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Abstract

We consider th&-layer pointer jumping problem in the one-way multi-partynmber-on-the-forehead
communication model. In this problem, the input is a layed&dcted graph with each vertex having
outdegree 1, shared amonggtlayers: Player knows all layerexceptheith. The players must com-
municate, in the order,2, . . ., k, to determine the vertex reached by following edges froneaispstart
vertex. This problem has been considered by a number ofnds®a in the past because sufficiently
strong lower bounds for it would have major consequencesdénitcomplexity.

We take an information complexity approach to this problerd abtain three lower bounds that
improve upon earlier work. For myopic protocols (where pl@ymay see only one layer ahead but
arbitrarily far behind), we greatly improve a lower bouncedo Gronemeier (2006). Our new lower
bound isQ (n/k), wheren is the number of vertices per layer. For conservative paitogvhere players
may see arbitrarily far ahead but not behind, instead semihgthe vertex reached by following the
pointers up to their layer), we extend &xn,/k?) lower bound due to Damm, Jukna and Sgall (1998) so
that it applies for alk.

The above two bounds apply even to the Boolean version otggumping. Our third lower bound
is for the non-Boolean case and for< log* n. We obtain arf2(nlog®=? n) bound for myopic proto-
cols. Damm et al. had obtained a similar bound for deterrtiini®nservative protocols. All our lower
bounds apply directly to randomised protocols.

1 Introduction

Communication complexity has been a central techniqueawipg a number of lower bounds, even in mod-
els of computation that do not involve communication. Irtigatar, it has some well known connections to
circuit complexity: proving sufficiently strong lower bods for certain specific communication problems
would place them outside certain restricted, but wellistdidclasses of circuits. For example, the cele-
brated super-logarithmic lower bound on the depth of a mmtircuit for undirected connectivity, due to
Karchmer and Wigderson [KW90], was proven via a lower boumé oelated communication problem.
Our focus here is on thpointer jumping(also calledpointer chasiny problem and its multi-party
communication complexity in the so-calledmber-on-the-foreheaNOF) model, introduced by Chandra,
Furst and Lipton [CFL83]. Due to known connections betwdsa model and circuits [Yao90, HG91,
BT94], a strong enough communication lower bound for poijtmping would place the problem outside
the complexity clasaCC®. We say more about this connection in Section 1.2. In thikwae introduce
an approach to proving such communication lower boundsntamation complexitya concept formally
introduced by Chakrabatrti et al. [CSWYO01] and refined by Bassef et al. [BJKS02]. Our approach results
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in lower bounds for pointer jumping in certain restricteceamay NOF communication models. Our lower
bounds are at least as high as (in fact, much higher than)damlrequired to prove non-membership in
Acc?; proving similar bounds in a less restricted communicatradel would imply that pointer jumping
is not inACC®.

1.1 The Problem and Our Results

The term “pointer jumping” has been used to refer to any ofmailfaof related problems, all of which
involve following pointers (i.e., directed edges) out oftar8ng vertex in a given input graph. The variant
calledmulti-layer pointer jumpingvith k layers, denotediP, is defined on a fixed underlying graj@f
whose vertex set consists bft 1 layers of vertices: layer 0 has a single vertgxand layers 1 through
haven vertices each, and every vertex in laydras a directed edge to every vertex in lalyerl. The input

is a subgraph o6} in which every vertex (except those in laygrhas outdegree 1. The desired output is
the name of the unique vertex in laylereachable fromwy, i.e., the final vertex reached by “jumping along
pointers” starting abo. The output is thereforglog n] bits long! We can also consider a Boolean version,
denotedviPy, by shrinking layek so that it consists of 2 vertices. We give a more formal dédinitater.

A couple of other variants of pointer jumping that have betewlied before aréree pointer jumping
(TPX), where the underlying grapBy, is replaced by a complete-ary tree of heighk + 1, andbipartite
pointer jumping(BPJX), whereGy is replaced by a bipartite graph with directed edges in bivéttions and
one is required to follovk edges (pointers) from a designated start vertex.

In the number-on-the-forehead (NOF) model of communicatibere arék players who share an input
(X1, ..., Xk) € @4 x - - - x g as follows: Player sees every; wherej # i. We think ofx; as being written
on Playeri’s forehead. The goal is to exchange messages accordingrticol so as to jointly compute
afunctionf : @& x --- x @ — %B. For the purposes of proving lower bounds aga}k@CO circuits, it
suffices to considesimultaneous messageotocols, where all players simultaneously send theirsagss
to a referee (who is not one of tlkeplayers) who sees no input and computes the desired outfuteson
of the messages he receives. In this paper, as in some ealiefNW93, PRS97, DJS98], we consider the
more generabne-way blackboard communicatiomodel, where players communicate one after another, in
the fixed order 12, ..., k, by writing their messages on a blackboard visible to alayBik’'s message is
the desired output.

It is natural to considek-player NOF protocols fompJ where the input on Playels forehead describes
theith layer of edges in the input graph (i.e., edges from vestiodayeri — 1 to vertices in layer). Note
that it is important that the players speak in the ordet, 1. ., k in order for the problem to be nontrivial:
any other order of speaking leads to an easy protocol wityh Grflog n) communication.

Unfortunately, we are unable to prove our results in the stnted one-way model. Instead, we work
with two different restrictions of the model. Our first lowleound applies tanyopic protocols those in
which Playerl only sees, ..., Xj_1 andx;j,1. This model was recently introduced by Gronemeier [Gro06]
who proved a lower bound @& (n®~9/*logn) for MPJ, in this model, fore-error protocols. Note that this
bound becomes trivial fdk = O(logn) players. We prove the following, much stronger, lower bound

Theorem 1. A randomised myopic protocol ferpg, must communicat (n/ k) bits.

IThroughout this paper we use “log” to denote logarithm totthse 2.

