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Abstract

Locally Decodable codes(LDC) support decoding of any paldir symbol of the input message by read-
ing constant number of symbols of the codeword, even in peesef constant fraction of errors.

In a recent breakthrough [10], Yekhanin construcseguery LDCs that hugely improve over earlier
constructions. Specifically, for a Mersenne pripe= 2! — 1, binary LDCs of lengthexp(O(n'/?)) for
infinitely manyn were obtained. Using the largest known Mersenne prime,itinidies LDCs of length
less thamxp(O(n10_7)). Assuming infinitude of Mersenne primes, the constructietdg LDCs of length
exp(n@(1/1oglog n)) for infinitely manyn.

Inspired by [10], we construgtquery binary LDCs with same parameters from Mersenne wiméhile
all the main technical tools are borrowed from [10], we givee#-contained simple construction of LDCs.
Our bounds do not improve over [10], and have worse soundrfetbe decoder. However the LDCs are
simpler and generalize naturally to prime fields other thar= {0,1}.

The LDCs presented also translate directly in to three sérreate Information Retrieval(PIR) protocols
with communication complexitie@(n'/t) for a database of sizg starting with a Mersenne prime= 2¢t—1.

1 Introduction

The problem of recovering the original message from an ewos received codeword is central algorithmic
problem in coding theory. Using a classical error correriiode, it is possible to encode a messag# n
symbols in toC(z) such that it is possible to efficiently retriewefrom an erroneous copy @'(z). Locally
decodable codes are error correcting codes with the fatigveidditional property : there is a probabilistic
procedure to retrieve any particular symbol of the origimassage by reading only a few symbols from the
received message. In other words, local decodability allome to recover any small part of the original message
without having to read the entire received message. Thisyatuir efficient partial recovery has found several
applications in complexity theory such as worst case toameecase reductions.

Formally, a binary cod€’ is said to beq, 4, €) locally decodable if the following holds : For any message
it is possible to recover any bit af with probability at least — ¢, by making at mosg queries to an erroneous
copy of C(z) having at most fraction of errors. Although the notion of locally decodalbodes has been
around for more than a decade[1, 7, 6], the formal definitibh®C was first given by Katz and Trevisan [4].
For two queries, the work of Kerendis and de Wolf [5] settled optimal length to be?(™). The Hadamard
code is &-query locally decodable code of length. However with three queries, the best LDCs known were
of Iength20("1/2) due to Beimel and Ishai [2] while the best known lower bounf(s?) [5]. For general,
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the best upper bound wasp(n?Ueslogd/(aloga))) due to Beimel et al[3] and the best lower bound known is
Q(n!*1/(a/21-1)) [5, 9]. We refer the reader to [8] for a more detailed survey.

In a recent breakthrough [10], Yekhanin obtair3eduery binary LDCs of Iengtho(”l/t) given a Mersenne
primep = 2t — 1. Using the largest known Mersenne prime, this leads to a hmgeovement in the length of

LDC from 20(n'/?) 10 20'®™ ") Under the conjecture of infinitude of Mersenne primes, lih's construc-
tion yields3-query LDCs of lengthezp(n©(1/loglogn)) for infinitely many values of.

In this work, we give a self-contained constructions of LOXat achieve similar parameters as [10]. We
stress here that the LDCs in this paper are inspired by Yekisasonstruction, and borrow most of the technical
tools from it. Further the bounds we obtain do not improver §4@] in any of the parameters. Our construction
has a poorer dependence of soundness of the defbdet) on the fractiory of errors.

However the LDCs in this paper are simpler, and generalizeemasily. For instance, LDCs using extension
fields of characteristic> 2 follow immediately from our construction. Our codes imnedly imply 3-server
Private Information Retrieval schemes with correspondingymunication complexity. The reduction from
LDCs to PIR is more direct than in [10], since the queries efdbcoder are smooth.

Our presentation brings to fore what we believe is the cktfteme in [10] : using homomorphisms to
construct LDCs. Specifically the idea is to encode the inpegsage in the local structure of a function. Now if
the function is a homomorphism, then its local structuradiaes to all points in the domain. Hence even if the
function is corrupt, the message can be retrieved by obwgitsd local structure at a random point.

2 Preliminaries

For a finite fieldF, alinear codeoverF is a subspac€ C FY. The number of input symbols that can be
encoded by a codeword is equal to the dimension of the subgpatheblock lengthof the codeC' is N.

