a preliminary lemma that addresses this requirement.

Lemma 10 (Quasi-privatisation lemma).Let P be a myopic NOF protocol in which Player 2 is determin-
istic. Then there exists a quasi-private coin myopic protocol Q, with the same signature and information
cost as P, that behaves identically to P on all inputs.

Proof. If P involves just two players, there is nothing to prove. If it involvesk ≥ 3 players, we construct
Q as follows. Letx2 be the input on Player 2’s forehead,R be the public random string used by all players
in P to construct their messages, andµP(x2, R) be the function computed by Player 1 to generate her first
message inP. In Q, Player 1 still sendsµP(x2, R) but generates the random valueR privately. Player 2
behaves the same as inP. LetD[x, m] denote the conditional distribution of(R | µP(x, R) = m). Players
3 throughk, upon seeing the Player 1’s messagem1, use a new public coin to generate a valueR′ distributed
according toD[x2, m1] and then behave just as inP, usingR′ to provide the randomness in their messages.
It is easy to see thatQ has all the desired properties.

Lemma 11. Suppose k≥ 3. Let P be a quasi-private coin〈`1, . . . , `k〉-protocol for a functionφ : A1 ×
· · · × Ak → B, and letD be a distribution onA1 × · · · × Ak.

(1) If D is a product distribution, there exists a deterministic〈0, `1 + `2, `3, . . . , `k〉-protocol Q forφ
such thaterr(Q,D) ≤ err(P,D) +

√
icost(P,D).

(2) If P is myopic, there exists a deterministic myopic〈0, `2, `3, . . . , `k〉-protocol Q for φ such that
err(Q,D) ≤ err(P,D) +

√
icost(P,D).

(3) If P is myopic, then for everyλ ≥ 4 · icost(P,D) there exists a deterministic myopic protocol Q for
φ with signature〈0, 2λ`2, `3, . . . , `k〉 such thaterr(Q,D) ≤ err(P,D) + 3

√
icost(P,D)/λ + 3/λ.

Proof. We give the full details of the argument for Part (1). The other two parts use much the same argument,
so we merely point out the key differences.

Part (1). Let R1 denote the random string used by Player 1 to generate her firstmessage and letR2 denote
the random string shared by Players 2 throughk. Let εP be the error indicator function forP, defined as
follows: εP(x1, . . . , xk, m, r2) = 0 or 1 according asP produces a correct or an incorrect answer on input
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(x1, . . . , xk), whenR2 = r2 and Player 1 sends the messagem. Let µP(x2, . . . , xk, r1) be the function that
Player 1 computes to produce her message. Then

err(P,D) = EX1,...,Xk,R1,R2

[
εP(X1, . . . , Xk, µ

P(X2, . . . , Xk, R1), R2)
]

, (6)

where(X1, . . . , Xk) ∼ D and(R1, R2) is distributed uniformly. LetM be the domain of Player 1’s message.
Define f : A2 × · · · × Ak × M → [0, 1] by f (x2, . . . , xk, m) = EX1,R2[ε

P(X1, x2, . . . , xk, m, R2)]. Set
A := X2, B := (X3, . . . , Xk), andC := µP(X2, . . . , Xk, R1). Note thatA andB are independent because
D is a product distribution. Now, invoking Lemma 8 (and discarding the constant(ln 2)/2 for simplicity)
shows that there exists a functiong : A3 × · · · × Ak → M such that

EA,B[ f (A, B, g(B))] ≤ EX2,...,Xk,C[ f (X2, . . . , Xk, C)] +
√

I(X2 : C | X3, . . . , Xk)

= err(P,D) +
√

icost(P,D) ,

where the final equality follows from (6), the definition off and the definition of icost.
Consider a protocolP′ that is identical toP except that Player 1 sends the messageg(x3, . . . , xk). Since

the functionεP has been parametrized by Player 1’s message, we can use it to express the error probability
of P′ as well:

err(P′,D) = EX1,...,Xk,R2

[
εP(X1, . . . , Xk, g(X3, . . . , Xk), R2)

]
= EA,B[ f (A, B, g(B))] .