2Gronemeier defines myopic protocols using information tééo terminology. In fact, the notion he defines should be de
scribed as “protocol that is myopic for a particular inputdbution.” In his work, he only applies his definition withe uniform
distribution on inputs, in which case his information thetar definition reduces to our structural one. Indeed, ma@®myopic
for arbitrary input distributions can communicate essentially nothfiog,one could always consider distributions that perfectly
correlate the inputs on the players’ foreheads.



Our second lower bound appliesdonservative protocolghose in which Playaronly see 1, .. ., Xk
and the functiorgy j : % x <1 X -+ X @4 — B oivenbyoxi(Z,...,z) = T(Xe, ..., Xi—1,Z, ..., Z).
For pointer jumping, this amounts to saying that Playsees all layers+ 1, . .., k of edges (i.e., the layers
following the one on her forehead), but not layeys.1, i — 1; however, she does see the result of following
i — 1 pointers starting fromg. This model was introduced by Damm, Jukna and Sgall [DJS98] w
proved a lower bound a®(n/k?) for MPJ for deterministic protocols involving up o= o ((n/logn)*/3)
players (their argument also appliesb) and can be extended to randomised protocols using somellcaref
estimation). Here, we obtain the same lower bound withouéxra restriction ork, and via different
techniques.

Theorem 2. A randomised conservative protocol fapj, must communicat® (n/k?) bits.

Although these models are quite restrictive, we note thatahly known nontrivial upper bound for
pointer jJumping, due to Damm et al. [DJS98], is via a protdbal isbothmyopic and conservative (but see
Section 1.2, below). Theirimprovement over a trivial upipeund is fompJ, only: they give a (conservative
and myopic) protocol for it with communicatio®(nlog“=Y n) for k < log* n and O(n) for k > log* n.3
The trivial upper bound would have beé&i(nlogn). This shows that both restricted models do allow
nontrivial protocols. They also give a matchifin log®~Y n) lower bound for deterministic conservative
protocols; their proof doesot generalise to randomised protocols. Here, we give a madbimer bound
for randomisednyopicprotocols.

Theorem 3. A randomised myopic protocol fanPy, involving k < log* n players, must communicate
Q(nlog®=? n) bits.

Our techniques in fact allow us to combine and extend Thesreand 2 by relaxing the restrictions on
the communication model somewhat. Rather than constrary @layer in the same way, we can consider
protocols where some players are myopic and others conisernvi/e define specific players to be myopic
or conservative in the natural way; e.g., Player myopic if she only sees inpuks, ..., Xj_; andx ;. Let
us define dk,, ko)-split protocolto be a one-way NOF protocol witlk, + k) players such that players 1
throughk,, are myopic and the rest are conservative.

Theorem 4. Let k = ky, + k; whereO < k,, < k. A randomisedkm, k.)-split protocol for MPJ must
communicate& (min{n/ky, n/k?}) bits.

1.2 Related Work: Motivation and Prior Results

The complexity clasaCC is defined to be the class of all Boolean functions computadileg circuits with
constant depth and polynomial size that consist of (unbedrfdn-in)AND, OR, NOT, andMOD, gates, for
arbitrary values ofm. This is about the smallest well-studied class for which wendt know an explicit
non-member. Finding an explicit function notACC’is a major open problem in complexity theory. The
function MPJ is often considered a good candidate, partly because inplste forLOGSPACE, which
containsACC®, and partly because it seems amenable to a communicatioplexity approach that we
now describe.

A series of papers by Yao [Ya090], Hastad and Goldmann [HG8MH Beigel and Tarui [BT94] showed
that ACC? is included inSYM™, the class of depth-2 circuits with polylogarithmic fanArD gates at the

3We use 10§ n to denote théth iterated logarithm of. More precisely, log” n = logn, and log¥ n = log (log—1 n) for
k > 1. We use log n to denote the smallest integesuch that Ioﬁ) n<1.



input level and a single quasi-polynomial fan-in symmegate at the output level. This in turn means that
for every functionf : {0, 1} — {0, 1} in ACC® and every possible way of splitting its input bits irke=
poly(logn) parts, the corresponding multi-player communication faabf (X, . .., Xk) has a simultaneous
message (hence, one-way) NOF protocol that communicatgslgmpn) bits. Therefore, removing the
restrictions (myopia/conservativeness) on the commtioicanodel in either of our Theorems 1 or 2 would
imply MPJ ¢ ACCP. This is our primary motivation.

We have already mentioned the work of Damm et al. [DJS98] amth&@neier [Gro06] on lower bounds
for MPJ. One other significant lower bound in the area is due to Wgmte(unpublished, but see Babai,
Hayes and Kimmel [BHKO1] for an exposition), building on twerk of Nisan and Wigderson [NW93]: it
shows that aminrestricteddeterministic one-way NOF protocol ferrJ requiresQ (,/n) bits of communi-
cation. Improving this bound is a key open guestion, as isipgoany unrestricted (n®) bound formpJ,.
We hope that this work provides new insights and spurs pssgsa these problems.

An important potential obstacle in proving more such umigtsid lower bounds was identified by
Pudlak, Rodl and Sgall [PRS97]. They showed, via an ingeninon-constructive probabilistic argument,
that a special case oiPXk, where the middle layer is permutation has a one-way NOF protocol with
communicationO((nloglogn)/logn). The protocol is neither myopic nor conservative. This fteswould
be viewed as cautioning against a hasty conjecture ¢f@m lower bound fompx. However, such a lower
bound is not yet ruled out, because the protocol does not feoik general instance ofPJ;.

There is also a long line of work on the two-party complexifyle aforementioned varianigry and
BPJ, Starting with Papadimitriou and Sipser [PS84] and coimigwvith Nisan and Wigderson [NW93],
Ponzio, Radhakrishnan and Venkatesh [PRV01], Klauck, KaVa-Shma and Zuckerman [KNTZ01] and
Jain, Radhakrishnan and Sen [JRS02]. We refer the readee tatter paper for more details and history.
There is some work on the variambj by Klauck et al. [KNTZ01]. Some of these papers also consider
guantum communication settings.

