
On Block-wise Symmetric Signatures for

Matchgates

Jin-Yi Cai1 and Pinyan Lu2?

1 Computer Sciences Department, University of Wisconsin
Madison, WI 53706, USA

jyc@cs.wisc.edu
2 Department of Computer Science and Technology, Tsinghua University

Beijing, 100084, P. R. China
lpy@mails.tsinghua.edu.cn

Abstract. We give a classification of block-wise symmetric signatures
in the theory of matchgate computations. The main proof technique is
matchgate identities, a.k.a. useful Grassmann-Plücker identities.

1 Introduction

The most fundamental question in computational complexity theory is what
differentiate between polynomial time and exponential time problems. On the
one hand, we have many completeness results and conjectured separations of
complexity classes. On the other hand we have precious few unconditional
separations. In fact, the most spectacular advances in the field in the past 20
years have been upper bounds, i.e., surprising ways to do computation efficiently.
Valiant’s theory of matchgate and holographic algorithms [10, 12] is one such
methodology.

The basic idea in matchgate computations is to encode 0-1 bits of a
computation in terms of perfect matchings. The complexity of graph matching
is very interesting in its own right, having inspired the notion of P in the
first place [4]. While a brute force attempt at graph matching seems to take
exponential time, it turns out that the decision problem is in P. More relevant,
counting perfect matchings is known to be in P for planar graphs by the FKT
method [6, 7, 9]. (Counting all, not necessarily perfect, matchings for planar
graphs is #P-complete, as is counting perfect matchings for general graphs [5].)
So one can say that graph matching is right at the border of polynomial time
and (probably) exponential time. Valiant’s theory of matchgate computations
uses the FKT method as the starting point.

To give a flavor of this methodology, let’s consider the problem #7Pl-Rtw-
Mon-3CNF. Given a planar read-twice monotone 3CNF formula, this problem
asks for the number of satisfying assignments modulo 7. Without the modulo 7,
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it is #P-complete even for such restricted formulae [13]. Furthermore, counting
mod 2, denoted as #2Pl-Rtw-Mon-3CNF, is ⊕P-complete (hence NP-hard). But,
using matchgates Valiant showed that #7Pl-Rtw-Mon-3CNF ∈ P [13].

A matchgate is a weighted planar graph with some external nodes. E.g., let
π be a path of length 3: all 3 edges have weight 1, and the two end vertices are
external nodes. If we remove exactly one of the two external nodes we have 3
vertices left and therefore there is no perfect matching. If we remove either both
or none of the two external nodes we get a unique perfect matching with weight
1 (the product of weights of matching edges). We can record this information
as (1, 0, 0, 1)T, indexed by 00, 01, 10, 11; this is called the (standard) signature of
π. One can use this gadget to replace a Boolean variable x in a planar formula
ϕ, and 00, 01, 10, 11 will naturally correspond to truth values of x to be fanned-
out to the 2 clauses of ϕ in which x appears (recall it is read-twice). Then the
signature (1, 0, 0, 1)T indicates consistency of this truth assignment on x.

Now for each clause in ϕ we wish to find a matchgate with 3 external
nodes having signature (0, 1, 1, 1, 1, 1, 1, 1)T, indexed by 000, 001, . . . , 111. This
signature corresponds to a Boolean OR. One can replace each clause by such a
gadget, and connect its 3 external nodes to the gadgets of its 3 variables. Then
the total number of perfect matchings of the resulting planar graph is exactly
the number of satisfying assignments of ϕ. This can be computed by the FKT
method, which would imply P#P = P.

It turns out that a matchgate with the standard signature (0, 1, 1, 1, 1, 1, 1, 1)T

does not exist. However, using a basis transformation a (non-standard) signature
in the form (0, 1, 1, 1, 1, 1, 1, 1)T is realizable over the field Z7 (but not Q). This
gives the result that #7Pl-Rtw-Mon-3CNF ∈ P. (In this paper we will not be
concerned with non-standard signatures.)

The signatures (1, 0, 0, 1)T and (0, 1, 1, 1, 1, 1, 1, 1)T are called symmetric
signatures, since their values only depend on the Hamming weight of the index.
Symmetric signatures have natural combinatorial meanings (such as two equal
bits or the Boolean OR). Therefore the study of symmetric signatures is of
foremost importance in order to understand the power of these exotic algorithms.
To this end, we have achieved a complete classification of bit-wise symmetric
signatures [?].

In Valiant’s surprising algorithm for #7Pl-Rtw-Mon-3CNF he took another
innovative step in the use of matchgates. In his algorithm, the matchgates have
external nodes grouped in blocks of 2 each (called “2-rail” in [13]). This naturally
raises the question of classification of block-wise symmetric signatures. This
paper is concerned with this classification.

The classification theorem of block-wise symmetric signatures is more difficult
compared to that of bit-wise symmetric signatures. The main reason for this is
that matchgate signatures are characterized by a set of parity requirements (due
to consideration of perfect matchings) and an exponential sized set of algebraic
constraints called Matchgate Identities (MGI) a.k.a. the useful Grassman-

Plücker Identities [8, 11, 2, 1]. These MGI are non-linear, and are more subtle
compared to parity requirements. They come about due to an equivalence
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between the perfect matching polynomial PerfMatch and the Pfaffian [2, 1].
For bit-wise symmetric signatures, these MGI degenerate into something more
readily treatable. This paper is the first time one is able to mount a successful and
systematic attack on these MGI. We find proofs on MGI technically challenging,
with almost every step a struggle (at least to the authors).

At a higher level, the new theory of matchgate and holographic algorithms
represents a novel algorithm design methodology by Valiant, with its ultimate
reach unknown. Will the new theory lead to a collapse of complexity classes? We
don’t know. Only a systematic study will (hopefully) tell. To get a classification
theorem for block-wise symmetric signatures seems a useful step.

2 Background

Let G = (V, E, W ) be a weighted undirected planar graph. A matchgate Γ is a
tuple (G, X) where X ⊆ V is a set of external nodes, ordered counterclockwise
on the external face. Γ is called an odd (resp. even) matchgate if it has an odd
(resp. even) number of nodes.

