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Abstract

This paper considers the tradeoff between divisibility and the hardness of approximating
equilibrium prices. Tight bounds are obtained for smooth Fisher markets that obey a relaxed
weak gross substitutes property (WGS). A smooth market is one in which small changes in
prices cause only proportionately small changes in demand, which we capture by a parameter
k. Specifically, assuming that the total wealth is at least r times the total number of goods,
this paper gives a polynomial time algorithm to compute prices achieving a (1 − O(k/r))-
approximation and shows that it is NP-hard to do better.

A second contribution of this paper is a new consideration of how to measure the quality of an
approximation to equilibrium prices. Our approach takes the notion of compensatory payments
from welfare economics and applies it to indivisible markets. This allows the dissatisfaction,
or discontent, of individual agents to be combined in a natural way. In addition, an important
observation is that in the indivisible setting, standard utility functions, such as CES, need not
obey the standard WGS property.
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1 Introduction

Deng, Papadimitriou and Safra [8] showed that it is APX-Hard to approximate equilibrium prices
and allocations for indivisible Arrow-Debreu markets. Really, they show that the optimal allocation
is hard to approximate. Also, although they do not state this, their construction proves the result for
the more restricted Fisher market. Subsequently, there has been a considerable body of work giving
polynomial time algorithms to compute approximate equilibria for divisible markets [8, 6, 4, 13, 10].
Of course, all markets are necessarily indivisible. While one anticipates large numbers of copies of
each good, and prices with a minimum adjustment that is a small fraction of the price, nonetheless
both these quantities are bounded. In our view, an implicit assumption in studying the divisible
problem is that the discreteness present in actual markets has only a small effect. As in practice
the number of copies of a good need not be much greater than the number of interested buyers,
it is not clear that the assumption is sound in general. Nonetheless, this paper does show that
near-optimal prices can be found efficiently in the markets we consider.

Deng et al. [8] also considered algorithms for indivisible markets. They gave an exhaustive
algorithm for computing an approximate equilibrium in polynomial time for markets with a constant
number of distinct goods. This paper gives a simple efficient algorithm for indivisible markets with
no constraints on the number of goods or buyers.

In Arrow-Debreu markets each agent is provided with an initial allocation of goods. The
problem is to find prices at which every agent can trade its initial allocation for an optimal bundle
in such a way that supply and demand exactly balance. In a divisible setting, where all goods are
infinitely divisible and prices can take on any real value, under modest assumptions, equilibrium
prices always exist [2]. This need not be the case in an indivisible setting. The task then becomes
one of finding prices that support a near-equilibrium allocation.

In this paper, we limit ourselves to Fisher markets. In these markets, there are two groups of
agents: buyers, who initially have only money, and sellers, who have only goods. Each seller’s goal
is to sell all its goods. Each buyer’s goal is to utilize its money to obtain an optimal bundle of
goods, which may include money (this is a generalization of the standard model where buyers have
no desire for money). In fact, we use a small variant of the Fisher model in which buyers may attach
utility to money, and thus an optimal allocation may leave them with non-zero money at the end.
This strikes us as reflecting actual behavior. Devanur and Vazirani [9] had been concerned with
a related issue, namely that in a Fisher market with linear utilities, buyers might spend all their
money on one good. They proposed putting limits on spending and also incorporating a desire for
money in the context of utility functions that are linear step functions. We note that our results
still hold if a buyer has zero utility for money.

Let p = (p1, . . . , pn) be a collection of prices. Whenever convenient, we write p = (pi,p−i),
where p−i is the collection of prices for all goods except good i. Further, we let xi(p) denote the
demand for good i at p.

We limit the markets we consider to obey a discrete version of the following bound: the (frac-
tional) rate of change of spending on a good with respect to a (fractional) change in its price is
bounded by a non-positive constant. Without such a condition it is not clear how to design algo-
rithms for finding approximate equilibria that change prices by (multiplicative) increments. One
way of expressing this bound in the divisible setting is that there is a constant l ≥ 0 such that:

pixi(pi,p−i) ≤ (pi + h)xi(pi + h,p−i) (1 + h/pi)
l for all h > 0
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or equivalently, there is a constant k ≥ 1 such that

xi(pi,p−i) ≤ xi(pi + h,p−i) (1 + h/pi)
k for all h > 0.1 (1)

Also, as h→ 0, the first expression can be rewritten as:

(pi + h)xi(pi + h,p−i)− pixi(pi,p−i)

(pi + h)xi(pi + h,p−i)

/ h

pi
≥ −l,

which is the desired derivative.
k provides a bound on the elasticity of demand for xi(·) with respect to pi[15]. We now modify

this definition for the discrete setting to avoid fractional demands, and call it k-smoothness.

Definition 1. A market is k-smooth if for every good i, for all prices p,

xi(pi,p−i) ≤ dxi(pi + h,p−i) (1 + h/pi)
ke, for all h > 0 such that xi(pi + h,p−i) ≥ 1,

and xi(pi,p−i) ≤ 1 if xi(pi + 1,p−i) = 0.

Note that xi(pi,p−i) ≤ 2kxi(2pi,p−i) if xi(2pi,p−i) ≥ 1.

Summary of results. Our main results are:

• A polynomial time algorithm that finds prices for a k-smooth market such that the resulting
allocation of goods is a 1 − O(k/r) approximation (in a sense made precise later). This
algorithm assumes a polynomial time oracle which, given the prices for every good, returns
the demand for each good. The algorithm makes O(ktn logw) calls to the oracle, where n is
the number of distinct goods in the market, w is the total buyer wealth, and t is the total
number of copies of goods in the market; the oracle calls dominate the overall running time.
(If t� r, the running time can be made linear in r rather than t. The running time can also
be reduced proportionately if a less good approximation is sought). An appealing aspect of
the algorithm is its simplicity.

• It is NP-hard to find prices at which a 1 − Θ(k/r)-approximation is possible. The hardness
lies in finding the prices, not the allocation. To the best of our knowledge, this is the first
result demonstrating that it is hard to find correct prices as opposed to a correct allocation.
We also remark that in the present setting it seems much more delicate to obtain the hardness
result for prices.

Our algorithm assumes a model in which each buyer seeks certain goods and either receives them
or not depending on the supply. There is no substitution of second best choices. On the other
hand, our hardness result holds even if arbitrary allocations are permitted. Since the results only
make sense for k/r ≤ 1, we assume k ≤ r for the rest of this paper.

k-smoothness in the indivisible setting corresponds in the divisible setting to bounding the rate
of change of demand for a good with respect to its price. Assuming that the demand function

1Note the internal consistency of this definition; that is,

(1 + (h1 + h2)/pi) = (1 + h1/pi) (1 + h2/(pi + h1)) .

3



for every good has a bounded partial derivative with respect to every price, Codenotti et al. [6]
gave strongly polynomial time algorithms for finding approximate equilibria using a tatonnement-
type procedure. The algorithm of Codenotti et al. uses the ellipsoid method as a subroutine; this
contrasts with the simplicity of our method. Of course the algorithms are not directly comparable
as they are for different settings, and as we discuss below, use different approximation measures.
Another point to keep in mind is that a rounded optimal or near-optimal solution for the divisible
setting need not be a near-optimal solution in the indivisible setting (assuming analogous problems
can be defined). This can occur, for example, when there are goods for which buyers have o(1)
demand, even if there are many copies of the good.

k-smoothness constrains the behavior of the overall demand in the market. Without some con-
straints, equilibria need not be unique and can be hard to compute [7]. Most previous algorithmic
work in the divisible setting overcame this by constraining individual utility functions (e.g. to sat-
isfy the weak gross substitutes property, or to be linear [6, 4]). However, this can still result in some
quite unintuitive behavior. For example, if all the buyers had identical linear utility functions, a
minimal change in prices can shift the demand from being all for one good to all for another good.
k-smoothness allows linear utilities, but it limits the amount of a pair of goods that are equally
desired at a given set of prices (thereby avoiding large fluctuations in demand with small changes
in price), and so in particular precludes all buyers having identical linear utilities.

Indivisible markets have been studied by mathematical economists also. Ausubel, Gul and
Stacchetti [3, 11] restrict the utility functions being allowed so as to ensure that equilibria exist. In
fact, they suppose the buyers have valuation functions that are integer valued, i.e. each basket of
goods has an associated dollar value. They show that if these functions also satisfy an “individual
substitutes” property, then there is a Walrasian equilibrium. The individual substitutes condition is
a further restriction of the well known gross substitutes condition. Recall that the gross substitutes
condition requires that if the prices of some goods are raised while the prices of the remaining
goods are held constant, then an agent’s demand increases weakly for each of the goods whose
prices were held constant. The individual substitutes property in addition requires separate prices
for distinct copies of the same good and that individual copies of the same good also obey the
gross substitutes property. Under these restrictions on the utility functions, they show that the
minima of a certain potential function (a Lyapunov function) correspond to equilibrium prices.
They propose a tatonnement algorithm that updates prices at discrete time steps in the direction
of decreasing potential function values. The algorithm exhaustively evaluates the potential function
at every price point in a unit neighborhood of the current price. Integer valuations imply that the
potential function decreases by an integer amount at each step. Thus, the algorithm converges to
equilibrium prices, but does so in exponential time.

In [16] Milgrom and Strulovici consider the above setting, replacing the individual substitutes
constraint with the standard WGS constraint. As an equilibrium may then not exist they propose a
notion of pseudo-equilibrium. The authors argue that a pseudo-equilibrium price is also an approx-
imate equilibrium price by showing that the excess demand (which should be zero at equilibrium
prices) can be bounded by a function of the number of goods, the number of buyers and the largest
gap in demand for each good among optimal bundles at any price. They also give an exhaustive
algorithm. This approach is in contrast with our work which seeks to estimate individual discontent
in terms of money and aggregate the overall discontent in the unit of money.

In the divisible setting, it is well known that the market obeys the weak gross substitutes
property when buyers in the market possess linear, Cobb-Douglas or CES utility functions with
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0 < ρ < 1. A CES utility function orders a buyer’s preferences over bundles of goods x according
to the value u(x) = (

∑
i αix

ρ
i )

1/ρ, with −∞ < ρ < 1, ρ 6= 0. The linear utility function and the
Cobb-Douglas utility function arise as special cases of the CES utility function when ρ = 1 and
ρ → 0 respectively. However the WGS property need not hold in the indivisible setting and the
indivisibility can result in quite unintuitive behavior, as we illustrate later via an example. To
account for such effects, we consider a relaxation of the WGS property and our algorithm and the
hardness result assume that the overall market obeys the relaxed WGS property.

Next, we discuss how to measure the quality of an approximate equilibrium. Previous work
had measured it by considering each agent in turn and asking what is the ratio between its actual
utility and the maximum utility it could conceivably achieve at the prices on offer; the quality of
the approximation is then defined to be the minimum of these ratios over all agents (0 is the worst
possible, 1 the best). We offer two critiques of this approach.

The first is that utilities are being treated implicitly as if they were valuation functions. But
this is ascribing more meaning to the function than may be appropriate, since in general there are
multiple utility functions that represent a given well behaved preference ordering. Indeed, if u is a
utility function and f is a strictly increasing function, then f(u) provides an alternative utility func-
tion giving the same preference ordering.2 This is disconcerting, for a (1− ε)-approximation under
one utility function may be a much better or worse quality approximation for another equivalent
utility function.