But note that Player 1’s message inP′ is a (deterministic) function of the inputs on the foreheadsof Players
3 throughk alone. Therefore, Player 2 has all the information necessary to generate this message. Therefore,
there is a protocolP′′ that behaves the same asP′ on all inputs, but where Player 1 sends 0 bits and Player 2
sends̀ 1 + `2 bits: the concatenation of Player 1’s and Player 2’s messages in P′. Finally, since we only
care about distributional error underD, we can fix the random coins ofP′′ to get a deterministic protocolQ
that has the desired properties.

Part (2). We proceed almost exactly as in Part (1). The key difference is that Player 1 produces her message
by computing a functionµP(x2, r1), so when we constructP′ as above, we end up with Player 1’s message
in P′ being a constant. Therefore, there is no need for this message in P′ at all and we can get the desired
protocolQ by simply eliminating it and then fixing the resulting protocol’s random coins.

Note that we didnot requireD to be a product distribution. This is because the condition that A andB
are independent was satisfied vacuously.

Part (3). We proceed as in Part (2). SinceP is myopic, Player 1’s message is given by a functionµP(x2, r1)

and we have

err(P,D) = EX1,...,Xk,R1,R2

[
εP(X1, . . . , Xk, µ

P(X2, R1), R2)
]

= EX2,R1

[
f (X2, µ

P(X2, R1)
]

,

where f (x, m) := EX1,X3,...,Xk,R2[ε
P(X1, x2, X3, . . . , Xk, m, R2)]. Let M be the domain of Player 1’s

message. SettingA := X2 and B := µP(X2, R1) and invoking Lemma 9 (and weakening the constants
slightly), we see that there existsM0 ⊆ M and a functiong : A2 → M0 such that|M0| ≤ 2λ and

EA[ f (A, g(A)] ≤ err(P,D) + 3

√
icost(P,D)

λ
+

3

λ
.

Consider a protocolP′ that is identical toP except that Player 1 sends the messageg(x2). As in Part
(1), we have err(P′,D) = EA[ f (A, g(A)]. Also, P′ is myopic. In particular, every player except Player 2
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can compute Player 1’s message inP′. Therefore,P′ behaves identically to a protocolP′′ constructed
as follows. InP′′, Player 1 sends 0 bits. Player 2 sends her response to each of the |M0| messages that
Player 1 could have sent inP′. Note that this requires|M0| · `2 ≤ 2λ`2 bits. Players 3 throughk determine
Player 1’s would-be message inP′ and pick out the appropriate response to it from Player 2’s long message
and continue the rest of the protocol exactly as inP′.

Clearly, the signature ofP′′ is 〈0, 2λ`2, `3, . . . , `k〉. Fixing the random coins ofP′′ gives us a determin-
istic protocolQ with all the desired properties.

4.2 Round Elimination for Pointer Jumping

Here we prove our two central lemmas, showing how to eliminate the first message — and hence the first
player — of certain NOF protocols forMPJk and M̂PJk, and thereby obtain NOF protocols forMPJk−1 and
M̂PJk−1, respectively.

Definition 4. We useUk to denote the uniform distribution on inputs toMPJk.

Lemma 12 (Round elimination, Boolean case).SupposeMPJk has a deterministic〈`1, `2, . . . , `k〉-protocol
P witherr(P,Uk) ≤ ε, for some k≥ 3.

(1) If P is conservative, thenMPJk−1 has a deterministic conservative〈`1 + `2, `3, . . . , `k〉-protocol Q
with err(Q,Uk−1) ≤ ε +

√
`1/n.

(2) If P is myopic, thenMPJk−1 has a deterministic myopic〈`2, `3, . . . , `k〉-protocol Q witherr(Q,Uk−1) ≤
ε +

√
`1/n.

