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1 Introduction

Property testing [RS, GGR] is concerned with a relaxed type of decision problems; specifically,
for a fixed property (resp., a set) II, the task is to distinguish between objects that have property
IT (resp., are in IT) and objects that are “far” from have property II (resp., are “far” from any
object in II). The focus of property testing is on sublinear-time algorithms, which in particular
cannot examine the entire object. Instead, these algorithms, called testers, may obtain bits in the
representation of the object by issuing adequate queries. Indeed, in this case, the query complexity
of testers becomes a measure of central interest.

For natural properties, testers of sub-linear query-complexity must be randomized (see articu-
lation in Section 2.1). This is a qualitative assertion, and the corresponding quantitative question
arises naturally: for any fixed property II and a sub-linear function ¢, what is the randomness-
complexity of testers for 11 that have query-complezity q?7

In addition to the natural appeal of the foregoing question, there are concrete reasons to care
about it. Firstly, the randomness-complexity of tester determines the length of PCPs that are
constructed on top of these testers. Indeed, this was the motivation for the interest of [GS, BSVW]
in reducing the randomness complexity of low-degree testing. Secondly, the randomness-complexity
of a tester affects the complexity of implementing a version of this tester while utilizing a weak
source of randomness. This motivation is further discussed in Section 1.2.

Indeed, the randomness-complexity of testers was considered in some prior work, starting
in [GS]. This subject is the pivot of [BSVW] and the main topic of [SW]. However, all these
works refer to specific (algebraic) tasks (i.e., testing low-degree polynomials and group homomor-
phisms). In contrast, our focus in this paper is either on general properties (see Section 1.4) or on
specific combinatorial properties (see Section 1.3).

1.1 The Perspective of Average-Estimation

Property testing is a vast generalization of the task of estimating the average value of a function.
Specifically, consider the task of distinguishing between functions f : {0,1}" — {0,1} having av-
erage value exceeding 0.5 and functions that are e-far from having this property (i.e., functions
having average value below 0.5 — €). Clearly, this task can be solved by a randomized algorithm
that queries the function at O(1/¢?) (random) points. This query-complexity is optimal and any
algorithm achieving it, called a sampler, must be randomized (see [CEG]). Furthermore, a quanti-
tative study of the randomness-complexity of samplers in terms of their query-complexity was also
carried out in [CEG]. The current paper may be viewed as extending this study to the domain of
general property testing.

Note that estimating the average value of a function corresponds to very restricted properties of
functions. In particular, these properties are symmetric (i.e., are invariant under any relabeling of
the inputs to the function). In contrast, most of the study of property testing refers to properties
that are not symmetric (e.g., being a low-degree polynomial, monotonicity, representing a graph
that has a certain graph property, etc). Furthermore, while all symmetric properties of Boolean
functions are easily testable by straightforward sampling, this cannot be said about property testing
in general (nor about the numerous special cases that were studied in the last decade [F, R]).

1.2 A Concrete Motivation: Using Weak Sources of Randomness

In the standard context of randomized algorithms, a concrete motivation for minimizing the
randomness-complexity is provided by the exponential effect of the latter measure on the time-



complexity of a possible derandomization. In contrast, in the context of property testing, de-
randomization is typically infeasible, because (as noted above) deterministic testers cannot have
sub-linear query complexity. Instead, a different motivation, advocated in [G] becomes very relevant
in this context.

We refer to the effect of the randomness-complexity on the overhead involved in implementing
the tester when using only weak sources of randomness (rather than perfect ones). Specifically, we
refer to the paradigm of implementing randomized algorithms by using (a single sample from) such
a weak source, and trying all possible seeds to an adequate randomness extractor (see below). We
shall see that the overhead created by this method is determined by the randomness-complexity of
the original algorithm.

Recall that a randomness extractor is a function E : {0,1}*x{0,1}" — {0,1}" that uses an s-bit
long random seed in order to transform an n-bit long (outcome of a) weak source of randomness
into an r-bit long string that is almost uniformly distributed in {0,1}". Specifically, we consider
arbitrary weak sources that are restricted (only) in the sense that, for a parameter k, no string
appears as the source outcome with probability that exceeds 27*. Such sources are called (n, k)-
sources (and k is called the min-entropy). Now, E is called a (k, €)-extractor if for any (n, k)-source
X it holds that E(Us, X) is e-close to U,, where U, denotes the uniform distribution over m-bit
strings (and the term ‘close’ refers to the statistical distance between the two distributions). For
further details about (k, €)-extractors, the interested reader is referred to Shaltiel’s survey [Shall.

Next we recall the standard paradigm of implementing randomized algorithms while using
sources of weak randomness. Suppose that the algorithm A has time-complexity ¢ and randomness-
complexity r < ¢. Recall that, typically, the analysis of algorithm A refers to what happens
when A obtains its randomness from a perfect random source (i.e., for each possible input «, we
consider the behavior of A(a,U, ), where A(a,w) denotes the output of A on input @ when given
randomness w). Now, suppose that we have at our disposal only a weak source of randomness;
specifically, a (n,k)-source for n > k > r (e.g.,, n = 10k and k£ = 2r). Then, using a (k,¢)-
extractor E : {0,1}* x {0,1}" — {0,1}", we can transform the n-bit long outcome of the weak
source into 2° strings, each of length r, and use the resulting 2° strings (which are “random on
the average”) in 2° corresponding invocations of the algorithm A. That is, upon obtaining the
outcome x € {0,1}" from the source, we invoke the algorithm A for 2° times such that in the i
invocation we provide A with randomness E(7,z). The results of these 2° invocations are processed
in the natural manner. For example, if A is a decision procedure, then we output the majority vote
obtained in the 2° invocations (i.e., when given the input «, we output the majority vote of the
sequence (A(a, E(4,z)));_; 4s). As shown in Appendix A.1.1, this decision will be correct with
probability at least 1 — 2(p’+’ €), where p denotes the error probability of A(a, U,).

Let us consider the cost of the foregoing implementation. We assume, for simplicity, that the
running-time of the randomness extractor is dominated by the running-time of A. Then, algorithm
A can be implemented using a weak source, while incurring an overhead factor of 2°. Recalling
that s > logy(n — k) and » > k > r must hold (cf. [Shal]), it follows that for & = n — Q(n)
the aforementioned overhead is at least linear in 7. On the other hand, for n = O(k) = O(r)
(resp., n = poly(k) = poly(r)) efficient randomness-extractors using s = (1 + o(1))logyn (resp.,
s = O(logn)) are known (see Appendix A.1.2). This establishes our claim that the time-complexity
of implementing randomized algorithms when using weak sources is related to the randomness-
complexity of these algorithms. The same applies to the query complexity of testers. Specifically,
for n = O(k) = O(r) (resp., n = poly(k) = poly(r)) the query-complexity of implementing a tester
is almost linear in r - ¢ (resp., is poly(r) - ¢), where ¢ is the query-complexity of the original tester
(which use a perfect source of randomness).