1.3 Organisation of the Paper

The rest of the paper is organised as follows. In Section Zywilae the basic plan that all our proofs follow.
We then introduce our terminology and notation formally. Saction 3 we introduce some information
theoretic tools used in the proofs. We then use these togbetimrm certain “protocol manipulations”
in Section 4, culminating in a couple adund elimination lemmathat form the heart of the argument.
Section 5 uses the round elimination lemmas to prove Theoren? and 3. Finally, in Section 6 we
comment on some open problems and give a brief sketch of howeohniques can be extended to prove
Theorem 4.

2 Preliminaries

2.1 Plan of the Proofs

Our proof formalises the following intuitive argument. Page there is &-player one-way NOF protocol

P for MmPJ in which each player communicates at meatbits, for some “small” quantity:. Let us runP

on a random input and consider the information revealed byd?l1l's message about the second layer of
pointers (i.e., the input on Player 2's forehead). This lay@sists o pointers. Since Player 1 sends at
mostan bits, there exists ane {1, 2, ..., n} such that she reveals at mesbits of information about the
ith pointer.



Now, consider instances ofPJ in which the pointer fromy always points to théth vertex in layer 1;
note that such instances are effectively instancesraf_;. We thus have &-player protocol fompJy_1,
with the inputs written on the foreheads of Players 2 throkighn and of itself, such a protocol is silly:
the first player can simply compute the final answer and ratieldlowever, our protocol has the additional
property that Player 1 reveals onty< 1 bits about the input on Player 2’s forehead. Using an apiariap
tool from information theory, we can argue that it does nokenenuch difference if we alter Player 1's
behaviour so she senderoinformation about that input. More precisely, the prot&elror probability
increases byD(y/a). At this point, Player 2 can emulate Player 1, so we may ehiaifPlayer 1 from the
game altogether. We now hage — 1)-player protocolQ for MpJ_1 with slightly larger error probability
thanP.

Iterating this constructiok — 2 times, we eventually arrive at a 2-player protocol fors,, which is
simply a restatement oRDEX problem. At this point, we can apply standard two-party a@g- commu-
nication lower bounds fomDEX. Note that in order for the error to have only increased byrstamt, we
needa = O(1/k?), limiting us to anQ(n/k?) lower bound. A more careful analysis gives a higdn/ k)
bound for myopic protocols.

When seeking a super-linear lower bound fory,, the above outline runs into trouble because 1,
which means tha® (/) additional error is intolerable. Therefore, we need a dhife information theoretic
tool. The details appear below, but for readers familiahvifite work of Chakrabarti and Regev [CR04],
we mention that the tool we need has the flavour of combininghnassage compression lemma” and a
“message switching lemma” from that work. The compressenrha is in turn inspired by the work of
Jain, Radhakrishnan and Sen [JRS03].

Some earlier lower bounds on pointer jumping in traditidmad-player settings (i.e., f@pPy, BPJ and
TPX) were proven using similar information theoretic ideas [K201, JRS02] in a quantum communication
setting. However, extra complications are introduced wihesding withmpy and the NOF model, which
makes new technical ideas necessary in our work.

2.2 Terminology and Notation

For the rest of the paper, “protocols” shall be assumed tousiqgocoin randomised protocols in the one-
way NOF model, unless explicitly qualified otherwise. Therenoommon Alice-and-Bob protocols with
messages exchanged between two players shall be calldditinal protocols.”

We shall assume that each message in a protocol has a preisetiength independent of the actual
input; this makes no asymptotic difference in communicatiost. LetP be ak-player protocol in which
Playeri’'s message has length. We say that thaeignatureof P is (¢4, £, ..., £x) or, equivalently, thaP
isan{{y, ..., {x)-protocol. We define coéP) := ¢1 + - - - + {x. We denote the error probability & (over
its internal coin tosses) on its worst case input byfyr For deterministic as well as randomised protocols,
we define the distributional error & with respect to input distributio® by ern(P, D).

For random variableX, Y andZ, we use HX) to denote the entropy of (in bits), I(X : Y) to denote
the mutual information betweex andY, and HX | Z) and I(X : Y | Z) to denote conditional entropy and
conditional mutual information, respectively. We use a banof basic results from information theory. For
more on the subject we refer the reader to the textbook by Gma Thomas [CT91].

In addition to the restrictions of myopia and conservatdss defined above, we will need to consider
the following unusual restriction.

Definition 1 (Quasi-private coin protocols). A protocol involvingk > 2 players is said to be quasi-private
coin if the random coin of Player 1 is private. Players 2 tigioki may continue to share a public coin.



Definition 2 (Information cost). Let P be a protocol for a problerd : @4 x --- x @ — % andD a
distribution one#;, x - - - x 4. The information cost oP with respect tdD, denoted icogtP, D) is defined
to be the following conditional mutual information:

icostP,D) = I(Xo: M| Xs,..., Xk)
where(Xy, ..., Xk) ~ D andM is the random message produced by Player 1 when shéXges., Xy).

Notice that the information cost deals only with tiirst message of the protocol and only captures the
information revealed by this message about the input ulzblaito Player 2. We have the following simple
lemma relating the information cost of a protocol to a paito&ctual communication cost.

Lemma 5. Let P be an{fy, o, ..., {x)-protocol andD be any distribution on the input to P. Then
icost(P, D) < ¢;.

Proof. Using the notation in Definition 2 we have

icostP,D) = I(M: Xz2| X3,...,Xk) < HM | X3,..., Xk) < HM) < M| = ¢;. m
Definition 3 (Pointer jumping). For a positive integen, let [n] := {1,2,...,n}. Fork > 2, we define
MPJ : [n] x ([n][”])k_1 — [n] recursively, as follows. Heré,e [n] and f, f, ..., f € [n]i".