Proof. For each j ∈ [n], we construct a randomised protocolPj for MPJk−1, usingk players: the input
(a, f3, . . . , fk) to MPJk−1 is written on the foreheads of Players 2 throughk and Player 1’s forehead is left
blank. The players use a public coin to generate a uniform random layer of pointersG ∈ [n][n] . They then
behave as they would have in protocolP on input( j , G j :a, f3, . . . , fk). In other words, if Player 1 would
have sent the messageµP( f2, . . . , fk) in P, then she sendsµP(G j :a, f3, . . . , fk) in Pj . From Lemma 6, it
follows that thatPj is correct wheneverP is, on the constructed input( j , G j :a, f3, . . . , fk). Thus,

1

n

n∑

j =1

err(Pj ,U
k−1) = err(P,Uk) ≤ ε . (7)

The information cost ofP can be decomposed into the sum of the information costs of thePj s as follows.

icost(P,Uk) = I(F2 : µP(F2, . . . , Fk) | F3, . . . , Fk)

≥
n∑

j =1

I(F2( j ) : µP(F2, . . . , Fk) | F3, . . . , Fk) (8)

=
n∑

j =1

I(A : µP(G j :A, F3, . . . , Fk) | F3, . . . , Fk)

=
n∑

j =1

icost(Pj ,U
k−1) , (9)
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where (8) holds because then random variablesF2(1), . . . , F2(n) are independent givenF3, . . . , Fk. Com-
bining (7) and (9), and using the concavity of the square rootfunction, we get

1

n

n∑

j =1

(
err(Pj ,U

k−1) +
√

icost(Pj ,Uk−1)

)
≤ ε +

√
icost(P,Uk)

n
≤ ε +

√
`1

n
,

where the final inequality follows from Lemma 5. Therefore, there exists aj such that err(Pj ,U
k−1) +√

icost(Pj ,Uk−1) ≤ ε +
√

`1/n. We now prove the two parts of the lemma separately.

Part (1). Consider the protocolPj . If P is conservative, then for anyi ≥ 3, the message of Playeri in
Pj can only depend onfi+1, . . . , fk and on the valuefi−1 ◦ · · · ◦ f3 ◦ F2( j ) whereF2 = G j :a. Although
F2 is randomly chosen,F2( j ) = G j :a( j ) = a, which means that Playeri is in fact deterministic. Player 2
is trivially deterministic, irrespective of whether or notP is conservative. Thus, Player 1 is the only player
to use randomness inPj . In particular,Pj is a quasi-private coin protocol. By Part (1) of Lemma 11, there
exists a deterministic〈0, `1 + `2, `3, . . . , `k〉-protocol P′ for MPJk−1 such that err(P′,Uk−1) ≤ ε +

√
`1/n.

In this protocol, Player 1 neither has an input on her forehead nor does she communicate any bits, so we
effectively have a(k − 1)-player〈`1 + `2, `3, . . . , `k〉-protocolQ with the desired properties.

Part (2). If P is myopic, then so isPj . Moreover, Player 2 is deterministic inPj . Invoking the quasi-
privatisation lemma (Lemma 10), we can replacePj with an equivalent quasi-private coin protocolP′

j .
Applying Part (2) of Lemma 11 toP′

j and removing Player 1 as before gives us the desired deterministic
〈`2, . . . , `k〉-protocolQ.

Notice that the above lemma does not provide an interesting result wheǹ 1 ≥ n. But we must deal with
`1 ≥ n we are working with the non-Boolean problem,̂MPJk, and wish to prove a communication lower
bound higher thann. To this end, we introduce another round elimination lemma,below. The fact that
M̂PJk is a non-Boolean problem does not play a significant role in its proof. However, for our application
later, we need to work with randomised protocols in this lemma, rather than with deterministic protocols
and distributional error.

Lemma 13 (Round elimination, non-Boolean case).SupposêMPJk has a myopic〈`1, `2, . . . , `k〉-protocol
P, for some k≥ 3. Then, forλ ≥ 4`1/n, M̂PJk−1 has a myopic protocol Q with signature〈2λ`2, `3, . . . , `k〉
and witherr(Q) ≤ err(P) + 3

√
`1/(nλ) + 3/λ.