Our second critique concerns how the utilities are combined. In our view, the quality of the
approximation ought to correspond to how dissatisfied the market participants are collectively;
surely participants with large resources will have a larger impact. This suggests an approach other
than minimizing relative discontent. Instead, we seek to combine the discontent of each of the
participants. But this necessitates expressing discontent in a common unit. We do this using
the notion of compensatory payments from welfare economics: essentially, this asks what is the
difference in value to the agent between the agent’s optimal allocation at the current prices and
the allocation the agent receives. We call this quantity, measured in the unit of money, the agent’s
discontent.

It is natural to ask what is the relationship between an individual’s discontent in our measure
and that given by comparing utility values. We show that in the divisible setting, for concave
utility functions, for a given allocation, the approximation factor is always at least as large in our
measure, and can be arbitrarily worse. In other words, for each individual, a given approximation
factor is at least as hard to achieve in our measure as in the utility measure.

Once one has a way to measure the individual discontent of each participant, the next issue
is to aggregate individual discontent to represent the overall discontent of the market. Here, the
fact that our measure of individual discontent is in the common unit of money allows us to simply
combine discontents additively.

This can be viewed as an L1 norm; our hardness results immediately carry over to any Lp norm,
p > 1, and to the L∞ or maximum norm. Loosely speaking, the L∞ norm is analogous to but
not the same as the previous approximation measure. Our algorithmic results do not immediately
extend to these other norms.

2When studying choice under risk (for example in auctions), the concavity of u defines agents’ risk aversion. In
such cases, the utility function may be unique. However, this is not the case in a market setting, where we concern
ourselves with deterministic outcomes.
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We conclude the introduction by summarizing our contributions. An important part of the
paper lies in the definitions it introduces: k-smoothness and discontent. In our view, k-smoothness
provides a natural way to specify well-behaved markets, and the definition of discontent supports a
more robust notion of approximation of equilibria than the previous approach. The paper also gives
a simple polynomial time algorithm for computing approximate equilibria and a complementary
NP-hardness result.

In Section 2, we provide formal definitions. Section 3 gives our algorithm and Section 4 the
hardness results.

2 Definitions

Definition 2. (Utility Function.) Let G denote the set of goods present in the market. Then
u : R

G → R
+ is said to be a utility function, if, for A1, A2 ⊆ G, the allocation A1 is strictly

preferred to A2 exactly when u(A1) > u(A2).

Comment 1. In the auction literature, utility is often defined to be the difference between valuation
and price; this is not the meaning intended here.

Definition 3. (The Market.) The market consists of a set G of n goods in supply s (sg copies of
good g for g ∈ G), a set B of m buyers, buyer wealth w (an initial amount wb for b ∈ B). Each
buyer b possesses a utility function ub over the basket of goods. (G, s, B,w, (u1, . . . , um)) denotes
an instance of the market.

Comment 2. In addition to the indivisibility of goods, we also impose indivisibility of money in
the market. Thus, money is no longer fluid, and prices can be set only at indivisible integer values.
Henceforth, for specificity, we take the unit of money to be a dollar.

Given a market M , the problem is to find prices, called market-clearing prices, such that at
these prices each buyer receives its optimal allocation and no goods are left unsold (i.e. all sellers
are also optimally happy). Formally, this can be written as:

Indivisible extended Fisher market problem. Given a market (G, s, B,w, (u1, . . . , um)), de-
termine prices p such that there exists a partitioning of goods to buyers, with buyer b receiving
Ab, Ab · p ≤ wb,

⋃
bAb = G, and for each b, Ab maximizes b’s utility: for all A′

b such that
A′
b · p ≤ wb, ub(Ab, wb −Ab · p) ≥ ub(A′

b, wb −A′
b · p).3

Given a set of prices, for each buyer there is a basket of goods which maximizes its utility. An
optimal allocation is one which maximizes every buyer’s utility simultaneously and leaves no goods
unsold. In the indivisible setting, in general, there need not be any price collection at which an
optimal allocation exists, which raises the question of how far from optimal a given allocation is.
To this end, we define a notion of individual discontent.

Our approach is based on the notion of compensatory payments from welfare economics. It asks
what payment an agent a needs to receive to compensate for a non-optimal allocation. Previously,
this was defined for the divisible setting, as follows. Let Aopt be an optimal allocation, Aact the
actual allocation, and Al a least cost allocation with u(Al) = u(Aact). Note that the choice of Al

depends on the prices and on agent a’s utility function. Then the compensation agent a needs is

3In computing utility, we view money as just another good. However, to conform with the usual perspective, we
list it separately from the other goods.
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defined to be cost(Aopt) − cost(Al). We call cost(Al) the value of Aact for agent a at the current
prices.

Our approach is analogous. For each agent a (buyer or seller), for each amount of money,
$1, $2, . . ., $i, . . ., we consider an optimal allocation Aia of goods and mi

a of money, its utility
ua(A

i
a,m

i
a) and its cost for agent a, Aia · p +mi

a = i at the given prices. It may be that Aia = Ai+1
a

and ua(A
i
a,m

i
a) = ua(A

i+1
a ,mi+1

a ) for some i (this can occur only if agent a has no utility for
money, and there is nothing useful to purchase with the last dollar). To find the value of an
allocation A with money ma (written as (A,ma)) to agent a, we find the least i such that either
ua(A

i
a, i−Aia ·p) = ua(A,ma) or ua(A

i
a, i−Aia ·p) < ua(A,ma) < ua(A

i+1
a , i+ 1−Ai+1

a ·p). In the
former case, the value of (A,ma) is $i, whereas in the latter case, the value of (A,ma) is defined to
lie between $i and $i + 1. In the second case, given that money is indivisible, it does not appear
possible to define the value more precisely; in this situation $i is called the lower-value and $i+ 1
the upper-value of (A,ma) at prices p. When the agent is a buyer (say buyer b with wealth wb),
we let vb(A,wb −A · p) denote the upper-value of allocation A at prices p, defined to be the upper
value of allocation A together with leftover money wb−A ·p. Note that for the optimal allocation,
the upper value is the same as the lower value.

Henceforth, in scenarios in which a buyer has no marginal utility for money (i.e. adding money
to a buyer’s allocation does not improve her utility), we use the term optimal allocation to mean
a maximum utility allocation of least cost.

Definition 4 (Discontent). Let (A,wa−A·p) be an allocation and (Aopt,mopt) an optimal allocation
(both including money) to agent a with wealth wa at prices p. The upper-discontent of a with
allocation (A,wa − A · p) at prices p, uda((A,wa − A · p),p), is given by (Aopt · p + mopt) −
lower-valuea(A,wa −A · p). Lower-discontent, lda, is defined analogously. We use the notation da
for short when no ambiguity will result.

We observe that the seller discontent has a very simple form. First, we assume, without loss of
generality, that there is a single distinct seller for each distinct good. If there are cg copies of good
g unsold at price pg, the seller vg for good g has a discontent of dvg (cg,p) = cgpg.

Note that upper-discontent minus lower-discontent is either $0 or $1. If they are equal, they
are both called discontent for short. Further, for buyer b with wealth wb, both lower and upper
discontent lie in the range [0, vb(A

opt,mopt)] = [0, vb(A
opt, wb − Aopt · p)].4 In our algorithms, we

will use upper discontent as a worst case measure of discontent, while for the hardness results, we
will use lower-discontent, as it provides a lower bound.

From an agent’s point of view, how well it is doing, its efficiency, is the ratio of value achieved
(lower-value say) to the value of its optimal allocation.

We define market efficiency as the ratio of the utility derived by all the agents compared to
what appears possible individually at the offered prices. More precisely:

Definition 5. (Market Efficiency.) The market efficiency of an allocation A under prices p is
defined as:

1−
∑

a∈A da((Aa, wa −Aa · p),p)
∑

a∈A va(A
opt
a ,mopt

a )

where A denote the set of agents in the markets (all buyers and sellers).

4mopt ≤ wb − Aopt · p, with equality when b has a desire for every remaining dollar in the leftover money.
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Another view of market efficiency is that it is simply a weighted average of the agent efficiencies,
where an agent’s weight is the value of its optimal allocation.

If all prices are zero, the market efficiency is not well defined (it is 1 − 0/0). To avoid this
difficulty, we limit the allowable prices to be strictly positive. Further, note that if the market has
efficiency 1, then an equilibrium has been achieved, for the sellers will have sold all their goods and
every buyer will have an optimal allocation. Conversely, if an equilibrium has been achieved, then
the market has an efficiency of 1.

Indivisible Market Value Problem. Given a market M = (G, s, B,w, (u1, . . . , um)), determine
prices p and an allocation of goods to buyers that maximizes the market efficiency.

Our results are parameterized by r, the average wealth per unit good. Formally, r =
P

b∈B wb
P

g∈G sg
.

3 The Algorithm

In this section, we present an algorithm that approximates the efficiency of a k-smooth market
to a factor 1 − O(k/r). We assume that an oracle for computing the aggregate excess demand
is available. This assumption is fairly standard [6, 12, 5, 14]. Let p = (p1, . . . , pn). For ease of
exposition, we first describe the algorithm assuming that the market obeys the WGS property. We
then give our definition of the relaxed WGS property and describe a straightforward modification
of the algorithm to operate in the latter setting.

Recall that a market is said to be k-smooth if for every good i, for all prices p,

xi(pi,p−i) ≤ dxi(pi + h,p−i) (1 + h/pi)
ke, for all h > 0 such that xi(pi + h,p−i) ≥ 1.

and xi(pi,p−i) ≤ 1 if xi(pi + 1,p−i) = 0.

Definition 6. (High price.) A price pi in a collection p = (p1, . . . , pn) of prices is said to be high
if there is a surplus of good i at p. The surplus need not be strict. (Barely high price.) Price pi is
said to be barely high if there is a surplus of good i at p, but a deficit of good i at (pi − 1,p−i).

Low and barely low prices are defined analogously.
Let w denote the total buyer wealth and s be the minimum number of copies of each good

present in the market; i.e. w =
∑

iwi, s = minj sj. Let xi(p) denote the demand for good
i at prices p. We aim to find a collection of prices p so that all goods are priced barely high.
The algorithm in Figure 1 computes such prices while keeping all prices high at all times. On
termination, as all the prices are barely high, the supply of each good is at least the demand, and
thus each buyer can be and is allocated all the goods it seeks. We will show that this allocation
achieves an efficiency of 1−O(k/r).

Algorithm 1 Compute-Market-Prices

1: initialize p with pi ← dw/sie.
2: repeat {for each i in turn}
3: if pi is high and pi − 1 is not strictly low then

4: decrement it (pi ← pi − 1)
5: end if

6: until no decrement is effective
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Claim 1. A decrement of a price leaves all other high prices high.

Proof. This is an immediate consequence of the WGS property. 2

Lemma 2. Algorithm 1 terminates after at most n2w/s calls to the demand oracle.