MPR(@, f) = f(),
MPX(, f2, fa, ..., fi) = MPI_1(f2(i), fa, ..., fi), Vk> 2.

We definempPy : [n] x ([n][“l)k_2 x {0, 1}" — {0, 1} similarly, except that we start witkiPJ (i, X) = X;
fori e [n]andx € {0, 1}".

The crucial fact about pointer jumping that we exploit isttha instance ofpPJ_; can be “embedded”
in an instance of1PJ. This is made precise in the following lemma, whose triviaqd we omit.

Lemma 6. For f e [n]!" and i, a € [n], define the function '® e [n]" as follows:

ifariy a, ifj =i,

o) = [ f(j), otherwise

Then, for any k> 3,i e [n] and g e [n]!", we havempPi_1(a, fs, ..., fx) = MPX(i, g"3, fa, ..., fi). A
similar statement holds fanPJ._; and MPJ. O

3 Information Theoretic Tools

We now present two key information theoretic tools that wadiskse in our proofs. It may be helpful to keep
in mind the following context while reading this section. Wave two random variables — to be thought
of as “input” and “response” — and a function that assignsakvalued score to each input-response pair.
We would like to alter the response in some way so as to siynjpliithout changing the expected score
much. In Lemma 8 below, the input splits into two independamtions (A and B) and the response&C
carries a negligible amount of information about one of thgipns (A); we show that the response can be
made functionally independent of that portion. In Lemma @Wwethe responseR) carries a small amount



of information about the input4); we show that the response can be restricted to lie in asmoralingly
small set.

The latter lemma is similar to (and stronger than) a lemmalwkZabarti and Regev [CR04] that was
used to compress the first message of a traditional protod.use it here for a very similar purpose.
Lemma 8 is in the spirit of the Average Encoding Theorem ofu€kaet al. [KNTZ01] and we use it
here to eliminate “uninformative” messages. It explicated generalises similar ideas in Sen [Sen03] and
Chakrabarti and Regev [CRO04].

We recall the following well known theorem from informatitimeory (see, e.g, Lemma 12.6.1 of Cover
and Thomas [CT91]).

Fact 7 (Pinsker’s inequality). LetP? and @ be two probability distributions on the same domain. Then th
Kullback-Leibler divergenc®. (P||Q) and the Ly distance||P — Q||; are related by

1 2
Dk (PIIQ) = mHP—th-

Lemma 8. Let A B and C be random variables with ranges, % and % respectively. Suppose A and B
are independent. Then, for every function £ x %2 x ¢ — [0, 1], there exists a function g% — ¢
such that

In2
Exol (A BLO(B)] < Enoclf(AB.C)+, 2 1(A:CB).

Proof. Let IT be the joint distribution of A, B, C) and letIl,,, I1z¢, etc. be its marginals. Define the
distributionTI’ on .« x % x € by IT'(a, b, ¢) = 11 (a)T1 g« (b, c). By independence oA andB, we have

Dk (IT[IT') = I(A:BC) = I(A:B)+I(A:C|B) = I(A:C|B). (1)
Observe that
> > Hge(b,0) D My @f@bo = D> D> > M@b,cf(a,b,c) )
be % ce€ aed/ ac/ beB ce¥
< Enaclf(A B,O)] + Sl — Tl ©)
< Ensclf(A B0l +5/@N2 Da () ()

I
= Eascl[f(A, B,C)]+\/n72-|(A:C|B), (5)

where (3) holds becauseé takes values in [(L], (4) follows from Pinsker’s inequality and (5) follows
from (1). Now, defingg : 8 — % by

g(b) == argmin>  T,(a)f(a b, ).
ce? aed/

Then, the sum on the left side of (2) is at least

> D My@f(abgb) D Maeb,o) = D > My (@Tsb)f(a, b, gb)

be % ac.o/ ce? ac/ be#
= Eas[f(A, B,g(B))]

which completes the proof. O



Lemma 9. Let A and B be random variables with rangesand .28 respectively. Then, for every function
f:o x % — [0,1] and everyl > 41(A: B), there exists, C % and a function g &/ — %, such that

| %0l < 2* andEa[ f (A, 9(A))] < Easlf(A B)] + 3/T(ATB)/2+ (1+loge)/A.

Proof. This lemma is an analogue of Lemma 3.5 of Chakrabarti and\R&j@04], but with tighter param-
eters. The proof is fairly technical. We give a complete-selfitained proof in Appendix A. O

4 Protocol Manipulations

4.1 Removing Player 1's Message

We now prove a result (Lemma 11) that lets us remove Playem&ssage in a protocol with a “slight”
additive increase in error probability. The increase isaiet §light only when the information cost is low, to
begin with. We use the result in our round elimination lemph@sow. The result requires the protocol to be
guasi-private coin, so we begin with a preliminary lemma #ddresses this requirement.

Lemma 10 (Quasi-privatisation lemma). Let P be a myopic NOF protocol in which Player 2 is determin-
istic. Then there exists a quasi-private coin myopic protd@, with the same signature and information
cost as P, that behaves identically to P on all inputs.

Proof. If P involves just two players, there is nothing to prove. If kolvesk > 3 players, we construct

Q as follows. Letx, be the input on Player 2's forehead,be the public random string used by all players
in P to construct their messages, amB(x,, R) be the function computed by Player 1 to generate her first
message irP. In Q, Player 1 still sendg:”(x,, R) but generates the random valReprivately. Player 2
behaves the same asf Let D[x, m] denote the conditional distribution ¢R | " (x, R) = m). Players

3 throughk, upon seeing the Player 1's messagg use a new public coin to generate a vaRialistributed
according tdD[x,, m;] and then behave just as ih, usingR’ to provide the randomness in their messages.
It is easy to see thd) has all the desired properties. O

Lemma 11. Suppose k> 3. Let P be a quasi-private coitfy, ..., £x)-protocol for a functiony : @ x
- x g — A, and letD be a distribution on/y x - - - x .