Proof. We use much the same argument as in Part (2) of Lemma 12 but without fixing a specific input
distribution likeUk. Let Dk−1 be an arbitrary input distribution for̂MPJk−1. By Yao’s minimax princi-
ple [Yao77], it suffices to demonstrate a deterministic protocol Q′ with signature〈2λ`2, `3, . . . , `k〉 and
with err(Q′,Dk−1) ≤ err(P) + 3

√
`1/(nλ) + 3/λ. Let Dk denote the distribution of the random input

(J, GJ :A, F3, . . . , Fk), where J is drawn uniformly from [n], each ofG(1), . . . , G(n) is drawn indepen-
dently from the first marginal ofDk−1 and(A, F3, . . . , Fk) ∼ Dk−1. By Yao’s minimax principle again (the
easy half, this time) there is a deterministic protocolP′ for M̂PJk with the same signature asP and with
err(P′,Dk) ≤ err(P).

For eachj ∈ [n], we now design a protocolPj for M̂PJk−1 just as before, the only difference being that
the random layer of pointersG is drawn from the first marginal ofDk−1. Arguing as in the derivation of (7)
and (9), we now have

1

n

n∑

j =1

err(Pj ,D
k−1) ≤ err(P) , and

n∑

j =1

icost(Pj ,D
k−1) ≤ icost(P,Dk) .
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We now combine these two inequalities appropriately to conclude that there exists aj such that

err(Pj ,D
k−1) + 3

√
icost(Pj ,Dk−1)

λ
+

3

λ
≤ err(P) + 3

√
`1

nλ
+

3

λ
.

Applying the quasi-privatisation lemma (Lemma 10) followed by Part (3) of Lemma 11 toPj , and removing
Player 1 as before, we obtain the desired protocolQ′.

5 The Lower Bounds

Let 6 be a finite alphabet. We shall let6-INDEX denote the following traditional (i.e., not NOF) commu-
nication problem. There are two players: Alice, who holds a string x = x1x2 . . . xn ∈ 6n and Bob, who
holds an indexi ∈ [n]. Alice must send Bob a (possibly randomised) message, after which Bob must deter-
mine xi . More precisely, the error of the protocol is defined to be theprobability that Bob’s output differs
from xi . The following lower bound is an easily proven generalisation of the well known lower bound for
{0, 1}-INDEX [Abl96]. The functionH is the binary entropy function:H (α) = −α logα−(1−α) log(1−α).

Fact 14. LetU denote the uniform distribution on inputs to6-INDEX. Any traditional protocol for6-INDEX

with error at mostε onU must communicate at least(1 − H (ε)) n log |6| bits.

Theorem 15 (Precise restatement of Theorem 2).Let P be a conservative protocol forMPJk such that
err(P) ≤ 1

6. Thencost(P) = �(n/k2).

Proof. We first note that a 2-player NOF protocol forMPJ2 is simply a traditional protocol for{0, 1}-INDEX.
Now, supposeMPJk has an1

6-error randomised conservative〈`1, . . . , `k〉-protocolP for somek ≥ 3. By the
easy half of Yao’s minimax principle,MPJk has a deterministic conservative〈`1, . . . , `k〉-protocol P′ with
err(P′,Uk) ≤ 1

6. Applying Part (1) of Lemma 12 toP′ repeatedly (i.e.,k − 2 times), we see thatMPJ2 has a
deterministic protocolQ with cost(Q) ≤ `1 + · · · + `k and

err(Q,U2) ≤
1

6
+

√
`1

n
+

√
`1 + `2

n
+ · · · +

√
`1 + · · · + `k−2

n
≤

1

6
+ k

√
`1 + · · · + `k

n
.

Suppose cost(P) ≤ n/(36k2). Then`1 + · · · + `k ≤ n/(36k2), so err(Q,U2) ≤ 1
6 + 1

6 = 1
3. By Fact 14, we

have cost(Q) ≥
(
1 − H

(
1
3

))
n ≥ n/13, a contradiction.