Each matchgate Γ with n external nodes is assigned a (standard) signature

(Γ α)α∈{0,1}n with 2n entries,

Γ i1i2...in = PerfMatch(G − Z) =
∑

M

∏

(i,j)∈M

wij ,

where the sum is over all perfect matchings M of G − Z, and Z ⊆ X is the
subset of external nodes having the characteristic sequence χZ = i1i2 . . . in.

An entry Γ α is called an even (resp. odd) entry if the Hamming weight
wt(α) is even (resp. odd). It was proved in [1, 2] that standard signatures
are characterized by the following two sets of conditions. (1) The parity
requirements: either all even entries are 0 or all odd entries are 0. This is due to
perfect matchings. (2) A set of Matchgate Identities (MGI) defined as follows: A
pattern α is an n-bit string, i.e., α ∈ {0, 1}n. A position vector P = {pi}, i ∈ [l],
is a subsequence of {1, 2, . . . , n}, i.e., pi ∈ [n] and p1 < p2 < · · · < pl. We also
use p to denote the pattern, whose (p1, p2, . . . , pl)-th bits are 1 and others are
0. Let ei ∈ {0, 1}n be the pattern with 1 in the i-th bit and 0 elsewhere. Let
α+β be the bitwise XOR of α and β. Then for any pattern α ∈ {0, 1}n and any
position vector P = {pi}, i ∈ [l],

l∑

i=1

(−1)iΓ α+epi Γ α+p+epi = 0. (1)

The use of MGI will be central in this paper. These MGI come from
the Grassmann-Plücker identities valid for Pfaffians. In fact initially Valiant
introduced two theories of matchgate computation: The first is the matchcircuit
theory with general (non-planar) matchgates [10]. These matchgates have
characters which are defined in terms of Pfaffians. The second is the theory
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of matchgrid/holographic algorithms [12]. These use planar matchgates with
signatures defined by PerfMatch. In [2] it was proved that MGI characterize
(general) matchgate characters. In [1] an equivalence theorem of characters and
signatures was established, and thus MGI also characterize planar matchgate
signatures. The dual forms of the theory have been useful in both ways: some
times it is easier to reason and construct planar gadgets, other times the algebraic
Pfaffian setup seems essential. A case in point is symmetric signatures.

A signature Γ is (bit-wise) symmetric if Γ α only depends on wt(α). A bit-
wise symmetric signature can be denoted as [z0, z1, . . . , zn], where Γ α = zwt(α).
It was proved in [2] that for even matchgates, a signature [z0, z1, . . . , zn] is
realizable iff for all odd i, zi = 0, and there exist constants r1, r2 and λ, such
that z2i = λ · (r1)

bn/2c−i · (r2)
i, for 0 ≤ i ≤ bn

2 c. Similar results hold for odd
matchgates. These are proved via MGI and Pfaffians. It is interesting to note
that the only construction for a planar matchgate realizing this signature is
through a non-planar matchgate Γ and its character theory. There is no known
direct construction.

A tensor (Γ α) on index α = α1 . . . αn, where each αi ∈ {0, 1}k, is block-

wise symmetric if Γ α only depends on the number of k-bit patterns of αi, i.e.,
Γ ...αi...αj ... = Γ ...αj ...αi..., for all 1 ≤ i < j ≤ n.

For an even (resp. odd) matchgate Γ with arity n, the condensed signature

(gα) of Γ is a tensor of arity n − 1, and gα = Γ αb (resp. gα = Γ αb), where
α ∈ {0, 1}n−1 and b = p(α) is the parity of wt(α).

3 Decomposition Theory for Block-wise Symmetric

Signatures

Theorem 1. Let (Γ α) be a block-wise symmetric tensor with block size k and

arity nk. Assume n ≥ 4 and Γ 00···0 6= 0. Then Γ is realizable by a matchgate iff

there exist a matchgate Γ0 with arity k+1 and condensed signature (gα)α∈{0,1}k ,

and a symmetric matchgate Γs such that

Γ α1α2···αn = Γ p(α1)p(α2)···p(αn)
s gα1gα2 · · · gαn . (2)

Proof: We prove “⇐” by a direct construction. In Figure 1, we extend every
external node of Γs by a copy of the matchgate with condensed signature g,
and view the remaining k external nodes of each copy as external. This gives
us a new matchgate with nk external nodes, whose signature is given by (2).
Therefore every signature which has form (2) is realizable.

Now we prove “⇒”: Since Γ 00···0 6= 0, by adding an extra isolated edge with
weight 1/Γ 00···0 we can assume Γ 00···0 = 1. First we assume r1 = Γ e1e100···0 6= 0
(where for convenience we consider e1 ∈ {0, 1}k), and prove the theorem under
this assumption. We take Γs to be an even symmetric matchgate with signature
z2i = (r1)

−i. By [2] this Γs exists. Since the given (Γ α) is realizable, it can be
realized by a matchgate Γ with nk external nodes. View its first k + 1 external
nodes still as external nodes and the other nodes as internal, we have a matchgate
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Fig. 1. Block-wise symmetric signature

with k + 1 external nodes. This is our Γ0. By definition its condensed signature
is

gα =

{
Γ α00···0 when wt(α) is even,

Γ αe10···0 when wt(α) is odd.

Note that g0 = 1 and ge1 = r1. We prove (2) by induction on wt(α1α2 · · ·αn) ≥ 0
and wt(α1α2 · · ·αn) is even.

If wt(α1α2 · · ·αn) = 0, we have the only case that α1α2 · · ·αn = 00 · · · 0. In
this case (2) is obvious.

If wt(α1α2 · · ·αn) = 2, we have two cases depending on whether the two 1s
are in the same block or not. If they are in the same block, we can assume it is in
the first block since Γ is block symmetric, then Γ α1α2···αn = Γ α100···0 = gα1 and
(2) is satisfied. If they are not in the same block, by symmetry, we may assume
α1α2 · · ·αn has the form eiej00 · · ·0. When 0 appears in the sup index of Γ , sup
index of g, a pattern or positions used by a MGI for Γ , it means a block of all
zero. Using the pattern 0eje1e100 · · ·0 and positions eieje1e100 · · ·0, from (1)
we have the following matchgate identity (applying block-wise symmetry):

Γ eieje1e10···0Γ 00···0−Γ e1e10···0Γ eiej0···0+Γ eje10···0Γ eie10···0−Γ eje10···0Γ eie10···0 = 0.