1.3 Specific Algorithms

The motivation discussed in Section 1.2 is best illustrated by our results regarding testing bipar-
titeness in the bounded-degree model of [GR1]. Specifically, fixing a degree bound d, the task is to
distinguish (IN-vertex) bipartite graphs of maximum degree d from (N-vertex) graphs of maximum
degree d that are e-far from bipartite (for some parameter €), where e-far means that ¢ - dN edges
have to be omitted from the graph in order to yield a bipartite graph. It is easy to see that no
deterministic algorithm of o(/N) time-complexity can solve this problem. Yet, there exists a prob-
abilistic algorithm of time-complexity O(v/Npoly(1/€)) that solves this problem correctly (with
probability 2/3). This algorithm makes ¢ def O(v/Npoly(1/€)) incidence-queries to the graph, and
(as described in the work [GR2]) has randomness-complexity 7 > ¢ > V/N (yet r < ¢ - logy N).!

Let us now turn to the question of implementing the foregoing tester in a setting where we have
access only to a weak source of randomness. In this case, the implementation calls for invoking the
original tester O(r) times, which yields a total running time of O(r) - O(v/Npoly(1/€)) > N (and
the same bound holds for its query-complexity). But in such a case we better use the standard
(deterministic) decision procedure for bipartiteness!

Fortunately, a randomness-efficient implementation of the original tester of [GR2] is possible.
This implementation (presented in Section 3.2) has randomness-complexity 7 = poly(e~!log N)
(rather than 7 = poly(¢ 'log N) - v/N). Thus, the cost of the implementation that uses a weak
source of randomness is related to 7’ - s = O(v/Npoly(1/e)), which matches the original bound (up
to differences hidden in the O() and poly() notation).

The randomness-efficient implementation of the [GR2]-tester presented in Section 3.2 is based
on pin-pointing the “random features” used in the original analysis, and providing an alterna-
tive implementation that satisfies the same features. In contrast, the randomness-efficient tester
presented in Section 3.1 is based on new ideas.

In Section 3.1 we consider testers for graph properties in the adjacency matriz model of [GGR).
Specifically, we consider the task of testing bipartiteness. Recall that the tester presented in [GGR]
works by selecting a random set of O(e~2) vertices and inspecting the (corresponding) induced sub-
graph. In fact, as shown [GGR], it suffices to make O(e~3) queries. A randomness-efficient imple-
mentation of the “random features” used in the original analysis, allows reducing the randomness-
complexity to O(e")-log, N, where N denotes the number of vertices. In contrast, using an alterna-
tive approach, we present a tester of randomness-complexity O(log(1/¢))-log, N, while maintaining
a query-complexity bound of O(e~?). The latter randomness-efficient tester is the main technical
contribution of this work. In the next paragraph, we provide an extremely high-level description
of the principles underlying its design.

The original tester works by first selecting a random sample of t = O(e!) vertices, and the
analysis refers to 2¢ candidate 2-colorings that are induced by all possible 2-partitions of this sample.
The tester then selects an auxiliary sample of O(t/€) vertex-pairs and checks whether this sample
rules out all these 2! candidate 2-colorings. The analysis boils down to showing that if the graph is
e-far from bipartite then, with high probability, all these candidate 2-colorings are ruled out. This
is shown by applying a union bound on this set of 2* candidate 2-colorings, which means that each
candidate has to be ruled out with probability at least 1 — 27%. Thus, the randomness complexity
of any implementation of this tester must exceed ¢. Seeking to achieve randomness-complexity that
is linearly related to logt, we performs a preliminary step aimed at obtaining a single 2-partition
of the initial ¢-vertex sample that induces a single candidate 2-coloring, which will be checked as

'"We comment that Q(v/N) is a lower-bound on the query-complexity of any property tester of bipartiteness (in
the bounded-degree model; see [GR1]).



in the original tester. The preliminary step obtains such a 2-partition by collecting constraints on
the mutual placements of pair of vertices. These constraints are found using the same mechanism
that underlies the checking of candidates in the original tester. The punch-line is that here we
are dealing with (%) (rather than 2¢) events, which allows us to work with an error probability of

2
t=2/O(1) (rather than 27t/O(1)) per each event.

1.4 Generic Bounds

In contrast to the specific algorithms described in Section 1.3, we now consider quite generic lower-
and upper-bounds on the randomness-complexity of property testers as a function of their query-
complexity. We stress that these results do not refer to the time-complexity of the testers, which
makes the lower-bounds stronger (and the upper-bound weaker).

Loosely speaking, we show that, for a wide class of properties of functions defined over a domain
of size D, the randomness-complezity of testing with q queries is essentially logy(D/q). Needless
to say, the dependence on the query-complexity is essential, because deterministic testers of query-
complexity D exist for any property. Furthermore, the randomness-complexity of any tester can
be decreased by an additive term of ¢ while increasing the query complexity by a factor of 2.

The lower-bounds established in Section 2.1 are exactly of the foregoing form, and they apply
to two general and natural classes of properties. In particular, these lower-bounds apply to testing
low-degree polynomials (cf., e.g., [BLR, RS]), locally-testable codes (cf., e.g., [GS]), testing graph
properties (in both the adjacency matrix and incidence-list models, see [GGR, GR1], resp.), testing
monotonicity (cf., e.g., [GGLRS]), and testing of clustering (cf., e.g., [ADPR]). The upper-bound
established in Section 2.2 refers to any property but is actually of the form log, D+log, logy, R+0O(1)
(rather than log,(D/q)), where R is the size of the range of the functions we refer to.

2 Generic Bounds

We consider testing properties of functions from D to R. Fixing a set of such functions II, we say
that a randomized oracle machine T' is an e-tester for II if the following two conditions hold:

1. For every f € II it holds that Pr[T/ = 1] > 2/3.

2. For every f that is e-far from II it holds that Pr[T/ = 1] < 1/3, where f is e-far from II if for
every g € II it holds that Pryep[f(z) # g(z)] > e

In case the first condition holds with probability 1, we say that T has one-sided error. The query
and randomness complexities of 7" are defined in the natural manner. A tester is called non-adaptive
if it determines its queries based solely on its internal coin-tosses (and independently of the answers
to prior queries).

Note that we have defined property testers for finite properties and a fixed value of the proximity
parameter e. The definition may be extended to infinite properties and varying €, by providing the
tester with |D|,|R| and € as inputs (and assuming D = [D]).2

2.1 Lower Bounds

We provide lower-bounds on the randomness complexity of testing two general classes of properties.

2Qccasionally, we shall assume that € > |D|™!; otherwise, e-testers coincide with standard decision procedures.



2.1.1 Strongly evasive properties

We first consider properties that are “strongly evasive” in the sense that determining the values of
some function at a constant fraction of the domain leaves the promise problem (of distinguishing
between yes-instances and “far from yes”-instances) undetermined.? That is, for fixed parameters
€ and p, the property II is called strongly evasive if there exists a function f : D — R such that
for every D' C D of density p, there exists f; € Il and fo : D — R that is e-far from II such that
for every x € D' it holds that fi(z) = fo(z) = f(z). Many natural properties that are strongly
evasive (with respect to various pairs of parameters); see examples below. The following result can
be easily proved by extending a similar result regarding samplers (which is presented in [CEG]).