Theorem 16 (Precise restatement of Theorem 1).Let P be a myopic protocol forMPJk with err(P) ≤ 1
3.

Thencost(P) = �(n/k).

Proof. Proceeding as above, supposeMPJk has an1
6-error randomised myopic〈`1, . . . , `k〉-protocol P for

somek ≥ 3. Applying Yao’s minimax principle, followed byk − 2 applications of Part (2) of Lemma 12,
we get a deterministic protocolQ for MPJ2 with cost(Q) ≤ `k−1 + `k and

err(Q,U2) ≤
1

6
+

√
`1

n
+ · · · +

√
`k−2

n
≤

1

6
+

√
k(`1 + · · · + `k)

n
,

where the final inequality is obtained by applying Cauchy-Schwarz. As before, we can obtain a contradiction
if we assume that cost(P) ≤ n/(36k).

Theorem 17 (Precise restatement of Theorem 3).Every1
6-error myopic protocol for̂MPJk with k ≤ log∗ n

must communicate�(n log(k−1) n) bits.
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Proof. Let Ak denote the statement “̂MPJk has a myopic protocol with error at most1
6 in which each player

communicates at most(n log(k−1) n)/400 bits”. Fact 14, applied to [n]- INDEX, implies thatA2 is false. To
complete the proof, we show thatAk ⇒ Ak−1 for eachk ≥ 3.

AssumeAk, for somek ≥ 3, and letP be the protocol whose existence is guaranteed byAk. By
padding the messages of the players if necessary, we can assume that the signature ofP is 〈`, `, . . . , `〉
with ` = (n log(k−1) n)/400. Setλ = 399̀ /n. By Lemma 13, there exists a〈2λ`, `, . . . , `〉-protocol Q for
M̂PJk−1 with

err(Q) ≤
1

6
+ 3

√
`

n(399̀ /n)
+

3

399̀ /n
≤

1

3
.

Consider a random variableXm ∼ B(m, 1
3), whereB(m, p) denotes the binomial distribution with

parametersm andp. Let c be the smallest integer satisfying Pr[Xc ≥ c/2] ≤ 1
6. Then, if we repeat a13-error

protocol for some communication problemc times in parallel and report the majority output, we obtain a
1
6-error protocol for the same problem. This continues to be true even if the problem is non-Boolean: there
may not exist a majority output, but we can simply output something arbitrary in such cases. The upshot is
that Q can be repeatedc times in parallel to obtain a16-error〈2λc`, c`, . . . , c`〉-protocolQ′. Now,

2λc` =
2(399 log(k−1) n)/400 · cn log(k−1) n

400
=

cn
(
log(k−2) n

)399/400
log(k−1) n

400
≤

n log(k−2) n

400
,

for sufficiently largen. Therefore, the existence ofQ′ impliesAk−1.

6 Concluding Remarks and an Extension

We have obtained improved lower bounds on the one-way NOF communication complexity of pointer jump-
ing in certain previously studied restricted models. Our approach is based on the information complexity
paradigm and leads to proofs that have the nice feature of being formalisations of intuitive arguments. We
believe that these results show the promise of this paradigmin attacking questions about NOF communica-
tion complexity.

At the same time, our proofs help bring out the limitations ofthe present way of applying information
complexity. A key step in the paradigm is to solve a “simple” problem (in this case,MPJk−1) by simulat-
ing the actions of a protocol for a “compound” or “direct sum”problem (in this case,MPJk). In a NOF
model, in order to create suitably distributed inputs for this larger problem, the players require public coins.
This presents a challenge because round elimination seems to require the message under consideration to
be generated using private coins. A meaningful measure of information complexity in a public coin set-
ting requires conditioning on the public random string (formore on this, see Appendix B of Bar-Yossef et
al. [BJKS02]) and this seems to stymie our argument. Here, weare able to work around this issue when
handling either myopic or conservative protocols. There might, however, be a more sophisticated way of
applying information complexity that can deal with less restricted models.