The last two terms cancel out, we get:

Γ eieje1e100···0 = Γ eiej00···0Γ e1e100···0. (3)

Next, using the pattern 0e1eje100 · · · 0 and positions eie1eje100 · · ·0, we have
the following matchgate identity:

Γ eieje1e10···0Γ 00···0−Γ eje10···0Γ eie10···0+Γ e1e10···0Γ eiej0···0−Γ eje10···0Γ eie10···0 = 0.
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Together with (3), we have Γ eiej00···0Γ e1e100···0 = Γ eie100···0Γ eje100···0. Since
Γ e1e100···0 = r1 6= 0, we have Γ eiej00···0 = Γ eie100···0Γ eje100···0/r1 = (r1)

−1geigej .
So (2) is satisfied.

Inductively we assume (2) has been proved for all wt(α1α2 · · ·αn) ≤ 2(i−1),
for some i ≥ 2. Now wt(α1α2 · · ·αn) = 2i > 0. By symmetry, we can assume α1 6=
00 · · · 0. Let t be the position of the first 1 in α1. Using the pattern α1α2 · · ·αn+et

and positions α1α2 · · ·αn (we denote it as P = {pj} where j = 1, 2, . . . , 2i), we
have the following matchgate identity:

Γ α1α2···αn =

2i∑

j=2

(−1)jΓ α1α2···αn+et+epj Γ et+epj . (4)

Since every Γ β in the RHS has wt(β) ≤ 2i − 2, we can apply (2) to them.

Now we do the summation of the RHS in (4) block by block; the sum of the
r-th block is denoted as Sr. Let wr = wt(αr). Let 2q be the number of odd wr,
i.e., the number of blocks among α1, α2, . . . , αn with odd weight. Note that this
number is even.

For the first block, if w1 = 1, then S1 = 0, being an empty sum. Assume
w1 > 1. In the notation below we consider et, epj

∈ {0, 1}k for convenience.

S1 =

w1∑

j=2

(−1)jΓ (α1+et+epj
)α2···αnΓ (et+epj

)00···0 (5)

= r−q
1 gα2 · · · gαn

w1∑

j=2

(−1)jgα1+et+epj get+epj . (6)

Note that the exponent q in r−q
1 comes from the fact that the number of blocks

with odd weight among α1 + et + epj
, α2, . . . , αn is 2q.

If w1 is odd, using the pattern (α1 + et)1 and positions α11, we have the
following matchgate identity for Γ0:

−gα1 +

w1∑

j=2

(−1)jgα1+et+epj get+epj + gα1+etget = 0.

Substituting this in (6), we have:

S1 = r−q
1 gα2 · · · gαn(gα1 − gα1+etget). (7)

We note that this is also valid for w1 = 1.

If w1 is even, using the pattern (α1 + et)0 and positions α10, we have the
following matchgate identity for Γ0:

−gα1 +

w1∑

j=2

(−1)jgα1+et+epj get+epj = 0.
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Substituting this in (6), we have:

S1 = r−q
1 gα1gα2 · · · gαn . (8)

If all Sr are empty block-wise sums for r > 1 (i.e., wr = 0 for all r > 1), then
w1 must be even, and we are done. Now suppose there are non-empty block-wise
sums Sr, for r > 1. For the r-th block, let vr be the number of 1s in the first
r − 1 blocks, and pr

j (j ∈ [wr]) be the position of the j-th 1 in αr. Then

Sr = (−1)vr

wr∑

j=1

(−1)jΓ
(α1+et)α2···(αr+epr

j
)···αn

Γ
(et)00···(epr

j
)···0

(9)

= (−1)vrr−q′

1 getgα1+etgα2 · · · ĝαr · · · gαn

wr∑

j=1

(−1)jg
αr+epr

j g
epr

j , (10)

where ĝαr denotes a missing factor, and 2q′ is the total number of odd blocks in
α1 +et, α2, . . . , αr +epr

j
, . . . , αn from the first factor Γ and in (et)00 · · · (epr

j
) · · · 0

from the second factor Γ . If wr is even, using the pattern αr1 and positions αr0,
we have the following matchgate identity for Γ0:

wr∑

j=1

(−1)jg
αr+epr

j g
epr

j = 0.

Substituting this in (10), we have Sr = 0.
Therefore, among block sums Sr, for r > 1, we need only consider blocks

with odd wr. Assume wr is odd now, we have q′ = q if w1 is odd, and q′ = q + 1
if w1 is even. Using the pattern αr0 and positions αr1, we have the following
MGI for Γ0:

wr∑

j=1

(−1)jg
αr+epr

j g
epr

j + gαr = 0.

Substituting this in (10), we have Sr = −(−1)vrr−q′

1 getgα1+etgα2 · · · gαr · · · gαn .
To summarize, after the first block sum S1, every even block will be zero,

and every odd block will alternatingly contribute a ±r−q′

1 getgα1+etgα2 · · · gαn . If
S1 is an even block sum, then this alternating sum has an even number of such
terms, and they all cancel out. This leaves us with the desired result Γ α1α2···αn =
S1 = r−q

1 gα1gα2 · · · gαn from (8). If the first block is odd, then q′ = q, and there
are an odd number of alternating Sr for r > 1 and wr odd, starting with the sign
−(−1)v2 = +1. These will cancel out pairwise except one r−q

1 getgα1+etgα2 · · · gαn

left, which cancels the −r−q
1 getgα1+etgα2 · · · gαn in S1 from (7). Finally in either

cases, we have Γ α1α2···αn = r−q
1 gα1gα2 · · · gαn . This is precisely (2).

Now we consider the case Γ e1e100···0 = 0. If there exists any i ∈ [k] such that
Γ eiei00···0 6= 0, the above proof can go through similarly. Therefore we assume
for all i ∈ [k], Γ eiei00···0 = 0.
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Consider any 1 ≤ i, j, s, t ≤ k (not necessarily distinct). Using the pattern
0ejeset00 · · · 0 and positions eiejeset00 · · ·0 we get (applying block symmetry),

Γ eiejeset0···0Γ 00···0−Γ eset0···0Γ eiej0···0+Γ eies0···0Γ ejet0···0−Γ ejes0···0Γ eiet0···0 = 0.