Theorem 1 Let II be strongly evasive with respect to € and p. Then any e-tester for I that has
query complezity q, must have randomness complexity greater than logy(p|D|/q).

Proof: Let T be an arbitrary e-tester of query-complexity g and randomness-complexity r, and
f be a function witnessing the fact that II is strongly evasive. For every w € {0,1}", we consider
the set of queries made by T when the outcome of T’s coin-tosses equals w and T is given oracle
access to f. Denoting the latter set by Q., we let D' = Uwefo,1} Qu- Clearly, |D'| < 2" -q. The
theorem follows by proving that |D'| > p - |D].

Suppose towards the contradiction that |D’| < p-|D|. Then there exists f; € T and fo: D — R
that is e-far from IT such that for every x € D’ it holds that fi(z) = fo(z) = f(z). It follows
that 771 and T7 behaves exactly as T/ (because all these functions agree on D’), which yields a
contradiction because T must accept f; with probability at least 2/3 and accept fo with probability
at most 1/3. W

Some applications. Many graph properties are strongly evasive, but since such properties will
be at the focus of Section 2.1.2, we mention first a few examples that refer to different types of
properties.

1. Multi-variate polynomial. For every m and d, we consider the set of m-variate polynomial
of total degree d (over a finite field F'). To see that this set of functions is strongly evasive
consider the all-zero function, f, and let f; = f. Then, for every D’ of density 1/2, let
fo(z) =0if z € D" and fo(z) = 1 otherwise. Assuming |F| > 4d, it follows that fo is 1/4-far
from any degree d polynomial.

2. Codes of linear distance. A binary code C' C {0,1}" of distance d = 2(n), is viewed as a set
of functions of the form f : [n] — {0,1}, where each function corresponds to a codeword. To
see that this set is strongly evasive consider any codeword f, and let f; = f. Then, for every
D' of density 1 — (d/2n), let fo(z) = f(z) if x € D" and fo(z) =1 — f(z) otherwise. Clearly,
fo is (d/2n)-far from any codeword.

3. Monotone functions. A function f : {0,1}" — {0,1} is said to be monotone if f(z) < f(y) for
every x < y, where < denotes the natural partial order among strings (i.e., z1 -+ Tp < Y1+ Yn
if z; < y; for every ¢ and x; < y; for some 7). To see that the set of monotone functions is
strongly evasive consider the all-one function f, and let f; = f. Then, for every D’ of density

3This notion of “strongly evasive” is incomparable to the standard definition of evasiveness (cf. [LY]). On one
hand, strong evasiveness has a non-deterministic flavor and furthermore it refers to the relaxation of property testing.
On the other hand, we shall focus on p < 1, whereas standard evasiveness refers to § = 1 — |[D|™".



1/4, let fo(oz) = f(oz) if {0z,12} N D" # 0 and fo(o0z) = 1 — o otherwise. Note that if
{0z,12} N D' = () then fy must be modified at either 0z or 1z in order to obtain a monotone
function. Thus, fy is 1/4-far from being monotone.

Turning back to graph properties, we focus on the bounded incidence lists model (of [GR1]) because
the results of Section 2.1.2 do not apply to it. We mention a few properties of bounded-degree graphs
that are strongly evasive in the (bounded) incidence lists model. Examples include connectivity
and being Eulerian (or Hamiltonian), which can be demonstrated to be strongly evasive by starting
with the N-cycle (and omitting edges). Additional examples such as planarity and bipartiteness
can be demonstrated to be strongly evasive by starting with the empty graph (and adding edges).

2.1.2 Relabeling-invariant properties

We now consider properties that are invariant under some “nice” relabeling of D. Specifically, for
any set Sp of permutations over D, we say that the property II is Sp-invariant if for every f : D — R
and every m € Sp it holds that f € II if and only (f o w) € II, where (f o 7)(z) = f(n(z)). We
consider only sets Sp that correspond to a transitive group of permutations over D; that is, Sp is
permutation group and for every x,y € D there exists a permutation 7 € Sp such that 7(z) = y.
Needless to say, the set of all permutations is a transitive group of permutations, but so are also
many other permutation groups (e.g., the group of all cyclic permutations).

Theorem 2 Let Sp be a transitive group of permutations over D, and Il be a mon-empty and
Sp-invariant property of functions from D to R. Suppose that, for some o € R, the all-o function
18 2e-far from 1I. Then any non-adaptive e-tester for 11 that has query complezity q, must have
randomness complezity at least logy(|D|/q) — 1.

Proof: Like the proof of Theorem 1, the current proof is based on deriving a contradiction from
the hypothesis that the tester never examines most of the function (i.e., |D'| < |D|). The difference
is in the way that this contradiction is derived, since we can no longer take the straightforward
route offered by strong evasiveness.

Let T be an e-tester for II, and denote its query-complexity and randomness-complexity by
g and 7 respectively. Since T is non-adaptive, its queries are oblivious of the oracle. For every
w € {0,1}", we denote by Q. the set of queries made by T' when the outcome of its coin-tosses
equals w, and let D' = Uuefo,1)r Qu- Again, |D'| <27 - q, and the theorem follows by proving that
D'l > |D|/2.

Let f: D — R be a function in IT with the maximum number of ¢ values, among all functions
in TI. By the hypothesis, [{z € D : f(x) # o}| > 2¢|D|. Suppose, for a moment, that |[{z € D\ D':
f(z) # o}| > €|D|, and let h be defined such that h(z) = f(z) if x € D’ and h(z) = o otherwise.
Then (by the maximility of f), & is e-far from II. However, T" behaves exactly as T/ (because h
and f agree on D'), which yields a contradiction because T must accept f with probability at least
2/3 and accept h with probability at most 1/3.

It is left to prove that if [D \ D'| > |D|/2 then |{z € D\ D' : f(z) # o}| > €/ D|. This does
not necessarily hold, but we shall show that it holds when replacing f by another function in II
that also has a maximum number of o values. Here we use the hypothesis that II is a Sp-invariant
property, where Sp is a transitive group of permutations over D. Specifically, consider a random
permutation m € Sp, and let f' = (for) € II. Then, f' € T and |{z € D : f'(z) # c}| > 2¢|/D|. On
the other hand, since Sp is a transitive group of permutations over D, for every z,y € D it holds



that Prres, [m(z)=y] = 1/|D|. It follows that, for a random permutation = € Sp, the ezpected size
of {x€ D\ D': f'(z) # o} equals

i 1D\ o)
ID\DI-TZEIDI,

where the inequality is due to the hypotheses |[D\ D'| > |D|/2 and |D\ f !(o)| > 2¢|D|. Thus,
there exists a f' € II such that |[{z € D\ D': f'(x) # o}| > €|D|, and the theorem follows. Il

Main application. As hinted in Section 2.1.1, the most appealing application of Theorem 2 is
to testing graph properties in the adjacency matrix model (of [GGR]). In this model, N-vertex
graphs are represented by Boolean functions defined over [N] x [N]. For technical reasons, we
prefer to represent such graphs as Boolean functions defined over the set of the (2/ ) (unordered)
vertex-pairs, which is actually more natural (as well as non-redundant). Note that the set of
all permutations over [IV] induces a transitive group of permutations over these pairs, where the
permutation 7 : [N] — [N] induces a permutation that maps pairs of the form {7, j} to {=(7),7(j)}.
Indeed, any graph property is invariant under this group, and Theorem 2 can be applied whenever
either the empty graph or the complete graph is far from the property. We note that all the graph
properties considered in [GGR] fall into the latter category (and that the testers of [GGR] are all
non-adaptive).*

Other applications. We note that any property that refers to sets of objects (e.g., sets of points
as in [ADPRY)) is invariant under the group of all permutations. Another application domain consists
of matrix-properties that are preserved under row and column permutations.