(1) If D is a product distribution, there exists a determinisi; £, + ¢, €3, ..., {x)-protocol Q for¢
such thaterr(Q, D) < err(P, D) + J/icost(P, D).

(2) If P is myopic, there exists a deterministic myofict,, €3, ..., fx)-protocol Q for¢ such that

err(Q, D) < err(P, D) + J/icost(P, D).

(3) If P is myopic, then for every > 4 - icost(P, D) there exists a deterministic myopic protocol Q for
¢ with signature(0, 2*¢5, {3, . .., £i) such thaterr(Q, D) < err(P, D) + 3./icost P, D)/ + 3/ .

Proof. We give the full details of the argument for Part (1). The otta® parts use much the same argument,
so we merely point out the key differences.

Part (1). Let R; denote the random string used by Player 1 to generate hemiasdage and Id®, denote
the random string shared by Players 2 throlighLet ¢P be the error indicator function foP, defined as
follows: P (x4, ..., X, m,r2) = 0 or 1 according a® produces a correct or an incorrect answer on input



(X1, ..., %), whenR, = r, and Player 1 sends the messagelLet 1P (xy, . .., X, r1) be the function that
Player 1 computes to produce her message. Then

err(Pa D) = EX]_,...,Xk,Rl,Rz [SP(Xla st Xka luP(XZ’ e Xk’ Rl)a RZ)] H (6)

where(X4, ..., Xk) ~ Dand(Ry, Ry) is distributed uniformly. Let# be the domain of Player 1's message.
Define f @ % x -+ x @ x M4 — [0,1] by f(Xz, ..., %X, M) = Ex, ro[e” (X1, X2, ..., X, M, Rp)]. Set
A= Xy, B:=(Xs, ..., Xy), andC := uP(X,, ..., Xk, R1). Note thatA and B are independent because
D is a product distribution. Now, invoking Lemma 8 (and distiag the constanfin 2)/2 for simplicity)
shows that there exists a functign o x --- x <% — .# such that

Easlf(A B, gB)] < Ex,. xeclf(Xa.oo, Xib Ol +V1(X2:C [ Xz, ..., Xi)

= er(P,D) + +/icost(P, D),

where the final equality follows from (6), the definition 6fand the definition of icost.

Consider a protocdP’ that is identical tdP except that Player 1 sends the messg@s, . . ., Xx). Since
the functione” has been parametrized by Player 1's message, we can usejiréss the error probability
of P’ as well:

erm(P’, D) = Ex,..xer [67(X1,..., X, 9(Xa, ..., Xi), R2)] = Easlf(A, B,g(B))].

.....

But note that Player 1's messageRnhis a (deterministic) function of the inputs on the foreheaflBlayers

3 throughk alone. Therefore, Player 2 has all the information necgdeayenerate this message. Therefore,
there is a protocoP” that behaves the same BSon all inputs, but where Player 1 sends 0 bits and Player 2
sendst; + ¢ bits: the concatenation of Player 1's and Player 2's messagE’. Finally, since we only
care about distributional error undBr, we can fix the random coins &f” to get a deterministic protoc@

that has the desired properties.

Part (2). We proceed almost exactly as in Part (1). The key differemtiest Player 1 produces her message
by computing a function:” (x,, r1), so when we construd®’ as above, we end up with Player 1's message
in P’ being a constant. Therefore, there is no need for this mededg at all and we can get the desired
protocol Q by simply eliminating it and then fixing the resulting prosdis random coins.

Note that we dichot requireD to be a product distribution. This is because the conditia A and B
are independent was satisfied vacuously.

Part (3). We proceed as in Part (2). SinBeis myopic, Player 1's message is given by a functidi(x,, r1)
and we have

er(P,D) = Ex,..x.RuR: [ (X1, . X 17 (X2, R), R)| = Expor [ (X2, 17 (X2, R,

where f (X, m) = Ex, xs...x.r[67 (X1, X2, X3, ..., Xk, M, Ry)]. Let .# be the domain of Player 1's
message. Setting := X, andB := x"(X,, Ry) and invoking Lemma 9 (and weakening the constants
slightly), we see that there exisi&, C .# and a functiory : &% — .4, such thai.#o| < 2* and

Ealf(A g(A)] < err(P,D)+3‘/m(# _,_;

Consider a protocoP’ that is identical toP except that Player 1 sends the messg@e). As in Part
(1), we have eP’, D) = EA[ f (A, g(A)]. Also, P’ is myopic. In particular, every player except Player 2
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can compute Player 1's messageRh Therefore,P’ behaves identically to a protoc®” constructed
as follows. InP”, Player 1 sends 0 bits. Player 2 sends her response to eadoh |of/§| messages that
Player 1 could have sent . Note that this requires#| - £, < 2*(, bits. Players 3 througk determine
Player 1's would-be message 1 and pick out the appropriate response to it from Player 2ig lmessage
and continue the rest of the protocol exactly a®in

Clearly, the signature d?” is (0, 2*¢5, {3, . . ., £i). Fixing the random coins d?” gives us a determin-
istic protocolQ with all the desired properties. O

4.2 Round Elimination for Pointer Jumping

Here we prove our two central lemmas, showing how to elineie first message — and hence the first
player — of certain NOF protocols fonpJj andMPJ,, and thereby obtain NOF protocols farJj_, and
MPJ_1, respectively.

Definition 4. We usel/¥ to denote the uniform distribution on inputsNeJ,.

Lemma 12 (Round elimination, Boolean case)SupposaPJ has a deterministi¢ty, £, . . . , £{x)-protocol
P witherr(P, %) < ¢, for some k> 3.

(1) If P is conservative, thempPy_; has a deterministic conservatiié, + ¢5, €3, ..., {x)-protocol Q

with ern(Q, U5 1) < ¢ + /Z1/n.

(2) If P is myopic, thempJ._; has a deterministic myopié,, ¢, . . ., £x)-protocol Q witherr(Q, /%) <

&+ ./fl/n.