Also use the pattern 0esejet00 · · ·0 and positions eiesejet00 · · · 0 we get

Γ eiesejet0···0Γ 00···0−Γ ejet0···0Γ eies0···0+Γ eset0···0Γ eiej0···0−Γ esej0···0Γ eiet0···0 = 0.

Adding the two, we get Γ eiesejet00···0 = Γ esej00···0Γ eiet00···0.

From this we have

(Γ eiej00···0)2 = Γ eiejeiej00···0 = Γ eiejejei00···0 = Γ eiei00···0Γ ejej00···0 = 0.

Therefore for all i, j ∈ [k], we have Γ eiej00···0 = 0. Now we define gα = Γ α00···0

when wt(α) is even, and gα = 0 when wt(α) is odd, and inductively prove (2)
similarly as before. (gα) is the condensed signature of a realizable matchgate Γ0

of arity k + 1 obtained from Γ as follows: View its first k external nodes (in the
first block) still as external and the rest as internal, add a new isolated edge
with weight 1, and one end as the (k + 1)-st external node and the other end an
internal node. We will still arrive at (4). Now all block sums Sr = 0, for r > 1,
since it involves a Γ et+epj , and et appears in the first block.

Consider the first block sum S1. Suppose q > 0, i.e., there are some odd wr.
Then there are at least two odd blocks. Only the first block has a changed index
in the sum, so some odd block among α2, . . . , αn remains in Γ α1α2···αn+et+epj .
Thus, by induction it is 0, since the corresponding gαi = 0. Now suppose q = 0,
i.e., all blocks are even. By induction we get

Γ α1α2···αn = gα2 · · · gαn

w1∑

j=2

(−1)jgα1+et+epj get+epj .

Using the pattern (α1 + et)0 and positions α10 on Γ0, we have MGI,

−gα1 +

w1∑

j=2

(−1)jgα1+et+epj get+epj = 0,

This gives Γ α1α2···αn = gα1gα2 · · · gαn proving (2). 2

In Theorem 1, we assumed Γ 00···0 6= 0. So it must be an even matchgate. For
odd matchgates, we have a similar theorem under the assumption Γ e100···0 6=
0. This proof is slightly more complicated but along similar lines. Due to
space limitations we present it in Appendix A. These theorems give an
elegant decomposition structure of block-wise symmetric signatures. There is
an underlying bit-wise symmetric signature Γs, whose structure is very clear to
us. Therefore, the realizability condition is within each block.
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4 Characterization of Block-wise Symmetric Signature

with Block Size 2

In Theorem 1, we have two assumptions n ≥ 4 and Γ 00...0 6= 0. n ≥ 4 is necessary
for some boundary reason. The assumption Γ 00...0 6= 0 is more technical but we
are not able to bypass it in general. However, in this section we show that this
assumption is not necessary for block size k = 2.

Theorem 2. If Γ is a block-wise symmetric signature for some matchgate,

whose block size is 2 and arity 2n where n ≥ 4. Then there exist four numbers

g00, g01, g10, g11 and a realizable bit-wise symmetric signature Γs such that

Γ α1α2···αn = Γ p(α1)p(α2)···p(αn)
s gα1gα2 · · · gαn . (11)

We only prove it for even matchgates here; the proof is similar for odd
matchgates. If Γ 00,00,...,00 6= 0 or Γ 11,11,...,11 6= 0 (we use “,” to separate blocks),
we are done by Theorem 1. Note that flipping all bits preserves block-symmetry.
Now we assume Γ is an even matchgate, n ≥ 4, and Γ 00,00,...,00 = Γ 11,11,...,11 = 0.
This assumption is made for all the following Claims.

Claim 1 For any α ∈ {00, 01, 10, 11}n−4 , we have

Γ 01,01,01,01,αΓ 00,00,00,00,α = (Γ 01,01,00,00,α)2.

Γ 10,10,10,10,αΓ 00,00,00,00,α = (Γ 10,10,00,00,α)2.

Γ 01,01,10,10,αΓ 00,00,00,00,α = Γ 01,01,00,00,αG10,10,00,00,α = (Γ 01,10,00,00,α)2.

Proof: All three equations follow from MGI. The α part is not involved in the
MGI. This means that the pattern for these bits is exactly α and the position
vector bits for these bit locations are all 0. For convenience, we only list below
the pattern and positions for the other bits, which are really involved in the
MGI. We also use this simplified notation in the following Claims.

This Claim is quite direct from MGI. We only list the pattern and positions
used, and omit the actual MGI. The first equation uses the pattern 00, 01, 01, 01
and positions 01, 01, 01, 01. The second equation uses the pattern 00, 10, 10, 10
and positions 10, 10, 10, 10. The last equation is from two MGI: one uses the
pattern 00, 01, 10, 10 and positions 01, 01, 10, 10, the other uses the pattern
00, 10, 01, 10 and positions 01, 10, 01, 10. 2

Claim 2

Γ 00,00,{00,01,10}n−2

= 0.

Γ 11,11,{11,01,10}n−2

= 0.

Proof: We only prove Γ 00,00,{00,01,10}n−2

= 0; the second equation can be
obtained for the first by flipping all the bits. For α ∈ {00, 01, 10}n−2, we prove
it by induction on wt(α) ≥ 0 and wt(α) is even. The case wt(α) = 0 is by
assumption. We use Claim 1 to go from weight i to weight i + 2. 2
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Claim 3 For any α ∈ {00, 01, 10, 11}n−3,

Γ 00,00,00,α = 0.

Γ 11,11,11,α = 0.

Proof: We also only need to prove Γ 00,00,00,α = 0. For α ∈ {00, 01, 10, 11}n−3,
we prove it by induction on the number of non-“00” blocks in α. (We denote
this number by N0(α).)

If every block in α is 00, then it is by assumption. Inductively we assume it
has been proved for all N0(α) < i. Now N0(α) = i. If α does not have any block
“11”, it has been proved by Claim 2. Otherwise, we can assume α = 11, α′ by
block-symmetry. Since N0(00, α′) = i − 1, we have Γ 00,00,00,00,α′

= 0.
Using the pattern 00, 00, 01, 11 and positions 00, 00, 11, 11, we have MGI:

(Note that we omit the α′ part, and also we omit the symbol Γ in the MGI.)