Generalizations. Theorem 2 can be generalized to properties that are Sp-invariant under a set
of permutations that is “sufficiently mixing” in the sense that a permutation selected uniformly in
Sp maps each element of the domain to a distribution that has high min-entropy. For example, for a
parameter a > 1, it suffices that for every x € D and y € R it holds that Pryes, [7(z) = y] < o/|D|.
In this case, we shall prove that |D’| > |D|/2q, and a lower-bound of logy(|D|/q) — log,(2a) on the
randomness-complexity follows. A different generalization is obtained by replacing o with a set of
values S C R and referring to properties for which every function f : D — S is 2e-far from the

property.

2.2 Upper Bounds

We start with a totally generic bound, and later focus on testing graph properties.

2.2.1 A generic bound

Recall that we refer to properties of functions from D to R. The following result can be easily
proved by extending a similar result regarding samplers (presented in [CEG]), which in turn is
proved using well-known techniques.

“Note that q adaptive Boolean queries can always be replaced by 2?2 non-adaptive Boolean queries. We warn that
the more query-efficient transformation provided in [GT] is inapplicable here, because this transformation does not
preserve the randomness-complexity.



Theorem 3 If I has an e-tester that makes q queries then it has an e-tester that makes O(q)
queries and tosses logy | D| + logy logy |R| + O(1) coins. Furthermore, one-sided error and/or non-
adaptivity are preserved.

Proof: Let T be a tester as in the hypothesis, and suppose that it tosses r coins. Consider an
2”—by—|R||D | matrix in which the rows correspond to r-bit strings (representing possible outcomes of
T’s coin tosses) and the columns correspond to possible functions such that the entry (w, f) equals
the verdict of 7/ (w) (i.e., when T uses randomness w and has oracle access to the function f).
Note that the average values in any column that corresponds to a function in IT (resp., a function
that is e-far from IT) is at least 2/3 (resp., at most 1/3).

Using the probabilistic method, we will show that there exists a multi-set Q2 of O(|D| log |R|) rows
such that, for each column, the average of this column taken only over the rows in € is 1/15-close
to the average over the entire column. Using this set {2, we consider the oracle machine that, when
given access to any function f, selects uniformly w € € and emulates 77 (w). This machine accepts
every f € II with probability at least (2/3) — (1/15) = 3/5, rejects every f that is e-far from IT with
probability at least 3/5, and its randomness complexity is log, || = log, |D| 4 log, log,y |R| 4+ O(1).
Using randomness-efficient error-amplification (e.g., using the neighbors of a random vertex in an
expander), we obtain the desired tester.

The probabilistic argument proceeds via a union bound over all possible | R|/P! functions. Fixing
any function f, we consider the probability that, for a uniformly distributed multi-set 2 of size s,
the following bad event occurs:

27 Y W) - s Y T (W) >% (1)

we{0,1}7 weN

Using Chernoff Bound, the probability that the bad event in Eq. (1) holds is at most exp(—$2(s)).
Thus, for s = O(|D|log |R|), we conclude that there exists a multi-set of size s such that, for every
f, the bad event in Eq. (1) does not hold. The theorem follows. [l

Corollary. Applying Theorem 3 to testers of graph properties in the adjacency matrix model
(of [GGRY]), we conclude that if a property of N-vertex graphs is e-testable using q queries then it
has an e-tester that makes O(q) queries and tosses 2logy N + O(1) coins. We further discuss this
model in Section 2.2.2.

2.2.2 Bounds for canonical testers of graph properties

The proof of Theorem 3 shows that for every tester T (of randomness complexity 7) there exists
a small set of coin-sequences Q7 (C {0,1}") that is essentially as good as the original set of coin-
sequences used by this tester (i.e., {0,1}"). This raises the question of whether there may exists a
universal set €2 that is good for all testers (of randomness complexity 7). Needless to say, the latter
formulation is too general and is doomed to yield a negative answer (e.g., by considering, for any
€2, a patalogical tester that behaves badly when fed with any sequence in €2). Still such universal
sets may exist for naturally restricted classes of testers.

One adequate class of testers was suggested in [GT], and it refers to testing graph properties in
the adjacency matrix model. A canonical e-tester for a property II of N-vertex graphs is determined
by an integer k and a property II' of k-vertex graphs. Such a tester, sometimes referred to as k-
canonical, selects uniformly a set of k vertices in the input graph G and accepts G if and only if the



corresponding induced (k-vertex) subgraph has the property II'. It was shown in [GT] that if II
is e-testable with query complexity ¢ then II has a k-canonical e-tester with k = O(g). Thus, it is
natural to consider the notion of a “universal set” of k-subsets of [IV] that is good for all k-canonical
testers.

Definition 4 A set Q C {S C[N] : |S| =k} is called (e, k)-universal if for every property II of
N-vertex graphs and for every k-canonical e-tester for I1, denoted T, the following holds:

1. For every G that has property T1, it holds that Proeq[T%(w) = 1] > 3/5, where T®(w) denotes
the execution of T when given the coin-sequence w and oracle access to G.

2. For every G that is e-far from property 1, it holds that Pr,cq|[T%(w) = 1] < 2/5.

Using an (e, k)-universal set, we can reduce the randomness complexity of any k-canonical e-tester
T by selecting uniformly w € Q and emulating T(w). The residual oracle machine, denoted 7", is
essentially an e-tester for the same property, except that 7" may err with probability at most 2/5
(rather than 1/3) Neeedless to say, 7" has randomness complexity log, || and query complexity
(’2“) Furthermore, T' preserves the possible one-sided error of T'.

Needless to say, the set of all k-subsets is (e, k)-universal, because using this set coincides
with the definition of a k-canonical e-tester. We seek (e, k)-universal sets that are much smaller;
specifically, by prior results we may hope to have (e, k)-universal sets of size O(N?). By extending
the proof of Theorem 3, we can prove the following result.

Theorem 5 There ezist (e, k)-universal sets (of subsets of [N]) having size 2% - N2.

The randomness complexity of the derived e-tester is k2 + 2logy N. For relatively small k£ and in
particular for k that only depends on € (as in [GGR, AFKS, AFNS]), this is much smaller than the
randomness complexity of the k-canonical e-tester (i.e., klogy N).