Proof. If a price pi reaches 1, it is necessarily barely high. Further, by Claim 1 high prices remain
high until decremented. If no price can be dropped, then this is the desired state, otherwise the
price of some good is decremented. Since pi ≥ 1 for all goods i, there can be at most (w/s)n
decrements. Conceivably, we may have to repeatedly try all goods to find the one whose price
reduces, and therefore the total number of queries is at most n2w/s. 2

Lemma 3. Decrementing the price of a good whose current price is strictly high and greater than
2ksi increases its demand by at most 1.

Proof. Let pi denote the price of such a good after the decrement. Let ∆ denote xi(pi,p−i) −
xi(pi + 1,p−i). We claim that ∆ ≤ 1. Note that (1 + 1/pi)

k ≤ 1 + 1/si for pi ≥ 2ksi. From
k-smoothness, we have:

xi(pi,p−i) ≤ xi(pi + 1,p−i) (1 + 1/pi)
k + 1.

Thus xi(pi,p−i) ≤ xi(pi + 1,p−i)(1 + 1/si) + 1. Therefore,

∆ ≤ xi(pi + 1,p−i)/si + 1

But xi(pi + 1,p−i) < si as pi + 1 is strictly high. As ∆ is an integer, ∆ ≤ 1. 2

Proof. (Lemma 4) If pi ≤ k then the lemma follows trivially since the excess supply is always less
than the total supply si and si ≤ ksi/pi + 1 for pi ≤ k. Suppose that pi > k. From k-smoothness,
we have

xi(pi,p−i) ≥
xi(pi − 1,p−i)− 1

(1 + 1/(pi − 1))k
≥ xi(pi − 1,p−i)

(1 + 1/(pi − 1))k
− 1 = xi(pi − 1,p−i) (1− 1/pi)

k − 1

Since pi is barely high, pi − 1 must be low, so xi(pi − 1,p−i) ≥ si. Therefore si − 1xi(pi,p−i) ≤
si − si(1− 1/pi)

k + 1. As (1− 1/pi)
k ≥ 1− k/pi for pi > k, the excess supply is given by:

si − xi(pi,p−i) ≤ si(1− 1 + k/pi) + 1 = ksi/pi + 1.

2

Lemma 4. The excess supply of a good whose current price pi is barely high and less than or equal
to 2ksi is at most ksi/pi + 1.

Recall that the inefficiency of an allocation is defined as the ratio of the total (buyer and seller)
discontent and the total (buyer and seller) value. For subsequent analysis, it will be helpful to
rewrite the expression for Market Efficiency (Defn. 5) and specify the terms for buyers and sellers
separately as:

1−
∑

b∈B db((Ab, wb −Ab · p),p) +
∑

g∈G cgpg∑
b∈B vb(A

opt
b ,mopt

b · p) +
∑

g∈G sgpg

where cg denotes the number of unsold copies of g in the allocation, vb denotes the upper value for
buyer b and (Aoptb ,mopt

b ) is an optimal allocation (including money) for b with wealth wb at prices
p.
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Lemma 5. The above allocation at the prices p computed by Algorithm 1 has efficiency 1−O(k/r).

Proof. As each buyer receives its optimal allocation, there is no buyer discontent. The only
discontent is the seller discontent. Let p denote the set of prices computed by the algorithm. We
claim that a good i whose price pi is greater than 2ksi is correctly priced. For pi is barely high,
pi − 1 is low, and by Lemma 3, the demand for such a good increases by at most 1 at each price
decrement; therefore the demand exactly matches the supply at prices p.

For a good i whose price is less than or equal to 2ksi, by Lemma 4, there are at most ksi/pi+1
unsold copies. The total seller discontent is therefore at most

∑

i:pi≤2ksi

(ksi/pi + 1) pi ≤
∑

i:pi≤2ksi

ksi +
∑

i:pi≤2ksi

pi ≤ k
∑

i

si + 2k
∑

i

si = 3k
∑

i

si

Recall that the inefficiency of a market is defined as the ratio of the total (buyer and seller)
discontent and the total (buyer and seller) value. The inefficiency of the allocation at prices p is
then given by:

3k
∑

i si∑
j wj +

∑
i sipi

≤ 3k
∑

i si∑
j wj

= O(k/r).

The efficiency is thus 1−O(k/r). 2

Let εi = 1/(8ksi), t =
∑

i si and ε = mini εi.

Theorem 6. Algorithm 1 can be modified so that it makes at most O(nkt logw) demand oracle
queries.

Proof. Instead of considering all prices in the set {1, . . . , dw/sie}, one can consider multiplicatively
growing values of pi from the set I

i
+ = {1, 2, . . . , d1/εie} ∪ {b(1 + εi)

jc : j > 0, (1 + εi)
j ≤ dw/sie}.

Note is that if at price b(1 + εi)
j+1c, there is an excess supply of good i, then at price b(1 + εi)

jc >
8ksi, the excess supply reduces by at most 1, due to the following argument. Let pi = b(1+ εi)

jc >
8ksi and pi+h = b(1+εi)cj+1 so that h ≤ (1+εi)

j+1−
(
(1 + εi)

j − 1
)

= εi(1+εi)
j+1 ≤ 2εi(1+εi)

j .
Similarly, pi = b(1 + εi)

jc ≥ (1 + εi)
j − 1 ≥ (1 + εi)

j/2. Therefore, h/pi ≤ 4εi and (1 + h/pi)
k ≤

(1 + 4εi)
k ≤ 1 + 1/si for 4εi ≤ 1/(2ksi). From this point on, an argument identical to the one used

in the proof of Lemma 3 works. It follows that for a good i whose price is greater than 8ksi upon
the termination of the algorithm, the demand equals the supply and there are no unsold copies.

Since |Ii+| ≤ 8ksi(1 + logw), the complexity becomes 8nk(
∑

i si)(1 + logw) = O(nkt logw)
oracle calls. 2

When t is too large one can reduce the accuracy of the low test without significantly affecting
the quality of the approximation.

Definition 7. Price pi is near-low if the excess demand for good i at (pi,p−i) is at most si/r.

The test in the algorithm (in line 3) is changed from a test for a low price to a test for a near-low
price. Further, for all i, εi is set to 1/(8kr). This may create a further O(si/r) excess supply of
good i, but it is clear that this does not affect the approximation quality. The complexity becomes
O(krn2 logw) oracle calls.
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k-smooth markets obeying the relaxed WGS property As mentioned earlier, many widely
studied utility functions that obey the WGS property in the divisible case do not do so in the
indivisible setting; this includes a range of CES utility functions. We illustrate this counter-intuitive
behavior via the following example.

Example 1. Consider a buyer with initial wealth $29 in a market with two goods g1, g2, with
demand ni for good gi, i = 1, 2. The buyer has a CES utility function of the form u(n1, n2) =
(1 + ε)

√
n1 +

√
n2, for some small ε > 0. Suppose p1 = 10, p2 = 10. At these prices the buyer’s

optimal bundle is (1, 1). However, at p1 = 10, p2 = 9 the optimal bundle for this buyer is (2, 1).
This increase in demand for g1 on having reduced the price of g2 is a violation of the WGS property.

We relax the WGS property, analogously to k-smoothness, as follows:

Definition 8. A market satisfies the k-relaxed WGS property if for all p′
−i ≤ p−i,

xi(pi,p
′
−i) ≤ xi(pi,p−i)(1 + k/pi).

Theorem 7. In a k-smooth market that satisfies the k-relaxed WGS property, a modification of
Algorithm 1 computes prices p at which making the corresponding natural allocation has efficiency
1−O(k/r).

Proof. The idea is to modify Algorithm 1 to set aside some number of copies of each good to
account for the relaxed WGS property. These set aside copies are used in case decreasing the prices
of other goods causes the demand for good i to increase. Note that the maximum amount by
which the demand for good i can increase as the prices of other goods decrease (the relaxed WGS
property) is upper bounded by ksi/pi.

For pi > ksi, ksi/pi < 1 and no copies need to be set aside. For pi ≤ ksi, we change line 3 of
Algorithm 1 and decrement pi only if the decrement leaves at least ksi/pi “spare” copies of good i
(in surplus). The number of unsold copies of good i such that 1 < pi ≤ ksi is upper bounded by
ksi/pi + ksi/pi + 1 (by an argument similar to the one presented in the proof of Lemma 4, given in
the appendix).

Thus, the efficiency of the algorithm is as before: 1−O(k/r). 2

Note that the algorithm needs to know the parameter k in markets that obey the k-relaxed WGS
property.

4 Hardness

4.1 A Variant of SAT

We will use the following Max-3SAT-B problem as the underlying NP-complete language:
Input. A CNF formula with n variables in which every clause contains at most 3 literals, and

every variable appears in at most a bounded number (B) of clauses.
Output. The maximum number of clauses can be satisfied simultaneously by some assignment

to the variables.
Arora et al. [1] prove the following:

11



Theorem. For some fixed ε > 0, it is NP-hard to distinguish between satisfiable 3CNF-B for-
mulas, and 3CNF-B formulas in which at most a (1 − ε)-fraction of the clauses can be satisfied
simultaneously.

Our reduction will be from the balanced 3SAT-3 problem.

Definition 9. (Balanced Max-3SAT-3 problem.) Input. A CNF formula with n variables in which
every clause contains at least 2 and at most 3 literals (a literal is a boolean variable in either positive
or negative form), and every literal appears in exactly 3 clauses.

Output. The maximum number of clauses that can be satisfied simultaneously by some assign-
ment to the variables.

Theorem 8. The balanced Max-3SAT-3 problem is APX-Hard: For some fixed δ > 0, it is NP-
hard to distinguish between satisfiable 3CNF-3 formulas, and 3CNF-3 formulas in which at most a
(1− δ)-fraction of the clauses can be satisfied simultaneously.

Proof. Given an instance ψ of a Max-3SAT-B problem, we reduce it to an instance φ of the
balanced Max-3SAT-3 problem in polynomial time.

Consider any variable x and let b be the number of occurrences of x in ψ. Let b+ and b− denote
the number of positive and negative occurrences of x, respectively. The first step of the reduction
is to add |b+ − b−| balance clauses, where each balance clauses reduces the imbalance between the
positive and negative literals by 1. Without loss of generality, suppose that b+ > b−; we add b+−b−
clauses of the form (x ∨ x ∨ x). The addition of these clauses causes the boolean formula to be
balanced.

Suppose that there are bx occurrences of x (and therefore of x) in the new formula. Pair each
occurrence of x with an occurrence of x. Since the formula is balanced, all occurrences are paired.
Replace the occurrence of x in the ith pair with a fresh variable xi, for 0 ≤ i ≤ bx− 1, and add 2bx
clauses (xi ∨ xi+1), (xi ∨ xi+1), where i + 1 is computed mod bx. The new clauses are satisfied if
and only if xi = xi+1 for every i. Now each literal appears exactly 3 times, and no literal appears
more than once in the same clause. The above reduction has the following properties:

• The reduction takes polynomial time.

• If ψ is satisfiable, then so is φ.

• The number of clauses increases by at most a constant multiplicative factor. Let m,m1,m2

be the number of clauses in the formula ψ, after the first step, and in the final formula φ
respectively. We have m2 ≤ m1 + 2

∑
x bx, yielding m2 = O(m1) and m1 ≤ 4m = O(m).

Thus m2 = O(m) as desired.