0 = (00, 00, 11, 11)(00, 00, 00, 00)

− (00, 00, 00, 11)(00, 00, 11, 00)

+ (00, 00, 01, 01)(00, 00, 10, 10)

− (00, 00, 01, 10)(00, 00, 10, 01)

The first term is 0, and by Claim 1, the last two terms cancel out. It follows that
Γ 00,00,00,11,α′

Γ 00,00,11,00,α′

= 0, which is exactly Γ 00,00,00,α = 0. 2

From Claim 3 and Claim 1, we have

Claim 4 For any α ∈ {00, 01, 10, 11}n−4,

Γ 01,10,00,00,α = Γ 01,01,00,00,α = Γ 10,10,00,00,α = 0.

Claim 5 For any α ∈ {00, 01, 10, 11}n−2, the following are all valid,

Γ 00,00,α = 0, Γ 11,11,α = 0, Γ 00,11,α = 0.

Claim 5 says that every non-zero entry Γ α can have at most one even block.
This is an important step in the proof. However, due to space limitation, the
proof is omitted here, and is presented in Appendix B. The proof is by repeated
applications of MGI (death by a thousand cuts, an ancient Chinese disgrace;
unfortunately we cannot find a coup de grâce.)

Claim 6 For any α ∈ {00, 01, 10, 11}n−2, we have

Γ 01,01,αΓ 10,10,α = (Γ 01,10,α)2.

Proof: Using the pattern 00, 01 and positions 11, 11 (omitting α), we have MGI:

0 = (10, 01)(01, 10)− (01, 01)(10, 10) + (00, 11)(11, 00)− (00, 00)(11, 11).

From Claim 5, we know the last two terms are both 0. So we have

Γ 01,01,αΓ 10,10,α = (Γ 01,10,α)2.

2
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Claim 7 For n ≥ 4, k = 2, if n is even and Γ 00,00,...,00 = Γ 11,11,...,11 = 0,
Theorem 2 holds.

Proof: Suppose Γ α1,α2,...,αn 6= 0, we show each αi ∈ {01, 10}. Since n is even
and we have an even matchgate, the number of odd blocks must be even, so that
if it has any even block it has at least two even blocks. Then by Claim 5 it is 0.

If Γ 01,01,...,01 6= 0, w.l.o.g, we assume Γ 01,01,...,01 = 1. Let Γs be the matchgate
having symmetric signature [0, 0, . . . , 0, 1] (in the notation for bit-wise symmetric
signatures), let g01 = 1 and g10 = Γ 10,01,01,...,01/Γ 01,01,...,01 = Γ 10,01,01,...,01.
From Claim 6, we can verify that (11) is satisfied. This is seen as follows: Claim
6 allows one to “exchange” one block of 10 for one block of 01, incurring a factor
of g10. This works as long as g10 6= 0. If g10 = 0, we can instead use Claim 6
to show that Γ 01,10,α = 0, for all α ∈ {01, 10}n−2. Moreover we want to show
that Γ 10,10,...,10 = 0 as well. For this purpose, we use MGI with the pattern
00, 10, 10, . . . , 10 and all positions, and get

0 = (10, 10, 10, . . . , 10)(01, 01, 01, . . . , 01)−(01, 10, 10, . . . , 10)(10, 01, 01, . . . , 01)+. . .

The remaining terms (omitted) all have a 00 block in its first factor, and so
they are all 0. The second term is also 0 as g10 = 0. Yet (01, 01, 01, . . . , 01) = 1,
so (10, 10, 10, . . . , 10) = 0. This proves the Claim when Γ 01,01,...,01 6= 0.

If Γ 01,01,...,01 = 0, again from the “exchange” argument by Claim 6, the
only possible non-zero entry of Γ is Γ 10,10,...,10. Let g00 = g11 = g01 = 0 and
g10 =

n
√

Γ 10,10,...,10. Then (11) is satisfied. (This may require us to go to an
algebraic extension field.) 2

Claim 8 For n ≥ 4, k = 2, n is odd and Γ 00,00,...,00 = Γ 11,11,...,11 = 0, Theorem

2 holds.

Proof: Since n is odd and Γ is an even matchgate, from Claim 5, we know
that if Γ α1α2···αn 6= 0, then there is exactly one αi ∈ {00, 11} and all other
αj ∈ {01, 10}. By block-symmetry, we assume α1 ∈ {00, 11} and αi ∈ {01, 10}
(where i = 2, 3, . . . , n).

If Γ 00,01,01,...,01 6= 0, w.l.o.g, we assume Γ 00,01,01,...,01 = 1. Let g00 = g01 = 1.
Using the pattern 10, 01, 01, . . . , 01 and the first four bits as positions, we have

(00, 01)(11, 10)− (11, 01)(00, 10) + (10, 11)(01, 00)− (10, 00)(01, 11) = 0.

By block-symmetry, the first and the last two terms are equal. So we have

Γ 00,01,01,...,01Γ 11,10,01,...,01 − Γ 11,01,01,...,01Γ 00,10,01,...,01 = 0. (12)

Since Γ 00,01,01,...,01 = 1, let g11 = Γ 11,01,01,...,01 and g10 = Γ 00,10,01,...,01,
we have Γ 11,10,01,...,01 = g11g10. And let Γs be the matchgate with symmetric
signature [0, 0, . . . , 1, 0]. The proof is similar with Claim 7. Degenerate cases
happen when g10 = 0, or g11 = 0, or both. In particular, when g10 = 0, we
need to prove Γ 00,10,10...10 = 0, which goes beyond Claim 6. This is shown by
the MGI using the pattern 00, 00, 10, . . . , 10 and positions 00, 11, 11, . . . , 11 (all
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the bits except the first two). We also need to prove Γ 11,10,10,...,10 = 0 when
g10 = 0 or g11 = 0 or both. This can be shown by the MGI using the pattern
10, 01, 01, . . . , 01 and all positions.