Proof: The key observation is that a k-canonical tester is determined by the property II' that
it decides (for the induced k-vertex subgraph), while IT' can be described by K = 2(3) < 2%/ pits
which determine for each k-vertex graph whether it is in II’. Thus, when applying a union bound
as in the proof of Theorem 3, the number of k-canonical testers that we need to consider is less
than 2X. This means that the set of random-sequences should be larger by a factor of K than in
the proof of Theorem 3. Using O(K) < 2¥”, the claim follows. [l

Open problems. Can the upper-bound of Theorem 5 be improve; in particular, do there exist
(€, k)-universal sets (of subsets of [N]) having size O(poly(k) - N2?) or even O(N?)? Can universal
sets of small size (e.g., as in Theorem 5) be efficiently constructed?

3 Specific Algorithms: The Case of Bipartiteness

We consider two standard models for testing graph properties: the adjacency matrix model (intro-
duced in [GGR]) and the bounded-degree model (introduced in [GR1]). We focus on the problem of
testing bipartiteness in these models. Further details and additional testers are provided in [Shef].
We make extensive use of randomness-efficient hitters as defined and discussed in Appendix A.2.



3.1 In the Adjacency Matrix Model

In the adjacency matrix model an N-vertex graph G = (V) E) is represented by the Boolean function
g : [N]x[N] — {0,1} such that g(u,v) = 1 if and only if w and v are adjacent in G (i.e., {u,v} € E).
In this section we present a randomness-efficient Bipartite Tester for the adjacency matrix model.
This tester is strongly influenced by the tester of [GGR], but differs from it in significant ways.
Still, it is instructive to start with a description of the tester of [GGR].

3.1.1 The tester of [GGR]

Essentially, the bipartite tester of [GGR] selects a random set of O(e 2) vertices, inspects the
subgraph of G induces by this set, and accepts if and only if this induced subgraph is bipartite.
The analysis in [GGR] actually refers to the following description, which also has a lower query-
complexity.

Algorithm 6 On input parameters N and €, and oracle access to an adjacency predicate of an
N-vertex graph, G = (V, E), proceed as follows:

1. Uniformly select a sample U of O(e 1) vertices.
2. Uniformly select a sample S of O(e~?2) vertez-pairs.
3. For each w € U and (v1,v2) € S, check whether {u,v1},{u,v2} and {vi,v2} are edges.

4. Accept if and only if the subgraph viewed in Step 8 is bipartite.

Clearly, this algorithm never rejects a bipartite graph, and thus its analysis focuses on the case
that G is e-far from being bipartite. One key observation is that each 2-partition, (U, Us), of U
induces a 2-partition of the entire graph in which all neighbors of U; are on one side and all the
other vertices are on the other side. A pair of vertices (v1,v9) detects that the latter partition is
not a valid 2-coloring of G if there exists uy,uy € Uy (resp., ui,us € Us) such that {uy,v1}, {v1,v9}
and {vq,us} are all edges of G. In such a case, we call the pair (v1,v2) a witness against (Uy, Uz).
The analysis in [GGR] shows that if G is e-far from being bipartite then, with high probability,
for every 2-partition of U there exists a pair in S that is a witness against this 2-partition. Let us
briefly recall how this is done.

The first step is proving that, with high probability (say, with probability at least 5/6), the set
U dominates® all but an ¢/8 fraction of the vertices of G that have degree at least ¢N/8. This step
is quite straightforward. The next step is proving that this implies that for every 2-partition of U
there exists at least eN?/2 (ordered) vertex-pairs that are each a witness against this 2-partition.
The implication is proved by confronting the following two facts:

1. Since G is e-far from being bipartite, the 2-partition of V' induced by any 2-partition of U
has at least e N? (ordered) vertex-pairs that reside on the same side of the partition and yet
are connected by an edge.

2. The number of (ordered) vertex-pairs (v1,vs) such that {v1,v9} € E but either v; or vy is not
dominated by U is at most eN2/2, because each low-degree vertex contributes at most e/N/4
such (ordered) pairs and there are at most e N/8 high-degree vertices that are not dominated
by U.

SWe say that a set U dominates a vertex v in the graph G if v is adjacent to some vertex in U.
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Having established the existence of at least e/N2/2 vertex-pairs that constitute a witness against
any fixed 2-partition of U, it is clear that each random pair of vertices will be a witness with
probability at least €/2, and selecting enough random pairs will do the job. The point, however, is
that we need to rule out each of the 2!V! possible 2-partitions of U. Thus, the number of selected
pairs is set such that the probability that we do not find a witness against any specific 2-partition
is smaller than 271U!. Indeed, setting |S| = O(|U|/e) will do. This completes our review of [GGR].

As stated in Section 1.3, the problem with the foregoing approach is that it is impossible to
implement it using randomness-complexity below |U|, which in turn is Q(¢ !). However, our aim
is to obtain randomness-complexity that is linearly related to O(log(1/¢)).

3.1.2 A warm-up: randomness-efficient tester of query complexity 6(674)

A closer look at the foregoing argument reveals that a pair (v1,v2) such that {ui,v1},{v1,v2} and
{va,us} are all edges of G is not merely a witness against a specific 2-partition of U that places u;
and us on the same side. It is actually a witness against any 2-partition of U that places u; and
ug on the same side. Viewed from a different perspective, such a pair (v1,vy) imposes a constraint
on the “relevant” 2-partition of U; the constraint being that ui and ug should not be placed on the
same side. It will be useful to consider the graph of these constraints, which has the vertex-set
U and edges between each pair of vertices to which such a constraint is applied (i.e., there is an
edge between u; and uso if there exists a pair (v1,v2) € V x V' that imposes a constraint on the
pair (u1,u2)). Indeed, the 2-partitions of U that satisfy the set of these constraints are exactly the
2-colorings of this auxiliary graph.

The foregoing perspective suggests that it may be useful to try to accumulate constraints. At
the very extreme, the graph of constraints will not be bipartite, which definitely allows us to reject
(because it indicates that there are witnesses against each 2-partition of U). Discarding this case,
we consider another extreme case in which the graph of constraints is connected, leaving us with a
single allowed 2-partition of U (i.e., a single 2-coloring of the constraint graph), which can be checked
as in Algorithm 6. The point, however, is that in this case it will suffice to set |S| = O(e™!) and
more importantly to have a sample that rules out the remaining partition with constant probability
(rather than with probability 2_|U|). This opens the door to a randomness-efficient implementation.

But what if the graph of constraints that we found is not connected? Unless this event is due to
sheer lack of luck, it indicates that there are few pairs in V' x V' that impose constraints regarding
vertex-pairs in U x U that are in different connected components of the constraint graph. This
implies that, for every 2-partition of U that is consistent with the constraint graph (i.e., every
2-coloring of this graph), there are many pairs in V' x V' that constitute a witness against the
2-partition of some of the connected components. That is, each such pair imposes a constraint that
refers to vertices that reside in the same connected component, and furthermore this constraint
contradicts the constraints that are already present regarding this connected component.