• The number of unsatisfiable clauses decreases by at most a constant multiplicative factor.
We need to argue that if εm clauses in ψ are not satisfied for every truth assignment to
ψ, then δm2 clauses in φ are not satisfied for every truth assignment to φ, for a suitable
constant δ > 0. We prove the contrapositive. Assume that fewer than δm2 clauses in φ are
not satisfied. Then we construct an assignment σψ from an assignment σφ as follows: for a
boolean variable x in ψ, if each one of xi, 0 ≤ i ≤ bx− 1 has the same truth value in σφ, then
set x to that value. If however, some xis are true while others are false, pick the majority of
the two as the value of x. Each unsatisfied clause in φ yields at most B unsatisfied clauses in
ψ.

12



The last two properties imply that if a ε-fraction of the clauses of ψ are not satisfiable, then an
εm
Bm2

-fraction of the clauses of φ are not satisfiable; setting δ = εm
Bm2

suffices. 2

4.2 The Reduction

The construction has two parts. The core is a market with O(1) copies of a constant number
of goods per variable in the 3-CNF formula, which achieves Θ(1)-hardness: no discontent if the
formula is satisfiable and Θ(α) discontent if an α fraction of the clauses are not satisfied. The key
building block is a device to choose prices; this device relies on the (slight) failure to satisfy the
WGS property to enable this choice.

The remainder of the structure introduces more copies of each good so as to satisfy the k-WGS
and k-smoothness properties. The basic approach is to introduce a separate wealthy buyer for each
good. The main difficulty is that for goods for which there is a real choice of prices, the demand
of the wealthy buyer must be the same at each of these prices, which limits such a buyer’s wealth.
Overcoming this constraint for small k, k = 1 + ε, ε > 0 an arbitrarily small constant, is quite
delicate.

We show the following:

Theorem 9. There is a fixed β > 0 such that in a market with average wealth Θ(r), it is NP-hard
to compute prices at which a (1− βk/r) approximation to the efficiency is possible.

Notation: In the boolean formula, we let n and m denote the number of variables and the number
of clauses, respectively. Note that in a balanced 3SAT-3 formula, m = Θ(n). For ease of exposition,
we assume that all clauses contain exactly 3 literals. The construction is readily modified when
some of the clauses contain 2 literals instead of 3.

Given a balanced 3SAT-3 problem, we construct a k-smooth market with Θ(nr2) wealth that
satisfies the k-relaxed WGS property, with Θ(r) wealth per item, in which it is NP-hard to find
prices that support an allocation with less than Θ(nkr) discontent.

For each variable x in the boolean formula, we introduce a separate collection of gadget sub-
markets. Together, they ensure that for each variable either there is a pricing that corresponds to
a truth assignment and which has 0 discontent, or there is Θ(kr) discontent. For each clause C, we
introduce another collection of gadget submarkets that enforce a pricing in which satisfied clauses
yield 0 discontent and unsatisfied ones produce Θ(kr) discontent. We show that the construction
satisfies k-smoothness and relaxed k-WGS conditions later.

For each variable x in the boolean formula, we create goods Gx, Gx (corresponding to the
positive and negative literals of x) and two helper goods Fx and Hx. For each clause C = a∨ b∨ c,
we introduce a “discontent” good DC . When no ambiguity arises, we let G,G,F,H,D denote
Gx, Gx, Fx,Hx,DC respectively. For the remainder of this section, we let pE denote the price of
good E.

Definition 10. We call prices pD = 4r/5, pF = 3r/4, pH = r + 2, pG, pG ∈ {r, r + 1} and pG 6= pG
select prices5. For goods G and G, prices within λk of the select prices for a suitable constant λ > 0
are said to be broadly select.

Our interpretation is that x = True if pG ≤ r and pG > r and x = False if pG ≤ r and pG > r. The
reduction uses copies of the following gadget submarkets:

5Strictly, this should be pD = d4r/5e, pF = d3r/4e.
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1. Force-Price-Up (E, r′): The purpose of this device is to help ensure that pE ≥ r′ or there will
be Θ(r′) discontent. We create one copy of good E and one buyer with money 2r′ − 1 that
desires only E.

Claim 10 below specifies the functioning of this gadget precisely.

2. Force-Price-Down (E, r′): The purpose of this device is to help ensure that pE ≤ r′ or there
will be an unsold copy of E in this submarket. We create one copy of good E and one buyer
with money r′ that desires only E.

Claim 11 below specifies the functioning of this gadget precisely.

3. Force-Price-Sum-Up (G,G,F, r): The purpose of this device is to help ensure that pG+pG > 2r,
or there will be Θ(r) discontent.

We create 1 copy each of G and G and 2 copies of a floor good F for this submarket. We also
create 2 low buyers with money 2r each.

One low buyer mildly prefers G over G, and the other one the other way round. In addition,
a low buyer also has a desire for the floor good F . If (nG, nG, nF ) denotes the number of
copies of G,G and F received by the low buyers, then the first buyer has preference order
(1, 1, 0) � (1, 0, 1) � (0, 1, 1) � (0, 0, 2) and the other one has preferences (1, 1, 0) � (0, 1, 1) �
(1, 0, 1) � (0, 2, 0). A CES function of the form (2 + ε)

√
nG + 2

√
nG +

√
nF (ε > 0 small) for

example, captures (1, 1, 0) � (1, 0, 1) � (0, 1, 1) � (0, 0, 2).

4. Force-Clause-True (Ga, Gb, Gc,D, r): The purpose of this gadget is to help obtain Θ(r) discon-
tent if the clause C = a∨b∨c is unsatisfied when the prices of goods Gx, Gx, with x ∈ {a, b, c},
are set so as to correspond to a truth assignment. We create one copy each of goods Ga, Gb, Gc
and a clausal buyer with money 3r+2 and utility (1+2ε)

√
na+(1+ε)

√
nb+
√
nc+(1/2)

√
nD,

where ε is a small constant, say 1/r.

Note that even though a clausal buyer has a desire for DC , no copies of DC are introduced
in this submarket. Claim 24 below specifies the functioning of this gadget precisely.

5. Big-Buyer (E, r′, p′): The purpose of this gadget is to ensure that the demand for E obeys the
k-smoothness and the k-relaxed WGS conditions. In addition, it is also used to ensure that
the price of good E (in case E is G or G) is broadly select, or there will be Θ(kr′) discontent.
We add r′ copies of good E and a single buyer B′ with r′p′ money desiring only good E.

6. Undo-Pair (G,G,H, r): We introduce 1 copy of good H and 1 copy each of G and G and two
buyers with 2r + 2 money and utilities

√
nG +

√
nH ,
√
nG +

√
nH , respectively.

Claim 14 below specifies the functioning of this gadget precisely.

Claim 10. In submarket Force-Price-Up (E, r′), if pE < r′ there is an excess demand of at least
br′/pEc within the submarket.

Proof. At pE < r′, the buyer with 2r′−1 money desires b(2r′−1)/pEc copies of E. Since the supply
of E in this submarket is 1, the excess demand is at least b(2r′− 1)/pEc− 1 = b(2r′− 1− pE)/pEc.
For pE < r′, 2r′ − 1 − pE ≥ r′ and the excess demand for E within this submarket is at least
br′/pEc. 2
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Claim 11. In submarket Force-Price-Down (E, r′), if pE > r′ there is an excess supply of 1 within
the submarket.

Proof. At pE > r′, the buyer with r′ money cannot afford any copy of E and there is 1 unsold
copy within the submarket. 2

The following two claims are immediate.

Claim 12. In submarket Force-Price-Up (E, r′), if pE = r′ the demand for E and the supply for E
in the submarket are equal.

Claim 13. In submarket Force-Price-Down (E, r′), if pE = r′ the demand for E and the supply for
E in the submarket are equal.

Claim 14. In submarket Undo-Pair (G,G,H, r), if goods G,G,H are at their select prices (pH =
r + 2 and pG = r, pG = r + 1 or pG = r + 1, pG = r) then the demand for the more expensive good
of G,G (G say) is 2 while the demand for the less expensive (G say) is 1. The demand for H is 1
at either set of prices.

Proof. Suppose pH = r + 2, pG = r and pG = r+ 1. The buyer with utility
√
nG +

√
nH desires 1

copy of H and 1 copy of G at these prices. However, the buyer with utility
√
nG +

√
nH desires no

copy of H and 2 copies of G. 2

The Construction: Let c1, c2, c3 and c4 be suitable constants (to be specified later), independent
of k. The construction is described as follows:

1. For each variable x, we introduce:

(a) k instances of Force-Price-Up (G, r) and k instances of Force-Price-Down (G, r + 1),

(b) k instances of Force-Price-Sum-Up (G,G,F, r),

(c) 3k instances of Force-Price-Up (F, 3r/4) and 3k instances of Force-Price-Down (F, 3r/4),

(d) k instances of Force-Price-Up (H, r + 2) and k instances of Force-Price-Down (H, r + 2),

(e) 1 instance of each of Big-Buyer (G, c1(r + 1), r), Big-Buyer (G, c1(r + 1), r), Big-Buyer

(F, c2r, 3r/4), Big-Buyer (H, c3(r + 1), r + 2), and

(f) c1 instances of Undo-Pair (G,G,H, r).

2. For each clause C = a ∨ b ∨ c, we introduce:

(a) k instances of Force-Clause-True (Ga, Gb, Gc,D, r),

(b) k instances of Force-Price-Up (D, 4r/5) and 4k instances of Force-Price-Down (D, 4r/5),
and

(c) 1 instance of Big-Buyer (D, c4r, 4r/5).
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Outline: First, we show that for each good, if it is not at its select price, there is Θ(kr) discontent
(actually for G and G, at their broadly select prices). We then show that for each good pair G,G,
if they are at broadly select prices and the associated F and H goods are at select prices, then
exactly one of G and G has a price of at most r or there is Θ(kr) discontent. Following this, we
show that for each clause for which all goods are at select or broadly select prices, either at least
one G (or G) good has price ≤ r or there is Θ(kr) discontent. The former situation corresponds
to a satisfied clause. It is then straightforward to relate discontent Θ(βkr) to Θ(αn) unsatisfied
clauses, for α, β fixed constants.

Claim 15. If the price of good D is not 4r/5, there is at least Θ(kr) discontent in the overall
market, if r > 10.

Proof. If pD > 4r/5, by Claim 11, there is an excess supply of 4k within copies of the Force-

Price-Down (D, 4r/5) submarket. At this price, the clausal buyer in the relevant Force-Clause-True

submarket desires at most 3 copies of D (since 4 · 4r/5 > 3r+ 2 for r > 10). The demand from the
k copies of the Force-Clause-True submarket is therefore at most 3k and there is an overall excess
supply of at least 4k − 3k = k, leading to seller discontent of at least Θ(kr).

If pD < 4r/5, by Claim 10, there is an excess demand of at least k
⌊

4r/5
pD

⌋
within copies of the

Force-Price-Up (D, 4r/5) submarket; also the Big-Buyer (D, c4r, 4r/5) submarket can only create
further excess demand. Since there is no supply of D in any other submarket, there is buyer

discontent of at least k
⌊

4r/5
pD

⌋
pD ≥ 4kr/10 = Θ(kr) 2

The following claim is immediate.

Claim 16. If pD = 4r/5, the demand for D in Force-Price-Up, Force-Price-Down and Big-Buyer

submarkets is equal to its supply.