Proof. For eachj e [n], we construct a randomised protod8| for mPJ_1, usingk players: the input
(a, fa, ..., fx) to MPJ_1 is written on the foreheads of Players 2 throdgand Player 1's forehead is left
blank. The players use a public coin to generate a uniforrdaanlayer of pointer$s e [n]i™. They then
behave as they would have in protod®lon input(j, G/, f3,..., f). In other words, if Player 1 would
have sent the messagé (f,, ..., fi) in P, then she sendg”(G!?, fs, ..., fi)in P;. From Lemma 6, it
follows that thatP; is correct wheneveP is, on the constructed inpgf, Gi?, fs, ..., fy). Thus,

1 n
= em(P, U = em(P,U") < ¢. 7
n; (P, U = en(P,U) < & M
The information cost o can be decomposed into the sum of the information costs d?te@s follows.
icostP,U*) = I(Fp:u"(F2,....,F) | Fs ..., Fo)

> Zl(Fz(J)iﬂP(Fz,---,Fk)lF3,---,Fk) (8)
=1

n
= D A u" (G Fs, ... R | Fs, ..., F
j=1

= > icost(P, U™, ©)

j=1
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where (8) holds because theandom variable$»(1), ..., F»(n) are independent giveRs, ..., Fx. Com-
bining (7) and (9), and using the concavity of the square farottion, we get

kel |cost(P uk) \/71
—Z(err(PJ,u ) 4 ,/icost(P;, Ux- 1) T S ety

where the final inequality follows from Lemma 5. Thereforeere exists g such that er(er,uk‘l) +
Vicost(Py, U1y < ¢ + /f1/n. We now prove the two parts of the lemma separately.

Part (1). Consider the protocaoP;. If P is conservative, then for any> 3, the message of Playeiin

P; can only depend orfi 4, ..., fy and on the valuefj_; o --- o f3 0 Fo(j) whereF, = Gl Although

F, is randomly chosenk,(j) = GI(j) = a, which means that Playeéris in fact deterministic. Player 2
is trivially deterministic, irrespective of whether or nBtis conservative. Thus, Player 1 is the only player
to use randomness ;. In particular, P; is a quasi-private coin protocol. By Part (1) of Lemma 11r¢he
exists a deterministi¢0, £1 + £», {3, . .., £x)-protocol P’ for MPJ._1 such that eltP’, 5 1) < ¢ + /€1/n.

In this protocol, Player 1 neither has an input on her fordhsa does she communicate any bits, so we
effectively have dk — 1)-player({fy + €2, €3, . .., {x)-protocol Q with the desired properties.

Part (2). If P is myopic, then so id;. Moreover, Player 2 is deterministic iR;. Invoking the quasi-
privatisation lemma (Lemma 10), we can replaéewith an equivalent quasi-private coin protodBJl .
Applying Part (2) of Lemma 11 t&; and removing Player 1 as before gives us the desired detistimin
€y, ..., Lk)-protocol Q. O

Notice that the above lemma does not provide an interestisigitrwher?; > n. But we must deal with
¢1 > n we are working with the non-Boolean problempy,, and wish to prove a communication lower
bound higher tham. To this end, we introduce another round elimination lembedpw. The fact that
MPJ. is a non-Boolean problem does not play a significant rolesipibof. However, for our application
later, we need to work with randomised protocols in this lemnather than with deterministic protocols
and distributional error.

Lemma 13 (Round elimination, non-Boolean case)SupposeiPJy, has a myopidty, £», . . . , £)-protocol
P, for some k> 3. Then, forl > 4¢,/n, MP3_, has a myopic protocol Q with signatutg*¢,, s, . . ., i)

and witherr(Q) < err(P) + 3/¢1/(n1) + 3/1.

Proof. We use much the same argument as in Part (2) of Lemma 12 bubwifixing a specific input
distribution likez/k. Let D*~* be an arbitrary input distribution fanP3_;. By Yao’s minimax princi-
ple [Yao77], it suffices to demonstrate a deterministic @rot Q' with signature(2*¢,, ¢5, ..., £x) and
with er(Q’, D) < err(P) + 3/71/(n1) + 3/4. Let D¥ denote the distribution of the random input
(J,GYA Fs, ..., F), whereJ is drawn uniformly from ], each ofG(1), ..., G(n) is drawn indepen-
dently from the first marginal db*~* and(A, F, ..., Fx) ~ DKL, By Yao’s minimax principle again (the
easy half, this time) there is a deterministic protoBolfor MPJ, with the same signature @ and with
err(P’, D¥) < err(P).

For eachj e [n], we now design a protocd?; for MP3._; just as before, the only difference being that
the random layer of pointel@ is drawn from the first marginal d*~1. Arguing as in the derivation of (7)
and (9), we now have

n
—Zerr(P,,Dk H < er(P), and > icost(P;, D) < icostP, D).
j=1 j=1
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We now combine these two inequalities appropriately to kalecthat there exists psuch that

[icost(P;, D*-1 [t1 3
er(P;, DX 1) +3 ":St(lf’%rz < ermP)+3 =t

Applying the quasi-privatisation lemma (Lemma 10) follaizy Part (3) of Lemma 11 t&;, and removing
Player 1 as before, we obtain the desired prot@gol O

5 The Lower Bounds

Let ¥ be a finite alphabet. We shall I&t-INDEX denote the following traditional (i.e., not NOF) commu-
nication problem. There are two players: Alice, who hold$rag x = X1X,...X, € X" and Bob, who
holds an index e [n]. Alice must send Bob a (possibly randomised) message,\afteh Bob must deter-
minex;. More precisely, the error of the protocol is defined to begtabability that Bob's output differs
from x;. The following lower bound is an easily proven general@aif the well known lower bound for
{0, 1}-INDEX [ADbI96]. The functionH is the binary entropy functiont («) = —a loga—(1—a) log(1—a).