Needless to say, for the foregoing to work, we should determine adequate thresholds for the
notion of “few pairs in V' x V' that impose a constraint regarding vertex-pairs” (in U x U). Let
us start by spelling out the notion of imposing (or rather forcing) a constraint. We say that the
pair (v1,v2) € V x V constrains the pair (u1,u2) € U x U if {u1,v1},{v1,v2} and {vg,us} are all
edges of G. Next, we say that a pair (uy,us) € U x U is p-constrained if there are at least p - N2
vertex-pairs in V' x V' that constrain (u1,us). Leaving p unspecified for a moment, we make the
following observations:

1. Using a sample of O(p~!-log |U|) vertex-pairs in V' x V, with high probability, it holds that for
every p-constrained pair (u1,us) € U x U, the sample contains a pair that constrains (u1, ug).
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This holds even if the sample is generated using a randomness-efficient hitter (which hits
any set of density p with probability at least 1 — (JU| 2/10), using randomness-complexity
O(log |V| + log |U|) = O(log|V])). The point is that there are at most |U|? relevant pairs
(i.e., pairs that are p-constrained), and we may apply a Union Bound as long as we fail on
each such pair with probability at most |U|~2/10 (or so).

2. Consider the graph Gy, consisting of the vertex-set U and edges corresponding to the p-

constrained pairs of vertices. Then, the number of vertex-pairs in V' x V' that constrain some
pair of vertices (in U) that does not belong to the same connected component of Gy, is at
most |U|? - pN2.
Recall that if G is e-far from bipartite and U is good (i.e., U dominates almost all high-
degree vertices) then, for every 2-partition of U, there are at least e N2/2 pairs that constrain
some pair of vertices that are on the same side of this 2-partition. It follows that at least
((¢/2) — |U|?p) - N? of these pairs constrain pairs that are in the same connected component
of Gy,p. Setting p = €/(4|U|?), we need to hit a set of density ¢/4, which is easy to do using
a randomness-efficient hitter.

This analysis lead to an algorithm that resembles Algorithm 6, except that it uses a secondary
sample S that has different features than in the original version. In Algorithm 6 the set S had
to hit any fix set of density €/2 with probability at least 1 — 2-IUl. Here the set S needs to hit
any fix set of density p = ¢/(4|U|?) < € 3 with probability at least 1 — (JU| 2/10). Thus, while in
Algorithm 6 we used |S| = O(|U|/e) but generating the set S required at least |U| random bits,
here |S| = O(|U|?/€e) = O(e~3) but generating the set S can be done using O(log N) random bits.
(The set U is generated with the same aim as in Algorithm 6; that is, hitting a set of density e
with probability at least 1 — e~!. Such a set can be generated using O(log N) random bits.)

Thus, we obtain a (computational efficient) e-tester with randomness-complexity O(log N) and
query-complexity O(|U] - |S]) = O(e~*). Our aim in the next section is to reduce the query-
complexity to O(e3) while essentially maintaining the randomness-complexity.

3.1.3 The actual algorithm: randomness-efficient tester of query complexity é(e_?’)

The query-complexity bottleneck in Section 3.1.2 is due to the size of S, which in turn needs to
hit sets of density p = O(¢®). Our improvement will follow by using a larger value of the threshold
p (essentially p = O(e?)). Recall that in Section 3.1.2 we used p = O(e?) in order to bound the
total number of pairs that constrain pairs that are not p-constrained. Thus, using p = O(€®) seems
inherent to an analysis that refers to each pair separately, and indeed we shall deviate from that
paradigm in this section.

The planned deviation is quite natural. After all, we not not care about having specific edges in
our constraint graph, but rather care about the connected components of that graph. For example,
looking at any vertex u € U, any pair in V X V' that constrains any pair (u,u’), where v’ € U \ {u},
increases the connected component in which u resides. That is, let v(u1,u2) denote the fraction of
vertex-pairs in V X V' that constrain (u1,us), and recall that a pair (u1,us) was called p-constrained
if y(u1,u2) > p. Thus, we (tentatively) say that u € U is p-constrained if 3= ,cpn\ o) Y(u,u') > p.
Let us now see what happens.

1. Using a sample of O(p~!-log |U|) vertex-pairs in V x V, with high probability, it holds that for
every p-constrained vertex u € U, the sample contains a pair that constrains (u,u’), for some
u' € U\ {u}. Again, this holds even if the sample is generated using a randomness-efficient
hitter.
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2. The number of vertex-pairs in V' x V that constrain some pair of vertices (u1,us) € U x U
such that either u; or uy is not p-constrained is at most 2|U| - pN2. This means that we can
ignore such vertex-pairs (in V' x V') even when setting p = O(¢/|U|) or so.

Thus, taking a sample S’ as in Item 1, will result in having a constraint graph Gy g in which each
p-constrained vertex resides in non-singleton connected components. In particular, the number of
non-singleton connected components is at most |U|/2.

Note, however, that unlike in Section 3.1.2, the foregoing facts do not yield an upper-bound on
the number of vertex-pairs in V' x V' that constrain some pair of vertices (in U) that does not belong
to the same connected component of Gy s. Loosely speaking, we shall iterate the same process
on the non-singleton connected components of G, g/, while recalling that the only vertices that
form singleton connected components in Gy g are not p-constrained (and thus can be ignored).
This suggests an iterative process, which will halt after at most log, |U| iterations in a situation
analogous to having no p-constrained vertices. At this point we may proceed with a final sample
of pairs that, with high probability, will yield a constraint that conflicts with the existing ones.

Clarifying the foregoing iterative process requires generalizing the notion of p-constrained ver-
tices such that it will apply to the connected components determined in the previous iteration. Con-
sider a partition of U, denoted U = (U, UM, .. ,U®), where U may be empty and k may equal
0, but for every i € [k] it holds that U®) % (. In the first iteration, we use U = (0, {u1}, ..., {u:}),
where U = {uy,...,u+}. In later iterations, UM, .., U® will correspond to connected components
of the current constraint graph and U(®) will contain vertices that were cast aside at some point.

Definition 7 (being constrained w.r.t a partition): For i € {0,1,...,k}, we say that u € U®
is p-constrained w.r.t U if Y e Y(u,u') > p, where U' = Uje[k}\{i}U(j). Recall that ~v(u1,us9)
denote the fraction of vertez-pairs in V XV that constrain (u1,us), where the pair (vi,v9) € VXV
constrains the pair (ui,us) € U X U if {u1,v1},{v1,va} and {vo,us} are all edges of G.

We stress that the foregoing sum does not include vertices in either U© or U®. Our analy-
sis will refer to the following algorithm, which can be implemented within randomness-complezity
O(log(1/€)) - logy N and query-complezity O(e~3).

Algorithm 8 (The Bipartite Tester, revised):

1. Select a sample U of O(e ') vertices by using a hitter that hits any set of density €/8 with
probability at least 1 — (e/100).

2. Fori=1,...,0 +1, where £ = log, |U|, select a sample S; of O(e7?) vertez-pairs by using a
hitter that hits any set of density p = ¢/O(|U|) with probability at least 1 — O(|U|)~!. (This
hitter has randomness-complexity O(log N + log |U|) = O(log N).) Let S = U‘t1ls;.

3. For each w € U and (v1,v2) € S, check whether {u,v1},{u,v2} and {vi,va} are edges.

4. Accept if and only if the subgraph viewed in Step 8 is bipartite.

Needless to say, the peculiar way in which S is selected is aimed to support the analysis.