If Γ 11,01,01,...,01 6= 0, we have a similar proof.
Finally assume Γ 00,01,01,...,01 = Γ 11,01,01,...,01 = 0. From Claim 6 and

the “exchange” argument, the only two possible non-zero entries of Γ are
Γ 00,10,10,...,10 and Γ 11,10,10,...,10. If they are both 0, then Γ is trivial. Otherwise
w.l.o.g. we assume Γ 00,10,10,...,10 = 1. Let g01 = 0, g00 = g10 = 1 and
g11 = Γ 11,10,10,...,10. And let Γs be the matchgate with symmetric signature
[0, 0, . . . , 1, 0], we can verify that (11) is satisfied. 2

Together with Claim 7 and Claim 8, we have a complete proof for Theorem 2.

This paper presents an elegant decomposition theorem on the structure of
block-wise symmetric signatures for matchgates. The main tool is Matchgate
Identities. However the statement of Theorem 2 for k > 2 without any non-zero
conditions is open. It would also be interesting to simplify the proofs.
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Appendix A: Decomposition Theory for Odd Matchgate

Theorem 3. Let (Γ α) be a block-wise symmetric tensor with block size k and

arity nk. Assume n ≥ 4 and Γ e10···0 6= 0. Then Γ is realizable by a matchgate iff

there exist a matchgate Γ0 with arity k+1 and condensed signature (gα)α∈{0,1}k ,

and a symmetric matchgate Γs such that

Γ α1α2···αn = Γ p(α1)p(α2)···p(αn)
s gα1gα2 · · · gαn . (13)

Proof: “⇐ ” can be proved in the same way as in Theorem 1.
Now we prove “⇒”: Since Γ 100···0 6= 0, w.l.o.g, we can assume Γ 100···0 = 1.
Let r1 = Γ e1e1e100···0 6= 0. We take Γs to be an odd symmetric matchgate with

signature z2i+1 = (r1)
i. By [2] this Γs exists. Since the given (Γ α) is realizable,

it can be realized by a matchgate Γ with nk external nodes. View its first k + 1
external nodes still as external nodes and other nodes as internal, we have a
matchgate with k +1 external nodes. This is our Γ0. By definition its condensed
signature is

gα =

{
Γ α00···0 when wt(α) is odd,

Γ αe10···0 when wt(α) is even.

Note that in this definition gα = 1 for both α = 0k and α = e1 ∈ {0, 1}k.
We prove (13) by induction on wt(α1α2 · · ·αn) ≥ 0 and wt(α1α2 · · ·αn) is

odd.
The base case wt(α1α2 · · ·αn) = 1 is obvious. However before we deal with

the case wt(α1α2 · · ·αn) = 3, we first establish some identities.
Using the pattern and positions both eieje1e100 · · ·0 (for arbitrary i, j ∈ [k]),

we have MGI:

Γ eje1e10···0Γ ei0···0−Γ eie1e10···0Γ ej0···0+Γ eieje10···0Γ e10···0−Γ eieje10···0Γ e10···0 = 0.

The last two terms cancel out, and we get:

Γ eje1e100···0Γ ei00···0 = Γ eie1e100···0Γ ej00···0. (14)

Next, using the pattern and position both eie1eje100 · · ·0, we have the
following matchgate identity:

Γ eje1e10···0Γ ei0···0−Γ eie1ej0···0Γ e10···0+Γ eie1e10···0Γ ej0···0−Γ eie1ej0···0Γ e10···0 = 0.

Together with (14), we have:

Γ eieje100···0Γ e100···0 = Γ e1e1ej00···0Γ ei00···0 = Γ e1e1ei00···0Γ ej00···0 (15)

Let j = 1 in the above equation and note that Γ e100···0 = 1 and Γ e1e1e1···0 =
r1, we have

Γ eie1e100···0 = Γ e1e1e100···0Γ ei00···0 = r1g
ei .

Substituting this in (15), we have:
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Γ eieje100···0 = r1g
eigej . (16)

Now we come back to (part of the inductive base case) where wt(α1α2 · · ·αn) =
3. We have three cases: the three 1s are in 1 block, 2 blocks or 3 blocks.

The case that they are in the same block is obvious by definition.
Next we consider the other two cases. If three 1s are in two blocks, then

it has the form Γ ei(ej+el)00···0 (j 6= l). Using the pattern and positions both
e1ei(ej + el)00 · · · 0, we have MGI:

Γ ei(ej+el)0···0Γ e10···0−Γ e1(ej+el)0···0Γ ei0···0+Γ e1eiel0···0Γ ej0···0−Γ e1eiej0···0Γ el0···0 = 0.

Substituting (16) in the above equation, we find the last two terms cancel out.
And by definition, Γ e1(ej+el)00···0 = g(ej+el). Therefore, we have

Γ ei(ej+el)00···0 = geig(ej+el).

This satisfies (13).
The last case is that three 1s are in three blocks. Then it has the form

Γ eiejel00···0. Using the pattern and positions both e1eiejel00 · · · 0, we have MGI:

Γ eiejel0···0Γ e10···0−Γ e1ejel0···0Γ ei0···0+Γ e1eiel0···0Γ ej0···0−Γ e1eiej0···0Γ el0···0 = 0.

Substituting (16) in it, we find the last two terms cancel out and

Γ eiejel00···0 = r1g
eigej gel .

This also satisfies (13).
Inductively we assume (13) has been proved for all wt(α1α2 · · ·αn) ≤ 2(i −

1) + 1, for some i ≥ 2. Now wt(α1α2 · · ·αn) = 2i + 1 ≥ 5.
By symmetry, we can assume α1 6= 0k. Consider the first bit of α1, there are

two cases: it is 1 or 0.
First we assume the first bit of α1 is 1. Using positions (α1 +e1)α2 · · ·αn and

the pattern α1α2 · · ·αn + et, where t is the position of the first 1 in the pattern
(α1 + e1)α2 · · ·αn, we have MGI:

Γ α1α2···αn =

2i∑

j=2

(−1)jΓ α1α2···αn+et+epj Γ e1+et+epj . (17)

Note that every Γ β in the RHS has weight wt(β) ≤ 2i − 1, so we can apply
(13) to them. Again we do the summation block by block; the sum of the r-th
block is denoted as Sr. Let 2q + 1 be the number of blocks with odd weight in
pattern α1α2 · · ·αn. Note that this number is odd.