We can, in fact, relax our restrictions somewhat and consider split protocols, as in Theorem 4. Here is
a brief sketch of its proof; the details are straightforward. In a split protocol, if Player 1 is conservative, so
is every other player. Therefore, we may apply Theorem 2. If Player 1 is myopic, our round elimination
argument still goes through, after a suitable modification to the quasi-privatisation lemma. The modified
lemma works with protocols in which those players that do notsee Player 2’s input are all deterministic.
Now, carrying out calculations very similar to those in the proofs of Theorems 1 and 2 completes the proof.
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The most obvious open problem is to remove the restrictions from our lower bounds, thereby proving
MPJk /∈ ACC0. Less ambitious goals include improving the known�(

√
n) lower bound forMPJ3 and

proving nontrivial lower bounds forMPJ4, both in the unrestricted one-way NOF model. It is tempting to
conjecture an�(n) lower bound forMPJ3, but the protocol of Pudlák et al. [PRS97] sounds a note of caution.
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A Proof of Lemma 9

Theorem 18 (Restatement of Lemma 9).Let A and B be random variables with rangesA andB respec-
tively. Then, for every function f: A × B → [0, 1] and everyλ ≥ 4 I(A : B), there existsB0 ⊆ B and a
function g: A → B0 such that|B0| ≤ 2λ andEA[ f (A, g(A))] ≤ EA,B[ f (A, B)] + 5

2

√
I(A : B)/λ+ (1+

loge)/λ.

Proof. Let 5 denote the (marginal) distribution ofB and5a the distribution ofB conditioned onA = a.
For eacha ∈ A , we introduce a fractionρa ∈ (0, 1), whose precise value we set later. Define the setsSa

andTa as follows:

Sa := {b ∈ B : ρa5a(b) ≤ 5(b)} ; Ta := {b ∈ B : ρa5a(b) > 5(b)} .

Defineδa := 5a(Ta). It will help to think of δa as being very small. Consider the functionh : [0, 1]×A →
B defined by the following algorithm.

Algorithm h(r, a):

Inputs: r ∈ [0, 1], a ∈ A .
Note: Designed to be invoked with anr chosen at random, uniformly.

Repeatforever:
Usingr as a source of random bits,generateb ∈ B according to5.
Usingr again,return b with probability min{ρa5a(b)/5(b), 1}.
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Let 5′
a denote the distribution ofh(R, a), whereR denotes a uniform random real in [0, 1] independent

of A andB. Defineσa to be the probability that the algorithm stops (i.e., returns some value) in a particular
iteration. Then

σa =
∑

b∈B

5(b) · min{ρa5a(b)/5(b), 1} = ρa5a(Sa) + 5(Ta) = ρa(1 − δa) + 5(Ta) ; (10)

and 5′
a(b) =

∞∑

k=0

(1 − σa)
k · 5(b) · min{ρa5a(b)/5(b), 1} =

min{ρa5a(b),5(b)}
σa

.

Therefore,

‖5a − 5′
a‖1 =

∑

b∈Sa

∣∣∣∣
ρa5a(b)

σa
− 5a(b)

∣∣∣∣ +
∑

b∈Ta

∣∣∣∣
5(b)

σa
− 5a(b)

∣∣∣∣

≤
(

ρa

σa
− 1

)
+

(
5(Ta)

σa
+ 5a(Ta)

)

=
ρa − σa + 5(Ta)

σa
+ δa

=
ρaδa

ρa(1 − δa) + 5(Ta)
+ δa (11)

≤
δa

1 − δa
+ δa , (12)

where (11) follows from (10).
Let n(r, a) denote the number of iterations of the infinite loop performed by the above algorithm before

it returns a value. Notice thatn(R, a) is a geometric random variable with expectation 1/σa. Let h′(r, a) be
a function that uses a slightly modified version of the algorithm, where the infinite loop is replaced by a loop
that makes at most 2λ iterations. If no value is returned within those many iterations, the modified algorithm
returns some arbitrary fixed element ofB. Let 5′′

a denote the distribution ofh′(R, a). Then we have

1

2
‖5′′

a − 5′
a‖1 ≤ Pr[h′(R, a) 6= h(R, a)]