Lemma 9 If G is e-far from being bipartite then Algorithm 8 rejects with probability at least 2/3.
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Proof: We may assume that U is good in the sense that it dominates all but e/N/8 of the vertices
that have degree at least eN/8. As argued above (and shown in [GGR]), there are at most eN?2/2
vertex pairs that have an endpoint that is not dominated by U = {ui,...,u;}. Starting with
U = (0,{u1},..., {us}), we shall proceed in iterations proving that in each iteration one of the
following two events occur:

1. There are Q(eN?) vertex pairs that form constraints that contradicts the existing constraints.
In this case, with very high probability, the algorithm will select such a pair and will reject
(because the subgraph that it sees is not 2-colorable).

2. There exist p-constrained vertices with respect to the current partition U = (U(O), v, ..., U(k)),
where UM, ... U®) are connected components of the current constraint graph and U© con-
tains vertices that were cast aside in previous iterations. We shall also show that p-constrained
(w.r.t U) vertices cannot be in U©). In this case, with very high probability, the algorithm will
find new constraints and in particular it will find such a constraint between every p-constrained
(w.r.t U) vertex and some vertex that is in one of the other k connected components.

We shall shortly take a closer look at what happens in the second case (i.e., Case 2) and prove that
indeed at least one of the foregoing cases must hold. But before doing so, we note that the second
case (i.e., Case 2) becomes impossible once we reach a situation in which ¥ = 1, at which point the
algorithm must reject due to the first case (i.e., Case 1).

Let us first take a closer look at what happens in Case 2. Suppose that u € U® is p-constrained
w.r.t the current U. Then by the foregoing, due to a newly found constraint, vertex u gets connected
to some vertex in Uje[k]\{i}U(j). This means that each U® (7 # 0) that contains some p-constrained
vertex gets merged to some U() (j # 0 and j # i). We will not add any constraint that refers to
vertices that were cast aside (i.e., those in U(O)). Thus, vertices that were cast aside in the past
(since they were not p-constrained w.r.t a previous partition) will remain in U® and indeed they
are also not p-constrained w.r.t any later partition.’ For i # 0, if U®) was not merged with any
other U (j # 0 and j # i) then it contains no p-constrained vertex, and we cast it aside (i.e.,
move it to the new U(O)). Thus, in each iteration, the number of connected components not cast
aside (i.e., k) shrinks by a factor of at least two.

We now prove that at least one of the two aforementioned conditions must hold. Looking
at the current partition U, we first note that if one of the connected components (including those
contained in U(O)) is not bipartite then we already have a set of constraints that is self-contradictory
(i.e., does not allow a 2-coloring of the subgraph we have seen so far). This situation is a special
case of Case 1, and indeed in this sub-case the algorithm rejects. Disposing of this sub-case, we
now consider an arbitrary 2-coloring of the constraint graph, and the 2-partition that it induces on
the rest of G (i.e., we put on the first side all the vertices that are dominated by some vertex of U
that was colored by the second color). Then, there are at least eN? vertex-pairs that are adjacent
and were put on the same side, and at least eN?/2 of these vertex-pairs have both its vertices
dominated by U. Each such (v1,v9) is of one of the following two types.

(i) The vertex-pair (vi,v2) constrains a pair of vertices (u1,u2) where both vertices are in the
same connected component of the constraint graph. As showed next, such a pair imposes a
constraint that contradicts the constraints of the current graph. Thus, this pair contributes
to the pairs counted in Case 1.

In a later partition, some components get merged and some move to U ). This can only decrease the count
towards being p-constrained.
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To see that the said constraint contradicts the constraints of the current graph, recall that
since (v1,v9) constrains the pair (uj,ug) € U x U it holds that the edges {u1,v1}, {vi,v2},
and {vg,us} form an odd-length path between u; and uy. On the other hand, v; and v
were placed on the same side of the 2-partition of V, which implies that u; and ug were
assigned the same color by a 2-coloring of the current constraint graph. Since u; and ugy are
in the same connected component of that graph, it follows that they are connected by an
even-length path (which reflects an even-length path in G). Thus, the new set of constraints
form an odd-length cycle.

(ii) The vertex-pair (v1,v2) constrains a pair of vertices (u1,ug) that belong to different connected
component of the constraint graph. As showed next, the existence of more than eN?2/4 such
pairs implies Case 2 (i.e., the existence of p-constrained vertices, which in particular are not
in UO).

We first recall that a vertex in U® can not be p-constrained with respect to the current
partition, because it is not p-constrained with respect to some previous partition and because
the previous partition allows more pairs to be counted.

As for the main claim, note that each pair of the current type is counted towards determining
whether u; (resp., ug) is p-constrained with respect to the current partition. The total “pair
count” of vertices that are not p-constrained is smaller than pN?2, which implies that Thus,
for p = ¢/(4|U|), there are less than |U| - pN? = ¢N?/4 pairs of the current type that refer
to vertices that are not p-constrained. It follows if there are more than eN2/4 pairs of the

current type, then p-constrained vertices must exist, which imply that Case 2 holds.

We conclude that either there are more than eN2/4 vertices of type (ii), which imply that Case 2
holds, or there are more than eN?/4 vertices of type (i), which imply that Case 1 holds.

Recall that if Case 2 holds then the number of non-discarded connected components (i.e., k)
shrinks by a factor of at least 2. Thus, after log, |U| iterations, the current partition must satisfy
k <1, and thus Case 2 cannot hold in the next iteration. The lemma follows. [l

Open problem. Needless to say, we are aware of the Bipartite Tester of [AK], which has better
query-complexity than the tester of [GGR] (as well as ours). Specifically, the query-complexity of
the tester of [AK] is O(e~2) rather than O(e 3). Theorem 3 implies that the tester of [AK] has a
randomness-efficient implementation, but it does not provide an explicit one. We conjecture that

there exists a randomness-efficient bipartite tester that has query-complexity O(e 2) and time-
complexity poly(e~!log N).

3.2 In the Bounded-Degree Model

The bounded-degree model refers to a fixed degree bound, denoted d. An N-vertex graph G =
(V, E) (of maximum degree d) is represented in this model by a function g : [N]x[d] — {0,1,..., N}
such that g(v,i) = u € [N] if u is the i*! neighbor of v and g(v,i) = 0 if v has less than i neighbors.
In this section we provide a randomness-efficient implementation of the Bipartite Tester of [GR2],
which refers to the bounded-degree model. Thus, we start with a description of that tester.

Algorithm 10 (The Bipartite Tester of [GR2]): On input parameters N, d, €, and oracle access

to an incidence function for an N-vertex graph, G = (V, E), of degree bound d, repeat T def @(%)
times:
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1. Uniformly select a (“start”) verter s in V.

2. (Try to find an odd-length cycle through vertex s):

(a) Perform K def poly((log N)/¢) - VN random walks starting from vertez s, where each
walk is of length L% poly((log N)/e).

(b) Let Ry (respectively, R1) denote the set of vertices that were reached from verter s in
an even (respectively, odd) number of steps in any of these walks.

(c) If Ry N Ry is not empty then reject.

If the algorithm did not reject in any one of the above T iterations, then it accepts.

