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Abstract

Locally Decodable codes(LDC) support decoding of any particular symbol of the input message by read-
ing constant number of symbols of the codeword, even in presence of constant fraction of errors.

In a recent breakthrough [9], Yekhanin constructed
�
-query LDCs that hugely improve over earlier con-

structions. Specifically, for a Mersenne prime� � �� � �, binary LDCs of length�� 	
 �� �
for infinitely many� were obtained. Using the largest known Mersenne prime, thisimplies LDCs of length less than�� 	
 ���� �

.
Assuming infinitude of Mersenne primes, the construction yields LDCs of length�� 	
 �� ��� ��� � �

for infinitely
many�.

Inspired by [9], we construct
�
-query binary LDCs with same parameters from Mersenne primes. While

all the main technical tools are borrowed from [9], we give a self-contained simple construction of LDCs.
Our bounds do not improve over [9], and have worse soundness of the decoder. However the LDCs are
simpler and generalize naturally to prime fields other than� � � �� � ��.

The LDCs presented also translate directly in to three server Private Information Retrieval(PIR) protocols
with communication complexities� �� � � ! for a database of size�, starting with a Mersenne prime� � �� ��.

1 Introduction

The problem of recovering the original message from an erroneous received codeword is central algorithmic
problem in coding theory. Using a classical error correcting code, it is possible to encode a message" of #
symbols in to$ %" & such that it is possible to efficiently retrieve" from an erroneous copy of$ %" &. Locally
decodable codes are error correcting codes with the following additional property : there is a probabilistic
procedure to retrieve any particular symbol of the originalmessage by reading only a few symbols from the
received message. In other words, local decodability allows one to recover any small part of the original message
without having to read the entire received message. This ability for efficient partial recovery has found several
applications in complexity theory such as worst case to average case reductions.

Formally, a binary code$ is said to be%' ( )( *& locally decodable if the following holds : For any message",
it is possible to recover any bit of" with probability at least+ , *, by making at most' queries to an erroneous
copy of $ %" & having at most) fraction of errors. Although the notion of locally decodable codes has been
around for more than a decade[1, 7, 6], the formal definition of LDC was first given by Katz and Trevisan [4].
For two queries, the work of Kerendis and de Wolf [5] settled the optimal length to be-. /0 1. The Hadamard
code is a--query locally decodable code of length-0 . However with three queries, the best LDCs known were
of length-2 /0 345 1 due to Beimel and Ishai [2] while the best known lower bound is67 %#8 & [5]. For general',
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the best upper bound was�"� %#2 /��� ��� �� /� ��� � 11 & due to Beimel et al[3] and the best lower bound known is
67 %# �� �� / 	� �8
��1 & [5]. We refer the reader to [8] for a more detailed survey.

In a recent breakthrough [9], Yekhanin obtained�-query binary LDCs of length-2 /0 34
 1 given a Mersenne

prime� � -� , +. Using the largest known Mersenne prime, this leads to a hugeimprovement in the length of

LDC from -2 /0 345 1 to -2 /0 3
���

1. Under the conjecture of infinitude of Mersenne primes, Yekhanin’s construc-
tion yields�-query LDCs of length�"� %# �� ��� ��� 0 & for infinitely many values of#.

In this work, we give a self-contained constructions of LDCsthat achieve similar parameters as [9]. We
stress here that the LDCs in this paper are inspired by Yekhanin’s construction, and borrow most of the technical
tools from it. Further the bounds we obtain do not improve over [9] in any of the parameters. Our construction
has a poorer dependence of soundness of the decoder%+ , *& on the fraction) of errors.

However the LDCs in this paper are simpler, and generalize more easily. For instance, LDCs using extension
fields of characteristic� - follow immediately from our construction. Our codes immediately imply �-server
Private Information Retrieval schemes with correspondingcommunication complexity. The reduction from
LDCs to PIR is more direct than in [9], since the queries of thedecoder are smooth.

Our presentation brings to fore what we believe is the central theme in [9] : using homomorphisms to
construct LDCs. Specifically the idea is to encode the input message in the local structure of a function. Now if
the function is a homomorphism, then its local structure translates to all points in the domain. Hence even if the
function is corrupt, the message can be retrieved by observing its local structure at a random point.