Fact 14. Let! denote the uniform distribution on inputsIoINDEX. Any traditional protocol for=-INDEX
with error at mosts on/ must communicate at leagt — H (¢)) nlog|X| bits.

Theorem 15 (Precise restatement of Theorem 2).et P be a conservative protocol ferpJ such that
er(P) < 2. Thencos{(P) = Q(n/k?).

Proof. We first note that a 2-player NOF protocol farJ, is simply a traditional protocol fofO, 1}-INDEX.
Now, supposeirPJ has ar%—error randomised conservativé, ..., £x)-protocol P for somek > 3. By the
easy half of Yao's minimax principlevp has a deterministic conservativé,, . . ., {x)-protocol P’ with
ern(P’, U%) < %5 Applying Part (1) of Lemma 12 t®’ repeatedly (i.e k — 2 times), we see thatP3, has a
deterministic protocoQ with cos{Q) < 1+ --- + ¢x and

~ 1
ermQ. U?) < / 51+52 €1 n+fk 2 _ 6+k [€1+ . +€k.

Suppose co$P) < n/(36k2). Thenty + - - + € < n/(36k?), so erfQ, U?) < 1 + : = £. By Fact 14, we
have costQ) > (1— H (3)) n > n/13, a contradiction. ]

Theorem 16 (Precise restatement of Theorem 1)Let P be a myopic protocol fanpJj with err(P) < %
Thencos(P) = Q(n/k).

Proof. Proceeding as above, suppose) has an%—error randomised myopi¢y, ..., £x)-protocol P for
somek > 3. Applying Yao’s minimax principle, followed bi¢ — 2 applications of Part (2) of Lemma 12,
we get a deterministic protoc® for MpJ, with cos{Q) < ¢x_1 + €x and

1 1 lk—2 1 K1+ -+ €)
erfQ,U?) < Z+,/—=+-+,— < = \/ ,
Q.U = 6+ n Tt n - 6+ n

where the final inequality is obtained by applying Cauchin&arz. As before, we can obtain a contradiction
if we assume that cod®P) < n/(36k). O

Theorem 17 (Precise restatement of Theorem 3)Every%-error myopic protocol fomPJ with k < log* n
must communicat& (nlog®~ n) bits.

12



Proof. Let Ay denote the statemenfiPy, has a myopic protocol with error at mob%in which each player
communicates at mosgh log*=? n)/400 bits”. Fact 14, applied ta[-INDEX, implies thatA, is false. To
complete the proof, we show thai, = Ax_, for eachk > 3.

Assume Ay, for somek > 3, and letP be the protocol whose existence is guaranteed4dby By
padding the messages of the players if necessary, we camedhat the signature d? is (¢,¢,...,¢)
with £ = (nlog®=? n)/400. Set? = 399 /n. By Lemma 13, there exists(@*¢, ¢, . . ., £)-protocol Q for

mk_l with
1 / { 3 1
err < —43 < —.
Q) = 6 + n(39%/n) + 39%/n ~ 3

Consider a random variabl¥,, ~ B(m, %), where B(m, p) denotes the binomial distribution with

parametersn andp. Letc be the smallest integer satisfying Rg[> ¢/2] < %5 Then, if we repeat é-error

protocol for some communication problesrtimes in parallel and report the majority output, we obtain a
%—error protocol for the same problem. This continues to be &ven if the problem is non-Boolean: there

may not exist a majority output, but we can simply output sibrimg arbitrary in such cases. The upshot is

that Q can be repeatedtimes in parallel to obtain é—error(Zicf, ct,...,ct)-protocol Q. Now,
’ 2(39910d" n)/400 | =y log*~Y n en (|Og(k—2) n)399/400|og(k—1) n nlogk2n
2'ct = = < s
400 400 - 400
for sufficiently largen. Therefore, the existence @ implies Ayx_;. O

6 Concluding Remarks and an Extension

We have obtained improved lower bounds on the one-way NOFragritation complexity of pointer jump-
ing in certain previously studied restricted models. Ourapch is based on the information complexity
paradigm and leads to proofs that have the nice feature n§lfermalisations of intuitive arguments. We
believe that these results show the promise of this paradigtiacking questions about NOF communica-
tion complexity.

At the same time, our proofs help bring out the limitationshe present way of applying information
complexity. A key step in the paradigm is to solve a “simpledidem (in this casempJy._1) by simulat-
ing the actions of a protocol for a “compound” or “direct suprbblem (in this caseypPJk). In a NOF
model, in order to create suitably distributed inputs fas tArger problem, the players require public coins.
This presents a challenge because round elimination seersguire the message under consideration to
be generated using private coins. A meaningful measurefofmiration complexity in a public coin set-
ting requires conditioning on the public random string {iwore on this, see Appendix B of Bar-Yossef et
al. [BJKS02]) and this seems to stymie our argument. Hereangeable to work around this issue when
handling either myopic or conservative protocols. Therghhihowever, be a more sophisticated way of
applying information complexity that can deal with lesstiesed models.

We can, in fact, relax our restrictions somewhat and consigit protocols as in Theorem 4. Here is
a brief sketch of its proof; the details are straightforwdrda split protocol, if Player 1 is conservative, so
is every other player. Therefore, we may apply Theorem 2.ldfé& 1 is myopic, our round elimination
argument still goes through, after a suitable modificatmmhe quasi-privatisation lemma. The modified
lemma works with protocols in which those players that dosest Player 2’'s input are all deterministic.
Now, carrying out calculations very similar to those in tlieqds of Theorems 1 and 2 completes the proof.
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The most obvious open problem is to remove the restrictiooms four lower bounds, thereby proving
MPJ ¢ ACC®. Less ambitious goals include improving the knoft./n) lower bound formpJ and
proving nontrivial lower bounds fompPJ,, both in the unrestricted one-way NOF model. It is temptimg t
conjecture aif2(n) lower bound fompJ, but the protocol of Pudlak et al. [PRS97] sounds a note wii@a.
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A Proof of Lemma 9

Theorem 18 (Restatement of Lemma 9)Let A and B be random variables with rangesand 4 respec-
tively. Then, for every function f<& x 2 — [0, 1] and everyl > 41(A : B), there exists#, C % and a
function g: & — %, such thal %y| < 2* andEa[ f (A, g(A))] < Eas[f(A, B)] + g«/I(A: B)/A+(1+
loge)/ /.