Clearly, this algorithm never rejects a bipartite graph. Indeed, the analysis of [GR2] focuses on the
case that the graph G is e-far from bipartite, and shows that the algorithm will reject G with high
probability. The rather involved analysis breaks down to two complimentary facts that refer to a
notion of a good start vertex. Loosely speaking, a start vertex is called good if, when the tester
selects it in Step 1, the probability that the tester finds an odd-length cycle in Step 2 is somewhat
small (say, below 1/10). We note that the actual definition of a good vertex refers to the probability
of finding an odd-length cycle when taking two independent random walks from this vertex.

Most of [GR2] is devoted to establishing the fact that if G is e-far from bipartite then an Q(e)
fraction of the vertices are not good. It is crucial for us that this technically involved analysis does
not refer at all to the algorithm; it rather refers to the definition of a good vertex, which (as stressed
above) refers to a mental experiment in which one takes two independent random walks from this
vertex. Thus, this analysis remains intact regardless of how we chose to implement Algorithm 10.

The complimentary fact regarding good vertices is that when the tester selects a vertex that is
not good (in Step 1), the probability that it finds an odd-length cycle in Step 2 is not too small (say,
at least 1/10). Indeed, this fact refers to Algorithm 10 itself, but its rather simple proof (provided
in [GR2]) only presumes that the K random walks are distributed in a 4-wise independent manner.
Specifically, the analysis defines a random variable for each pair of walks such that this random
variable represents the event of finding an odd-length cycle via the corresponding two walks. Then,
Chebyshev’s Inequality is applied while relying on the expectation and variance of the sum of these
random variables. As one may guess, the said expectation and variance are computed by only
relying on the expectation of the individual random variables and the co-variances of all possible
pairs of random variables. Thus, the analysis remains valid as long as the said expectation and
co-variance maintain their value, which is definitely the case provided that each pair of random
variables maintains its behavior. Noting that each pair of random variables refers to at most four
different random walks, we establish our claim that the analysis of [GR2] only presumes that the
K random walks are distributed in a 4-wise independent manner.

The foregoing discussion suggests the following implementation of Algorithm 10. For Step 1
use a randomness-efficient hitter that hits any set of density €2(e) with constant probability. More
importantly, for Step 2 use a randomness-efficient construction of K four-wise independent random
strings, each specifying a random walk of length L (i.e., each being a string of length L log, d). By
the foregoing discussion, this implementation preserves the performance guarantees of Algorithm 10;
that is, this implementation is also an e-test for bipartiteness. The crucial point, however, is that
Step 2 is now implemented using 4 - Llog, d (rather than K - Llogy d) random coins. Thus, we
obtain:
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Theorem 11 There exists a Bipartite tester (in the incidence function model) of time-complexity
poly((log N)/€) - VN and randomness-complezity poly((log N)/e). Furthermore, as Algorithm 10,
this tester always accepts a Bipartite graph, and in case of rejection it provides a witness of length
poly((log N)/e) (that the graph is not bipartite).
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Appendix: Preliminaries

A.1 On Using Weak Random Sources
A.1.1 Analysis of the standard use of extractors

The following claim is meaningful only if p + € < 1/4 (e.g., p,e < 1/8).

Claim 12 Let A be a randomized decision procedure of randomness-complexity v and error proba-
bility p, and E : {0,1}* x {0,1}" — {0,1}" be an (k,€)-extractor. Consider the algorithm A’ that,
on input «, obtains a single sample = from an (n,k)-source and rules according to the majority
value in (A, E(i,7))),—1 _os- Then, A’ has error probability at most 2(p + ).

Proof: The analysis of the foregoing implementation is based on the fact that “on the average” the
2% strings extracted from the source approximate a perfect 7-bit long source (i.e., a random setting
of the s-bit seed yields an almost uniformly distributed r-bit string). Specifically, by definition, if X
is a (n, k)-source then E(Us, X) is e-close to U,. It follows that the probability that A(a, E(Us, X))
errs is at most p + . By Markov Inequality, the probability that the majority of the values in
(Ao, E(3,X)));=1 o are wrong is at most 2(p + €). The claim follows. W

Comment. We note that randomized procedures with one-sided error probability p can be imple-
mented using a weak random source as long as p+¢ < 1. An important case is of search problems
for which the randomized algorithm finds a correct solution with probability 1—p and halts without
solution otherwise. When implementing such an algorithm, we may output any solution obtained
in any of the invocations of the original algorithm, which means that we “rule by or” rather than
“ruling by majority”.

A.1.2 On two main types of weak sources

We stress that the two types of (n, k)-sources that were mentioned in Section 1.2 (i.e., £ = Q(n)
and k = n®(1)) are the most natural types of weak sources and indeed most research on extractors
has focused on them. Let us take a closer look at these two cases. Recall that r denotes the number
of bits that we need to extract from such a source (in order to feed our algorithm, denoted A).
Furthermore, it suffices to set the deviation parameter of the extractor (i.e., €) to a small constant
(e.g., € =1/10 will do). The two cases we consider are:

1. Linearly related n,k and r: that is, for some constants ¢ > ¢’ > 1, it holds that n = c¢- r and
k = ¢ -r. In other words, we refer to sources having a constant rate of min-entropy.

In this case, efficient randomness extractors that use s = logn + O(loglogn) = log, O(n) are
known (cf. [TZS, Shal]). Using these extractors, we obtain an implementation of A (using
such weak sources) with overhead factor O(T) Thus, a tester of query-complexity q and
randomness-complezity v will be implemented using a number of queries that is O(’I‘) - q.

2. Polynomially related m,k and r: that is, for some ¢ > ¢’ > 1, it holds that n = r¢ and k = re.
In other words, we refer to a source having min-entropy that is polynomially related to its
length.

In this case, efficient randomness extractors that use s = log O(n) = clog, O(r) are known
(cf. [SU, Shal]). Using these extractors, we obtain an implementation of A (using such weak
sources) with overhead factor O(r¢).
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In both cases, the overhead factor is approximately linear in the length of the source’s outcome
(which, in turn, is linearly or polynomially related to r).

A.2 Randomness-Efficient Hitters

The hitting problem is a one-sided version of the Boolean sampling problem. Given parameters n
(length), € (density) and é (error), and oracle access to any function f : {0,1}" — {0,1} such that
{z : f(z)=1}] > €2™, the task is to find a string that is mapped to 1.

Definition 13 (hitter): A hitter is a randomized algorithm that on input parameters n, € and 6,
and oracle access to any function f:{0,1}" —{0,1} such that |f~(1)| > €2, satisfies

Prihitter/(n,e,6) € f71(1)] > 1—46

For any constant § > 0, using a pairwise-independent sequence of length O(1/¢), we obtain a hitter
for sets of density e and error probability 6. Thus, this hitter has query-complexity O(1/¢) and
randomness-complexity 2n. An alternative hitter based on the neighborhood of a random vertex in
an expander graph has query-complexity O(1/¢) and randomness-complexity n. Combining any of
these hitters with a random walk (of length O(log(1/6))) on an expander graph, we obtain a hitter
for sets of density € and any desired error probability 6 such that this hitter has query-complexity
O(e7'log(1/6)) and randomness-complexity r + O(log(1/6)), where r € {n,2n} depending on the
basic hitter we use.
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