2 Preliminaries

For a finite field� , a linear codeover � is a subspace$ � � � . The number of input symbols# that can be
encoded by a codeword is equal to the dimension of the subspace $ . Theblock lengthof the code$ is � .

Definition 2.1. A code$ � �0 � �� is said to be%' ( ) ( *&-locally decodable if there exists a randomized
algorithm � such that

� For all " � �0 ( � � �#  and ! � "# ( +$� such that%& %$ %" & ( ! & ' )� : () �� * %�& � " +  , + , * where
the probability is over the random choices of the algorithm� .

� � makes at most' queries to! .

A simple example of--query locally decodable codes are Hadamard codes defined below:

Definition 2.2. For a vector- � � �8 , the corresponding Hadamard codeword. / is a -� long binary vector
which represents the function. / %" & � - 0 ".

As in [9], our construction also relies crucially on sets of vectors1 ( 2 with some special properties. Hence
we make the following definition:

Definition 2.3. Two families of vectors1 � "3 � ( 4 4 4 ( 30 $ and 2 � "5 � ( 4 4 4 50 $ in � 67 are said to be matching
if

� For all � � �#  , 3+ 0 5+ � #.

� For all � ( 8 � �#  such that� 9� 8 , 3: 0 5+ � -;<= > ? @ � for some integerA+: .

The following lemma is implied from the results in [9], we state it here in our notation for the sake of
completeness.
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Lemma 2.4. Let� be a prime and let� be the order of- > ? @ � . Let# � � �7 ��
�

and� � �� ��� �� 3
�� 3

�
for some

integer� � � , +. Then there are explicit families of vectors1 � "3 � ( 4 4 4 ( 30 $ and 2 � "5 � ( 4 4 4 ( 50 $ in � 67
that form a matching family.

Proof: Let � � � �7 be the vector that contains+ in all its coordinates. Let"3 �+ $ be the incidence vectors of

all possible
� �7 ��

�
subsets of��  of cardinality %� , +&. For every�, define5 �+ � � , 3 �+. It is easy to see that

3 �+ 05 �: � # if and only if � � 8 . Observe that elements� � "+( - ( 4 4 4 ( -��� $ form a subgroup of� �7 . Let 	 � 7 ��� .

Define3+ � 3 �
 �+ , where3 �
 �+ is the	�� tensor product of3 �+.
3+ 0 5: � 3 �
 �+ 0 5 �
 �: � %3 �+ 0 5 �: &�

For � 9� 8 , 3+ 0 5: is a 	�� power and hence an element of� . Further3+ 0 5+ � # for all �. Thus the set of

vectors3+ ( 5+ already form amatchingfamily. Observe that the dimension of the vectors3+ ( 5+ is � ��3 . This
construction is sufficient to obtain LDCs and PIRs with required parameters up to logarithmic factors in the
exponent.

Now we will decrease their dimension from� � to
�� ��� ��

�
by slightly modifying the construction. Towards

this, we observe that for an arbitrary vector � � �7 the value of
�+ 3 �����+� depends only on the multiset of indices
"� � ( 4 4 4 � � $. Therefore we reduce the dimension by combining many of these identical(redundant) coordinates
in to a single coordinate. Let� %� ( 	& denote the family of all multi-subsets of��  of cardinality 	. Note that�� %� ( 	& � � �� ��� ��

� � � . For a multiset� � � %� ( 	&, let � %� & denote the number of sequences in��  � that
represent� . Now we are ready to define vectors3+ ( 5+ in � 67 . Coordinates of3+ ( 5+ are indexed by multisets� � � %� ( 	&. For all � � �#  and� � � %� ( 	& we set

%3+ &� � � %� & %3 �
 �+ &� and %5+ &� � %5 �
 �+ &�
It is easy to verify that for all� ( 8 � �#  , 3: 0 5+ � 3 �
 �: 0 5 �
 �+ . Hence the vectors3+ ( 5+ for � � �#  form amatching
family of vectors with the desired dimension.

Observe that# � �� ��7 ��
� , ��7 �7 ��. Hence for a fixed� � -� ,+, we get� � �� ��� ��

� ' �� /� ��� �1� � � �� %# 3 &. Further using� � � %� & we get� � # �� ��� ��� 0 .