Proof. Let IT denote the (marginal) distribution & andII, the distribution ofB conditioned onA = a.
For eacha € <7, we introduce a fractiop, € (0, 1), whose precise value we set later. Define the Sgts
andT, as follows:

S = {be A palla(b) < I1(D)}; Ta i= {be Z: palla(b) > [(b)}.

Defined, := I1,5(T,). It will help to think of 5, as being very small. Consider the function [0, 1] x &/ —
2 defined by the following algorithm.

Algorithm h(r, a):
Inputs: r € [0,1],a € /.
Note: Designed to be invoked with anchosen at random, uniformly.
Repeatforever:
Usingr as a source of random bitgenerateb € % according tall.
Usingr again,return b with probability min{paI1,(b)/I1(b), 1}.
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Let IT, denote the distribution df(R, a), whereR denotes a uniform random real in [f] independent
of A andB. Defineo, to be the probability that the algorithm stops (i.e., resusome value) in a particular
iteration. Then

Oa = ZH(b) -min{palla(b)/TI(b), 1} = palla(S) + [1(Ta) = pa(l—da) +I1(Ta); (10)
be#

min{paIla(b), I1(b)}

and II4(b) = > (1—0a)" - II(b) - min{paITa(b)/I1(b), 1}

k=0 Oa
Therefore,
I,(b (b
a1y, = 3 |2e® Ha(b)‘ T na(b)‘
beS Oa beT, Oa
T (T,
< (@ — 1) + ( () | Ha(Ta))
Oa Oa
— o0, + I (T,
_ Pa — Oa (a) ¥ 6,
Oa
Pada
- P, 11
pa(l—0a) + I(T) = ° (1)
Oa
< I) 12
= 1o T (12)

where (11) follows from (10).

Let n(r, a) denote the number of iterations of the infinite loop perfairbg the above algorithm before
it returns a value. Notice that(R, a) is a geometric random variable with expectatigia sl Leth’(r, a) be
a function that uses a slightly modified version of the aldponi, where the infinite loop is replaced by a loop
that makes at most 2terations. If no value is returned within those many itienag, the modified algorithm
returns some arbitrary fixed element@f Let IT; denote the distribution df (R, a). Then we have

AN

Prlh'(R, a) # h(R, a)]

Prin(R, a) > 2*]
Er[log n(R, a)]/4 (13)
log ER[N(R, @)]/4
(—logoa)/4

—10g pa — l0g(1 — Ja)
< B .

1 " /
EIIHa— RINTEL

INIA A

(14)

where (13) follows from Markov’s inequality and (14) follewrom (10). Combining (12) and (14) using
the triangle inequality, we get

2(—log pa — log(1 — da)) 4 Ja

H _H// <
ITa — T < - =

+ 64 (15)

Consider the two-point distributior® = (I15(S,), I1a(Ta)) andQ = (I1(S,), I1(T,)). By monotonicity
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of the Kullback-Leibler divergence, we have

Dk (IT, || IT)

v

DkL (P1IQ)

_ 12(S) 5(Ta)
= Ia(S)log (S + I14(T,) log A

1
(1—6y) log(1 — 63) + dalog —

a

v

> —daloge—d,l09gpa,

where the penultimate inequality follows from the defimsoof S,, T,, andd,. Forp, < 1/ethis implies

Dy (IT, [ IT)

0g < ———.
—logpa — loge

(16)

We would like to havdl} close toIl. Considering inequality (15), we notice that the first tenmtioe
right hand side is a decreasing functionpgf whereas the second and third terms are increasing fusction
of d,, which is in turn upper bounded by an increasing functiorpgfaccording to (16). Therefore, to
minimise ||IT15 — I1}]|1, we should choosg, neither too large nor too small. The asymptotically optimal
choice turns out to be given by

—logpa = - Dy (TI4 || IT) + loge.

A
I(A: B)

Plugging this into (16), we g < +/I(A: B)/4. The condition onl impliesd, < 1/2, which in turn gives
0a/(1— 03) + Ja < 303 < 3JI(A: B)/1. We also have-log(1 — ;) < —log(1 — %) = 1. Using these
bounds in (15), we get

s 2:D(ILfI) | 2(1+loge) . [I(A:B)
Iy — 11 < 3 .
” a a”l_ il(AB)-l_ 7 + 7

Let p, := PrfA=a]. Then} ,__, paDx. (I1a]|IT) = I(A : B). Therefore

” I((A:B) 2(1+loge
> pallla gy < 5122 2009 7)

acad/

Recalling that'(R, a) ~ I1}, we have

ErEAlf (AN (R, AD]l = EalEr[f(A N (R A)]]
= D pPaErlf@@ (R a)
aed/
= 2 P2 b F@EDb
acd be %
< Y B - g+ Y e Y T @b
acd/ aed/ be#

5 /I(A:B) 1+loge
Easlf(A, B)] + 5V 7 + PR
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where the penultimate inequality holds becadséakes values in [0l] and the final inequality follows
from (17). Therefore, there exists some fixgde [0, 1] such that

EA[f(A N (ro, A))] < Eas[f(A, B>1+§\/@+1+fge~

Letg: o — 2 be defined byg(a) = h'(rg, @) for a € &7, and let%, C % be the range off. Since the
algorithm forh’ stops within 2 iterations by design, we hayegy| < 2*. Thus, the functiorg has all the
desired properties. O

18

ECCC ISSN 1433-809
http://eccc.hpi-web.de/