Claim 17. If the price of good F is not 3r/4, there is at least Θ(kr) discontent in the overall
market.

Proof. If pF > 3r/4, by Claim 11, there is an excess supply of 3k within copies of the Force-Price-

Down (F, 3r/4) submarket. At this price, a low buyer in the Force-Price-Sum-Up (G,G,F, r) sub-
market desires at most 2 copies of F and there is an excess demand of at most 2. Since there are
k instances of the Force-Price-Sum-Up submarket, the overall excess supply is at least 3k − 2k = k
leading to seller discontent of at least Θ(kr).

If pF < 3r/4, by Claim 10, there is an excess demand of at least 3k
⌊

3r/4
pF

⌋
within copies of

the Force-Price-Up (F, 3r/4) submarket; also Big-Buyer (F, c2r, 3r/4) can only create further excess
demand. There are at most 2k (unsold) copies of good F available from the Force-Price-Sum-Up

(G,G,F, r). Thus, there is unmet demand of at least k(3
⌊

3r/4
pF

⌋
− 2) ≥ k

⌊
3r/4
pF

⌋
, leading to an

overall discontent of k
⌊

3r/4
pF

⌋
pF ≥ 3kr/8 = Θ(kr). 2

Claim 18. If the price of good H is not r + 2, there is at least Θ(kr) discontent in the overall
market, if r + 3 ≥ 2c3 and c3 ≥ c1 + 1.

Proof. If pH > r + 2, by Claim 11, there is an excess supply of k within copies of the Force-

Price-Down (H, r+ 2) submarket. The excess supply in the Big-Buyer market is at least c3(r+ 1)−
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⌊
c3(r+1)(r+2)

r+3

⌋
≥ c3 − 2c3

r+3 ≥ c3 − 1. At this price, a buyer in the Undo-Pair (G,G,H, r) submarket

desires at most 1 copy of H, leading to excess demand of at most c1 within copies of this submarket.
Thus, there are at least k + c3 − 1 − c1 ≥ k unsold copies of H leading to seller discontent of at
least k(r + 2) = Θ(kr).

If pH < r + 2, by Claim 10, there is an excess demand of at least k
⌊
r+2
pH

⌋
within copies of the

Force-Price-Up (H, r + 2) submarket. There is further excess demand of at least
⌊
c3(r+1)(r+2)

r+1

⌋
−

c3(r+1) = c3 from the Big-Buyer (H, c3(r+1), r+2) submarket. Since there are at most c1 (unsold)
copies of good H available from the Undo-Pair submarket, the excess demand within copies of the

Force-Price-Up and the Big-Buyer submarkets is at least k
⌊
r+2
pH

⌋
+ c3− c1 ≥ k

⌊
r+2
pH

⌋
for c3 ≥ 1+ c1,

leading to buyer discontent of at least k
⌊
r+2
pH

⌋
pH ≥ k(r + 2)/2 = Θ(kr). 2

Claim 19. The supply of goods G and G in the overall market is c1(r + 2) + 6k.

Proof. The supply of good G is c1(r + 1) from the Big-Buyer submarket, c1 from the Undo-Pair

submarkets, k from the Force-Price-Up submarkets, k from the Force-Price-Down submarkets, k
from the Force-Price-Sum-Up submarkets and 3k from the Force-Clause-True submarkets. Thus, the
total supply is c1(r + 2) + 6k. 2

Claim 20. If pG ≥ r + λk, then there is an excess supply of at least k for G, leading to seller
discontent of Θ(kr), for r ≥ 2λk, λ ≥ 8/c1.

Proof. By Claim 19, the supply of G in the overall market is c1(r + 2) + 6k. At pG ≥ r + λk, the
demand for G from the Big-Buyer submarket is at most:

c1r(r+1)
r+λk = c1(r + 1) 1

1+λk/r

≤ c1(r + 1)(1 − λk/r + λ2k2/r2)
≤ c1(r + 1)(1 − λk/2r) (since r ≥ 2λk)
≤ c1(r + 1)− c1λk/2

Buyers in the relevant Force-Clause-True submarkets may desire at most 6k copies of G and the
demand from the Force-Price-Sum-Up submarket at this price is at most 2k. Finally, there is a
demand of at most k from copies of the Force-Price-Up submarket. Thus, the overall demand is at
most c1(r + 1)− c1λk/2 + 6k + 2k + k = c1(r + 1) + k(9 − λc1/2). The excess supply is therefore
at least c1(r + 2) + 6k − c1(r + 1) − k(9 − λc1/2) = c1 + k(λc1/2 − 3). For λ ≥ 8/c1, the seller
discontent is at least Θ(kr). 2

Claim 21. If pG ≤ r − λk, then there is buyer discontent of at least Θ(kr) in the Big-Buyer

submarket, for λ ≥ 7/c1 + 1 and r ≥ 2λk.

Proof. By Claim 19, the supply of G in the overall market is c1(r + 2) + 6k. At pG = r − λk
(assume λk is an integer), the demand for G from the Big-Buyer submarket is

⌊
c1r(r+1)
r−λk

⌋
. Since

c1r(r+1)
r−λk = c1(r+ 1) 1

1−λk/r ≥ c1(r+ 1) + c1(r+ 1)λk/r, the demand from this submarket is at least

c1(r + 1) + c1λk. Thus, the excess demand for G within the Big-Buyer submarket is at least:

c1(r + 1) + c1λk − (c1(r + 2) + 6k) = c1λk − 6k − c1
≥ c1k(λ− 1)− 6k (since k ≥ 1)
≥ k (since λ− 1 ≥ 7/c1)
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Since each unit of unmet demand leads to a discontent of pG = r − λk, the total buyer discontent
is at least k(r−λk) = rk(1−λk/r) = Θ(kr). When the price halves, Big-Buyer’s demand increases
by a factor of 2 and therefore the buyer discontent at lower prices (pG ≤ r − λk) is still Θ(kr). 2

We say that a variable x is mispriced if either of the goods Fx and Hx is not at its select price
(i.e. pFx 6= 3r/4, pHx 6= r+2) or if either of the goods Gx, Gx is not at its broadly select price. Note
that by Claims 17, 18, 20 and 21, there is Θ(kr) discontent per mispriced variable x.

Discontent Sharing: We share the Θ(kr) discontent associated with a mispriced variable x
uniformly among the Force-Clause-True submarkets in which x appears (either as a positive or a
negative literal). Since a variable appears in exactly 6 clauses (in 3 as a positive literal and in
3 as a negative literal), there are a total of 6k Force-Clause-True submarkets among which the
Θ(kr) discontent is shared. Suppose a is a literal of a mispriced variable x (i.e. a = x or a = x).
The total discontent allocated to the k copies of Force-Clause-True (C, a, b, c) submarket is at least
k ·Θ(kr6k ) = Θ(kr).

Claim 22. In submarket Force-Price-Sum-Up (G,G,F, r), if pG+pG ≤ 2r, pF = 3r/4, and without
loss of generality, pG ≤ pG, then the demand for G exceeds its supply in this submarket.

Proof. Both low buyers desire at least one copy of G, creating a demand for at least 2 copies,
while the supply is 1 copy. 2

Claim 23. If pF = 3r/4, pH = r + 2, pD = 4r/5 and goods G and G are at broadly select prices,
then pG + pG > 2r or there is Θ(kr) discontent in the market.

Proof. If pG + pG ≤ 2r, by Claim 22, buyers in the Force-Price-Sum-Up submarket will have
an excess demand of k for each of G and G. Without loss of generality, let pG ≤ r. If a Force-

Clause-True submarket containing a copy of G contains another mispriced variable, then there is
Θ(kr) shared discontent allocated to copies of this Force-Clause-True submarket. This discontent
is further shared, equally among the literals that appear in the clause. Since there are at most 3
literals in any clause, each literal still receives Θ(kr) discontent. On the other hand, if each one
of the literal goods appearing in this submarket is at its broadly select price, the buyer in this
Force-Clause-True submarket desires at least 1 copy of G. Thus there is no excess supply of G
within these submarkets. The buyer in an Undo-Pair having some desire for G desires at least 1
copy of G and the Big-Buyer seeks at least c1(r + 1) copies of G. Thus, there is an overall excess
demand of at least k for G in this case. Since any buyer that desires a copy of G in its optimal
allocation and fails to receive it has Θ(r) discontent, there is an overall Θ(kr) buyer discontent in
the market. 2

Claim 24. At broadly select prices, the buyer in Force-Clause-True (Ga, Gb, Gc,D, r) will buy one
copy each of Ga, Gb, Gc, or there will be Θ(r) discontent, assuming r ≥ 10λk.

Proof. If this buyer can afford these goods but does not receive them, it has Θ(r) discontent.
Otherwise, its preferred basket includes the “discontent” good D, assuming 3r + 2 − 2(r + λk) ≥
d4r/5e ⇒ r/5 + 1 ≥ 2λk; r ≥ 10λk suffices. If it receives a copy of D, the Big-Buyer for D is
short a copy, creating buyer discontent of Θ(r). If it does not receive a copy of D, it suffers buyer
discontent Θ(r). 2
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Claim 25. At select prices for all goods, the demand for goods F and H exactly equals their supply.
Also, the total demand for goods G,G and DC from all submarkets except the Force-Clause-True

submarket exactly equals their supply in these submarkets.

Proof. The demand for F at pF = 3r/4 is of (a) 2k copies from the Force-Price-Sum-Up submar-
kets, (b) 3k copies from the Force-Price-Up submarkets, (c) 3k copies from the Force-Price-Down

submarkets and (d) c2r from the Big-Buyer submarket, which exactly equals the supply of F in the
respective submarkets.

The demand for H at pH = r+2 is of (a) k copies each from the Force-Price-Up and Force-Price-

Down submarkets, (b) c1 copies from the Undo-Pair submarket (Claim 14) and (c) c3(r + 1) copies
from the Big-Buyer submarket, which exactly equals the supply of H in the respective submarkets.

Other than the Force-Clause-True submarket, only Big-Buyer-D has a desire for D and when D
is at its select price (i.e. pD = 4r/5), the demand for D in this submarket is c4r, which exactly
equals its supply.

When G and G are at their select prices (say pG = r and pG = r + 1), the demand for G (in
submarkets other than the Force-Clause-True submarket) is of (a) k copies each from the Force-Price-

Up and Force-Price-Down submarkets, (b) k copies from the Force-Price-Sum-Up submarkets, (c) c1
copies from the Undo-Pair submarkets (Claim 14) and (d) c1(r+ 1) from the Big-Buyer submarket.
Thus, the total demand for G is 3k + c1(r + 2), which equals its total supply in these submarkets.
The demand for G is same as that of G in these submarkets, except for the Undo-Pair submarkets
and the Big-Buyer submarket. At pG = r+ 1, the demand for G is of 2c1 copies from the Undo-Pair

submarkets (Claim 14) and of c1r copies from the Big-Buyer submarket. The overall demand for G
is still 3k + c1(r + 2), which equals its total supply in these submarkets. 2

The constraints on r, λ, k are met by the following conditions r ≥ 10λk, λ ≥ 7/c1 + 1, c3 ≥ c1 +
1, r + 3 ≥ 2c3, k ≥ 1.