3 A Simple Construction

In this section, we present a construction of LDCs over a large alphabet. Let� � -� , + be a Mersenne prime.
Let � be a generator of the multiplicative group� �

8  . Hence clearly we have�7 � +. Further there exists an
integer� such that

+ � � � �� � #
Let 1 � "3 � ( 4 4 4 ( 30 $ and2 � "5 � ( 4 4 4 ( 50 $ bematchingfamilies of vectors. For all� � �#  define a homo-
morphism�+ � � 67 � � �

8 as follows:

�+ %" & � �  < !"
It is evident from the definition that�+ is a homomorphism from the additive group of� 67 to the multiplicative

group� �
8  . Specifically we have�+ %" � ! & � �+ %" &�+ %! &, for all " ( ! � � 67 .
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Observation 3.1. For all 8 ( � � �#  and" � � 67 , we have

�: %" & � �: %" � 5+ & � �: %" � � 5+ & � �# if 8 9� �
�  = !" if 8 � �

Proof: By definition,

�: %" & � �: %" � 5+ & � �: %" � � 5+ & � �  = !" � �  = !/"�� < 1 � � = !/"�� � < 1
� �  = !" %+ � � = !� < � �� = !� < &

Recall that for8 � �, we have3: 0 5+ � #. Hence the above expression reduces to�  = !" %+ � + � +& � �  = !" . For
8 9� � we have3: 0 5+ � -; > ? @ � for some integerA . Substituting we get

�: %" & � �: %" � 5+ & � �: %" � � 5+ & � �  = !" %+ � � 8� � �� 8� &
� �  = !" %+ � � � �� &8� � #

Each homomorphism�+ can be thought of as a table of� 6 values. Given a vector� � � 08 , its encoding is
the function$ � � 67 � � 8 defined as follows:

$ %" & � 0�
+� �

-+�+ %" &

In other words, the codewords consist of a� 6 -long vector of values from� 8 . Towards locally decoding an
input symbol-+, the decoder does the following:

Decoding Algorithm

� Pick a random" � � 67 , and query$ %" &( $ %" � 5+ & ( $ %" � � 5+ &.
� Output-+ � � � < !" %$ %" & � $ %" � 5+ & � $ %" � � 5+ &&

We wish to draw an analogy with the--query local decoding of the Hadamard codes. Given a Hadamard
code word$/ , the ��� bit of message- is decoded as-+ � $/ %" & � $/ %" � 5+ &, where5+ � �+ the ��� basis
vector.

Theorem 3.2. Let� � -� , + be a fixed Mersenne prime. There exist linear codes of dimension # over� 8 with
block length at most-2 /0 34


1 that are %� ( ) ( �) & locally decodable.

Proof:First we show that the decoder succeeds with probability at least+ , �). Suppose the values$ %" &( $ %" �
5+ & ( $ %" � � 5+ & do not have any errors. By definition,

� � < !" %$ %" & � $ %" � 5+ & � $ %" � � 5+ && � � � < !" 0�
: � �

-+ %�: %" & � �: %" � 5+ & � �: %" � � 5+ &&

Using observation 3.1 in the above expression,

� � < !" %$ %" & � $ %" � 5+ & � $ %" � � 5+ && � � � < !" 0 �  < !"-+
� -+
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Hence if all the three values read by the decoder have no noise, then the output is equal to-+. Observe that for
random choice of" � � 67 , each of the three query locations are uniformly distributed over� 67 . In particular,
for each of$ %" &( $ %" � 5+ & ( $ %" � � 5+ & the probability that the value is erroneous is at most). Hence with
probability at least+ , �) all the three values are correct, and the decoder outputs-+.

From Lemma 2.4, there is amatchingfamily of vectors with# � � �7 ��
�

and� � �� ��� �� 3
�� 3

�
for all integers

� , � , +. The code encodes# symbols over� 8  in to � 6 long vector over the same field. Hence the length
of the code is-2 /0 34


1.

4 Constructing Binary Codes

Towards constructing locally decodable codes over the binary alphabet� 8 , we use concatenation with Hadamard
code. For a field element� � � 8  , we will use ��  � � �8 to denote the�-dimensional vector corresponding to�
for some fixed representation of the field� 8  .