Definition 2.1. A codeC : ¥ — X% is said to be(q, J, ¢)-locally decodable if there exists a randomized
algorithm A such that

e Forall z € ¥",i € [n] andy € {0,1}" such thatdy (C(z),y) < 6N : Pr[AY(i) = z;] > 1 — e where
the probability is over the random choices of the algorit/dm

e A makes at mosj queries toy.
A simple example o2-query locally decodable codes are Hadamard codes defihaad:be

Definition 2.2. For a vectora € T, the corresponding Hadamard codewoH, is a 2! long binary vector
which represents the functidi,(z) = a - z.

As in [10], our construction also relies crucially on setseftorsl, V' with some special properties. Hence
we make the following definition:

Definition 2.3. Two families of vector8’ = {us,...,u,} andV = {v1,... v, } in [ are said to be matching
if

e Forallie [n],u;-v; =0.
e Forall i,j € [n] such thati # j, u; - v; = 2" mod p for some integer;;.

The following lemma is implied from the results in [10], wats it here in our notation for the sake of
completeness.



Lemma 2.4. Letp be a prime and let be the order o2 mod p. Letn = (pj‘_/fl) andm = M"% for some
integerM > p — 1. Then there are explicit families of vectdis= {u1,...,up} andV = {v1,..., v, } In F
that form a matching family.

Proof: Lete € F)' be the vector that contairisin all its coordinates. Lefu;} be the incidence vectors of
all possible(pj‘_/fl) subsets of M| of cardinality (p — 1). For everyi, definev, = e — u.. It is easy to see that
uj-vj = 0if and only ifi = j. Observe that elemen@ = {1,2,...,2'~'} form a subgroup df;. Let! = ”%1.
Defineu; = u/®', whereu/*" is thel*" tensor product ofi..

Y 1o~ A v~ A G B AV )
ui - vj = v = (ug - vy)

Fori # 4, u; - v; is alt® power and hence an element®f Furtheru; - v; = 0 for all i. Thus the set of vectors

u;, v; form amatchingfamily. Observe that the dimension of the vectaysy; is M.
O

p—1 _
Observe thats = (') > (%) . Hence for a fixep = 2 — 1, we getm = M = O(nt). Further

usingM = 2P, we getm = nO(1/loglogn)

3 A Simple Construction

In this section, we present a construction of LDCs over alalghabet. Lep = 2! — 1 be a Mersenne prime.
Let g be a generator of the multiplicative groli),. Hence clearly we havg” = 1. Further there exists an
integer~y such that

I1+g+9"=0
LetU = {u,...,u,} andV = {vy,...,v,} bematchingfamilies of vectors. For all € [n] define a homo-
morphismf; : F* — [, as follows:

Itis evident from the definition thaf; is a homomorphism from the additive groupijf to the multiplicative
group[F;, . Specifically we havef;(z + y) = fi(z) fi(y), for all z,y € F*.

Observation 3.1. For all j,i € [n] andx € F}', we have
0 if j #1
fi@) + e+ o)+ et ) =10, 17
gu®  ifj =1

Proof: By definition,

guj-;v _l_gu]'-(z—l—w) _i_guj-(x—l—'yvi)
guj-m(l + gt i +97Uj-u1-)

fi(x) + fi(@ + i) + fi(z + yvi)

Recall that forj = 4, we haveu; - v; = 0. Hence the above expression reduceg“td*(1 + 1+ 1) = g%i'®. For
J # 1 we haveu; - v; = 2" mod p for some integer. Substituting we get

g (1 +g" +¢")
gt(l+g+9)" =0

fi(@) + fi(z +vi) + fi(z +yv;)



]
Each homomorphisnf; can be thought of as a table @f values. Given a vectar € F7,, its encoding is
the functionC : F' — Fo: defined as follows:

C(z) = Zaifi(w)

In other words, the codewords consist gf"a-long vector of values fronffy: . Towards locally decoding an
input symbola;, the decoder does the following:

Decoding Algorithm
e Pick arandonx € ", and quenyC(z), C(z + v;), C(z + yv;).

e Outputa; = g~ (C(z) + C(z + v;) + C(z + yv;))

We wish to draw an analogy with tH2query local decoding of the Hadamard codes. Given a Hadhmar
code wordCy,, thei® bit of message is decoded as; = Cy(x) + Cu(z + v;), Wherev; = e; the i basis
vector.

Theorem 3.2. Letp = 2! — 1 be a fixed Mersenne prime. There exist linear codes of dimensoverFy: with
block length at mos20(®'’*) that are(3, 6, 36) locally decodable.