Proof. (Theorem 9) Given a satisfying assignment σ, set prices as follows: pF = 3r/4, pH = r+2,
if σ(x) =True then pGx = r, pGx

= r + 1 (respectively, σ(x) =False, pGx = r + 1, pGx
= r). For all

clauses C, set pDC
= 4r/5. At these prices, for each submarket, apart from the Force-Clause-True

submarkets, by Claim 25, there is an allocation of goods introduced in that submarket to buyers
in that submarket with 0 discontent. For a clause C = a ∨ b ∨ c, as at least one literal is true, in
the corresponding Force-Clause-True (Ga, Gb, Gc, r) submarket, at least one of Ga, Gb, Gc is priced
at r. Thus, the allocation to the buyer introduced in this submarket, of the goods introduced in
this submarket, namely Ga, Gb, Gc has 0 discontent. Thus, all goods are sold and each buyer is
optimally happy, leading to an overall discontent of 0.

Given a pricing, we construct a truth assignment for the formula as follows: if pFx = 3r/4, pHx =
r + 2, pGx + pGx

> 2r and pGx ≤ r, we set x to True (respectively if pGx + pGx
> 2r and pGx

≤ r,
we set x to False). Otherwise, we set the truth value arbitrarily. Suppose this leaves αm clauses
unsatisfied. We show that there must be at least Θ(αmkr) discontent. Consider one such unsatisfied
clause C = a ∨ b ∨ c in the formula under the given truth assignment. Let x, y and z represent the
variables corresponding to literals a, b and c. There are three cases: (a) at least one of x, y and
z is mispriced, (say there are α1m such clauses), or (b) x, y and z are not mispriced, but at least
one of the literals a, b, c occurs with a literal d in another clause, and the variable corresponding to
d is mispriced (say there are α2m such clauses), or (c) x, y and z are all correctly priced (i.e. not
mispriced) and they each appear only in clauses with literals of other correctly priced variables
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(say there are α3m such clauses). For each of the α1m+ α2m clauses in cases (a) and (b), Θ(kr)
discontent is allocated to the corresponding Force-Clause-True submarket (by sharing the discontent
associated with at least max{α1m/6, α2m/60} mispriced variables). Finally, for the α3m clauses
in case (c), there are two cases. If the price of the corresponding discontent good D is not 4r/5,
there is Θ(kr) discontent. Finally, if pD = 4r/5, we argue that there must be an unsold copy of
one of Ga, Gb, Gc, leading to a total of Θ(α3mr) discontent as follows: with each of pGa , pGb

, pGc

at at least r + 1 (but no larger than r + λk), the buyer in Force-Clause-True (C,Ga, Gb, Gc) with
3r+2 money desires 1 copy each of Ga and Gb. Since each one of a, b, c appear only in clauses with
correctly priced goods, no buyer in any other Force-Clause-True submarket can buy the one unsold
copy of Gc from this submarket, leading to seller discontent of k(r+ 1) from the k instances of the
Force-Clause-True submarket.

Since the total wealth in the market is Θ(mr2), the inefficiency is at least Θ(αmkr)/Θ(mr2) =
Θ(αk/r). Since we know it is hard to find a truth assignment with fewer than αm clauses unsatisfied,
for some constant α > 0, it must be hard to find a pricing with inefficiency less than βk/r for a
suitable constant β > 0. 2

k-smoothness and relaxed k-WGS Let pE denote the price of good E, E ∈ {F,H,D,G,G}.
At high enough prices, the only demand for E comes from the Big-Buyer that desires E. For
ease of exposition (at the cost of a slightly clumsy notation), for the remainder of this sec-
tion, we let Big-Buyer-E denote the Big-Buyer submarket corresponding to good E and we let
xE(all except Big-Buyer-E at (pE ,p−E)) denote the demand for E from all submarkets other than
Big-Buyer-E at prices p = (pE ,p−E). When no ambiguity arises, we also let Big-Buyer-E denote
the one buyer with money r′p′ introduced in Big-Buyer (E, r′, p′).

For goods F,H,D,G and G, at pF > 2r, pH > 2r+2, pD > 3r+2, pG > 3r+2 and pG > 3r+2,
there is no demand from any gadget submarket except the corresponding Big-Buyer submarket and
the market obeys the k-smoothness and the relaxed k-WGS conditions, for k ≥ 1, straightforwardly.
At lower prices, a more careful analysis is required to demonstrate k-smoothness and relaxed k-
WGS. The demand function for good E, xE(pE ,p−E), obeys the k-smoothness condition if:

demand for E at (pE ,p−E) ≤ (demand for E at (pE + 1,p−E)) (1 + k/pE).

For the above condition to hold, it suffices that:

demand for E at (pE ,p−E) ≤ (demand for E from Big-Buyer-E at (pE + 1,p−E)) (1 + k/pE).

The demand for E at price pE from Big-Buyer-E with money wB is bwB/pEc. Thus, to establish
k-smoothness, it suffices to show that:

⌊
wB

pE

⌋
+ xE(all except Big-Buyer-E at (pE,p−E)) ≤

⌊
wB

pE+1

⌋
(1 + k/pE)

(⇐) wB

pE
+ xE(all except Big-Buyer-E at (pE,p−E)) ≤

(
wB

pE+1 − 1
)

(1 + k/pE)

(⇔) 1 + wB

pE(pE+1) + xE(all except Big-Buyer-E at (pE,p−E)) ≤ k
pE

(
wB

pE+1 − 1
)

(⇔) 1 + xE(all except Big-Buyer-E at (pE ,p−E)) + k
pE
≤ (k−1)wB

pE(pE+1)

Rearranging the above inequality, we obtain a sufficient condition for k-smoothness, as expressed
in the following lemma.
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Lemma 26. The demand for E at prices (pE ,p−E) in a market with Big-Buyer-E who has wealth
wB obeys the k-smoothness condition if:

pE + pE (xE(all except Big-Buyer-E at (pE ,p−E))) + k ≤ (k − 1)wB
pE + 1

(2)

Recall that we introduced one instance of each of Big-Buyer (F, c2r, 3r/4), Big-Buyer (H, c3(r +
1), r+2) and Big-Buyer (D, c4r, 4r/5) in the construction. Also, note that we often use the inequality
2(k − 1) ≥ k for k ≥ 2.

Lemma 27. The demand for F,D and H obeys k-smoothness for k ≥ 2, r ≥ 6 and suitably large
constants c1, c2, c3 and c4 with c3 ≥ 24 + 8c1.

Proof. First, let us consider good F . At pF > 2r, no buyer other than Big-Buyer-F desires a copy
of F , and the demand obeys k-smoothness for k ≥ 1. At pF ≤ 2r, the demand for F may come
from Force-Price-Sum-Up, Force-Price-Up and Force-Price-Down submarkets. The total wealth in
these submarkets is k(4r) + 3k(6r/4− 1) + 3k(3r/4) ≤ αkr, for a fixed constant α (α = 11 works).
Thus, xF (all except Big-Buyer-F at (pF ,p−F )) ≤ αkr

pF
; on applying Lemma 26, we get the following

sufficient condition for k-smoothness:

pF + αkr + k ≤ 3c2(k−1)r2

4(pF +1)

(⇐) 2r + αkr + k ≤ 3c2(k−1)r2

4(2r+1) (since pF ≤ 2r)

(⇐) 2(k − 1)r + 2α(k − 1)r + 2(k − 1)r ≤ c2
4 (k − 1)r (since k ≥ 2, r ≥ 1)

(⇔) 4(4 + 2α) ≤ c2

Similarly, for H, at pH > 2r + 2, only Big-Buyer-H desires H and the market obeys k-smoothness
for k ≥ 1. At pH ≤ 2r+ 2, there may be demand for H from Force-Price-Up, Force-Price-Down and
Undo-Pair submarkets. The total wealth in these submarkets is k(2r+ 3) + k(r+ 2) + c1(4r+ 4) ≤
3k(r + 2) + 4c1(r + 1) ≤ βk(r + 1) + 4c1(r + 1) for a fixed constant β (β = 4 works, assuming

r ≥ 2). Thus, xH(all except Big-Buyer-H at (pH ,p−H)) ≤ βk(r+1)+4c1(r+1)
pH

. Applying Lemma 26,
we get the following sufficient condition for k-smoothness:

pH + βk(r + 1) + 4c1(r + 1) + k ≤ c3(k−1)(r+1)(r+2)
pH+1

(⇐) 2r + 2 + βk(r + 1) + 4c1(r + 1) + k ≤ c3(k−1)(r+1)(r+2)
2r+3 (since pH ≤ 2r + 2)

(⇐) (k − 1)(r + 1)(2 + 2β + 2) + 4c1(r + 1) ≤ c3
2 (k − 1)(r + 1) (since k ≥ 2)

(⇔) 2(4 + 2β + 4c1
k−1) ≤ c3

Finally, for D, at pD > 3r + 2, only Big-Buyer-D desires D and the market obeys k-smoothness
for k ≥ 1. At pD ≤ 3r + 2, buyers in the corresponding Force-Clause-True, Force-Price-Up and
Force-Price-Down submarket may also desire copies of D. The total wealth in these submarkets is
k(3r+2)+k(2d4r/5e−1)+4k(d4r/5e) ≤ γkr for a fixed constant γ (γ = 9 works, assuming r ≥ 6).
Applying Lemma 26, at pD ≤ 3r + 2, we get the following sufficient condition for k-smoothness:

pD + γkr + k ≤ 4c4(k−1)r2

5(pD+1)

(⇐) 3r + 2 + γkr + k ≤ 4c4(k−1)r2

5(3r+3) (since pD ≤ 3r + 2)

(⇐) 4r + γkr + kr ≤ 4c4(k−1)r2

15(r+1) (since r ≥ 2)

(⇐) (k − 1)r(4 + 2γ + 2) ≤ 2c4
15 (k − 1)r (since k ≥ 2)

(⇔) 15
2 (6 + 2γ) ≤ c4

2
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Lemma 28. The demand for G (and G) obeys the k-smoothness condition, for k ≥ 6, r ≥ 8 and
a suitably large constant c1.

Proof. We prove the statement for G. An identical argument works for G. At pG > 3r + 2, the
only demand for G comes from the Big-Buyer-G submarket and the market obeys k-smoothness for
k ≥ 1.