Recall that the decoder described in Section 3, used the following equation:

-+ � � � < !"$ %" & � � � < !"$ %" � 5+ & � � � < !"$ %" � � 5+ &
Each of the elements$ %" &( $ %" � 5+ & ( $ %" � � 5+ & � � 8  are represented as a�-dimensional binary vectors.
Multiplication by � � < !" is equivalent to a linear transformation on�-dimensional binary vectors. Let%-+ &:
denote the8 �� bit of -+. Then for each8 , there is a vector : � � �8 such that%-+ &: �  : 0 �$ %" & �  : 0
�$ %" � 5+ & �  : 0 �$ %" � � 5+ & . By definition, : 0 �$ %" & is part of the Hadamard codeword corresponding
to $ %" &. Suppose the codeword contained the Hadamard codeword for each$ %" &. In case of no errors, using
the Hadamard codes corresponding to$ %" &( $ %" � 5+ & ( $ %" � � 5+ & any bit of -+ can be retrieved by�- bit
queries. In case of errors, it is possible to locally decode with

�
bit queries using the--query local decodability

of Hadamard codes.
Instead we slightly modify the original codes to construct locally decodable codes with exactly� bit queries.

Specifically, we restrict the-+ to be"# ( +$ instead of any element from� 8  . The details of the construction and
local decoding are described below.

As in Section3, for each� � �#  we have a homomorphism�+ � � 67 � � 8  . For a vector� � � 08 , the
corresponding codeword. � � 67 � � �8 � � 8 is a function defined as follows

. %" ( & �  0 �$ %" & 
$ %" & � 0�

+� �
-+�+ %" &

Decoding Algorithm

� Pick " � � 67 uniformly at random.

� Pick � � �8 such that

 0 ��  < !"  � +
� Output-+ � . %" ( & � . %" � 5+ ( & � . %" � � 5+ ( &

Theorem 4.1. Let� � -� , + be a fixed Mersenne prime. There exist binary linear codes of dimension# with
block length at most-2 /0 34


1 that are %� ( ) ( �� ) & locally decodable.
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Proof :To begin with, we analyze the case in which there are no errors. In this case,

. %" ( & � . %" � 5+ ( & � . %" � � 5+ ( & �  0 �$ %" & �  0 �$ %" � 5+ & �  0 �$ %" � � 5+ & 
�  0 �$ %" & � $ %" � 5+ & � $ %" � � 5+ & 

As seen earlier,$ %" & � $ %" � 5+ & � $ %" � � 5+ & � -+�  < !" . Substituting

. %" ( & � . %" � 5+ ( & � . %" � � 5+ ( & �  0 �-+�  < !"  �  0 -+ ��  < !"  
� -+ % 0 ��  < !"  & � -+

Suppose the codeword has at most) fraction of errors. Let us call an" � � 67 to bebad if for more than� )-fraction of � � �8 , the value. %" ( & is erroneous. Clearly there cannot be more than
�) fraction ofbad

vectors". Since" ( " � 5+ ( " � � 5+ are all uniformly distributed, with probability at least+ , ��) , none of
" ( " � 5+ ( " � � 5+ arebad. Suppose none of" ( " � 5+ ( " � � 5+ arebad. For at most�� )-� choices of , one of
. %" ( & ( . %" � 5+ ( & ( . %" � � 5+ ( & is erroneous. As�  < !" is nonzero, there are exactly-��� possible choices
for  which satisfy 0 ��  < !"  � +. Consequently with probability at least% �8 , ��) &� �8 over the choice of all
the values queried by the decoder are correct. Hence the decoder outputs the correct value of-+ with probability
at least

() �Decoder succeeds , %+ , ��) & % �8 , ��) &
�8

, + , �
�)

From Lemma 2.4, there is amatchingfamily of vectors with# � � �7 ��
�

and� � �� ��� �� 3
�� 3

�
for all integers

� , � , +. To encode# bits, the above code uses� 6 Hadamard codewords each of length-�. Hence the length
of the code is-�-2 /0 34


1 � -2 /0 34


1.