≤ Pr[n(R, a) > 2λ]

≤ ER[log n(R, a)]/λ (13)

≤ log ER[n(R, a)]/λ

= (− logσa)/λ

≤
− logρa − log(1 − δa)

λ
. (14)

where (13) follows from Markov’s inequality and (14) follows from (10). Combining (12) and (14) using
the triangle inequality, we get

‖5a − 5′′
a‖1 ≤

2(− logρa − log(1 − δa))

λ
+

δa

1 − δa
+ δa (15)

Consider the two-point distributionsP = (5a(Sa),5a(Ta)) andQ = (5(Sa),5(Ta)). By monotonicity
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of the Kullback-Leibler divergence, we have

DKL (5a‖5) ≥ DKL (P‖Q)

= 5a(Sa) log
5a(Sa)

5(Sa)
+ 5a(Ta) log

5a(Ta)

5(Ta)

≥ (1 − δa) log(1 − δa) + δa log
1

ρa

≥ −δa loge− δa logρa ,

where the penultimate inequality follows from the definitions of Sa, Ta, andδa. Forρa < 1/e this implies

δa ≤
DKL(5a‖5)

− logρa − loge
. (16)

We would like to have5′′
a close to5. Considering inequality (15), we notice that the first term on the

right hand side is a decreasing function ofρa, whereas the second and third terms are increasing functions
of δa, which is in turn upper bounded by an increasing function ofρa, according to (16). Therefore, to
minimise‖5a − 5′′

a‖1, we should chooseρa neither too large nor too small. The asymptotically optimal
choice turns out to be given by

− logρa =

√
λ

I(A : B)
· DKL (5a‖5) + loge.

Plugging this into (16), we getδa ≤
√

I(A : B)/λ. The condition onλ impliesδa ≤ 1/2, which in turn gives
δa/(1 − δa) + δa ≤ 3δa ≤ 3

√
I(A : B)/λ. We also have− log(1 − δa) ≤ − log(1 − 1

2) = 1. Using these
bounds in (15), we get

‖5a − 5′′
a‖1 ≤

2 · DKL (5a‖5)
√

λ · I(A : B)
+

2(1 + loge)

λ
+ 3

√
I(A : B)

λ
.

Let pa := Pr[A = a]. Then
∑

a∈A
paDKL (5a‖5) = I(A : B). Therefore

∑

a∈A

pa‖5a − 5′′
a‖1 ≤ 5

√
I(A : B)

λ
+

2(1 + loge)

λ
. (17)

Recalling thath′(R, a) ∼ 5′′
a, we have

ER[EA[ f (A, h′(R, A))]] = EA[ER[ f (A, h′(R, A))]]

=
∑

a∈A

pa ER[ f (a, h′(R, a))]

=
∑

a∈A

pa

∑

b∈B

5′′
a(b) f (a, b)

≤
∑

a∈A

pa

2
‖5a − 5′′

a‖1 +
∑

a∈A

pa

∑

b∈B

5a(b) f (a, b)

≤ EA,B[ f (A, B)] +
5

2

√
I(A : B)

λ
+

1 + loge

λ
,
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where the penultimate inequality holds becausef takes values in [0, 1] and the final inequality follows
from (17). Therefore, there exists some fixedr0 ∈ [0, 1] such that

EA[ f (A, h′(r0, A))] ≤ EA,B[ f (A, B)] +
5

2

√
I(A : B)

λ
+

1 + loge

λ
.

Let g : A → B be defined byg(a) = h′(r0, a) for a ∈ A , and letB0 ⊆ B be the range ofg. Since the
algorithm forh′ stops within 2λ iterations by design, we have|B0| ≤ 2λ. Thus, the functiong has all the
desired properties.
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