At 2r + 2 < pG ≤ 3r + 2, the only buyers that may desire copies of G, other than the one in
Big-Buyer-G, are the ones in the Force-Clause-True submarket, each of which can afford exactly one
copy of G. Since there are at most 3k submarkets that contain a buyer that has a utility for G,
xG(all except Big-Buyer-G at (pG,p−G)) ≤ 3k. Applying Lemma 26, we get pG + pG(3k) + k ≤
(k−1)c1r(r+1)

pG+1 as a sufficient condition for k-smoothness. Since pG ≤ 3r + 2, we get:

(3r + 2)(3k + 1) + k ≤ (k−1)c1r(r+1)
3r+2

(⇐) 3(r + 1)7(k − 1) + 2(k − 1) ≤ (k−1)c1r(r+1)
3r+2 (since 2(k − 1) ≥ k & k − 1 ≥ 1)

(⇐) 23(k − 1)(r + 1) ≤ 8(k−1)c1(r+1)
26 (since r ≥ 8)

(⇔) 299
4 ≤ c1

At prices pG ≤ 2r + 2, the potential wealth that may be spent on G (other than the Big-Buyer)
is: (a) k(2r − 1) from the Force-Price-Up submarket, (b) k(r + 1) from the Force-Price-Down

submarket, (c) 4kr from the Force-Price-Sum-Up submarket, (d) c1(2r + 2) from the Undo-Pair

submarket and (e) 3k(3r + 2) from the Force-Clause-True submarket. The total wealth that
may be spent on good G (other than from the Big-Buyer-G submarket) is an upper bound on
pG · xG(all except Big-Buyer-G at (pG,p−G)); thus:

pG · xG(all except Big-Buyer-G at (pG,p−G)) ≤ k(2r − 1) + k(r + 1) + 4kr + 3k(3r + 2) + 2c1(r + 1)
≤ 16kr + 6k + 2c1(r + 1)

Applying Lemma 26 and using pG ≤ 2r + 2, k ≥ 2, it suffices that:

(2r + 2) + (16kr + 2c1(r + 1) + 6k) + k ≤ (k−1)c1r(r+1)
2r+3

(⇐) 2(r + 1) + 16k(r + 1) + 2c1(r + 1) ≤ (k−1)c1r(r+1)
2r+3

(⇔) 2 + 16k ≤ c1
(k−1)r−(4r+6)

2r+3

(⇐) 18k ≤ c1
(k−5−6/r)r

2r+3 (since k ≥ 1)

(⇐) 18k ≤ c1
(k− 23

4
)r

2r+3 (since r ≥ 8)

(⇐) 18k ≤ c1
k
24

r
2r+3 (since k ≥ 6)

(⇐) 18 ≤ c1
1
24

8
19 (since r ≥ 8)

which is satisfied for a suitably large constant c1. 2

For the k-relaxed WGS condition, the permissible swing in demand changes from the bound of
k
pE

⌊
wB

pE+1

⌋
(used in the k-smoothness analysis) to k

pE

⌊
wB

pE

⌋
, which is larger than k

pE

⌊
wB

pE+1

⌋
. Thus

the previous analysis shows that the demand for F,H,G,G also obeys the k-relaxed WGS condition
for k ≥ 6.

Theorem 29. For r ≥ 11k, k ≥ 6, there is a fixed β > 0 such that in a market with average wealth
Θ(r) that obeys the k-smoothness and the relaxed k-WGS properties, it is NP-hard to compute
prices at which a (1− βk/r) approximation to the efficiency is possible.
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Comment 3. The construction still works if buyers can be allocated arbitrary allocations. (This
entails verifying that the claims of Θ(kr) discontent continue to apply).

Comment 4. A desire for money can also be introduced. The one difficulty occurs with the Force-

Price-Up submarket; to create sufficient discontent on a low price, we introduce a discontent good,
whose select price is r/2. This price is forced to be within ±Θ(k) of r/2 by the Big-Buyer for this
good (or there is Θ(kr) discontent).

We would like to extend this result to arbitrarily small k > 1, which we can do. As the solution is
somewhat painstaking, we only sketch it. The idea is to introduce a small collection of new buyers
of G (and G) with wealth Θ(c1r

2 log c1) such that Big-Buyer-G together with the new buyers assure
the k-smoothness of new buyers, Big-Buyer-G ensures the k-smoothness of all submarkets except
the Undo-Pair submarket and the new buyers ensure the k-smoothness of the c1 buyers that desire
G introduced in the Undo-Pair submarket. We show the result for k = 1 + 4α, for an arbitrarily
small but fixed α > 0. Now, when defining the construction, rather than take cik = ci(1 + 4α)
copies of a submarket, for 1 ≤ i ≤ 4, we use cidke = 2ci copies. It is not hard to extend Lemma 27
to k = 1 + 4α, where the constants c1, c2, c4 are now Θ(1/α) and c3 is Θ(1/α2). The extension of
Lemma 28 is more difficult.

Let a = 2h, where h is a parameter to be specified later. We introduce buyers with money
4r, 4r + 1, 4r + 2, . . . , ar − 1. All these buyers desire only good G and have no desire for money.
They are conceptually partitioned into h− 2 levels, 0 through h− 3. Among the newly introduced
buyers, a buyer with wealth w such that ar

2j+1 ≤ w < ar
2j is said to be in level j. For each amount

of wealth w in level j, there are 4j identical buyers with that amount of wealth. Note that the
average money with the buyers in a level and the level’s length halve in successive levels, but since
there are 4 times as many buyers with each amount of wealth, the total wealth in each level is (up

to rounding differences) the same. There is one caveat: if
⌊
w
r

⌋
6=

⌊
w
r+1

⌋
, no buyers of wealth w are

introduced. This excludes buyers for wealth amounts gr, gr + 1, . . . , gr + (g − 1), for 4 ≤ g < a.
Note that this ensures that each newly introduced buyer has the same demand for G at prices r
and r + 1.

Since we will be focusing only on good G for the remainder of this section, we drop the subscript
G wherever possible and convenient. Let xU (pG,p−G) denote the demand of the Undo buyers for
G at prices (pG,p−G). Let xN (pG) denote the demand of the new buyers for G at price pG (note
that the prices p−G do not affect this demand). Let xB(pG) denote the demand of Big-Buyer-G for
G at price pG. Finally, let x̂(pG,p−G) denote the demand of the remaining buyers for G at prices
(pG,p−G). The k-smoothness bound will follow from the following three bounds, which we show:

xB(pG)− xB(pG + 1) ≤ 1 + α

pG
xB(pG + 1) (3)

xN (pG)− xN (pG + 1) ≤ 3α

pG
xB(pG + 1) +

1

pG
xN (pG + 1) (4)

x̂(pG,p−G)− x̂(pG + 1,p−G) + xU (pG,p−G)− xU (pG + 1,p−G) ≤ 3α

pG
xN (pG + 1) (5)

Claim 30. Equations 3, 4 and 5 together imply (1 + 4α)-smoothness.
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Proof. Summing Equations 3, 4 and 5, we obtain the following inequality:

x(pG,p−G)− x(pG + 1,p−G) ≤ 1 + 4α

pG
xB(pG + 1) +

1 + 3α

pG
xN (pG + 1)

≤ 1 + 4α

pG
x(pG + 1,p−G)

Upon rearranging the above inequality, we get x(pG,p−G) ≤ x(pG + 1,p−G)(1 + 1+4α
pG

), which
implies (1 + 4α)-smoothness. 2

Claim 31. Equation 3 holds if pG < ar, where a =
√
αc1 and c1 is an integer multiple of a.

Proof. Let wB denote the wealth of the Big-Buyer. By construction, wB = c1r(r+1). For positive
integers a and q, a mod q = a− qba/qc < q. Using this observation, we can verify Equation 3 since:

wB − (pG + 1)
⌊

wB

pG+1

⌋
≤ pG

(⇒) wB

pG
− pG+1

pG

⌊
wB

pG+1

⌋
≤ 1

(⇒)
⌊
wB

pG

⌋
−

⌊
wB

pG+1

⌋
≤ 1 + 1

pG

⌊
wB

pG+1

⌋

(⇔) xB(pG)− xB(pG + 1) ≤ 1 + 1
pG
xB(pG + 1).

Thus, it suffices to show that α
pG
xB(pG + 1) ≥ 1 in order to prove the claim. Indeed, we have:

α
pG
xB(pG + 1) = α

pG

⌊
c1r(r+1)
pG+1

⌋

≥ α
ar−1

⌊
c1r(r+1)

ar

⌋
(since pG < ar)

= αc1(r+1)
a(ar−1) (since c1 mod a = 0)

= a(r+1)
ar−1 (since a =

√
αc1)

≥ 1.

2

Note that the demand from the remaining buyers, x̂(pG,p−G) ≤ 2 · 16r+6
pG

≤ 34r
pG

for r ≥ 6. Also

note that xU (pG,p−G) ≤ c1(2r+2)
pG

≤ 3c1r
pG

for r ≥ 2. Thus, to show Equation 5, assuming r ≥ 6, it
suffices to show:

34r

pG
+

3c1r

pG
≤ 3α

pG
xN (pG + 1)

or (34 + 3c1)r ≤ 3αxN (pG + 1) (6)

It remains to compute upper and lower bounds on xN (pG), and then it will be straightforward to
check Equations 4 and 6.
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Claim 32. Let
⌊
ar−1
i+1

⌋
< pG ≤

⌊
ar−1
i

⌋
. Then

xN (pG) ≥ ar
2 + 4 · ar4 + . . . + 2blog ic−1 ar

2 + 4blog ic
(

ar
2blog ic − 1− (pG − 1)

)

+ ar
2 + 4 · ar4 + . . . + 2blog ic−2 ar

2 + 4blog ic−1
(

ar
2blog ic−1 − 1− (2pG − 1)

)

+ . . .

+ ar
2 + . . .+ . . .+ 2

blog ar
gpG

c−2 ar
2 + 4

blog ar
gpG

c−1
(

ar

2
blog ar

gpG
c−1
− 1− (gpG − 1)

)

+ . . .
+ (ar − 1)− (ipG − 1)
− i[a+ (a− 1) + . . . + a/2 + 1]
− 4bi/2c[a/2 + (a/2 − 1) + . . . + a/4 + 1]
− . . .

− 4blog ic[
⌊

a
2blog ic

⌋
+ . . .+ . . . +

⌊
a

2blog ic+1

⌋
+ 1]

Proof. In turn, we count the number of buyers seeking at least one copy of G, two copies, three

copies, etc., ignoring the absence of buyers with wealth w such that
⌊
w
r

⌋
6=

⌊
w
r+1

⌋
(i.e. assuming

there are buyers associated with such w). We then subtract an overestimate of the demand from
these excluded buyers. 2

Claim 33. Equation 6 holds if r ≥ 4a and log c1 ≥ 8 + 128
3α2 + log 1

α , where a =
√
αc1.

Proof. By Claim 32, xN (pG + 1) can be expressed with the same formula but with i′ replacing i,
where i′ = i if pG <

⌊
ar−1
i

⌋
and i′ = i− 1 if pG =

⌊
ar−1
i

⌋
.

We verify Equation 6 for pG + 1 = 4r − 1; it then follows for all smaller pG as xN (pG + 1) only
grows as pG shrinks. At pG + 1 = 4r − 1, i′ = a/4.

xN (4r − 1) ≥ ar

2
(a/4− 1) +

ar

2
(a/8− 1) + 2

ar

2
(a/16 − 1) + . . .+

a

8

ar

2
(2− 1)

−
[a2

16

(
3a

2
+ 1

)
+
a2

16

(
3a

4
+ 1

)
+ . . .+

a2

16

(
3a

a/2
+ 1

)]

≥ a2r

8
+
a2r

16
(log a− 3)− a2r

8

−
[a2

16

(
3a

2
+ 1

)
+
a2

16

(
3a

4
+ 1

)
+ . . .+

a2

16

(
3a

a/2
+ 1

)]

≥ a2r

16
(log a− 3)− 3a3

16
− a2

16
(log a− 1)

We need (34 + 3c1)r ≤ 3αxN (4r − 1). With a =
√
αc1 and c1 ≥ 34, it suffices that:

4a2 ≤ 3α2

16

(
a2(log a− 3)− a2

r (3a+ log a)
)

or, 4a2 ≤ 3α2

16

(
a2(log a− 3)− 4a3

r

)
(if a ≥ log a)

or, 4 ≤ 3α2

16

(
log a− 3− 4a

r

)
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Thus it suffices that:
64
3α2 + 3 + 4a

r ≤ log a
or, 64

3α2 + 4 ≤ log a (if r ≥ 4a)
or, 8 + 128

3α2 + log 1
α ≤ log c1 (since a =

√
αc1)

2

Claim 34. Equation 4 holds if r ≥ (3a+ 10)/4.