Proof:First we show that the decoder succeeds with probabilityegttl — 35. Suppose the valugs(x), C(z +
v;), C(x + yv;) do not have any errors. By definition,

g 4 (Cla) + Cla+vi) + Cla+yv)) =g “* Y ai (fi(x) + fi(z +vi) + fi(z +yv:))
j=1

Using observation 3.1 in the above expression,

g YT (C@)+Clx+v)+Cx+yv) = g “% g" %

= a/i

Hence if all the three values read by the decoder have no,rtbise the output is equal 1. Observe that for
random choice of € F*, each of the three query locations are uniformly distriduteer . In particular,
for each ofC(z),C(z + v;), C(x + yv;) the probability that the value is erroneous is at mosHence with
probability at least — 34 all the three values are correct, and the decoder outputs

From Lemma 2.4, there ismatchingfamily of vectors withn = (pj‘_"’l) andm = M"% for all integers
M > p — 1. The code encodes symbols ovei,y: in to p™ long vector over the same field. Hence the length
of the code IO, O

4 Constructing Binary Codes

Towards constructing locally decodable codes over thapmiahabefif,, we use concatenation with Hadamard
code. For a field element € F,:, we will use[z] € T, to denote the-dimensional vector corresponding 40
for some fixed representation of the fiégl .

Recall that the decoder described in Section 3, used thenioly equation:

a; =g "0 (z) + g M C(z +v;) + g W FC (x + yv;)
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Each of the element§'(z), C(z + v;), C(z + yv;) € Fo: are represented astalimensional binary vectors.
Multiplication by g~*#* is equivalent to a linear transformation ewlimensional binary vectors. Lét;);
denote thej®" bit of a;. Then for eachy, there is a vectow; € F such that(a;); = w; - [C(z)] + w; -
[C(z + v;)] + w; - [C(z + yv;)]. By definition,w; - [C(x)] is part of the Hadamard codeword corresponding
to C(z). Suppose the codeword contained the Hadamard codeworadbiC§z). In case of no errors, using
the Hadamard codes correspondingt¢r), C(z + v;), C(x + yv;) any bit ofa; can be retrieved bg- bit
queries. In case of errors, it is possible to locally decoith @bit queries using th&-query local decodability
of Hadamard codes.

Instead we slightly modify the original codes to constrecally decodable codes with exac8yit queries.
Specifically, we restrict the; to be{0, 1} instead of any element frofi},: . The details of the construction and
local decoding are described below.

As in Section3, for eaclh € [n] we have a homomorphisnf : F* — Fy. For a vectora € Iy, the
corresponding codeword : F* x F, — F, is a function defined as follows

H(z,w) = w-[C(z)]

Clz) = ) aifi(x)
i—1

Decoding Algorithm
e Pickz € F' uniformly at random.

e Pickw € F, such that

w-[ghT] =1

e Outputa; = H(z,w) + H(z + v;,w) + H(z + yv;, w)

Theorem 4.1. Letp = 2! — 1 be a fixed Mersenne prime. There exist binary linear codesneémsionn with
block length at mos20(""/*) that are(3, §,9+/6) locally decodable.

Proof :To begin with, we analyze the case in which there are no erhotthis case,

H(z,w)+ H(z +vj,w) + H(z + yvj,w) = w-[C(z)]+w-[C(z+v)]+w-[C(z+ yv;)]
w-[C(z) + C(z +v;) + C(z + yv;)]

As seen earlielC (z) + C(z + v;) + C(z + yv;) = a;g™®. Substituting

H(z,w)+ H(z + vj,w) + H(z +yvj,w) = w-[a;g"™"] =w-a;[g""7]

= ai(w-[g""]) = a

Suppose the codeword has at méstaction of errors. Let us call an € F}' to bebad if for more than
V/é-fraction ofw € T, the valueH (z, w) is erroneous. Clearly there cannot be more th@rfraction ofbad
vectorsz. Sincez,z + v;, z + ~v; are all uniformly distributed, with probability at least— 3v/8, none of
z,x + v, z + yv; arebad Suppose none af, z + v;, z + yv; arebad For at mosB+v/62! choices ofw, one of
H(z,w), H(z+v;,w), H(z+~v;,w) iS erroneous. Ag¥? is nonzero, there are exactty ! possible choices
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for w which satisfyw - [¢%i*] = 1. Consequently with probability at leasf — 3+/6)/3 over the choice ot all
the values queried by the decoder are correct. Hence théelegotputs the correct value @f with probability
at least