Now we must divide the proof into two cases, depending on whether t is in
the first block (α1 + e1) or not. If it is not, then α1 = e1. In this case the first
block is not involved in the MGI at all. Exactly the same proof as in Theorem 1
works here.
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So we assume t is in the first block (α1 + e1). For the first block, let w1 =
wt(α1 + e1) = wt(α1)− 1. If w1 = 1, then S1 = 0, being an empty sum. Assume
w1 > 1. In the notation below we consider et, epj

∈ {0, 1}k for convenience.

S1 =
∑w1

j=2(−1)jΓ (α1+et+epj
)α2···αnΓ (e1+et+epj

)00···0 (18)

= rq
1g

α2 · · · gαn
∑w1

j=2(−1)jgα1+et+epj ge1+et+epj . (19)

Note that the exponent q in rq
1 comes from the fact that the number of blocks

with odd weight among α1 + et + epj
, α2, . . . , αn is 2q + 1.

If w1 is odd, using the pattern (α1 + et)1 and positions (α1 + e1)1, we have
the following MGI for Γ0:

−gα1 +

w1∑

j=2

(−1)jgα1+et+epj ge1+et+epj + gα1+etget+e1 = 0.

Substituting this in (19), we have:

S1 = rq
1g

α2 · · · gαn(gα1 − gα1+etget+e1).

We note that this is also valid for w1 = 1.
If w1 is even, using the pattern (α1 + et)0 and positions (α1 + e1)0, we have

the following matchgate identity for Γ0:

−gα1 +

w1∑

j=2

(−1)jgα1+et+epj ge1+et+epj = 0.

Substituting this in (19), we have:

S1 = rq
1g

α1gα2 · · · gαn .

If all Sr are empty block-wise sums for r > 1 (i.e., wr = 0 for all r > 1), then
w1 must be even (this means wt(α1) is odd), and we are done. Now suppose
there are non-empty block-wise sums Sr, for r > 1. For the r-th block, let
wr = wt(αr) and vr be the number of 1s in the first r − 1 blocks of the pattern
(α1 + e1)α2 · · ·αn, and pr

j (where j ∈ [wr]) be the position of the j-th 1 in αr.
We have

Sr = (−1)vr

wr∑

j=1

(−1)jΓ
(α1+et)α2···(αr+epr

j
)···αn

Γ
(e1+et)00···(epr

j
)···0

(20)

= (−1)vrrq′

1 ge1+etgα1+etgα2 · · · ĝαr · · · gαn

wr∑

j=1

(−1)jg
αr+epr

j g
epr

j , (21)

where ĝαr denotes a missing factor, and 2q′+1 is the total number of odd blocks
in α1 + et, α2, . . . , αr + epr

j
, . . . , αn.
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If wr is even, using the pattern and positions to be both αr0, we have the
following MGI for Γ0:

wr∑

j=1

(−1)jg
αr+epr

j g
epr

j = 0.

Substituting this in (20) and (21), we have Sr = 0.
Therefore, among block sums Sr, for r > 1, we need only consider blocks with

odd wr . Assume wr is odd now, we have q′ = q if w1 is odd, and q′ = q− 1 if w1

is even. Using the pattern and positions to be both αr1, we have the following
MGI for Γ0:

wr∑

j=1

(−1)jg
αr+epr

j g
epr

j + gαr = 0.

Substituting this in (20) and (21), we have

Sr = −(−1)vrrq′

1 get+e1gα1+etgα2 · · · gαr · · · gαn .

To sum up, after the first block sum S1, every even block will be zero, and

every odd block will alternatingly contribute a ±rq′

1 get+e1gα1+etgα2 · · · gαn . If
S1 is an even block sum (this means wt(α1 + e1) is even, but wt(α1) is odd),
then this alternating sum has an even number of such terms, and they all cancel
out. This leaves us with the desired result Γ α1α2···αn = S1 = rq

1g
α1gα2 · · · gαn .

If S1 is an odd block sum (this means wt(α1 +e1) is odd, but wt(α1) is even),
then q′ = q, and there are an odd number of alternating terms from Sr for r > 1,
starting with the sign −(−1)v2 = +1. (Note that v2 = w1 = wt(α1 + e1) is odd.)
These will cancel out pairwise except one rq

1g
et+e1gα1+etgα2 · · · gαn left, which

cancels the −rq
1g

et+e1gα1+etgα2 · · · gαn in S1. In either cases, we have

Γ α1α2···αn = rq
1g

α1gα2 · · · gαn .

Now we come back to the other case where the first bit of α1 is 0.
Using the pattern and positions both (α1 + e1)α2 · · ·αn, we have MGI:

Γ α1α2···αn =

2i∑

j=2

(−1)jΓ (α1+e1)α2···αn+epj Γ epj . (22)

Note that wt((α1 + e1)α2 · · ·αn + epj
) = wt(α1α2 · · ·αn) = 2i + 1 in the

RHS, but the first bit of (α1 + e1)α2 · · ·αn + epj
is 1. For these indices, we have

already proved that (13) is satisfied.
Therefore we can apply (13) in the RHS of (22) and do the summation block

by block. For the first block, let w1 = wt(α1 + e1) (= wt(α1) + 1). Note that
w1 > 1 since we assumed α1 6= 0k.

S1 =

w1∑

j=2

(−1)jΓ (α1+e1+epj
)α2···αnΓ epj

0···0 = rq
1g

α2 · · · gαn

w1∑

j=2

(−1)jgα1+e1+epj gepj .

(23)
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Note that the exponent q in rq
1 comes from the fact that the number of blocks

with odd weight among α1 + e1 + epj
, α2, . . . , αn is 2q + 1.

If w1 is odd, using the pattern and positions both (α1 + e1)1, we have the
following MGI for Γ0:

−gα1 +

w1∑

j=2

(−1)jgα1+e1+epj gepj + gα1+e1 = 0.

Here we used ge1 = g0k

= 1. Substituting this in (23), we have:

S1 = rq
1g

α2 · · · gαn(gα1 − gα1+e1).

If w1 is even, using the pattern and positions both (α1 + e1)0, we have the
following MGI for Γ0:

−gα1 +

w1∑

j=2

(−1)jgα1+e1+epj gepj = 0.

Substituting this in (23), we have:

S1 = rq
1g

α1gα2 · · · gαn .