Proof. Temporarily, we pretend there are no excluded buyers w. Let
⌊
ar−1
i+1

⌋
< pG ≤

⌊
ar−1
i

⌋
. We

consider the buyers with demand f at price pG + 1, for f 6=
⌊
i

2d

⌋
, d ≥ 0. Clearly, for a/2g+1 ≤

f < a/2g, there are 4g(pG + 1) such buyers. Hence their demand, divided by pG + 1 is exactly 4gf .
Now, observe that there are 4gf buyers with demand f at price pG + 1 and demand f + 1 at price
pG. But this is the increase in demand at price pG compared to price pG + 1 contributed by all
buyers with demand f at price pG + 1.

The unaccounted increased demand at price pG is at most i+4bi/2c+. . .+4blog icbi/2blog icc ≤ 2i2.

There is also demand due to the excluded buyers with wealth w such that
⌊
w
r

⌋
6=

⌊
w
r+1

⌋
which

is not really present at pG + 1; its (lack of) contribution has to be accounted for. But it amounts
to at most:

a+ (a− 1) + . . .+ (a/2 + 1)

+ 4 (a/2 + (a/2 − 1) + . . .+ (a/4 + 1))

+ . . .

+ 4blog ic
(
a/2blog ic + . . .+ a/2blog ic+1 + 1

)

≤ a

4

(
3a

2
+ 1

)
+

4a

8

(
3a

4
+ 1

)
+ . . .+

4blog ica

2blog ic+2

(
3a

2blog ic+1
+ 1

)

≤ 3a2

8
(blog ic+ 1) + 2blog ic−1a

The demand due to Big-Buyer-G at pG + 1 is
⌊
c1r(r+1)
pG+1

⌋
. We need

2i2 +
3
8a

2 (blog ic+ 1) + 2blog ic−1a

pG + 1
≤ 3α

⌊
c1r(r + 1)

pG + 1

⌋
/pG

We note that
⌊
c1r(r+1)
pG+1

⌋
≥ c1r2

pG+1 as pG + 1 ≤ c1r. Thus it suffices to show that:

2i2(pG + 1)pG +

(
3a2

8
(log i+ 1) +

ai

2

)
pG ≤ 3αc1r

2.

We recall that αc1 = a2 and pG ≤ ar−1
i . So it suffices that:

2(ar − 1 + i)(ar − 1) +

(
3a2

8
(log i+ 1) +

ai

2

)(
ar − 1

i

)
≤ 3a2r2

or, 2a2 +
2ia

r
+

3a3

8ir
log i+

3a3

8ir
+
a2

2r
≤ 3a2

or,
2i

ar
+

3a log i

8ir
+

3a

8ir
+

1

2r
≤ 1,
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or r ≥ 2 + 3a
8 + 3a

8 + 1
2 = 3a/4 + 5/2 = (3a+ 10)/4. 2

The two conditions on r in Claims 33 and 34 are r ≥ 4a and r ≥ (3a + 10)/4, respectively,
where a =

√
αc1 while the condition on c1 in Claim 33 is c1 ≥ 1

α exp(8 + 128
3α2 ). Since c1 ≥ 1

α , the
former condition on r, r ≥ 4a, is tighter. This leads to the following theorem.

Theorem 35. For a fixed α > 0, there is a fixed β > 0 such that in a market with average
wealth Θ(r) that obeys the (1 + 4α)-smoothness and the relaxed (1 + 4α)-WGS properties, it is
NP-hard to compute prices at which a (1 − β/r) approximation is possible, where r ≥ 4

√
αc1 and

c1 ≥ 1
α exp(8 + 128

3α2 ).

5 Relationship between discontent and ε-closeness in utility

In this section, we discuss the relationship between the two measures of distance from equilibria in
the divisible setting. Specifically, for a fixed set of prices p, let x∗ denote the optimal allocation of
a buyer b who has initial wealth w. We are interested in determining the discontent of a bundle x

that is ε-close to x∗ in terms of utility; i.e. u(x) = (1 − ε)u(x∗). Given a utility u (not a utility
function), a set of prices p, define ψ(u,p) as follows:

ψ(u,p) = min{p · x | u(x) ≥ u}

In words, given a desired utility level u and set of prices p, ψ(u,p) is the minimum amount of
wealth required to afford a bundle with utility value u. In the economics literature, ψ(·) is also
known as the expenditure function [15].

The discontent for the bundle x is then given by ψ(u(x∗),p) − ψ((1 − ε)u(x∗),p). In the
divisible setting, it is fairly standard to assume that ψ(u(x∗),p) = w 6 and thus the expression for
the discontent reduces to w − ψ((1 − ε)u(x∗),p). Define the relative discontent as

εd = 1− ψ((1 − ε)u(x∗),p)

w

Theorem 36. If the underlying utility function u(·) is concave, then the relative discontent is no
smaller than the ε-closeness in utility. That is εd ≥ ε.

Proof. It suffices to show that ψ((1−ε)u(x∗),p) ≤ (1−ε)w. It is known that if the utility function
u(·) is concave, then the expenditure function ψ(·) is convex in u[15]. Thus, for any ε ∈ [0, 1], we
have

ψ(ε0 + (1− ε)u(x∗),p) ≤ εψ(0,p) + (1− ε)ψ(u(x∗),p)
= (1− ε)w

2

For Cobb-Douglas utility functions, the two measures are identical. Let u(x) =
∏
i x

αi

i ,
∑

i αi = 1.
Let x satisfy u(x) = (1 − ε)u(x∗), where x∗ is the optimal allocation with cost w. By scaling
the allocation x∗ by a factor of (1 − ε), one achieves an allocation with utility u((1 − ε)x∗) =
(1− ε)u(x∗) = u(x). But (1− ε)x∗ is cheaper than x∗ by εw units of money. Furthermore, u(x) is

6If the buyer has utility for money, this is necessarily the case.
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the largest utility one can achieve with a wealth of (1− ε)w. The relative discontent is therefore ε,
which is also what one would obtain if one took the ratio of the utility values.

To contrast our approach and the approach of using the ratio of utility values as the discontent,
consider the utility function that is obtained by taking the log of the Cobb-Douglas utility function,
i.e. ulog(x) =

∑
i αi log xi,

∑
i αi = 1. A utility functions of this form is called a log-linear utility

function in the economics literature [15]. ulog(·) carries identical preference ordering as u(·). Also,
ulog(·) is concave because for xi > 0, yi > 0, t ∈ [0, 1], we have:

t log xi + (1− t) log yi ≤ log(txi + (1− t)yi) (from concavity of log)

⇔
∑

i

ai(t log xi + (1− t) log yi) ≤
∑

i

ai log(txi + (1− t)yi) (since ai ≥ 0)

⇔ tulog(x) + (1 − t)ulog(y) ≤ ulog(tx + (1− t)y)

Suppose u(x) = (1 − ε)u(x∗). As mentioned before, the discontent under u(·) is ε under both
measures. Now let us examine what happens to the discontent, as measured by taking the ratio of
the utility values, when one considers the utility function ulog(·) instead of u(·). The discontent is:

1− ulog(x)

ulog(x∗)
= 1− log u(x)

log u(x∗)

= 1− log(1− ε) + log u(x∗)

log u(x∗)

=
− log(1− ε)
log u(x∗)

≥ ε

log u(x∗)

Thus, under the modified utility function ulog that carries the same preference information, the
approach of measuring discontent by taking the ratio of actual utility to the optimal utility depends
upon log u(x∗) and can, in some cases, give an arbitrarily different measure of discontent.

References

[1] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof
verification and the hardness of approximation problems. Journal of the ACM, 45(3):501–555,
1998.

[2] Kenneth Arrow and Gerard Debreu. Existence of an equilibrium for a competitive economy.
Econometrica, 22:265–290, 1954.

[3] Laurence Ausubel. Walrasian tatonnement for discrete goods. Technical report, University
of Maryland, 2005. Available at http://www.cramton.umd.edu/workshop/papers/ausubel-
walrasian-tatonnement.pdf.

[4] Bruno Codenotti, Benton McCune, and Kasturi Varadarajan. Market equilibrium via the
excess demand function. In Symposium on Theory of Computing (STOC), pages 74–83, 2005.

[5] Bruno Codenotti, Sriram Pemmaraju, and Kasturi Varadarajan. The computation of market
equilibria. SIGACT News, 35(4):23–37, 2004.

28



[6] Bruno Codenotti, Sriram Pemmaraju, and Kasturi Varadarajan. On the polynomial time com-
putation of equilibria for certain exchange economies. In Symposium on Discrete Algorithms
(SODA), pages 72–81, 2005.

[7] Bruno Codenotti, Amin Saberi, Kasturi Varadarajan, and Yinyu Ye. Leontief economies
encode nonzero sum two-player games. In Symposium on Discrete Algorithms (SODA), pages
659–667, 2006.

[8] Xiaotie Deng, Christos Papadimitriou, and Shmuel Safra. On the complexity of price equilibria.
Journal of Computer System Sciences, 67(2):311–324, 2003.

[9] Nikhil R. Devanur and Vijay V. Vazirani. The spending constraint model for market equilib-
rium: algorithmic, existence and uniqueness results. In Symposium on Theory of Computing
(STOC), pages 519–528, 2004.

[10] Rahul Garg and Sanjiv Kapoor. Auction algorithms for market equilibrium. In Symposium
on Theory of Computing (STOC), pages 511–518, 2004.

[11] Faruk Gul and Ennio Stacchetti. Walrasian equilibrium with gross substitutes. Journal of
Economic Theory, 87(1):95–124, 1999.

[12] Kamal Jain. A polynomial time algorithm for computing the Arrow-Debreu market equilibrium
for linear utilities. In Foundations of Computer Science (FOCS), pages 286–294, 2004.

[13] Kamal Jain, Mohammad Mahdian, and Amin Saberi. Approximating market equilibria.
In Workshop on Approximation Algorithms for Combinatorial Optimization Problems (AP-
PROX), 2003.

[14] Kamal Jain, Vijay V. Vazirani, and Yinyu Ye. Market equilibria for homothetic, quasi-concave
utilities and economies of scale in production. In Symposium on Discrete Algorithms (SODA),
pages 63–71, 2005.

[15] Andreu Mas-Collel, Michael D. Whinston, and Jerry R. Green. Microeconomic Theory. Oxford
University Press, 1995.

[16] Paul Milgrom and Bruno Strulovici. Concepts and properties of substitute goods. Technical
Report, 2006. Available at http://ideas.repec.org/p/nuf/econwp/0602.html.

29

 
http://eccc.hpi-web.de/
 
ECCC
 ISSN 1433-8092