Pr[Decoder succeefls > (1 — 3\/5)ﬂ

N

N[ =

> 1-9V5

From Lemma 2.4, there ismmatchingfamily of vectors withn = (p"fl) andm = M™% for all integers
M > p—1. To encoder bits, the above code usg® Hadamard codewords each of length Hence the length
of the code i2t20('"*) = 20(n'/*), O
Assuming the infinitude of Mersenne primes, the followinguleis implied:

Theorem 4.2. Suppose there are infinitely many Mersenne primes, themfioitely many positive integers,
there exists binary linear codes of dimensiowith block length at mostxp (n©(1/1°8108m)) that are(3, §, 9v/5)
locally decodable.

log M

Pick M = 27, then we haver = M©Ue M) andm = MO (ki) It is easy to see that the length of the
code is at mostxp (nO(1/1glogn))

5 Private Information Retrieval

Let D € {0,1}" be a database. Then a three server PIR protocelismefined as follows:

Definition 5.1. A three server PIR protocol is a triplet of non-uniform aldbms? = (9, A,C). We assume
that each algorithm is given as an advice. At the beginning of the protocol, the Gs&vsses random coins and
obtains a random string. Nextl{ invokesQ(i, r) to generate triple of queriegue, ques, ques). Fori € [3],

U sendsque; t0 S;. Each serveiS; responds with an answeims; = A(j, D, que;)(we can assume without
loss of generality that servers are deterministic; henceheanswer is a function of the query and a database).
Finally &/ computes its output by applying the reconstruction al@oni€ (ans1, anss, anss,i,r). A protocol as
above should satisfy the following requirements:

e Correctness: Foranyn, D € {0,1}" andi € [n], the user outputs the correct valuelof with probability
1(where the probability is over the random strings

e Privacy : Each server individually learns no information abautTo formalize this, le©Q; denote the
4™ output of Q. We require that forj = 1,2,3 and anyn, 4,4, € [n] the distributionsQ; (i1, r) and
Q;(iz, ) are identical.

Lemma 5.2. Letp = 2! — 1 be a Mersenne prime and |87 > p — 1 be an integer. Leh = (p]‘fl) and

m = M7 There exists a three server PIR protocol with question sideg p and answers of lengththat
can privately retrieve from a database of length

Proof : Encode the databage € {0,1}" using the simple LDC construction ov&j: described in Section
3. Specifically let the codewor@' be obtained by using; = D; in the LDC. All the three servers have the
codewordC and will return any symbol of the codeword on user's requddte user/ runs the decoding
algorithm and sends each query of the decoder to one seraarlyCthe distribution of each of the queries is
uniform. Hence we have a three server PIR protocol. Eactydser pointz € F;*, and can be represented by
m log p bits. The server’s answer is an element fiByn and can be representedtibits. O

Restating the above lemma, for a fixed Mersenne prime:
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Theorem 5.3. Letp = 2! — 1 be a fixed Mersenne prime. For every positive integétere exists a three server
PIR protocol with questions of length(n'/*) and answers of length Specifically for every positive integer
there exists a three server PIR protocol with communicagiomplexityO (n/32582658)

Under the assumption of existence of infinitely many Merggmimes we get

Theorem 5.4. Suppose the number of Mersenne primes is infinite, then fioitély many values af there
exists a three server PIR protocol with communication cexipt ofr 01/ loglogn)

6 Generalizations

Letg be a prime. Lep > ¢ be an odd prime and l¢tdenote the order af modulop. By definition oft, p divides
¢* — 1. Hence there exists an elemgnof F,: that satisfieg? = 1. LetQ € F,[z] be a sparse polynomial with
at mostc nonzero coefficients satisfying

Qg = 0
QM) # 0

Recall that in Section 3, we usél{g) = 1 + g + ¢” as the sparse polynomial.

Let M > p — 1 be an integer, and let = (pA_/Il),m - M. Using a construction similar to Lemma 2.4,
we obtain families of vector8 = {uy,us,...,u,} andV = {vy,...,v,} that satisfy:

e Foralli € [n], u;-v; =0 mod p
e Foralli #j € [n], uj-v; = ¢ mod p for some integef;;

Define homomorphismg;(z) = ¢g*i** from F' — F,:, and construct LDCs similar to Section 3. The number
of queries required to decode is equal to the number of noreetries in the polynomial). Hence we obtain
generalized LDCs from primas ¢ for which there exist a sparse polynomiaisatisfying@Q(g) = 0, Q(1) # 0.
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