If all Sr are empty block-wise sums for r > 1 (i.e., wr = 0 for all r > 1), then
w1 must be even, and we are done. Now suppose there are non-empty block-wise
sums Sr, for r > 1. For the r-th block, let wr = wt(αr) and vr be the number
of 1s in the first r − 1 blocks of the pattern (α1 + e1)α2 · · ·αn, and pr

j (where
j ∈ [wr ]) be the position of the j-th 1 in αr. We have

Sr = (−1)vr

wr∑

j=1

(−1)jΓ
(α1+e1)α2···(αr+epr

j
)···αn

Γ
000···(epr

j
)···0

(24)

= (−1)vrrq′

1 gα1+e1gα2 · · · ĝαr · · · gαn

wr∑

j=1

(−1)jg
αr+epr

j g
epr

j , (25)

where ĝαr denotes a missing factor, and 2q′+1 is the total number of odd blocks

in α1 + e1, α2, . . . , αr + epr
j
, . . . , αn. We also used g0k

= 1.
If wr is even, using the pattern and positions both αr0, we have the following

MGI for Γ0:
wr∑

j=1

(−1)jg
αr+epr

j g
epr

j = 0.

Substituting this in (24) and (25), we have Sr = 0.
Therefore, among block sums Sr, for r > 1, we need only consider blocks

with odd wr. Assume wr is odd now, we have q′ = q if w1 is odd, and q′ = q − 1
if w1 is even. Using the pattern and positions both αr1, we have the following
MGI for Γ0:

wr∑

j=1

(−1)jg
αr+epr

j g
epr

j + gαr = 0.



18 J-Y. Cai and P. Lu

Substituting this in (24) and (25), we have

Sr = −(−1)vrrq′

1 gα1+e1gα2 · · · gαr · · · gαn .

To sum up, after the first block sum S1, every even block will be zero, and

every odd block will alternatingly contribute a ±rq′

1 gα1+etgα2 · · · gαn . If S1 is an
even block sum (this means wt(α1 + e1) is even), then this alternating sum has
an even number of such terms, and they all cancel out. This leaves us with the
desired result Γ α1α2···αn = S1 = rq

1g
α1gα2 · · · gαn .

If S1 is an odd block sum (this means wt(α1 + e1) is odd), then q′ = q, and
there are an odd number of alternating terms from Sr for r > 1, starting with the
sign −(−1)v2 = +1. These will cancel out pairwise except one rq

1g
α1+e1gα2 · · · gαn

left, which cancels the −rq
1g

α1+e1gα2 · · · gαn in S1. In either cases, we have finally

Γ α1α2···αn = rq
1g

α1gα2 · · · gαn .

2

Appendix B: Proof of Claim 5

Proof: For any α′ ∈ {00, 01, 10, 11}n−4, using the pattern 10, 10, 10, 11, α′ and
positions 10, 10, 01, 01, we have MGI:

0 = (00, 10, 10, 11)(10, 00, 11, 10)

− (10, 00, 10, 11)(00, 10, 11, 10)

+ (10, 10, 11, 11)(00, 00, 10, 10)

− (10, 10, 10, 10)(00, 00, 11, 11)

Since the first two terms cancel and from Claim 4 the third term is 0, we have

(10, 10, 10, 10)(00, 00, 11, 11) = 0. (26)

Using the pattern 10, 10, 10, 11, α′ and positions 10, 01, 10, 01, we have MGI
(here in all displayed entries of signature Γ in MGI we omit Γ and α′ and display
only the first 8 bits):

0 = (00, 10, 10, 11)(10, 11, 00, 10)

− (10, 11, 10, 11)(00, 10, 00, 10)

+ (10, 10, 00, 11)(00, 11, 10, 10)

− (10, 10, 10, 10)(00, 11, 00, 11)

From Claim 4 we know the second term is 0 and from (26) we know the last
term is 0, and since the first and the third terms are the same, we have

(00, 10, 10, 11) = 0. (27)
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Similarly, we have
(00, 01, 01, 11) = 0. (28)

Using the pattern 10, 10, 01, 11, α′ and positions 10, 10, 10, 10, we have MGI:

0 = (00, 10, 01, 11)(10, 00, 11, 01)

− (10, 00, 01, 11)(00, 10, 11, 01)

+ (10, 10, 11, 11)(00, 00, 01, 01)

− (10, 10, 01, 01)(00, 00, 11, 11)

Since the first two terms cancel and the third term is 0 by Claim 4, we have

(10, 10, 01, 01)(00, 00, 11, 11) = 0. (29)

Using the pattern 10, 01, 10, 11, α′ and positions 10, 10, 10, 10, we have MGI:

0 = (00, 01, 10, 11)(10, 11, 00, 01)

− (10, 11, 10, 11)(00, 01, 00, 01)

+ (10, 01, 00, 11)(00, 11, 10, 01)

− (10, 01, 10, 01)(00, 11, 00, 11)

From Claim 4 we know the second term is 0 and from (29) we know the last
term is 0, since the first and the third terms are the same, we have

(10, 01, 00, 11) = 0. (30)

Using the pattern 00, 01, 00, 11, α′ and positions 11, 11, 00, 00, we have MGI:

0 = (10, 01, 00, 11)(01, 10, 00, 11)

− (01, 01, 00, 11)(10, 10, 00, 11)

+ (00, 11, 00, 11)(11, 00, 00, 11)

− (00, 00, 00, 11)(11, 11, 00, 11)

From Claim 3 we know that the last term is 0 and from (30) and (27) we know
that the first two terms are 0. So we have

(11, 00, 00, 11) = 0. (31)

Now finally we are ready to prove Claim 5. We first prove G00,00,α = 0.
If α has any block 00, from Claim 3, we have G00,00,α = 0.
If α has any block of weight 1, then there must be at least two blocks of

weight 1. So from Claim 4, we have G00,00,α = 0.
Otherwise every block of α is 11. Then from (31), we know G00,00,α = 0.
G11,11,α = 0 can be proved similarly.
Now we prove G00,11,α = 0. If α contains any block of 00 or 11, it has been

proved. Otherwise, every block of α is 01 or 10. Then from (27), (28) and (30)
we have G00,11,α = 0. 2
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