Assuming the infinitude of Mersenne primes, the following result is implied:

Theorem 4.2. Suppose there are infinitely many Mersenne primes, then for infinitely many positive integers
#, there exists binary linear codes of dimension# with block length at most-2 /0 34 ��� ��� � 1 that are %� ( ) ( �� ) &
locally decodable.

5 Private Information Retrieval

Let � � "# ( +$0 be a database. Then a three server PIR protocol on" is defined as follows:

Definition 5.1. A three server PIR protocol is a triplet of non-uniform algorithms� � %� ( � ( � &. We assume
that each algorithm is given# as an advice. At the beginning of the protocol, the user	 tosses random coins and
obtains a random stringA . Next	 invokes� %� ( A & to generate triple of queries%'3�� ( '3 �8 ( '3�
 &. For � � �� ,
	 sends'3�+ to � +. Each server�: responds with an answer-# �: � � %8 (� ( '3 �: &(we can assume without
loss of generality that servers are deterministic; hence each answer is a function of the query and a database).
Finally 	 computes its output by applying the reconstruction algorithm� %-# � � ( -# �8 ( -# �
 ( � ( A &. A protocol as
above should satisfy the following requirements:

� Correctness : For any#, � � "# ( +$0 and� � �#  , the user outputs the correct value of� + with probability
+(where the probability is over the random stringsA).
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� Privacy : Each server individually learns no information about�. To formalize this, let�: denote the
8 �� output of�. We require that for8 � +( - ( � and any# ( � � ( �8 � �#  the distributions�: %� � ( A & and
�: %�8 ( A & are identical.

Lemma 5.2. Let � � -� , + be a Mersenne prime and let� � � , + be an integer. Let# � � �7 ��
�

and

� � � ��3 . There exists a three server PIR protocol with question size� �?� � and answers of length� that
can privately retrieve from a database of length#
Proof : Encode the database� � "# ( +$0 using the simple LDC construction over� 8 described in Section
3. Specifically let the codeword$ be obtained by using-+ � � + in the LDC. All the three servers have the
codeword$ and will return any symbol of the codeword on user’s request.The user	 runs the decoding
algorithm and sends each query of the decoder to one server. Clearly the distribution of each of the queries is
uniform. Hence we have a three server PIR protocol. Each query is a point" � � 67 , and can be represented by� �?� � bits. The server’s answer is an element from� 8 and can be represented in� bits.

Restating the above lemma, for a fixed Mersenne prime:

Theorem 5.3. Let� � -� , + be a fixed Mersenne prime. For every positive integer# there exists a three server
PIR protocol with questions of length

� %# ��� & and answers of length�. Specifically for every positive integer#
there exists a three server PIR protocol with communicationcomplexity

� %# ��
8��8��� &.
Under the assumption of existence of infinitely many Mersenne primes we get

Theorem 5.4. Suppose the number of Mersenne primes is infinite, then for infinitely many values of# there
exists a three server PIR protocol with communication complexity of

� %# �� ��� ��� 0 &

6 Generalizations

Let ' be a prime. Let� be an odd prime and let� denote the order of' modulo� . By definition of �, � divides
' � , +. Hence there exists an element� of � � that satisfies�7 � +. Let � � � � �"  be a sparse polynomial with
at most� nonzero coefficients satisfying

� %� & � #
� %+& 9� #

Recall that in Section 3, we used� %� & � + � � � �� as the sparse polynomial.

Let � � � � , + be an integer, and let# � � �7 ��
� (� � �� ��� �� 3

�� 3
�
. Using a construction similar to Lemma

2.4, we obtain families of vectors1 � "3 � ( 3 8 ( 4 4 4 ( 30 $ and2 � "5 � ( 4 4 4 ( 50 $ that satisfy:

� For all � � �#  , 3+ 0 5+ � # > ? @ �
� For all � 9� 8 � �#  , 3: 0 5+ � ' ;<= > ? @ � for some integerA+:

Define homomorphisms�+ %" & � �  < !" from � 67 � � � , and construct LDCs similar to Section 3. The number
of queries required to decode is equal to the number of nonzero entries in the polynomial� . Hence we obtain
generalized LDCs from primes� ( ' for which there exist a sparse polynomial� satisfying� %� & � # ( � %+& 9� #.

Acknowledgments: I would like to thank Venkatesan Guruswami for valuable comments on an earlier draft of
the paper.
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